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Abstract

In this paper we deal with production situations where a cap or limit
to the amount of greenhouse gas emissions permitted is imposed. Fixing
a tax for each ton of pollutant emitted is also considered. We use bank-
ruptcy rules to de�ne cooperative games with externalities associated with
these situations and analyze the existence of coalitionally stable alloca-
tions of the emission permits. We prove that the constrained equal awards
(CEA) rule provides stable allocations and as a direct mechanism, it is
incentive compatible. These two facts have interesting managerial impli-
cations to control pollution emissions.

MSC classi�cation: 90B30, 91A12, 91A40, 91A80, 91B32
JEL Classi�cation: C71.

Keywords: game theory, production situations, limited greenhouse
gas emissions permits, games with externalities, bankruptcy problems

1 Introduction

Concern about climate change and, in particular, about global warming in the
atmosphere is nothing new. In 1992, the Framework Convention on Climate
Change (FCCC) took place in Rio de Janeiro (UNFCCC, 1992), in which the
signatory countries pledged to take measures to avoid climate change, but with-
out setting out speci�c measures. In 1997, the FCCC took place in Kyoto, from
which the so-called Kyoto Protocol (UNFCCC, 1998) came into being, whereby
the signatory countries committed themselves to reducing their greenhouse gas
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(GHG) emissions to certain levels until 2020 (considering the Doha Amendment
to the Kyoto Protocol in 2012), but did not establish the procedure that each
country should follow to achieve its emission target. More recently, in 2015,
the FCCC took place in Paris, from which the so-called Paris Agreement (UN-
FCCC, 2015) came into being. In this binding agreement 188 countries have
committed to controlling their GHG emissions, contrary to the Kyoto Protocol
where only certain countries committed, and have indicated their national con-
tributions will be subject to a gradual reduction every �ve years, see Carraro
(2016) for an interesting summary. Thus, each country has a limit or target for
each period to be divided among the sectors involved.
The most common approaches in economic theory to control pollution emis-

sions involve the use of taxes and cap-and-trade systems. Tax systems are price
instruments in which the government agency �xes the price per unit of emissions
(tax), but the quantity remains unknown. In contrast, cap-and-trade systems
are quantity instruments in which the authority �xes the quantity of emissions
allowed (cap), but the price per unit is determined by means of a certain market
(trade). The European Union Emissions Trading Scheme is probably the best
known trading scheme. Nevertheless, both systems are widely used in practice,
see Carl and Fedor (2016) for a survey of the carbon revenues from the cap-and-
trade and carbon tax systems in the World, together with uses of those revenues
by the governments. These systems have attracted considerable attention for
many years and there is a large volume of literature. There are many papers
comparing the e¢ ciency, advantages and disadvantages of both systems. For
example, Cooper (1998), Nordhaus (2007) and Avi-Yonah and Uhlmann (2009)
suggest that carbon taxes are better than cap-and-trade systems. However,
Keohane (2012) suggests that cap-and-trade systems have interesting advan-
tages when compared with the application of taxes. A di¤erent option is the
so-called safety valve, Jacoby and Ellerman (2004), which is somewhat of a
combination of both methods.
This paper falls within the latter idea of combining quantity instruments

(cap-and-trade) and price instruments (carbon taxes). Therefore we try with
our model to contribute by giving an insight into how to mitigate some of the
potential/possible shortcomings of both models: cap-and-trade and tax systems.
In particular, the overestimation of the limit in the cap-and-trade system, the
no-control of the abatement of emissions, if any, in the tax system, and the di¢ -
culties of measuring how much companies actually pollute in both systems. The
�rst two drawbacks are related to the possibility of lack of success in the abate-
ment of emissions and the latter is associated with the authority�s knowledge of
the real emissions.
The economic and social implications that arise from the previous agree-

ments and control instruments can be studied from di¤erent �elds of OR/MS,
depending on the analysis that is intended to be carried out. See Tang and Zhou
(2012) for a survey on OR/MS research developments in enviromental and sus-
tainable issues; and Finus (2001), Dinar et al. (2008) and Patrone et al. (2008)
for applications of Game Theory to natural resources management and envi-
ronmental problems. Some interesting problems that arise are the allocation
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and management of GHG emission permits or allowances; the e¤ect of GHG
emission control systems on the behavior of companies; the analysis of interna-
tional agreements; the e¤ects of these measures on competition, collaboration
or co-opetition between companies, etc.
In this paper we study the problem of allocation of carbon dioxide emission

permits for �rms by using bankruptcy rules. We analyze the consequences in
the cooperation among companies when we consider that externalities can arise.
In order to do so, we use the context production situations in which there is a
cap on the emissions, ex ante cooperation among companies by utility transfers
is possible, trading among companies is allowed and there is a �xed tax on
the carbon dioxide consumption. To the best of our knowledge, no research
has examined this approach to the allocation of GHG emission permits. Our
research aims to �ll this gap in the literature by examining the following key
questions:
a) How to model externalities when companies can coordinate their claims

on carbon dioxide emission permits and the allocation of those permits is to be
carried out by using a bankrutpcy rule?
b) How to allocate carbon dioxide emission permits to obtain a stable allo-

cation of the global pro�ts among the companies?
c) How the paremeters de�ning the problem (cap, allocation rule and tax)

can be �xed or used in order to manage and control the carbon dioxide emissions
e¢ ciently?
To this end, we consider production situations where several �rms own re-

source bundles that can be used to produce various products which they sell at
the given market prices. All �rms have the same production function but di¤er
in the amount of resources which they can manage, so they are di¤erent in size.
Under the market conditions mentioned above, using games with externalities
or in partition function form (Thrall and Lucas, 1963) together with arbitration
by applying bankruptcy or rationing techniques (O�Neill, 1982; Aumann and
Maschler, 1985; Curiel et al., 1987), we examine the process of allocating the
carbon dioxide emission permits in order to analyze under what conditions we
can obtain stable allocations of the emission permits and stable distributions of
the total pro�t generated by the market. Likewise, we study how the cap on
the emissions, the allocation rule and the per unit tax on the emissions can be
used for managing and controlling the gas emissions.
The rest of the paper is organized as follows. In Section 2 a review of the

related literature is presented. Section 3 describes our proposal. In Section 4
some preliminaries on TU-games and bankruptcy problems are given together
with the description of linear production situations with an external limited
resource (LPP situations). In Section 5 a further approach is provided by
using bankruptcy techniques to deal with f �LPP situations and the f �LPP
games with externalities associated with these situations and we prove that if
there are stable allocations of the permits, then there are stable allocation of the
total pro�ts. In Section 6, if the total demand exceeds the cap, we prove that,
under certain conditions, using the CEA rule the allocation of carbon dioxide
emission permits obtained is coalitionally stable, i.e., there is no group of �rms
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that can complain by arguing it is unfair. Moreover, we show that the CEA
rule as a direct mechanism is incentive compatible. In Section 7 we describe the
managerial implications of our proposal. Some concluding remarks are given in
Section 8. All proofs of the results may be found in the appendix.

2 Literature review

In this section we review the literature of two di¤erent topics related to the
abatement of GHG emissions: (i) the impact of GHG emission control policies
on the behavior of the companies with respect to their operational decisions, (ii)
how to allocate carbon dioxide emission permits. Finally, we review the more
speci�c game-theoretic literature related to our model.
The e¤ects of the GHG emission control policies on the operational decisions

of the companies have been studied during recent years from OR/MS perspec-
tive. Some recent papers are Bai and Chen (2016) and Hong et al. (2016),
where there is only one decision maker: the �rm. However, the analysis of the
behavior of the companies when there is more than one decision maker is usually
carried out by using some game-theoretic approach. Among the latest works,
He et al. (2012) compares the e¤ectiveness and e¢ ciency of cap-and-trade and
tax systems in the context of power generation in terms of di¤erent criteria. For
their analysis, they use a Nash-Cournot competition model. In the particular
case of the cap-and-trade systems, the agents must purchase the allowances of
emissions at an exogenously given price. The grandfathering case for the cap-
and-trade case is studied in He et al. (2010). Luo et al. (2016) consider two
competing manufacturers who have di¤erent emission reduction e¢ ciencies and
study the e¤ects of pure competition and co-opetition on emission reduction
e¢ ciency under a cap-and-trade policy. Yenipazarli (2016) uses a multi-stage
leader (regulator)-follower (�rm) Stackelberg game model to investigate the im-
pact of emission taxes and emissions trading on the optimal production (new
product or remanufactured) and pricing decisions of a manufacturer. Siddiqui
et al. (2016) study the impact of market structure with renewable portfolio
targets and show that social welfare under perfect competition between renew-
able and non-renewable is lower than when the non-renewable energy sector
exercises market power in a Cournot oligopoly. However, we have not found
any paper that studies the e¤ect of the externalities that can arise when an
allocation mechanism is set to distribute the carbon dioxide emission permits,
if the coordination and prior compensation among companies is allowed when
requesting the permits.
With regard to the GHG emissions allocation, Zhou and Wang (2016) review

the literature on the carbon dioxide emission allocation and classify the allo-
cation methods into four groups: indicator, optimization, game-theoretic and
hybrid approaches. Moreover, they distinguish between di¤erent application lev-
els: countries, regions or �rms. Likewise, they conclude that the game-theoretic
allocation methods are based on cooperative games, dynamic games and incom-
plete information games. However, bankruptcy techniques are not mentioned in
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this survey. Giménez-Gómez et al. (2016) propose the use of bankruptcy rules,
based on the selection of some desirable principles, as mechanisms to allocate
the global carbon budget among countries. Kampas and White (2003) examine
a variety of permit allocation rules in order to allocate nitrate emissions for a
small catchment in South West England. Some of the permit allocation rules
that they study are bankruptcy rules. They then compare the results obtained
by applying the allocation rules and the results obtained from an asymmetric
Nash�s bargaining solution in order to compare the correspondence between ex-
ante and ex-post criteria of equity. Nevertheless, the above mentioned papers
mainly focus on the direct application of the bankruptcy rules, but they do
not embed the allocation rule inside the game in order to consider the possible
externalities arising from the process of allocation and then study the stability
of the �nal distribution of the emission permits and the �nal distribution of
the total revenue of the whole system. So we analyze not only the impact of
a control policy in the behavior of companies with regard to their operational
decisions, but also the e¤ect of the allocation rule in their strategic behavior for
obtaining an advantageous allocation of permits.
In this paper we use a basic production model, the so-called linear produc-

tion (LP) model since the programs that arise are linear. These situations and
the corresponding cooperative games were introduced by Owen (1975). Some
extensions of this model were introduced by Molina and Tejada (2006) and Tijs
et al. (2001). Recently, linear production situations in which there is a limited
external resource (LPP model) are introduced by Gutiérrez et al. (2016, 2017).
Gutiérrez et al. (2106) de�ne LPP games with externalities (Thrall and Lu-
cas, 1963) but without considering any allocation rule. Gutiérrez et al. (2107)
study the existence of Nash equilibria in the context of a competitive mecha-
nism of allocation. Funaki and Yamato (1999) de�ne a game with externalities
to analyze the distribution of �sh among �shermen, where the demands for it
are additive and all agents have the same concave production function depend-
ing on labor as the only input. On the other hand, bankruptcy techniques have
been widely used to deal with scarce resources in a huge array of economic prob-
lems such as mobile radio networks (Lucas-Estañ et al., 2012), k-hop mínimum
cost spanning tree problems (Bergantiños et al., 2012), project management
(Estévez-Fernández, 2012), allocation of nitrate emissions (Kampas and White,
2003) and allocation of the total carbon budget (Giménez-Gómez et al., 2016).
However, in none of the papers mentioned in this paragraph has the problem of
the resource allocation and the e¤ect of cooperation been analyzed as a whole,
i.e., that the de�nition of the cooperative game is determined by the allocation
rule chosen together with the characteristics of the problem. In this way, a dif-
ferent game is obtained for each allocation rule used. In this sense, this paper
is, as far as we know, novel and interesting since the analysis is performed con-
sidering the possible results of the allocation when a oncrete distribution rule
is used as a consequence of the players�own strategies regarding the allocation
process. This brings an innovation to the analysis of carbon dioxide emission
permit allocations and their e¤ects on the (strategic) behavior of companies
under policies of abatement of GHG emissions.
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3 Our proposal

In the framework of a production situation we propose a model in which there
is a cap, a tax -price per unit- and transfers between the agents involved are
allowed. We should emphasize that it can be seen as a combination of the use
of tax and the cap-and-trade systems. This is because we take into account the
cap and consider a �xed price (tax) per unit as managerial elements. However,
we do not give our attention to how the trade among the agents takes place,
but try to guarantee that the market can achieve a stable distribution of the
revenues. This is modeled through cooperative games with transferable utility.
In this model the cap is allocated by the authority to the �rms by means of

emission permits that have a �xed price per unit. Therefore, the carbon dioxide
emission permits can be seen as one more resource in the production system,
that can be obtained individually or by groups of �rms in order to increase
their pro�ts. In this paper we assume that groups of �rms, called coalitions,
can coordinate in order to make their demands on the quota of carbon dioxide.
If the total demand of the sector is greater than the cap, the authority must
establish a sharing method in order to allocate the cap among the applicants.
By introducing a tax (�xed price per unit) paid by the polluting �rms two

important objectives in the Paris Agreement can be achieved: the authorities
in each country can obtain funds -because they have to invest in research, de-
velopment and transfer of new technologies- and provide �nancial support to
developing countries, whose need for �nancial and technological support for the
implementation of these commitments is established in the agreement.
Moreover, we allow for the practice of utility transfers among the agents

involved. This can be seen as a kind of private trading system.
The underlying idea of our model is the following: when the limit of green-

house gas emissions is not su¢ cient to satisfy the demands of the �rms, the
authority can use a bankruptcy rule, f , to obtain a reasonable distribution of
allowances among the di¤erent groups of �rms, which will use their permits
to produce and optimize their pro�ts. Hence, given an LPP situation we as-
sume that the manager of the carbon dioxide emission permits announces which
bankruptcy rule f will be used to share these and name this an f � LPP sit-
uation. Depending on the benchmark bankruptcy rule selected (proportional
(PROP ), constrained equal awards (CEA), constrained equal losses (CEL),
Talmud (TAL), etc.) di¤erent games with externalities will be de�ned. We
propose to use rules such as the proportional, the Talmud or the constrained
equal awards to avoid the possibility of a �rm receiving nothing, which prevents
it from producing. We focus on the CEA rule in our examples for this reason
and because, as we will show, it is incentive compatible, which means that the
authority will be able to know the real needs of gas emissions for �rms. We study
the core of these games because we want to check whether the pro�ts generated
by the allocation of the carbon dioxide emission quotas are coalitionally stable.
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4 Preliminaries

4.1 Cooperative TU-games

In cooperative game theory it is assumed that the agents (players) can commit
to behaving in a socially optimal way. With this approach it is also assumed
that players can make binding agreements. The di¤erent groups of players are
referred to as coalitions. The coalitions that can be formed among the set of
players, denoted by N and named as the grand coalition, can enforce certain
allocations. The main issue in cooperative game theory is to decide how the
bene�ts obtained by cooperation should be shared among the players.
A characteristic of cooperative games is that players know that they can

probably achieve a larger total pro�t by pooling their resources than by acting
individually. In cooperative games with transferable utility, TU-games, the
earnings of a coalition can be expressed as one number. It can be seen as
an amount of utility (money) and the implicit assumption is that it can be
transferred among the players, i.e., there are side-payments. In our context,
this means we allow players to trade their goods and permits among each other,
in order to achieve a better result for all those involved with respect to their
individual situation. The reader is referred to the text by González-Díaz et al.
(2010) for a detailed study of TU-games. Within the class of TU-games we will
distinguish between two subclasses: games in characteristic function form and
games in partition function form, also called games with externalities.
Let N be a non empty �nite set of n agents who agree to coordinate their

actions. A cooperative game in characteristic function form is an ordered pair
(N; v) ; whereN is the set of players and v : 2N ! R is the characteristic function
with v(;) = 0. This function assigns to each group of players (coalition), S �
N; the value v(S) which represents what the members in S obtain when they
cooperate jointly.
In cooperative game theory we are interested in knowing how to share the

joint pro�t among the cooperating agents. The core, C (v) ; of a characteristic
function form game (N; v) is the set of distributions of v (N) upon each coalition
S will receive at least as much it can obtain on its own, i.e., the subset of vectors
in RN satisfying

(E¢ ciency)
P

i2N xi = v(N), and
(Coalitional rationality)

P
i2S xi � v(S); for all S � N .

Let P(N) denote the set of all partitions of N and P = fS1; : : : ; Skg rep-
resent one of these partitions, where the coalitions S1; : : : ; Sk are disjoint and
their union is N . A cooperative game in partition function form is de�ned by�
N;P(N); fV (�jP )gP2P(N)

�
, where N is the set of players (�rms), P(N) de-

notes the set of all partitions of N and V (SjP ) with S 2 P is a real number
that represents the pro�t that a coalition S � N can obtain when P is formed.
Note that the pro�t that a coalition can obtain depends on the coalitions formed
by the other players in P 2 P(N), therefore there are externalities.

7
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Given a partition P 2 P(N), a vector x 2 Rn is said to be feasible under P
if it satis�es

P
i2S

xi � V (SjP ) ;8S 2 P: We denote by FP the set of all feasible

vectors under P and F = [P2P(N)FP denotes the set of all feasible vectors.
Given two vectors x; x0 in Rn, we say that x dominates x0 through S and denote
x domS x

0 if the following conditions are satis�ed:

1.
P
i2S

xi � V (SjP ) ;8P 2 P(N) such that S 2 P;

2. xi > x0i;8i 2 S:

We say that x dominates x0 if there exists S � N such that x domS x
0; and

denote x dom x0. The core of a cooperative game in partition function form
is de�ned by C (V ) = fx 2 F j@x0 2 F s.t. x0 dom xg : However, if we consider
another de�nition of dominance, then we will obtain a di¤erent core. Thus, if
we change condition 1 by

1:
P
i2S

xi � V (SjP ) ; for some P 2 P(N) with S 2 P;

we obtain a more restrictive concept of dominance that we denote by dom and
the corresponding core is de�ned as C (V ) =

�
x 2 F

��@x0 2 F s.t. x0 dom x
	
:

Associated with each game in partition function form two cooperative games
in characteristic function form can arise: (N; v�) and (N; v+), where

v� (S) = min fV (SjP ) jP 2 P(N) such that S 2 P g ;
v+ (S) = max fV (SjP ) jP 2 P(N) such that S 2 P g :

(N; v�) represents a pessimistic point of view regarding the gain that a
coalition S can attain, while (N; v+) can be seen as its optimistic counterpart.
Funaki and Yamato (1999) proved that if V (fNgjN) >

P
S2P

V (SjP ) ;8P 2

P(N); then C(V ) = C(v�) and C (V ) = C(v+):

4.2 Bankruptcy problems

A standard bankruptcy problem can be described by a triple (N;E; d), where
N = f1; :::; ng is the �nite set of agents, E � 0 is the estate to be divided
and d 2 RN+ ; the vector of claims, is such that

P
i2N di � E. Every standard

bankruptcy problem (N;E; d) gives rise to a standard bankruptcy game (N; v),
where the value of a coalition S � N is given by

v(S) = maxfE �
X
i2NnS

di; 0g;

and represents what is left for players in S after the demands of the players in
NnS have been satis�ed. These games have a non empty core.

8
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A bankruptcy rule is a function f that assigns to every bankruptcy problem
(N;E; d) a vector f(N;E; d) 2 RN such that 0 � fi(N;E; d) � di for all i 2 N ,
and

P
i2N fi(N;E; d) = E.

In particular, we will focus on the CEA rule, where CEAi (N;E; d) =
min fdi; �g ; for all i 2 N , and � such that

P
i2N CEAi (N;E; d) = E: We also

use the proportional rule that divides the estate proportionally to the claims,
i.e., EP

i2N di
dj ; j 2 N:

4.3 Production model description and assumptions

We consider production situations where several �rms own resource bundles
that can be used to turn out various products. Their production functions
are such that the inputs must be combined in �xed proportions, the so-called
Leontief production function which is one of those most often used in production
literature. Furthermore, all �rms have the same production function but di¤er
in the amount of resources which they can manage. The goal of each �rm
is to maximize their pro�t, which equals the revenue from their products at
the given market prices. We also consider that there is an external resource,
carbon dioxide emission permits, limited by a certain amount, that agents need
to obtain for producing their goods and must pay a tax for its consumption.
Formally, let N = f1; : : : ; ng be a set of �rms that address a production

problem to produce a set G = f1; : : : ; gg of goods from a set Q = f1; : : : ; qg of
resources. There is an external resource, limited by an amount of r; that agents
need to obtain for producing the goods. A linear production situation with a
limited external resource (LPP situation) can be described by (A;B; p; r; c) ;
where

1. A 2M(q+1)�g is the production matrix, atj represents the amount of the
resource t needed to produce item j, where the last row corresponds to
the limited external resource and a(q+1)j > 0;8 j 2 G; and there is at least
one resource t 2 Q with atj > 0;8 j 2 G.

2. B 2 Mq�n is the resource matrix, where bi 2 Rq+ are the available re-
sources for �rm i 2 N and bS =

P
i2S b

i. We assume that there is a
positive quantity available of each resource, that is, for all resources t 2 Q
there is a �rm i such that bit > 0.

3. The limited resource, managed by an authority, has a cost per unit c and
the cap is denoted by r, with c; r > 0:

4. The price vector is p 2 Rg++ and we assume that pj > a(q+1)jc;8 j 2 G,
in order to deal with a pro�table process.

We should point out that the cost per unit c plays the role of a tax on pollut-
ing. Likewise it is an element with which to control pollution emissions, because
a higher cost for polluting encourages �rms to develop cleaner technologies for
producing certain goods. Otherwise, the price of those goods should be very

9
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high (see Condition 4) and then probably non competitive. At the same time,
since it is paid for by the pollutant companies, it also enables the authorities in
each country to raise funds which can be invested in research, development and
the transfer of new technologies and also provide �nancial support to developing
countries.
If a coalition S � N of �rms cooperates, to maximize their pro�ts they need

an optimal production plan (x; z) 2 Rg+1+ that provides information regarding
how much of each product, x; they should produce and how many of the carbon
dioxide emissions permits, z, they need. Not all production plans are feasible
since the �rms have to take into account their limited amount of resources. The
amount of resources needed in a feasible production plan should not exceed the
amount of resource available to cooperating �rms. The following linear program
maximizes the pro�t of coalition S

max
Pg

j=1 pjxj � cz

s.t: Ax �
�
bS

z

�
x � 0g; z � 0:

(1)

The value of this linear program is denoted by value (S; z) ; for every �xed
amount of gas emission z.
The optimal demand of the carbon dioxide emission permits for each coali-

tion S; dS = min fz 2 R+ jvalue (S; z) is maximumg ; is obtained by solving the
linear program (1). These optimal demands represent the desired amount of the
carbon dioxide emission permits for each coalition S and can be seen as their
utopic or greatest aspirations a priori, i.e., before the carbon dioxide emission
quota is allocated.
Although it may seem that the demands are superadditive, i. e., dS �P
i2S dfig; this is not true as Example 1 in Gutiérrez et al. (2016) shows.
Let us assume that P is formed and the carbon dioxide emission permits

�nally allocated to coalition S 2 P by the manager is zS(P ): The pro�t that a
coalition S � N can obtain is given by value (S; zS (P )) :

5 An embedded model of production situations
and bankruptcy problems

In the previous section we have justi�ed the role of a cost per unit for emission
rights. But we also have a cap on the total emissions and therefore the rights
of gas emission must be distributed. In the process of distributing the carbon
dioxide emission permits, two cases can arise. If it is su¢ cient to satisfy the
demands of the �rms; everybody can be fully satis�ed. However, we will consider
the case where the �rms claim more than the cap. In this scenario it is possible
to enforce arbitration as in bankruptcy or rationing problems. In this section we
will explain how controlling the cap can help in decreasing the GHG emissions
considered.

10
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Given a partition P = fS1; : : : ; Skg of N; in this section we will consider
that the elements in P can claim more than the cap, d (P ) =

Pk
h=1 dSh > r.

Therefore, if this amount is exceeded the problem that faces partition P can be
modeled as a non standard bankruptcy problem, in the sense that dS 6=

P
i2S di,

in general. In this problem the authority should divide the amount r (the estate)
of the carbon dioxide emission permits among the set of coalitions according to
the vector of demands, (dS1 ; :::; dSk); associated with the partition. Thus, it can
be represented by (P; r; (dS1 ; :::; dSk)) : Note that when we consider partition
P =

�
figi2N

	
, although the bankruptcy problem is not a standard case it

could be processed as a classic bankruptcy problem by considering that the
claims are additive.
When d (P ) > r the authority can use bankruptcy rules to obtain a reason-

able distribution of r among the di¤erent coalitions, which will use their share
to produce and optimize their pro�ts. Let (A;B; p; r; c) be an LPP situation,
we assume that the manager of the carbon dioxide emission permits announces
which bankruptcy rule f will use in order to allocate the quota of gas emissions.
We call (A;B; p; r; c; f) an f � LPP situation. Depending on the rule selected
(proportional (PROP ), constrained equal awards (CEA), Talmud, recursive
completion, etc.) di¤erent partition function form games are de�ned.

De�nition 1 Let (A;B; p; r; c; f) be an f�LPP situation. The f�LPP parti-
tion function form game associated with this situation is given by

�
N;P(N);

�
V f (�jP )

	
P2P(N)

�
;

where N is the set of players, P(N) denotes the set of all partitions of N and
V f (SjP ) is obtained from

max
Pg

j=1 pjxj � cf (S jP )

s.t: Ax �
�

bS

f (S jP )

�
x � 0g;

(2)

for all S � N; using the quota of the carbon dioxide emissions that S has
obtained applying the bankruptcy rule f (P; r; (dS ; dS1 ; :::; dSk)) in partition P 2
P(N) with S 2 P; i.e., f (S jP ).

Note that V f (SjP ) = value (S; f (S jP )) : When there is no possibility
of confusion, we denote the f � LPP game in partition function form by�
N;P(N); V f

�
:

Similarly to Funaki and Yamato (1999) we need to prove, in our context, the
next result to simplify the study of the core, i.e., in order to obtain coalitionally
stable allocations.

Proposition 2 Let (A;B; p; r; c; f) be an f�LPP situation and
�
N;P(N); V f

�
the corresponding partition function form game. Then,

V f (fNgjN) �
P
S2P

V f (SjP ) ;8P 2 P(N):

11
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As a result of the previous proposition, it can be derived that C(V f ) =
C(v�f ) and C

�
V f
�
= C(v+f ); where

v+f (S) = max
P :S2P

V f (SjP ) and v�f (S) = min
P :S2P

V f (SjP ) (3)

are the optimistic and the pessimistic games associated with the f �LPP game
in partition function form;

�
N;P(N); V f

�
. We do not explicitly give the proof,

because taking into account Proposition 2 it follows the same scheme of reason-
ing as in Funaki and Yamato (1999).
In order to illustrate how the externalities work for obtaining the game�

N;P(N); V f
�
the next example is given where the CEA rule is used. Al-

though it is possible to use any bankruptcy rule, the choice would depend on
the characteristics of the problem and the properties of the rule that is used.
We should point out that the data used in the examples throughout the paper
are not from real-life contexts, but are only for illustrative purposes.

Example 3 Let (A;B; r; p; c) be an LPP situation, with three �rms, N =
f1; 2; 3g ; which produce two products from two resources and limited carbon
dioxide emission permits, where

A =

24 2 3
3 2
1 1

35 ; B = � 40 60 80
60 40 50

�
; p =

�
50
60

�
; c = 14; r = 50

The possible partitions in N and their associated demands are

P 1 = ff1g ; f2g ; f3gg ; d1 = (20; 20; 25) ; P 2 = ff1; 2g ; f3gg ; d2 = (40; 25) ;
P 3 = ff1; 3g ; f2gg ; d3 = (46; 20) ; P 4 = ff2; 3g ; f1gg ; d4 = (45; 20) ;
P 5 = ff1; 2; 3gg ; d5 = 66:

If we apply the CEA rule to every bankruptcy problem associated with the pre-
vious partitions, we obtain

CEA
�
P 1; 50; d1

�
= (16:67; 16:67; 16:67) ; CEA

�
P 2; 50; d2

�
= (25; 25) ;

CEA
�
P 3; 50; d3

�
= (30; 20) ; CEA

�
P 4; 50; d4

�
= (30; 20) ;

CEA
�
P 5; 50; d5

�
= 50:

Using these amounts in their own production processes, each coalition will attain

V CEA
�
f1gjP 1

�
= 666:67; V CEA

�
f2gjP 1

�
= 766:67; V CEA

�
f3gjP 1

�
= 766:67;

V CEA
�
f1; 2gjP 2

�
= 1150; V CEA

�
f3gjP 2

�
= 1150;

V CEA
�
f1; 3gjP 3

�
= 1380; V CEA

�
f2gjP 3

�
= 920;

V CEA
�
f2; 3gjP 4

�
= 1380; V CEA

�
f1gjP 4

�
= 720;

V CEA
�
f1; 2; 3gjP 5

�
= 2300:

Note that this is a game with externalities since, for instance, what agent 1
receives in partition P 1; V CEA

�
f1gjP 1

�
; is di¤erent from what obtains in par-

tition P 4; V CEA
�
f1gjP 4

�
; and this is because what agent 1 obtains depend on

not only its own coalition, f1g ; but also on how outsiders are organized: players
2 and 3 acting separately, ff2g ; f3gg or together, f2; 3g :

12
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Using the optimistic and pessimistic characteristic function games, intro-
duced in (3), the optimistic and pessimistic cores are de�ned.

De�nition 4 Let
�
N;P(N); V f

�
be an f � LPP game in partition function

form. The optimistic core is de�ned by

C
�
v+f

�
=
n
x 2 Rnj x(S) � v+f (S) 8S and x(N) = V

f (N)
o
= C

�
V f
�
:

The pessimistic core is

C
�
v�f

�
=
n
x 2 Rnj x(S) � v�f (S) 8S and x(N) = V

f (N)
o
= C

�
V f
�
:

The optimistic core is included in the pessimistic one, thus if it is non empty
the pessimistic core is also non empty. But, on many occasions, it is empty as
the next example illustrates. This means that the optimistic core represents a
higher level of demand for players with respect to what they think that should
obtain.

Example 5 Let (A;B; r; p; c; CEA) be the CEA� LPP situation described in
Example 3 and

�
N;P(N); V CEA

�
its related game. In this case, the optimistic

core will be the set of x 2 R3 such that

x (f1g) � 720; x (f2g) � 920; x (f3g) � 1150;
x (f1; 2g) � 1150; x (f1; 3g) � 1380; x (f2; 3g) � 1380; x (f1; 2; 3g) = 2300:

But this set is empty, since 720 + 920 + 1150 > 2300, thus, C
�
V CEA

�
= ?:

However, it is easy to check that (700; 800; 800) belongs to the pessimistic core

C
�
V CEA

�
=

8<:x 2 R3�� x (f1g) � 666:67; x (f2g) � 766:67; x (f3g) � 766:67;x (f1; 2g) � 1150; x (f1; 3g) � 1380; x (f2; 3g) � 1380;
x (f1; 2; 3g) = 2300

9=; :
Let

�
N; v+f

�
be the optimistic f � LPP game for all f . If dN � r it can be

derived that C
�
V f
�
6= ?, using similar arguments to those in Gutiérrez et al.

(2016) and taking into account that V f (SjP ) is obtained from (2). If dN > r
the optimistic core can be empty as the previous example shows. In order to
assure the nonemptiness of these cores, we need to add some conditions.
The optimistic and pessimistic games induce two resource allocation games�

N;R+f

�
and

�
N;R�f

�
in the following way:

� arg max
P :S2P

V f (S jP ) =M+
S :

Note that M+
S is a set of partitions. Then, for every Q 2 M+

S ; f (S jQ )
is obtained. We take Q such that f (S jQ ) is minimum and de�ne R+f (S) =
f (S jQ ) : Among all partitions that provide the maximum optimal value we
choose the most e¢ cient, i.e., that which produces the smallest amount of gas
emissions.

13
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� arg min
P :S2P

V f (S jP ) =M�
S :

As we mention aboveM�
S is a set of partitions. Then, for every Q 2 M

�
S ;

f (S jQ ) can be derived. We consider Q such that f (S jQ ) is minimum and
de�ne R�f (S) = f (S jQ ) :
We should highlight the key role that these resource allocation games play to

establish in Theorem 7 that if the cores of the allocation games are non empty,

then the cores of
�
N; v+f

�
and

�
N; v�f

�
are non empty when dN > r: They are

focused on the cap and, therefore, on what the agents (�rms) will demand from
the authority and receive according to the bankruptcy rule used. Thus, they

have a great impact on pro�ts. Clearly,
�
N;R+f

�
and

�
N;R�f

�
depend on the

bankruptcy rule f; the partitions and the linear production with a global cap on
carbon dioxide gas emissions. Likewise, R+f (S) � R

�
f (S) ;8S � N: This implies

that C
�
R+f

�
� C

�
R�f

�
and C

�
R+f

�
is more demanding than C

�
R�f

�
: The

next example illustrates this fact, where C
�
R�f

�
6= ? and C

�
R+f

�
= ?:

Example 6 Let (A;B; r; p; c; CEA) be the CEA� LPP situation described in
Example 3. The corresponding

�
N;R+CEA

�
is given by

R+CEA (f1g) = 20; R
+
CEA (f2g) = 20; R

+
CEA (f3g) = 25

R+CEA (f1; 2g) = 25; R
+
CEA (f1; 3g) = 30; R

+
CEA (f2; 3g) = 30; R

+
CEA (N) = 50

and
�
N;R�CEA

�
is

R�CEA (f1g) = 16:67; R
�
CEA (f2g) = 16:67; R

�
CEA (f3g) = 16:67

R�CEA (f1; 2g) = 25; R
�
CEA (f1; 3g) = 30; R

�
CEA (f2; 3g) = 30; R

�
CEA (N) = 50:

Note that the core of
�
N;R+CEA

�
is empty, while the core of

�
N;R�CEA

�
is not

empty since (16:67; 16:67; 16:67) 2 C
�
R�CEA

�
:

The next result is relevant because it states that if the manager of the gas
emission permits establishes a stable allocation of these among the players, then
a stable distribution of the revenues can be obtained. This can be done by means
of a permits market and no agent can complain about the allocations of permits
or the pro�ts achieved.

Theorem 7 Let (A;B; p; r; c; f) be an f � LPP situation and
�
N;P(N); V f

�
the corresponding partition function form game such that dN > r: Then C

�
R�f

�
6=

? (resp. C
�
R+f

�
6= ?) implies C

�
V f
�
6= ? (resp. C

�
V f
�
6= ?).

In the next corollary we require
P
i2N

di > r to have a bankruptcy problem�
N; r; (di)i2N

�
; in order to assure the nonemptiness of the core. This condition

plays a key role and, in our benchmark, it can be ful�lled by reducing the cap.

14
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Corollary 8 Let (A;B; p; r; c; f) be an f � LPP situation and
�
N;P(N); V f

�
the corresponding partition function form game, such that dN > r and

P
i2N

di >

r. If f
�
N; r; (di)i2N

�
2 C

�
R�f

�
(resp. f

�
N; r; (di)i2N

�
2 C

�
R+f

�
); then

C
�
V f
�
6= ? (resp. C

�
V f
�
6= ?).

We should stress the importance of this result which enables us to solve a
di¢ cult problem obtaining a stable allocation in a straightforward way. Because
on setting the cap the authority can decrease this until it falls below the sum of
the individual demands of the �rms. Then, all �rms will cooperate and if the
authority uses an allocation in the core of the resource allocation game, then we
are able to �nd a core element à la Owen using duality and a bankruptcy rule.
This guarantees at least one stable distribution of the revenue but in general,
there are more.
Condition f

�
N; r; (di)i2N

�
2 C

�
R�f

�
cannot be neglected as the next ex-

ample shows, where, in particular, the proportional rule is used.

Example 9 Let (A;B; r; p; c) be the LPP situation described in Example 3.
When we apply the proportional (PROP ) rule to every bankruptcy problem as-
sociated with each partition, we obtain

PROP
�
P 1; 50; d1

�
= (15:38; 15:38; 19:23) ; PROP

�
P 2; 50; d2

�
= (30:77; 19:23) ;

PROP
�
P 3; 50; d3

�
= (34:85; 15:15) ; PROP

�
P 4; 50; d4

�
= (34:62; 15:38) ;

PROP
�
P 5; 50; d5

�
= 50:

Using these amounts in their own production processes, the worth of each coali-
tion is given by

V PROP
�
f1gjP 1

�
= 646:08; V PROP

�
f2gjP 1

�
= 707:48; V PROP

�
f3gjP 1

�
= 884:58;

V PROP
�
f1; 2gjP 2

�
= 1415:42; V PROP

�
f3gjP 2

�
= 884:58;

V PROP
�
f1; 3gjP 3

�
= 1603:10; V PROP

�
f2gjP 3

�
= 696:90;

V PROP
�
f2; 3gjP 4

�
= 1592:52; V PROP

�
f1gjP 4

�
= 646:08;

V PROP
�
f1; 2; 3gjP 5

�
= 2300:

In this case, dN > 50 and
P
i2N

di > 50: However,

R�PROP (f1g) = 15:38; R
�
PROP (f2g) = 15:15; R

�
PROP (f3g) = 19:23

R�PROP (f1; 2g) = 30:77; R
�
PROP (f1; 3g) = 34:85; R

�
PROP (f2; 3g) = 34:62; R

�
PROP (N) = 50:

and (15:38; 15:38; 19:23) does not belong to C
�
R�PROP

�
because it is empty. In

this case,

v�PROP (f1g) = 646:08; v�PROP (f2g) = 696:90; v�PROP (f3g) = 884:58;
v�PROP (f1; 2g) = 1415:42; v�PROP (f1; 3g) = 1603:10; v�PROP (f2; 3g) = 1592:52;
v�PROP (f1; 2; 3g) = 2300

and C
�
v�PROP

�
= ?:

15
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The implications of instability in the allocation of permits can lead to in-
stability in the distribution of revenues as the previous example shows. Thus,
the system will produce complaints from the agents regarding the allocation
of carbon dioxide emissions. As a result, dissatisfaction with the allocation of
permits will arise. This leads us to seek rules in which the allocation of permits
is stable and therefore provides a stable distribution of pro�ts.

6 Allocation of the carbon dioxide emission per-
mits using the CEA rule

In this section we focus on the CEA rule for several reasons. First of all, be-
cause it bene�ts �rms with lower gas emissions needs; while for instance, the
constrained equal losses rule bene�ts those with higher demands. Secondly, be-

cause as we will prove, under certain conditions, CEA
�
N; r; (di)i2N

�
2 C

�
R�f

�
which assures a stable allocation of pro�ts. Thirdly, we should mention that it
has the merging proofness property1 , i.e., if k; j 2 N join, then

CEAkj
�
N�; r; (d�i )i2N�

�
� CEAk

�
N; r; (di)i2N

�
+ CEAj

�
N; r; (di)i2N

�
;

where N� = Nn fk; jg [ fkjg : This means that when two �rms join they are
not better o¤, which implies the non manipulability by unions, i.e., this rule is
immune to strategic manipulations when a group of �rms merge in order to be
represented as a single �rm. The reader is referred to Thomson (2015) for more
details. Finally, as we will prove in subsection 6.2 , as a direct mechanism it is
incentive compatible, truth-telling or strategy-proofness.

6.1 Stability

The pessimistic core is non empty when we consider the CEA rule, under certain
assumptions, as Corollay 13 states. In order to prove this we need a previous
result.

Lemma 10 Let (A;B; r; p; c; f) be a f � LPP situation with dN > r andP
i2N

di � r: Given S � N; if R�f (S) = dS then

arg min
P :S2P

V f (S jP ) = fP 2 P(N) jS 2 P g :

This result guarantees that if a coalition in the pessimistic case obtains all
the needs, then all partitions give the same revenue.
The next theorem means that if there is no possibility of manipulation by

merging, the core of the pessimistic allocation game is non empty.

1Although the proportional rule is the only non manipulable bankruptcy rule in stan-
dard bankruptcy problems, it fails to be non manipulable in this context. In Example 9
R�PROP (f1g) +R

�
PROP (f3g) = 15:38 + 19:23 = 34:71 < 34:85 = R

�
PROP (f1; 3g).
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Theorem 11 Let (A;B; r; p; c; f) be a f � LPP situation with dN > r andP
i2N

di � r: If
P
i2S

fi
�
N; r; (di)i2N

�
� fS

�
S [ figi2NnS ; r;

�
dS ; (di)i2NnS

��
=

f
�
S
���S [ figi2NnS � ;8S � N; then C �R�f � 6= ?:
The following result establishes a somewhat of weak merging proofness prop-

erty for the CEA rule in our framework.

Proposition 12 Let (A;B; r; p; c; CEA) be a CEA�LPP situation with dN >
r and di + dj � 2r

n ; for all i; j 2 N: Then 8S � N;

CEA (S) =
P
i2S

CEA
�
N; r; (di)i2N

�
�

CEAS

�n
S [ figi2NnS ; r;

�P
i2S di; (di)i2NnS

�o�
= CEA

�
S
���S [ figi2NnS � :

Corollary 13 Let (A;B; r; p; c; CEA) be a CEA�LPP situation with dN > r
and di + dj � 2r

n ; for all i; j 2 N: Then C
�
V f
�
6= ?:

This result can help the authority to manage the cap on greenhouse gas
emissions in order to deal with progressive reductions. Since making it less
than the sum of the individual demands and applying the CEA rule a stable
allocation can be derived without di¢ culty by using duality (see Corollary 8 and
Corollary 13). Although this can be an extreme allocation as can be seen in the
next example. In consequence, no complaints about the allocation of permits
will arise and therefore, we will attain an environmentally sustainable system.

Example 14 Let (A;B; r; p; c; CEA) be the CEA � LPP situation described
in Example 3 and

�
N;P(N); V CEA

�
its related game CEA � LPP game. We

have seen that (16:67; 16:67; 16:67) 2 C
�
R�CEA

�
: An optimal solution for the

dual program of the grand coalition linear problem is y�1 = y
�
2 = 0 and y

�
3 = 60:

Thus, the allocation (766:67; 766:67; 766:67) 2 C
�
v�CEA

�
: But this distribution

of the pro�ts is extreme, because all extra revenue derived from cooperation goes
to player 1.
However, the core is bigger, for instance, (700; 800; 800) 2 C

�
v�CEA

�
: Assuming

that the pro�ts are in euros, this result can be obtained from the initial distribu-
tion of the resource (16:67; 16:67; 16:67) by means of trading the permits among
agents in the following way:
Player 1 sells 3 13 units to players 2 and 3 at 50 euros per unit. Thus, player
1 will obtain 600 euros from her own production using 10 units. She has paid
16 23 � 14 for buying the emission permits and received 6

2
3 � 50 for selling part

of the permits. So, this will give her a pro�t of 700 euros.
Player 2 (respectively 3) will attain 1200 euros from her own production using
20 permits. She has to pay 16 23 � 14 to the manager for buying the emission
permits and 3 13 � 50 for buying the permits to player 1. This will give her a net
pro�t of 800 euros.
This example describes how from a stable allocation of the permits we can reach,
through a market with side-payments, a stable distribution of the pro�ts. This

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

has generated 700 euros for the manager, via taxes and controlling the emissions
with a cap of 50, i.e., he has applied a quantitative control over gas emissions
and has had no in�uence at all in the market. However, he has set up the basis
for obtaining a stable result, as Corollaries 8 and 13 indicated.

6.2 Incentive compatibility

A priori the manager does not know the real emissions, for this reason in this
subsection we will focus on designing a mechanism that is fair for �rms and
obliges them to be truthful. In this way the manager will have information to
know how much and how to reduce the cap to achieve the goal of sustainability
and at the same time, to be fairer because it will based on real data which
cannot be manipulated by the �rms.
Let � be the set of all possible needs of carbon dioxide emissions. This is the

set of types of �rms. Let N be the set of all �rms requesting emission permits.
Let � be the set of all feasible allocations of carbon dioxide emissions.
An allocation rule (direct mechanism) is a function A : �N ! �:
Given an allocation rule A and a vector of needs � = (�1; :::; �1), the payment

of �rm i is given by
�i (A (�)) = value (i;Ai (�)) :

Therefore, �rms in N are facing a non cooperative game in which all compa-
nies have the same set of alternatives, �, each company knows its real necessity
for carbon dioxide emission but does not know the needs of the other compa-
nies. In other words, that information is private. A strategy for company i is a
function from � into itself, �i : � ! �. The set of all strategies is given by �
(for all players).

De�nition 15 A pro�le �� is an equilibrium if

�i (A (�
� (�)) j�i ) � �i

�
A
�
�i (�i) ;�

�
�i (��i)

�
j�i
�
;8i 2 N and 8�i 2 �;

where �� (�) =
�
��1 (�1) ; :::; �

�
i�1 (�i�1) ; �

�
i (�i) ; �

�
i+1 (�i+1) ; :::; �

�
n (�n)

�
and ���i (��i) =�

��1 (�1) ; :::; �
�
i�1 (�i�1) ; �

�
i (�i) ; �

�
i+1 (�i+1) ; :::; �

�
n (�n)

�
:

De�nition 16 A pro�le �� is a dominant strategy equilibrium if the following
holds

�i (A (�
�
i (�i) ;��i (��i)) j�i ) � �i (A (�i (�i) ;��i (��i)) j�i ) ;8i 2 N;8��i 2 ��i and 8�i 2 �:

De�nition 17 An allocation rule (direct mechanism), A, is incentive compati-
ble (truth-telling or strategy-proofness) if the strategy pro�le �� (�) = (��1 (�1) ; :::; �

�
n (�n)) =

(�1; :::; �1) = � is a dominant strategy equilibrium of the game.

Theorem 18 The CEA rule as a (direct) mechanism is incentive compatible.

Thereby, applying this mechanism, �rms have to be truthful when declar-
ing their real needs for emission permits. The proportional rule, as a direct
mechanism, does not ful�ll the compatibility of incentives, because if an agent
arti�cially increases her demand she will receive more emission permits. There-
fore, there are incentives not to declare her real requirements.
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7 Managerial implications

Our model provides the administration which issues the permits for the emission
of greenhouse e¤ect gases with two management tools: the cap and the tax or
unit price of contaminant emission. The trade between companies can still take
place but with the guarantee that stable results can be achieved. (See Example
14).
On the one hand, the cap allows the emissions to be reduced progressively, as

should be done according to the Paris Agreement and on the other hand, �xing a
price for the emissions permits guarantees two concerns. Firstly, that the most
pollutant technologies will open the way for new less pollutant technologies,
due to the increase in the production cost from the necessity to purchase a
larger quantity of emission permits, which should encourage the introduction
of these new technologies to replace the former. Secondly, this will provide
income for governments to be able to allocate funds for two kinds of fundamental
projects according to the Paris Agreement. In the �rst place, to �nance R+D+I
projects to improve technologies which can include the replacement of more
pollutant technologies with others less pollutant as mentioned above, secondly,
to �nance projects which favour economic and environmental development in
developing countries. Furthermore, the combination of a cap and a tax can
reduce the possibility that abatement of emissions does not occur, because a
suitable combination of both can be used.
For the management of the cap, the use of the bankruptcy rules is proposed,

such as the CEA; the TAL and the PROP , as they ensure that no-one is
excluded in the production process since all the producers receive a positive
quota of emission permits. Nevertheless, the CEA rule has two advantages.
The �rst is that it provides stable allocations of the emission permits which in
turn, allows for stable distribution of the pro�t. The second is that it is strategy
proofness, so that if the agency does not have the means to assess or is unaware
of the companies�real pollutant gas emissions, the use of the CEA rule ensures
that companies will tell the truth regarding their demands for emission rights
as there is nothing to be gained by cheating. Knowledge of the real emissions
has another implication because, according to the Paris Agreement, the cap
is to be revised every �ve years. Therefore, if the administration knows the
agents�real demands, an emission level can be �xed, that is the cap, thereby
making the allocation of the permits stable in the sense that no company or
group of companies will feel that they have lost out, and with the trade between
companies (let us remember that the transfer of the utility is permitted) a
stable distribution of the pro�ts generated can be reached. So this will also
avoid complaints about the distribution of permits.

8 Concluding remarks

The model presented in this paper is an arbitration system, which takes into
account a tax (�xed price per unit) and a limit (or cap) for the emission permits.
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The tax is introduced bearing in mind that polluting technologies should be
reformed. In addition, it also allows for obtaining funds to meet two purposes
of the Paris Agreement: investment in research, development and transfer of new
technologies and �nancial support for developing countries. The introduction
of the cap is due to the fact that in the review process of the agreement the
reduction of permits should be carried out in a progressive decreasing manner.
This can be managed by the authority in such a way that the conditions of
Corollary 8 are met. The utility transfers among �rms is modeled by means of
TU-games with externalities. Our model includes the essential aspects of the
Paris Agreement and provides insights and tools in order to obtain a sustainable
allocation of the permits that allows a fair distribution of the pro�ts. Since with
our bankruptcy approach we have been able to �nd a core element à la Owen
in which the bankruptcy rule f , once it is �xed in Corollary 8, or using the
CEA rule in Corollary 13, takes part in the construction of the imputation. In
addition, the CEA rule as a mechanism meets the compatibility of incentives
and therefore, companies have an incentive to declare their real needs of carbon
dioxide.
In this paper we have considered all �rms to have the same technology. We

will study the case of di¤erent technologies such as those in linear transformation
of product situations (Timmer et al., 2000) in further research.
The use of the CEA rule in this framework was initially motivated by the

fact that it always assigns a positive amount to each claimant, as is the case of
the Talmud and the proportional rules. However, we have shown that the latter
can give rise to dissatisfaction in the allocation of permits. Additionally, we
have proved that the CEA rule, as a direct mechanism, is incentive compatible
in this context, but the proportional rule is not. Other rules could be used, but
with a benchmark. For example, the CEL rule could exclude those companies
needing only a smaller share of carbon dioxide permits. Furthermore, as a
direct mechanism it would not be incentive compatible. The TAL rule, which
is a combination of the CEA rule and CEL rule, has not been taken into
account because neither of both parts of the rule is incentive compatible. The
CEL part of the TAL rule is not incentive compatible because neither is the
CEL rule. Likewise, in the Paris Agreement progressive reductions on the cap
should be made. Thus, in the end only the CEA part of the TAL rule would
be implemented which is not incentive compatible, because it uses d

2 as the
demands vector and this leads �rms to be untruthful.
An extension of the standard bankruptcy model has arisen where claims are

not additive and should be studied in further research. As in this case, other
extensions of the standard model arising from real-life problems were introduced
in Pulido et al. (2002, 2008), Casas-Méndez et al. (2011), Carpente et al. (2013)
and Timoner and Izquierdo (2016).
In addition to the current approach this problem can be addressed through

the design of two di¤erent models: with a non-cooperative point of view, as in
Gutiérrez et al. (2017), or by using auction mechanisms, which will be studied
in future research.
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9 Appendix

Proof of Proposition 2. Given P 2 P(N); V f (SjP ) = value (S; f (S jP )) ;8S 2
P: Let be

�
xS ; f (S jP )

�
an optimal production plan for each coalition S 2 P .

Thus, AxS �
�

bS

f (S jP )

�
and

A

� P
S2P

xS
�
�

0@ P
S2P

bSP
S2P

f (S jP )

1A �
�
bN

r

�
:

We distinguish two cases:

1) If dN � r; f (N jfNg ) = r; then
� P
S2P

xS ;
P
S2P

f (S jP )
�
is a feasible

production plan for N andP
S2P

value (S; f (S jP )) � value
�
N ;

P
S2P

f (S jP )
�
� V f (N j fNg) :

2) If dN < r; then f (N jfNg ) = dN : Now
� P
S2P

xS ;
P
S2P

f (S jP )
�
is a

feasible solution of problem (1) for N . By de�nition of dN , we have that

value (N ; dN ) �
gP
j=1

pj

� P
S2P

xS
�
� c

P
S2P

f (S jP ) =
P
S2P

value (S; f (S jP )) :

�
Proof of Theorem 7. Let y� be an optimal solution of the dual problem

of the grand coalition linear program

max
Pg

j=1 pjxj � cr

s.t: Ax �
�
bN

r

�
x � 0g:

(4)

It is easy to check that since dN > r; then y�q+1 > c: Let h 2 C
�
R�f

�
; thusPq

t=1 b
N
t y

�
t + ry

�
q+1 � cr = v�f (N): Moreover, 8S � NPq

t=1 b
S
t y

�
t +

�P
i2S hi

�
y�q+1 � c

�P
i2S hi

�
�Pq

t=1 b
S
t y

�
t +R

�
f (S) (y

�
q+1 � c) � v�f (S);
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where the last inequality holds because y� is feasible for the dual problem of
coalition S and y�q+1 > c. Therefore,�

qP
t=1
bity

�
t + hi

�
y�q+1 � c

��
i2N

2 C
�
V f
�
:

The same scheme can be used to derive the nonemptiness of C
�
V f
�
: �

Proof of Corollary 8. The proof follows the same lines as the proof of
Theorem 7 if f

�
N; r; (di)i2N

�
2 C

�
R�f

�
is used instead of h 2 C

�
R�f

�
: �

Proof of Lemma 10. If Q =2 arg min
P :S2P

V f (S jP ) ; then V f (S jQ ) >
min
P :S2P

V f (S jP ) : But sinceR�f (S) = dS = min fz 2 R+ jvalue (S; z) is maximumg ;
min
P :S2P

V f (S jP ) = max
P :S2P

V f (S jP ) and V f (S jQ ) > max
P :S2P

V f (S jP ) ; what is
a contradiction. �
Proof of Theorem 11. We will demonstrate that f

�
N; r; (di)i2N

�
2

C
�
R�f

�
:

Let S � N: We distinguish two cases:
a)
n
S [ figi2NnS

o
2 arg min

P :S2P
V f (S jP ) : This implies that f

�
S
���S [ figi2NnS � �

R�f (S) ; by de�nition ofR
�
f (S) : Furthermore, by hypothesis

P
i2S

fi
�
N; r; (di)i2N

�
�

fS

�
S [ figi2NnS ; r;

�
dS ; (di)i2NnS

��
= f

�
S
���S [ figi2NnS � � R�f (S) :

b)
n
S [ figi2NnS

o
=2 arg min

P :S2P
V f (S jP ) : We consider two situations:

b:1) If dS +
P

i2NnS di � r, then we have thatP
i2S

fi
�
N; r; (di)i2N

�
� fS

�
S [ figi2NnS ; r;

�
dS ; (di)i2NnS

��
= dS � R�f (S) ;

where the �rst inequality is obtained by hypothesis and the last is always ful-
�lled.
b:2) If dS+

P
i2NnS di > r, since

n
S [ figi2NnS

o
=2 arg min

P :S2P
V f (S jP ) ; we

have that V f
�
S
���S [ figi2NnS � > min

P :S2P
V f (S jP ) :

Let us assume that f
�
S
���S [ figi2NnS � < R�f (S) < dS ; where the last

inequality holds by Lemma 10. This implies that 9� 2 (0; 1) such that

R�f (S) = �f
�
S
���S [ figi2NnS �+ (1� �) dS :

Consider the solutions
�
x1; z1

�
and

�
x2; z2

�
for problem (2) with f

�
S
���S [ figi2NnS �

and dS , respectively. Thus, �
�
x1; z1

�
+(1� �)

�
x2; z2

�
is a feasible solution for
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(2) with R�f (S) : Hence, we have that

min
P :S2P

V f (S jP ) �

�V f
�
S
���S [ figi2NnS �+ (1� �) value (S; dS) >

min
P :S2P

V f (S jP ) ;

where the �rst inequality is due to the linearity of problem (2) and the last holds

since
n
S [ figi2NnS

o
=2 arg min

P :S2P
V f (S jP ) and the de�nition of dS : Therefore

we obtain a contradiction andP
i2S

fi
�
N; r; (di)i2N

�
� f

�
S
���S [ figi2NnS � � R�f (S) :

Consequently, f
�
N; r; (di)i2N

�
2 R�f (S) : �

Proof of Proposition 12. It is easy to check that di + dj � 2r
n ; for all

i; j 2 N; implies
P
i2N

di � r: Two cases can arise:

1) dS �
P
i2S

di: In this case, due to the merging proofness property

CEA (S) =
P
i2S

CEA
�
N; r; (di)i2N

�
� CEAS

�n
S [ figi2NnS ; r;

�P
i2S di; (di)i2NnS

�o�
:

By de�nition of the CEA rule, CEA (S) �
P

i2S di: Therefore,

CEAS

�n
S [ figi2NnS ; r;

�P
i2S di; (di)i2NnS

�o�
�
P

i2S di

and by de�nition of the CEA rule and the hypothesis, we have that

CEAS

�
S [ figi2NnS ; r;

�P
i2S di; (di)i2NnS

��
= CEAS

�
S [ figi2NnS ; r;

�
dS ; (di)i2NnS

��
:

2) dS <
P
i2S

di:

We can distinguish two subcases:
2:1) Since CEA (S) � dS ; then the result directly holds.
2:2) CEA (S) < dS ; then we have that

P
i2NnS di+dS > r since

P
i2N di >

r: Furthermore, by the merging proofness property

CEA (S) � CEAS
�
S [ figi2NnS ; r;

�P
i2S di; (di)i2NnS

��
= CEAS

�
S [ figi2NnS ; r;

�
dS ; (di)i2NnS

��
;

where the last equality holds because of the de�nition of the CEA rule and
CEA (S) < dS <

P
i2S

di. Thus, the result always holds. �

Proof of Corollary 13. To prove the result we only have to take into
account that using Theorem 11 and Proposition 12 together with Corollary 8,
we can construct an element of the pessimistic core. �
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Proof of Theorem 18. Let fS1; : : : ; Skg be a partition of the companies
requesting carbon dioxide emission permits and let d = (d1; : : : ; dk) be the vector
of their real needs. Let � = [0;+1):
We consider the following strategy pro�le (�1 (d1) ; :::; di; :::; �k (dk)) and dis-

tinguish two situations:

a:1: If CEAi (�1 (d1) ; :::; di; :::; �k (dk)) < di, then we have that
kP
j=1

�j (dj) >

r.
Now, we distinguish three cases:
a:1:1: If we take �i (di) > di, by de�nition of the CEA rule we obtain

CEAi (�1 (d1) ; :::; di; :::; �k (dk)) = CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)) ;

therefore,

�i (CEAi (di;��i (d�i)) jdi ) = �i (CEAi (�i (di) ;��i (d�i)) jdi ) :

a:1:2: If we consider �i (di) such that CEAi (�1 (d1) ; :::; di; :::; �k (dk)) �
�i (di) � di, then by the de�nition of the CEA rule we are in the same situation
as in (a:1:1).
a:1:3: If �i (di) < CEAi (�1 (d1) ; :::; di; :::; �k (dk)), then, independently of

the relation between
kP
j=1

�j (dj) and r, we will have that

CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)) < CEAi (�1 (d1) ; :::; di; :::; �k (dk)) < di:

Let us suppose that

�i (CEAi (di;��i (d�i)) jdi ) < �i (CEAi (�i (di) ;��i (d�i)) jdi ) :

Now we take 0 < � < 1, such that

�di+(1� �)CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)) = CEAi (�1 (d1) ; :::; di; :::; �k (dk)) :

Consider the optimal solutions x1 and x2 for problem (2) with di and
CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)), respectively. Thus, �x1 + (1� �)x2 is a
feasible solution for problem (2) with CEAi (�1 (d1) ; :::; di; :::; �k (dk)). There-
fore, we have that

�value (Si; di)+(1� �)�i (CEAi (�i (di) ;��i (d�i)) jdi ) � �i (CEAi (di;��i (d�i)) jdi ) ;

but, by de�nition of value (Si; di), this should also be greater than �i (CEAi (di;��i (d�i)) jdi )
which is a contradiction.
a:2: CEAi (�1 (d1) ; :::; di; :::; �k (dk)) = di. Then two cases can arise:

a:2:1:
kP
j=1

�j (dj) � r. In this situation, we distinguish two subcases:
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a:2:1:1: If �i (di) > di, by de�nition of the CEA rule we have

CEAi (�1 (d1) ; :::; di; :::; �k (dk)) < CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)) :

But by de�nition of di, we know that

�i (CEAi (di;��i (d�i)) jdi ) = value (Si; di) � �i (CEAi (�i (di) ;��i (d�i)) jdi ) :

a:2:1:2: If �i (di) < di, by de�nition of the CEA rule we have

CEAi (�1 (d1) ; :::; di; :::; �k (dk)) > CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)) ;

and using the de�nition of di, we obtain that

�i (CEAi (di;��i (d�i)) jdi ) = value (Si; di) � �i (CEAi (�i (di) ;��i (d�i)) jdi ) :

a:2:2:
kP
j=1

�j (dj) > r. Now, we distinguish two subcases:

a:2:2:1: If �i (di) > di, using the de�nition of the CEA rule we can derive

CEAi (�1 (d1) ; :::; di; :::; �k (dk)) � CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)) :

But by de�nition of di, we know that

�i (CEAi (di;��i (d�i)) jdi ) = value (Si; di) � �i (CEAi (�i (di) ;��i (d�i)) jdi ) :

a:2:2:2: If we consider �i (di) < di, by de�nition of the CEA rule we have

CEAi (�1 (d1) ; :::; di; :::; �k (dk)) > CEAi (�1 (d1) ; :::; �i (di) ; :::; �k (dk)) ;

and taking into account the de�nition of di, we obtain

�i (CEAi (di;��i (d�i)) jdi ) = value (Si; di) � �i (CEAi (�i (di) ;��i (d�i)) jdi ) :

Therefore, �i (di) = di is a dominant strategy for i. Thus, �i (di) = di; for all
i; is a dominant strategy equilibrium and the CEA rule is incentive compatible.
�
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