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Highlights 

 A network representation of decision making units based on data envelopment 

analysis is proposed.  

 A novel decision making units ranking method is provided based on centrality 

measures. 

 A detection method of self evaluators is developed. 

 A detection of non benchmark influence decision making units in data envelopment 

analysis. 

 We present a discussion with other network based ranking methods.   
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Abstract: In this work, we propose a method for ranking efficient decision-making units 

(DMUs) that uses measures of dominance derived from social network analysis in 

combination with data envelopment analysis (DEA). For this purpose, a directed and 

weighted graph is constructed, in which the nodes represent the system's DMUs and the 

edges represent the relationships between them. The objective is to identify and rank the most 

important nodes by taking into account the influence or dominance relations between the 

DMUs. The method uses a weighted HITS algorithm to identify the hubs and the authorities 

in the network by assigning to each DMU two numbers, the authority weight and the hub 

weight. Additionally, this method allows for the identification of DMUs whose exclusion 

from the DEA analysis does not modify the efficiency values obtained for the remaining 

DMUs. 

 

Keywords: Data envelopment analysis, Social networks, Rankings, Benchmarking, 

PageRank. 
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1. Introduction 

 

Data Envelopment Analysis (also known by its initials DEA) is a common method, used by 

in a large number of studies on benchmarking, for assessing the efficiency of organizations, 

introduced by Charnes, Cooper, and Rhodes (1978), DEA is based on a methodology that 

measures the relative efficiencies of a given group of organizations, classifying them as 

efficient and inefficient. The criterion used for this classification is determined by the 

location of each organization with respect to the efficient production frontier. This frontier is 

formed by the units that represent best management practices, in regards to outputs and the 

resources used in their production. Units identified as inefficient can be compared to one or 

more units located on the frontier, which can be considered as benchmarks for guiding 

improvement efforts (Bergendahl, 1998). 

However, an important problem in the application of DEA for ranking is that usually all 

efficient units are given the same efficiency score of one (Cook & Seiford, 2009), there 

being, to date, no agreement over the best methodology for ordering or classifying efficient 

units by importance. 

 Some, standard measures used in DEA for ranking efficient and inefficient units are worth 

mentioning: counting the number of times a particular efficient company acts as a reference 

DMU  (Zhu, 2000), calculating a super- efficiency measure (Andersen & Petersen, 1993; 

Bardhan et al 1996; Tone, 2002; Chen, 2005), calculating a peer index (Torgersen, Forsund, 

& Kittelsen, 1996, Zhu, 2000), weight restrictions (Dyson & Thanassoulis, 1988; Charnes et 

al., 1990; Thompson et al. 1986; Wong & Beasley, 1990), value efficiency analysis (Halme et 

al., 2000), cross-evaluation (Doyle & Green, 1994), multiple objective linear programming 

(Li & Reeves, 1999), multivariate statistical techniques (Friedman & Sinuany-Stern, 1997, 

Sinuany-Stern, Mehrez & Barboy, 1994), and conditional directional distance (Daraio, 

Bonaccorsi & Simar, 2015). For a good summary of such ranking techniques see: Angulo-

Meza and Lins (2002); Adler, Friedman, and Sinuany-Stern (2002); Lu and Lo (2009); and 

Lotfi et al. (2013). 

Since DEA is applied to DMUs groups with homogenous characteristics, it has been 

considered convenient to use Social Network Analysis (SNA) to identify the importance of 

each DMU within the network. Nevertheless, the use of SNA analysis in DEA ranking 

problems has been limited by the way in which the DEA network is modeled or the centrality 
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measure considered. Liu, Lu, Yang, and Chuang (2009), use the eigenvector centrality 

measure proposed by Bonacich and Lloyd (2001) on a social network, that is built by adding 

the lambda values associated with the reference DMUs, obtained by applying DEA to all of 

the possible input and output combinations. Liu and Lu (2010) modified this approach to 

correct the convergence of the proposed algorithm and Leen and Chun (2015) use PageRank 

(Brin & Page, 1998), the algorithm behind Google’s search engine, for determining the 

influence and rank of efficient DMUs. 

In this paper, we propose a method for the ranking of DMUs that uses the bidimensional 

dominance measure proposed by Kleinberg (1999) and known as hubs (inefficient DMUs) 

and authorities (efficient DMUs), in combination with DEA. The network proposed in this 

paper to represent the DEA production model, is a directed dominance network, with no 

cycles between nodes. The relations between DMUs with respect to the efficiency frontier 

yields to a graph where nodes are non-strongly connected, so that all nodes have zero 

eigenvector centrality. Among standard eigenvector centrality alternatives, Katz centrality 

(Katz, 1953) and PageRank centrality are worth mentioning.  Katz centrality assigns each 

node an initial amount of centrality and PageRank, introduces a stochastic adjustment that 

randomly allows connections between nodes to prevent a solution where all nodes have zero 

centrality. Since DMUs connections are strictly hierarchical, randomly created connections 

are implausible and there is no initial centrality to be assigned to each DMU in the network, 

both methodologies have been found inadequate. 

The main objective of this work is to adapt the measure proposed by Kleinberg (1999) to 

establish a ranking between DMUs with respect to the efficiency frontier and to compare the 

results with the rankings obtained by means of previously suggested SNA measures, cross- 

efficiency, and super- efficiency. 

The method proposed in this paper has the advantage that the ranking applies to both efficient 

and inefficient units, taking into account the quality of the DMUs in the network and can be 

implemented using either efficiency, or super-efficiency scores, regardless of the production 

model used (CCR or VRS). In addition, the suggested network has a direct interpretation for 

managers. The novelty of this method is that it can detect self-evaluators and identify the 

presence of inefficient DMUs whose exclusion from the analysis does not affect the 

efficiency scores of the remaining units. 

This paper is organized as follows. In section 2, we briefly review the basic model of the 

DEA, centrality measures in social network analysis, and we describe our proposed ranking 

method. In section 3, we analyze the different ranking methods based on network and 
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centrality measures. Illustrative examples follow in section 4. Finally, the paper concludes in 

section 5 with a discussion of the merits and limitations of the network-based approach. 

 

 

2. Methods 

 

2.1 The DEA model  

To determine the best practice frontier, an input-oriented constant return scale (CRS) was 

assumed, and the model below was formulated (based on Charnes et al. (1978)).  

The Primal DMUk Model: 

   ∑     
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The Dual Model for DMU0: 
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where X=(xij)i=1,…,m;j=1,…,n is the set of inputs of the reference units and v=(vi)i=1,…,n gives the 

weights; Y=(yrj)r=1,…,s;j=1,..,n is the set of outputs of the reference units and u=(ui)i=1,…,n gives 

the weights in the primal problem;  is a real variable; and  
njnkkj ,...,1;,...,1 

  is the 

set of weights of the reference units for each DMU in the dual problem. 
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From the solution to this problem and its dual, we obtain, for each reference DMU unit: 

- the efficiency score of the reference unit k and, 

- for each inefficient reference unit, the set of reference units (peer group: {j=1,…,n/kj 

>0}) and the corresponding weights (lambda weights kj). 

 

For the case in which the lambda weights sum to one, the model is known as VRS (Banker et 

al., 1984).  

As reference methods for ranking the DMUs we compare our results with the classical 

approach obtained by super-efficiency and cross-efficiency.  

 

Super-efficiency 

This method was proposed by Andersen and Petersen (1993). The core idea of this model is 

to exclude the DMU under evaluation from the reference set. This allows a DMU to be 

located on the efficient frontier, i.e. to be super-efficient. Therefore, the super-efficiency 

score for an efficient DMU can, in principle, take any value greater than or equal to one.  

Chen (2004) proposed a method for ranking efficient units based on a modification of the 

calculation of super-efficiency for the VRS case, avoiding the infeasible cases, which 

captures input deficits and output excesses. 

 

Cross-efficiency  

Sexton, Silkman and Hogan (1986) developed a method where each unit is evaluated with the 

optimal efficiency weights of the other DMUs, to compute a cross-efficiency matrix. Once 

the matrix is obtained, each unit can be self-evaluated with their optimal efficiency weights 

and yields the evaluation acquired with the optimal efficiency weights of the remaining 

DMUs in the reference set (peer evaluation). For further details, see Doyle and Green (1994). 

 

2.2 Ranking nodes in social network 

Given a network, one of the most important problems in Social Network Analysis (SNA) is 

the identification of important key nodes. A common approach for ranking nodes in a 

network is to use centrality measures (Freeman, 1978).  The idea is that the centrality 

measure of a node reflects the node’s importance.  

In this paper, we focus on centrality measures for dominance (or reference) networks where 

relationships between nodes are weighted and directed through a dominance relation. As we 
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will see later with more details, the edge (i,j) is present in the network if node j is a reference 

for node i. In the sequel, we will refer only to influence measures for nodes in weighted and 

directed (dominance) networks.  

As it is pointed in Borgatti (2005), the most popular and most used centrality-influence 

measures are those that are based on eigenvector calculations.  Considering the eigenvector 

centrality defined by Bonacich and Lloyd (2001), the definition of the eigenvector centrality 

of a node is based on the idea that connections to important nodes contribute more to the 

centrality of node i than an equal number of connections of node i to low importance 

centrality nodes. The centrality of node i (xi) is computed as the sum of the centrality values 

of its neighbors multiplied by a constant α. From a mathematical point of view we have  

    ∑   
    

        (Eq. 3) 

where Ni is the set of nodes neighboring node i. 

Node j is a neighbor of node i if there is a directed edge (j, i) connecting j and i  (i.e. i is a 

reference for j). In an eigenvector expression, 

              ∑       
 

   
 ,      (Eq. 4) 

where A is the adjacency matrix of the network. 

 

The problem is reduced to the calculation of the eigenvector associated to the eigenvalue α. 

The power iteration algorithm, defined by Mises, Pollaczek-Geiringer and Praktische 

(1929), is probably the most well-known algorithm for calculating a dominant 

eigenvector. The procedure starts with a vector b0 which may be an approximation to the 

dominant eigenvector or a random vector of a given matrix A. The method is described by 

the recurrence relation 

     
   

‖   ‖
  (Eq.5) 

If we assume A has an eigenvalue that is strictly greater in magnitude than its other 

eigenvalues and the starting vector b0 has a nonzero component in the direction of an 

eigenvector associated with the dominant eigenvalue, then a subsequence bk converges to an 

eigenvector associated with the dominant eigenvalue. It is important to know that the 

convergence of this algorithm depends strongly on the properties of matrix A and, in general, 

the power iteration method and eigenvector centrality method do not deal well with sparse 

and asymmetric adjacency matrices.  
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With the aim of remedying some of these deficiencies, but following a similar approach, 

other centrality measures have been defined, such as alpha centrality, PageRank, and hubs 

and authorities.     

The hubs and authorities centrality measure is adequate for those networks in which there are 

two types of nodes, as is the case in DEA networks, where there are efficient and inefficient 

nodes and, in addition to the importance of the position that a node has in the network, the 

evaluation of its importance should be made in a separate way as is done in the HITS 

algorithm. For this reason we think that the hubs and authorities measure has the advantages 

of both the eigenvector and PageRank centrality measures. 

 

2.3 The network-based approach for ranking efficient units   

 

Once the DEA model has been solved, the efficient units are ranked using the following 

steps: 

1. Build the DMU network.  

2. Compute the authority and hub weights of the network by means of a modified 

weighted HITS algorithm (Kleinberg, 1999). 

 

Step 1: The DMU network 

 

To sort the efficient DMUs and visualize the relationships between the efficient and 

inefficient DMUs, a network representing the reference relationships between these DMUs is 

defined. The DMU’s reference set contains the group of units that provides better results. 

Moreover, the reference groups comprise the sets of units that an inefficient unit should take 

as its target to achieve efficiency. Therefore, the relationships between the DMUs are 

directional and will be represented in the graph by directed edges (for example, if the DMU j 

is a reference for DMU i, then this will be expressed in the graph as i-> j). 

To identify the efficient and inefficient DMUs, it is possible to build the network in the 

following way. 

Let G = (V, E) be a graph, where the set V of nodes comprises the set of DMUs. In general, 

the outcome of a DEA model is a partition of V into two sets of nodes, one (VE) containing 

the efficient units and the other (VNE) containing the inefficient units. There are case studies 

where all DMUs in the reference set turn out to be efficient units and we have to resort to a 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

super-efficiency model to distinguish the DMUs that can serves as benchmarks for 

management practices. 

In the case a CCR and VRS DEA model is considered, we can define the DEA network as a 

bipartite digraph V=(VEUVNE, E) in which there are no edges between nodes of the same 

group. Let E be the set of edges representing the reference relations between efficient and 

inefficient units. As relations represent which units are references for others and it is clear 

that (i, j) is not the same as (j, i), a directed network is necessary. The weight (i, j) of the edge 

(i, j) in the graph E is the lambda weight obtained when solving the dual DEA problem. An 

edge (i, j) belongs to the set E if the DMU j is a reference for the DMU i, i.e., E = {(i, j) /  (i, 

j)  > 0 with iVNE, jVE }. 

Note that, for a pair (i, j), the associated weight (i, j) represents the amount by which the 

inefficient unit i should be improved to look similar to the unit j and so to achieve efficiency.  

Therefore, an edge (i, j) with a large weight represents a node/unit j with significant influence 

on node/unit i. For example, an isolated DMU unit in the network will not be a reference for 

any other DMU; therefore, its importance in the network is very low. In contrast, a unit with 

many relationships and a high reference score will have a significant degree of influence on 

the network, and its importance will be greater. 

 

Step 2: The identification of authorities and hubs 

 

The objective of this stage is to provide a method for identifying the most important DMU 

units (now nodes in the network) in a DEA problem. To this end, we use a rank method based 

on centrality/power measures that takes into account the influence or dominance relationships 

defined in Step 1.  

The hubs and authorities centrality measure seems adequate for DEA networks since these 

networks distinguish efficient and inefficient units.  There exist two classes of nodes in the 

network and it is necessary to rank them in separate ways, and this can be achieved using the 

hubs and authorities centrality measure.  

The work developed by Kleinberg (1999) aimed to determine the important or featured nodes 

in a network of web sites, as well as in a network of scientific citations of scholarly articles. It 

fits our objective of ranking efficient units. To relate concepts from the study of social 

networks with DEA, we must consider that the authorities in a network of DMUs constitute a 

small group of network members whose management practices in their processes serve as an 
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example for the other members, and that a hub is a key member in the benchmark set of the 

network. 

The idea on which the HITS algorithm (Kleinberg 1999) is based is the association of two 

values with each DMU, namely, the authority weight ai and the hub weight hi. We consider 

DMUs with higher ai values to be authorities, while DMUs with higher hi values are regarded 

as hubs. A good hub increases the authority weight of the DMUs that it references. A good 

authority increases the hub weights of the DMUs that point to it. The idea is to apply the two 

operations iteratively until the values of authority and hub weights are balanced. (See Figure 

1) 

<Figure 1 here> 

 

The authority power of node i is calculated as the sum of the hub power of the nodes for 

which it is a reference. The hub power of node k will be the sum of the authority powers of 

the nodes in its reference set. 

Formally, if we denote by a the n-dimensional vector associated with the authority powers, 

by h the n-dimensional vector associated with the hub powers, and by Aij the weight that 

represents the amount by which the inefficient unit i should be improved so as to look similar 

to the unit j and to achieve efficiency, we have that  

     ∑       
 

   

     ∑       
 

   

          (Eq.6) 

We can see that the authority value of node i is the sum of the hub value of the nodes that 

have node i as a reference. On the other hand, the hub value of node i is the sum of the 

authority values of the nodes in the reference set of node i. 

The previous expression can be rewritten as 

      
     

   (Eq.7) 

This is equivalent to  

 

                 

           (Eq. 8) 

 

Consequently, in order to find the authority and hub values we have to compute the 

eigenvector of A associated to its dominant eigenvalue.  
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The main difference in terms of the eigenvector calculation with the classical eigenvector 

centrality measure is that now we can work with the matrices A
t
A and AA

t
. These two 

matrices have good properties since they are symmetric and positive semidefinite.   

For a VRS or CCR DEA model, the matrix A represents the degree to which inefficient units 

have to emulate efficient units to achieve better management performance. Taking into 

account that our aim is to consider all the information given by a solution of a DEA model we 

would like to incorporate also the information given by the vector  in the HITS algorithm 

(Kleinberg 1999). In order to incorporate the efficiency scores of the units in the calculation 

of the authority and hub values, equation (8) could be rewritten as 

 

     ∑        

 

   

     ∑        

 

   

            

 

This modification has the advantage of taking into account the efficiency score discriminating 

above the inefficient units, as better or worst hubs. 

For super-efficient models, these approaches take into account that in this case the set of 

inefficient units may be empty, and every DMU may play the role of a reference for the 

others. In this case, other centrality measures may apply, but the modification of the HITS 

algorithm proposed above has the advantage that it considers the super-efficiency scores in 

the network. 

 

3. Analysis of centrality measures used for DEA ranking.  

 

In this section, we compare our proposed method with other network-based approaches for 

DEA ranking. 

Other centrality or power measures can be used for the same purpose but they do not have the 

same good properties. For example, if we apply the degree centrality measure that counts 

how many times an efficient DMU occurs in the reference sets of inefficient DMUs, we can 

assign more importance to a DMU regardless of the weights that it has in the reference sets. If 

we only consider the sum of the DMU weights that are referenced by an efficient unit, we can 
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assign more importance to a DMU regardless of the number of times that it is referenced by 

an inefficient unit. Also, observe that classical centrality measures, such as closeness, 

betweenness, and flow centrality, do not make sense for the networks considered here. The 

weighted in-degree centrality measure for digraphs could be used to rank the efficient DMUs 

(i.e the nodes of VE). For a node y in VE, the in-degree centrality is computed as 

 

   ∑    

 

   
, where A is the weighted adjacency matrix of the network. (Eq.10) 

 

 

Note that this definition ranks the efficient nodes of the DEA network and this ranking 

coincides with that used in Torgersen, Forsund & Kittelsen (1996) and Zhu (2000). Now we 

will analyze some spectral centrality measures for the DEA network- 

It can be proved, that the only solution of the eigenvector centrality measure proposed by 

Bonacich and Lloyd (1972), computed for the weighted DEA network in the CCR and VRS 

models, is the zero vector since there is no ―in-relation‖ (see Bonacich and Lloyd (2001)). 

The measure of eigenvector centrality proposed by Bonacich and Lloyd (1972) and applied 

by Liu et al. (2009) and Liu and Lu (2010) is intended for communication networks, and 

propagation and influence type processes (see Borgatti (2005) and Gomez, Figueira, and 

Eusebio (2013) for more details), but is unable to represent the bipartite nature of a DEA 

classification of DMUs into efficient and inefficient units and has additional weaknesses, as 

eigenvector centrality has convergence problems. Given that the network built from the 

values obtained by the DEA is a special type of dominance network and not a communication 

network, the adjacency matrix associated with the network is sparse, and therefore the 

maximum eigenvalue generally is zero, with multiplicity greater than one. This means that 

there is no unique eigenvector associated with the largest eigenvalue of the adjacency matrix 

(Ker(A-I)), and the centrality measure proposed by Bonacich and Lloyd (1972) performs 

badly when applied to DMU ranking. 

 

For this reason, Liu et al. (2009) saw the need to build a new network, by adding different 

DEA executions and considering various combinations of inputs and outputs, to determine 

the sets of edges and their weights. Although the resulting matrix is denser than the original, 

the process of working on multiple DEA specifications is analogous to a contest with 

multiple rounds where contest winners are judged by aggregating scores from multiple 
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rounds. However, some of these combinations can be unrealistic in the management of the 

production processes or services, although, as pointed out by Cook, Tone and Zhu (2014), 

they can be used for operations benchmarking. For instance, we can consider an example 

from library management (Simon, Simon & Arias 2011), with three basic inputs: library 

personnel, library expenditures on information resources and library surface area; and three 

final outputs: circulation, interlibrary loans and documents downloads. The resulting 

combinations, using library surface area as an input and any subset of the three final outputs, 

can be worthless for the Library manager. A weighted multiple DEA specifications can solve 

this problem by, assigning low weights to unrealistic production models. Furthermore, as 

indicated by Serrano Cinca and Mar Molinero (2004), we must consider that listing  all of the 

possible DEA models that can be derived from the possible inputs and outputs combinations 

does contains a great deal of information, but that it also is redundant, since some DEA 

models may be equivalent, and some may contain independent information.  In addition, for 

cases in which the number of inputs and outputs used is large, the calculation time for the 

new network is significantly higher than for the original network. Despite this, comparing 

many input/output combinations is a good strategy when a DEA problem is intended for 

benchmarking as these comparisons can be useful as a reference of good benchmarking 

practices for certain input and output variables considered in the production model. In the 

example provided by Liu et al. (2009), the associated adjacency matrix corresponds to a 

connected graph with high density. In this case, a unique eigenvector is associated with the 

largest eigenvalue of the adjacency matrix. However, when the relations between the 

reference DMUs with respect to the efficient units in the original production model are 

represented in the network, the associated adjacency matrix comes from a graph that is, in the 

majority of cases, disconnected, asymmetric, and not very dense. This leads to small 

eigenvalues and multiple eigenvectors associated with the largest eigenvalue. 

 

Additionally, the eigenvalue centrality measure does not always converge. There are 

situations in which the iteration process diverges or loops endlessly. However, as is noted by 

Liu et al. (2009), various methodologies exist for addressing this problem. 

 

Remark. The Alpha centrality computed for the weighted DEA network in the CCR and VRS 

models ranks the nodes by the ―in-degree‖ centrality. Furthermore, for any positive alpha 

value, this measure is proportional to the ―in-degree‖ centrality measure and also ranks the 

efficient units as in Torgersen, Forsund and Kittelsen (1996) and Zhu (2000).  
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The eigenvector-like centrality measure proposed (PageRank, Brin & Page, 1998) by Leem 

and Chun (2015) for determining the influence and rank of efficient DMUs, also has some 

deficiencies. In the case where most DMUs are efficient and some are not references for any 

inefficient DMU, the PageRank centrality for all DMUs remains the same and thus does not 

provide information suitable for discriminating among them or ranking them (Leem & Chun, 

2015). Consequently, the PageRank measure does not discriminate among the inefficient 

units, assigning them all the same centrality value. 

 

Note that the aforementioned measures do not rank the inefficient nodes whereas, the hubs 

and authorities algorithm distinguishes between units that are authorities (efficient units in the 

VRS and CCR models) and units that contribute to the quality of authorities (inefficient 

units), ranking both classes of nodes. 

 

4. Results  

 

To compare the proposed methodology with existing methodologies for DMU rankings in 

DEA models, we selected two classical examples from the literature. The first example 

considered is a VRS input-oriented model proposed by Chen (2004). The second production 

model CRS is described in Serrano-Cinca, Fuertes Callén, and Mar Molinero (2005). 

In both examples, super-efficiency values are calculated using a reference ranking method. 

Furthermore, in the example described by Serrano-Cinca, Fuertes Callén, and Mar Molinero 

(2005) cross-efficiency values are computed using for the DMU ranking the score obtained 

by each unit when using the optimal efficiency weights of the remaining units (peer 

evaluation). 

 

4.1 Example 1 

 

Chen (2004) gave an example in which 15 cities in the USA are compared with 3 inputs and 

3 outputs: high-end housing price (I1), lower-end housing monthly rental (I2), number of 

violent crimes (I3), median household income (O1), number of population with bachelor’s 

degrees (O2), and number of individuals with doctoral degrees (O3). The data and the results 

of the VRS model are shown in Table 1. 

<Table 1 here> 
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The graph associated with this example is shown in Figure 2. It is composed of 15 vertices. 

Seattle, Denver, Philadelphia, Minneapolis, Raleigh, St. Louis, Washington, Pittsburgh, 

Boston, and Milwaukee represent efficient units. The determination of the graph’s edges is 

given by the reference relations of the efficient and inefficient units, as described above. 

<Figure 2 here> 

Columns 2, 3 and 4 of Table 2 show the authorities and hubs weight and partition obtained by 

applying the proposed weighted HITS algorithm (equation 9).  The column DMUs Network 

reports the ranking of DMUs obtained by the proposed approach in which first the authority 

DMUs are ranked by decreasing authority weight and then the hub DMUs are ranked by 

decreasing hub weight. Column 6 adds the ranking obtained applying the proposed weighted 

HITS algorithm to the network proposed by Liu and Lu (2010); column 7 shows the ranking 

obtained applying the centrality measure proposed by Liu and Lu (2010); columns 8 and 9 

exhibit the rankings obtained applying the algorithms proposed by Chen (2004) to compute 

the super-efficiency scores in a VRS model; and, finally, column 10 presents the ranking 

obtained using the PageRank algorithm (equation 7) proposed by Leem and Chun (2015). 

<Table 2 here> 

 

As shown in Table 2, the DMUs corresponding to Seattle, Denver, Philadelphia, St. Louis, 

Washington, and Pittsburgh are good authorities, while the DMUs corresponding to Boston, 

Minneapolis, Raleigh, and Milwaukee are not, because the latter are not found in any of the 

reference sets of inefficient units (see Table 1) .  

It should be noted that, according to our approach, Denver and Pittsburgh occupy the second 

and third positions in the ranking, respectively, which are greater than the positions given 

them by the method proposed by Chen (2004), given that the inefficient DMUs of their 

reference sets represent ―good‖ hubs and provide a good example of management for the 

others. PageRank fails to detect the link strength and authority position and ranks Denver 

above St. Louis. The number of link connections prevails over the dominance structure 

underlying the DEA model. 

 Even though Minneapolis, Raleigh, Boston, and Milwaukee are efficient DMUs, they are not 

in the reference set of any inefficient DMUs and therefore should not occupy top positions in 

the ranking of DMUs with good management practices. PageRank also identifies these 

DMUs, as these units lack connections with the remaining units of the network. 
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The differences with the network proposed by Liu and Lu (2010) when applying the Hits 

algorithm to the network proposed by Liu and Lu (2010) are related to the importance of 

DMUs in the multiple context case. DMUs such as Philadelphia acquire a higher importance 

in cases in which some inputs/outputs of the production model are omitted.  The same can be 

observed when considering the eigenvector associated to the largest eigenvalue of the 

adjacency matrix of the graph proposed by Liu and Lu (2010; whereas Boston is a self-

evaluator in the original DEA network, it acquires higher importance in the multiple context 

case. 

When the DMUs that have not been identified either as a hub or an authority are removed 

from the network (Boston, Minneapolis, Raleigh, and Milwaukee), the efficiency scores 

assigned by the DEA model remain unchanged because these DMUs do not influence the rest 

of the DMUs (see Table 3). 

<Table 3 here> 

 

 

4.2 Example 2 

 

In this example, 40 internet companies are compared with respect to 3 inputs and 2 outputs: 

employees (I1), expenses (I2), assets (I3), visitors (O1), and revenues (O2). 

Table 4 shows the data and the results obtained applying the CCR and super-efficiency 

models. 

<Table 4 here> 

 

The graph associated with this example is shown in Figure 3. It is composed of 40 vertices, 

where the vertices ASKJ, BOUT, BUYX, LFMN, MQST, ONHN, SWBD, TVLY, UBID, 

and UPRO represent efficient units. The determination of the graph’s edges is given by the 

reference relationships of the efficient and inefficient units, as described above. 

<Figure 3 here> 

 

Columns 2, 3 and 4 of Table 5 show the authorities and hubs weight and partition obtained by 

applying the proposed weighted HITS algorithm (equation 9).  The column DMUs Network 

reports the ranking of DMUs obtained by the proposed approach in which first the authority 

DMUs are ranked by decreasing authority weight and then the hub DMUs are ranked by 

decreasing hub weight. Column 6 adds the ranking obtained applying the cross-efficiency 
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scores method; column 7 shows the ranking obtained applying the proposed weighted HITS 

algorithm to the network proposed by Liu and Lu (2010); column 8 exhibits the ranking 

obtained applying the centrality measure proposed by Liu and Lu (2010); and, finally, 

column 9 presents the ranking obtained by the PageRank algorithm (equation 7) proposed by 

Leem and Chun, (2015). 

<Table 5 here> 

 

The DMUs UBID, BUYX, and ASKJ occupy the first positions in the ranking obtained by 

the method proposed in this work, given that the inefficient DMUs of their reference sets 

represent ―good‖ hubs and provide good examples of management for the others. PageRank 

fails to detect the link strength and authority position by assigning higher ranks to efficient 

units such as UPRO than to TVLY and LFMN. The number of link connections prevails over 

the dominance structure underlying the DEA model. 

The differences with the network proposed by Liu and Lu (2010) when applying Hits 

algorithm to the network proposed by Liu and Lu (2010) are related to the importance of 

DMUs in the multiple context case. DMUs such as AHWYQ and SWBD acquire a higher 

importance in the case in which some inputs/outputs of the production model are omitted.   

It is possible to have a case where an inefficient DMU A has a higher efficiency score than 

another DMU B and the proposed method ranks B higher than the A. For instance, Amazon 

(AMZN) has an efficiency score of 0.39 and Egghead (EGGS) a score of 0.88. Using the 

proposed method, AMZN is ranked 11th and EGGS 15th, due to the quality of the peers in 

their reference sets. UBID, which is in the AMZN reference set, had reported revenue of 

$204,295 in 1999, placing it in the top 15 percent of firms, whereas TVLY, in the EGGS 

reference set, had reported revenue of $64,187 in 1999 and only made it into the top 30 

percent. 

 

After removing the DMUs that have not been identified as hubs or authorities, the efficiency 

scores obtained by the DEA model are unaltered, given that these DMUs do not influence the 

management of the other DMUs (see Table 6). 

<Table 6 here> 
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5. Conclusions 

 

 

The methodology proposed in this paper for ranking efficient and inefficient DMUs based on 

dominance measures derived from social network analysis has several advantages. First, the 

network that is built represents graphically the relationships between an inefficient DMU and 

its reference set. This simplifies the interpretation of the role played by each DMU within the 

set. Furthermore, allows managers to visualize the network relations between DMUs. 

Second, the modified bidimensional hubs and authorities measure provides a basis for 

ranking efficient and inefficient units. The values of hubs and authorities reflect the following 

desirable properties for ranking methods: 

 Property 1. Efficient DMU’s are always ranked above inefficient units. (Since the set 

of authorities coincides with the set of efficient units) 

 Property 2. The ranking of an efficient unit is higher when an inefficient unit that 

contains the efficient DMU in its reference set represents a good benchmark (the 

ranking of an efficiency unit is larger when the inefficient units that contain the 

efficient DMU in their reference sets represent “good” hubs, i.e., their reference sets 

contains efficient DMUs that are also good examples of management practices for the 

other DMUs). 

 Property 3. An efficient DMU that is not a reference for any inefficient DMU must be 

ranked after the remaining efficient DMUs. In this situation, as noted by Charnes et 

al. (1978), the efficient unit does not act as a benchmark for any inefficient DMU 

except itself, which is the case of a self-evaluator. (The efficient DMUs that are not 

references for any inefficient DMU have an authority weight equal to zero.) 

 Property 4. The ranking method can be used independently of the DEA model 

assumption (CRS, VRS, super-efficiency, etc.) 

 

Third, this methodology allows us to identify the presence of inefficient DMUs that are not 

classified as hubs. It is worth noting that this method is robust with respect to excluding such 

DMUs from the DEA analysis, because the efficiency scores obtained for the other DMUs 

are not modified.  

In the case in which multiple DEA specifications can be considered as productions models 

without considering all input/output variables, the application of the HITS algorithm enriches 

the information of the contribution of each DMU. However, we suggest as a future line of 
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research considering a weighted multiple DEA specifications network, assigning low weights 

to unrealistic production models. 
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Figure 1. The basic operations. Source: Kleinberg (1999), p. 612 
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Figure 2. An example network of USA cities 
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Figure 3. An example network of the Internet Companies 
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TABLES  

Table 1. Data of the USA cities in the example and the VRS efficiency results 

DMU I1 I2 I3 O1 O2 O3 

VRS 

efficiency 

score 

Super 

efficiency 

Peers 

VRS 

Lambda 

weights 

VRS 

Seattle 586 581 1193.06 46928 0.6534 9.878 1 1.44   

Denver 475 558 1131.64 42879 0.5529 5.301 1 1.015   

Philadelphia 201 600 3468.00 43576 1.135 18.2 1 Infeasible   
Minneapolis 299 609 1340.55 45673 0.729 7.209 1 1.22   

Raleigh 318 613 634.70 40990 0.319 4.94 1 1.16   

St. Louis 265 558 657.50 39079 0.515 8.5 1 1.51   

Cincinnati 467 580 882.40 38455 0.3184 4.48 0.95 0.94 2, 6, 9 
0.21, 0.47, 

0.31 

Washington 583 625 3286.70 54291 1.7158 15.41 1 Infeasible   
Pittsburgh 347 535 917.04 34534 0.4512 8.784 1 1.04   

Dallas 296 650 3714.30 41984 1.2195 8.82 0.93 0.92 3, 8, 9 
0.78, 0.18, 

0.03 

Atlanta 600 740 2963.10 43249 0.9205 7.805 0.77 0.77 2, 8, 9 
0.20, 0.35, 

0.44 

Baltimore 575 775 3240.75 43291 0.5825 10.5 0.74 0.73 
1, 2, 3, 

9 

0.32, 0.29, 

0.253, 

0.12 

Boston 351 888 2197.12 46444 1.04 18.208 1 Infeasible   
Milwaukee 283 727 778.35 41841 0.321 4.665 1 1.06   

Nashville 431 695 1245.75 40221 0.2365 3.575 0.80 0.80 2, 6, 9 
0.36, 0.58, 

0.05 

 

Table 2. The authority weights and ranking by DMU network, Liu network with the 

proposed method, Liu, Chen and Cross Efficiency methods for the example in Chen (2004). 

DMU 
Authority 

weight 

Hub 

weight 

Hub and 

authority 

partition 

DMUs 

Network 

Liu with Hits 

algorithm 
Liu Chena Chenb 

Page 

Rank 

Seattle 0.0965  Authority 6 7 8 3 3 6 

Denver 0.4844  Authority 2 6 5 10 10 1 
Philadelphia 0.4029  Authority 4 1 1 2 2 3 

Minneapolis 0  Authority 7 10 9 6 5 7 

Raleigh 0  Authority 7 5 7 7 7 7 

St. Louis 0.6165  Authority 1 3 2 1 1 2 

Cincinnati  0.5393 Hub 12 13 - - - - 

Washington 0.1944  Authority 5 4 4 4 4 5 
Pittsburgh 0.4193  Authority 3 2 3 9 9 4 

Dallas  0.3737 Hub 13 11 - - - - 

Atlanta  0.3611 Hub 14 15 - - - - 
Baltimore  0.3366 Hub 15 14 - - - - 

Boston 0  Authority 7 9 6 5 6 7 

Milwaukee 0  Authority 7 8 10 8 8 7 
Nashville  0.5708 Hub 11 12 - - - - 

Chena : super efficiency model input oriented and Chenb : super efficiency model output oriented 

 

 

 

 

 

 

 

Table 3. The VRS and super-efficiency results upon the removal of DMUs that are not 

identified as Hubs or Authorities. 
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DMU 
VRS efficiency 

score 

Super-

efficiency 

Seattle 1 1.44 

Denver 1 1.015 

Philadelphia 1 Infeasible 

St. Louis 1 1.51 

Cincinnati 0.95 0.94 

Washington 1 Infeasible 

Pittsburgh 1 1.04 

Dallas 0.93 0.92 

Atlanta 0.77 0.77 

Baltimore 0.74 0.73 

Nashville 0.80 0.80 

 

Table 4. Data of Internet Companies, CCR and super-efficiency results 

DMU I1 I2 I3 O1 O2 

CCR 

efficiency 

score 

Super-

efficiency 

score 

Peers CCR Lambda weights CCR 

ADBL 
60 16321 39926 199 1743 0.08 0.08 6. 9. 10. 38 

0.0002; 0.011; 0.002; 
0.006 

AHWYQ 
41 14675 15795 904 2060 0.36 0.36 10. 23. 30. 38 

0.002; 0.029; 0.013; 

0.067 

ALOY 
120 36275 57668 1416 33864 0.36 0.36 6. 9. 10. 38 

0.028; 0.044; 0.053; 

0.041 

AMEN 81 18196 19784 322 6899 0.15 0.15 6. 10. 32 0.021; 0.011; 0.006 
AMZN 7600 896400 2471551 14812 1639839 0.39 0.39 10; 37 1.277; 4.284 

ASKJ 416 62850 75764 13113 22027 1.00 1.09   

BGST 200 20150 29852 1220 10658 0.36 0.36 6. 27. 37 0.064; 0.042; 0.038 
BNBN 1237 165273 679518 5401 202567 0.34 0.34 27. 37 0.442; 0.914 

BOUT 300 67821 242081 13116 26962 1.00 1.01   

BUYX 230 121498 119606 2378 596848 1.00 2.69   
CDNW 537 150679 118802 6654 147189 0.43 0.43 10. 32. 36 0.194; 2.116;  0.213 

CNET 671 125878 1230311 10587 112345 0.54 0.54 6. 10. 37 0.775; 0.152; 0.022 

EBAY 1212 170509 969825 14032 224724 0.58 0.58 6. 27. 37 0.581; 0.588; 0.935 

EDGR 45 8158 37739 182 4731 0.20 0.20 6. 10. 37 0.01; 0.003; 0.015 

EGGS 560 190305 129130 1858 541208 0.81 0.81 10. 36 0.759; 1.370 

FASH 43 10668 43541 346 3690 0.22 0.22 6. 9. 10 0.005; 0.021; 0.005 
FATB 349 39073 48465 187 35338 0.19 0.19 10. 37 0.051; 0.024 

GOTO 317 54200 129512 6928 26809 0.67 0.67 6. 9. 10 0.005; 0.021; 0.005 

HITS 73 26575 165400 438 1044 0.10 0.10 10. 23. 38 0.01; 0.024; 0.031 
INSW 297 60223 118281 2175 21841 0.23 0.23 6. 9. 10 0.119; 0.041; 0.03 

IVIL 396 123062 312748 3707 36576 0.21 0.21 9. 10. 38 0.081; 0.053; 0.286 

KOOP 185 66910 99720 4845 9431 0.42 0.42 10. 23. 38 0.004; 0.259; 0.342 
LFMN 90 45192 76857 7034 14019 1.00 1.07   

LOOK 
535 109065 161519 8470 48865 0.45 0.45 6.9. 10. 38 

0.379; 0.112; 0.059; 
0.215 

MCNS 294 34188 222781 607 6362 0.11 0.11 6. 27. 37 0.01; 0.065; 0.019 

MKTW 202 77324 156855 3367 24935 0.30 0.30 10. 23. 38 0.034; 0.18; 0.229 
MQST 335 32843 65010 6528 34487 1.00 1.07   

MTHR 190 55380 71374 2434 5769 0.24 0.24 9. 10. 38 0.025; 0.004; 0.238 

NBCI 635 115154 2494096 2174 36100 0.14 0.14 6. 10. 37 0.144; 0.028; 0.08 
ONHN 101 51375 32720 7755 3767 1.00 1.32   

SPLN 453 83908 271461 5572 60278 0.43 0.43 6. 10. 37 0.405; 0.075; 0.031 

SWBD 52 14990 12195 2577 8304 1.00 1.03   

TGLO 220 62464 138843 5564 18641 0.50 0.50 9. 10. 38 0.116; 0.018; 0.453 

TMCS 1172 230098 804669 4223 105303 0.16 0.16 6. 10. 37 0.259; 0.091; 0.221 

TSCM 253 43530 143550 962 14316 0.16 0.16 6. 10. 37 0.064; 0.008; 0.04 
TVLY 84 44563 9639 3479 64187 1.00 2.72   

UBID 281 45827 79266 2749 204925 1.00 1.08   

UPRO 157 46773 42816 8821 10392 1.00 1.10   
WOMN 277 88216 172539 4256 30023 0.31 0.31 9. 10. 38 0.021; 0.042; 0.439 

YHOO 1992 440647 1520129 39569 591786 0.66 0.66 6. 9. 10 2.166; 0.692; 0.88 
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Table 5. The authority weights and ranking by DMU network, Cross Efficiency method, Liu 

network with the proposed method, Liu and Page Rank methods for the example in Liu et al. 

(2009) 

DMU 
Authority 

weight 

Hub 

weight 

Partition of 

hubs and 

authorities 

DMUs 

Network 

Cross 

Efficiency 

Liu with 

Hits 

algorithm 

Liu 
Page 

Rank 

ADBL  0.0002 Hub 38 40 29 - - 

AHWYQ  0.0002 Hub 39 22 4 4 - 

ALOY  0.0049 Hub 27 21 22 - - 

AMEN  0.0015 Hub 34 35 18 - - 

AMZN  0.9420 Hub 11 24 20 - - 

ASKJ 0.1633  Authority 3 2 8 11 2 

BGST  0.0103 Hub 24 23 17 - - 

BNBN  0.1875 Hub 13 25 34 - - 

BOUT 0.0355  Authority 6 5 13 12 4 

BUYX 0.3177  Authority 2 3 2 3 1 

CDNW  0.0191 Hub 20 20 33 - - 

CNET  0.0419 Hub 17 16 39 - - 

EBAY  0.2137 Hub 12 14 40 - - 

EDGR  0.0035 Hub 30 32 5 5 - 

EGGS  0.0629 Hub 15 13 19 - - 

FASH  0.0007 Hub 35 30 11 9 - 

FATB  0.0083 Hub 25 33 23 - - 

GOTO  0.0175 Hub 22 11 37 - - 

HITS  0.0001 Hub 40 39 27 - - 

INSW  0.0065 Hub 26 29 16 - - 

IVIL  0.0043 Hub 29 31 28 - - 

KOOP  0.0004 Hub 37 19 31 - - 

LFMN 0.0001  Authority 9 8 9 7 6 

LOOK  0.0182 Hub 21 17 38 - - 

MCNS  0.0049 Hub 28 38 26 - - 

MKTW  0.0024 Hub 32 27 24 - - 

MQST 0.0538  Authority 4 7 7 8 7 

MTHR  0.0006 Hub 36 28 15 - - 

NBCI  0.0229 Hub 19 37 21 - - 

ONHN 0  Authority 10 9 10 10 10 

SPLN  0.0255 Hub 18 18 35 - - 

SWBD 0.0093  Authority 7 4 1 1 9 

TGLO  0.0023 Hub 33 15 36 - - 

TMCS  0.0594 Hub 16 34 32 - - 

TSCM  0.0108 Hub 23 36 25 - - 

TVLY 0.0380  Authority 5 10 3 2 8 

UBID 0.9310  Authority 1 6 6 6 3 

UPRO 0.0018  Authority 8 1 12 - 5 

WOMN  0.0032 Hub 31 26 30 - - 

YHOO  0.1411 Hub 14 12 14 13 - 
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Table 6. The CCR and super-efficiency results when removing DMUs that are not identified 

as Hubs or Authorities. 

DMU CCR efficiency score Super-efficiency score 

ADBL 0.08 0.08 

AHWYQ 0.36 0.36 

ALOY 0.39 0.39 

AMEN 1.00 1.09 

AMZN 0.36 0.36 

ASKJ 0.34 0.34 

BGST 1.00 1.01 

BNBN 1.00 2.69 

BOUT 0.43 0.43 

BUYX 0.54 0.54 

CDNW 0.58 0.58 

CNET 0.20 0.20 

EBAY 0.81 0.81 

EDGR 0.19 0.19 

EGGS 0.67 0.67 

FASH 0.23 0.23 

FATB 0.21 0.21 

GOTO 1.00 1.07 

HITS 0.45 0.45 

INSW 0.11 0.11 

IVIL 1.00 1.07 

KOOP 0.14 0.14 

LFMN 1.00 1.32 

LOOK 0.43 0.43 

MCNS 1.00 1.03 

MKTW 0.16 0.16 

MQST 0.16 0.16 

MTHR 1.00 2.72 

NBCI 1.00 1.08 

ONHN 1.00 1.10 

SPLN 0.66 0.66 

 

 


