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a b s t r a c t 

Many reliability problems involve two or more agents with conflicting interests whose decisions affect 

the performance of the system at hand. Examples of such problems relevant in management practice 

abound and include acceptance sampling, life testing, software testing, optimal maintenance, reliability 

demonstration, warranties and insurance. Most earlier attempts in such problems have focused on game 

theoretic approaches based on Nash equilibria and related concepts. However, these require strong com- 

mon knowledge assumptions which do not frequently hold in practice. We provide an alternative frame- 

work based on adversarial risk analysis to deal with such problems which avoids the strong common 

knowledge assumptions of game theory. We illustrate the framework through acceptance sampling and 

life testing problems. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Reliability analysis ( Singpurwalla, 2006 ) refers to the assess-

ent of how long a system will be functioning under given op-

rational conditions so as to make management decisions in rela-

ion with maintenance, replacement, performance and/or redesign.

rom a foundational perspective, many reliability problems involve

 single decision maker and may be appropriately framed with de-

ision analytic methods, see e.g. French and Rios Insua (20 0 0) . 

However, there are reliability cases that involve two or more

ctors with competing interests whose decisions affect the perfor-

ance of the system. Examples of adversarial situations in relia-

ility analysis can be found in areas such as acceptance sampling

 Lindley & Singpurwalla, 1991 ); life testing ( Lindley & Singpurwalla,

993 ); warranty analysis ( Singpurwalla & Wilson, 1993 ); and opti-

al release policies in software testing ( Zeephongsekul & Chiera,

995 ). More recent work in this area considers adversarial issues

n optimal maintenance as in Jackson and Pascual (2008) ; ser-

ice and warranty contracts ( Esmaeilia, Gamchia, & Asgharizadeh,

014 ); system reliability ( Hausken, 2008 ); and reliability demon-

tration ( Rufo, Martin, & Perez, 2014 ). These problems with adver-

arial elements can be set up as games and are typically solved

sing (non cooperative) game theory methods based on Nash equi-

ibria and related concepts, see, for example, Gibbons (1992) . 
∗ Corresponding author. 
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A drawback of the game theoretic methodology in this ap-

lication area is its underlying common knowledge assumption,

riticised in e.g. Raiffa, Richardson, and Metcalfe (2002) or

ippman and McCardle (2012) and analysed in detail in

argreaves-Heap and Varoufakis (2004) . Most versions of non-

ooperative game theory assume that agents not only know their

wn payoffs, preferences, beliefs, and possible actions, but also

hose of their opponents. When there is uncertainty in the game,

t is assumed that players have common probabilities over the

o-called types, as in games of incomplete information ( Harsanyi,

967 ). These common knowledge assumptions allow for symmetric

oint normative analysis in which players maximise their expected

tilities, expecting other players to proceed similarly. Then, their

ecisions are anticipated and predated by Nash equilibria related

oncepts. However, in many of the adversarial reliability contexts

utlined above, players will not typically have such knowledge of

heir opponent’s problem elements, for security, safety and secrecy

easons, this being aggravated in highly competitive markets as

articipants conceal information. 

Adversarial Risk Analysis (ARA) provides a way forward, as

ommon knowledge is no longer required ( Rios Insua, Ríos,

 Banks, 2009 ). We support one of the participants, viewing

er problem as a decision analytic one, but employ the game-

heoretical structure, and other information available, to estimate

he probabilities of the opponent’s actions. We present here how

he ARA approach may be used to solve adversarial reliability is-

ues, focusing first on an acceptance sampling problem with two

ctors presented by Lindley and Singpurwalla (1991) : a manufac-

https://doi.org/10.1016/j.ejor.2017.10.035
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Fig. 1. Bi-agent influence diagram for the AS problem. 
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turer M (she) is trying to sell a batch of items to a consumer C

(he) who may either accept or reject the batch provided by M . C ’s

decision depends on the evidence provided by M to C , based on a

sample from an inspection that M may perform. The decision that

M faces is whether to offer a sample to C and, if so, the size of such

sample. Both M and C are assumed to be expected utility maximiz-

ers. In the original reference, the problem is represented as a game

tree and the authors provide a solution assuming that M , who de-

cides before C , knows C ’s preferences and beliefs, and that they

share other relevant distributions. This is a very strong common

knowledge assumption and ARA will allow us to overcome such

issue. 

In Section 2 , we provide a general ARA formulation and solution

to this problem. We develop the ARA approach for a Bernoulli ac-

ceptance sampling problem in Section 3 and a life testing problem

in Section 4 . We finally discuss in Section 5 how other adversarial

reliability applications may be dealt with through ARA. 

2. An adversarial risk analysis approach to acceptance sampling

We start by formulating the acceptance sampling (AS) problem

through a bi-agent influence diagram (BAID), as in Koller and Milch

(2003) or Banks, Rios, and Ríos Insua (2015) . This is represented

in Fig. 1 . Square nodes represent decisions; circle nodes represent

uncertainties; hexagonal nodes represent evaluations. White nodes

refer to elements affecting only the manufacturer problem; grey

nodes, affect only the consumer problem; striped nodes affect both

agents. This BAID serves as a template for the model in Section 3 .

After minor modifications, it will also serve for that in Section 4 . 

The decision node M represents the manufacturer’s decision

about n , the sample size that will be offered to the consumer. The

random node D denotes the data, that is, the outcome of the in-

spection, which depends on a parameter θ describing the product

quality, e.g. through the proportion of defective items in a batch in

a quality control setting. The decision node C represents the con-

sumer’s decision to accept ( A ) or reject ( R ) the batch. Such deci-

sion will be based on the observed sample data D , which may be

used by the consumer to revise his uncertainty about θ . The util-

ity u C that he attains depends on his decision C and the quality

parameter θ . The manufacturer’s utility u M 

depends on her deci-

sion M , the consumer’s decision C and the quality parameter θ . 

We assume we are supporting the manufacturer in making her

decision. Note that in the ARA jargon ( Banks et al., 2015 ) this

would correspond to a sequential Defend–Attack problem, with M

as the Defender and C as the Attacker. 

2.1. The game theoretic solution 

For comparison purposes, we first provide the game theoretic

solution, although based on a BAID. In this case, due to the sequen-

tial nature of the problem, the consumer sees the manufacturer’s

decision, and thus he does not need her judgements. To move for-

ward, the consumer should have available: 
• The distribution p C ( θ ), which represents his beliefs about the

product quality θ ; 
• The distribution p C ( d | θ , n ), which models his beliefs about the

experiment result d given the quality θ and the decision n of

M ; and, 
• Finally, his utility function u C ( c , θ ). 

Then, the consumer proceeds, for each d and n , by: 

1. Inverting the arc θ − D and computing, by Bayes’ formula, 

p C (θ | d, n ) ∝ p C (θ ) p C (d| θ, n ) . (1)

2. Computing the expected utilities 

ψ C (d, n, c) = 

∫ 
u C (c, θ ) p C (θ | d , n ) d θ

to reduce node �. 

3. Computing the optimal decision c , given d and n : 

c ∗(d, n ) = arg max 
c∈{A , R} 

ψ C (d, n, c) . 

The game theoretic approach requires the manufacturer to

now the consumer’s beliefs p C and preferences u C , which is the

ommon knowledge condition in this problem. Then, the manufac-

urer is capable of performing the above calculations and predict

hich decision will the consumer implement. She switches now

o her problem. In order to solve it, M should have also available: 

• The distribution p M 

( θ ), which describes her beliefs about the

quality θ ; 
• The distribution p M 

( d | θ , n ), which models her beliefs about the

experiment results, given the quality θ and her decision n ; 
• Her utility function u M 

( c , n , θ ). 

In this case, the manufacturer proceeds by: 

1. Assessing the utilities of the attained results (related with

the consumer decision c ∗( d , n ), which, recall, is known to

her under the common knowledge assumption) 

ψ M 

(n, d, θ ) = u M 

(c ∗(d, n ) , n, θ ) . 

2. Computing the expected utilities 

ψ M 

(n, θ ) = 

∫ 
ψ M 

(n, d, θ ) p M 

(d| θ, n ) dd 

to reduce node D . 

3. Computing the expected utilities 

ψ M 

(n ) = 

∫ 
ψ M 

(n, θ ) p M 

(θ ) dθ

to reduce node �. 

4. Finally, computing her optimal decision through 

n 

∗
GT = arg max ψ M 

(n ) . 

We may see that (n ∗
GT 

, { c ∗(d, n ∗
GT 

) } d ) is a subgame perfect equi-

ibrium Menache and Ozdaglar (2011) . n ∗GT would be the sam-

le size to be offered by the manufacturer to the consumer and

 

∗(d, n ∗
GT 

) would be the corresponding consumer decision, if d is

he observed data. 

.2. The ARA approach 

We move now to the ARA approach which avoids the above

ommon knowledge assumption: the manufacturer will not usually

ave access to the consumer’s beliefs and preferences which allow

er to find out his optimal decision. In turn, we shall model the

anufacturer’s uncertainty about the consumer’s judgements and

imulate from the consumer’s decision making problem to form a

ell-founded forecast of his decision. We then use this probabilis-

ic forecast as a key input to the decision analysis problem faced

y the manufacturer. 
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Fig. 2. Manufacturer vision of the AS problem. 
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Fig. 3. Consumer vision of the AS problem. 
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.2.1. Solving the manufacturer problem 

In the ARA approach, we first consider the manufacturer’s deci-

ion problem, described in Fig. 2 . Observe that now C is uncertain

o the the manufacturer. 

In order to solve it, M should have available, as before, p M 

( θ ),

 M 

( d | θ , n ) and u M 

( c , n , θ ), but also 

• The distribution p M 

( c | d , n ), which describes her beliefs about

the customer decision c (accept, reject) given the experiment

results d and her decision n . 

The procedure to be adopted by the manufacturer essentially

oincides with that in Section 2.1 , except for the first step. There,

nder common knowledge, we knew the reaction c ∗( d , n ) of the

onsumer. Here, without common knowledge, we must forecast

uch reaction, through p M 

( c | d , n ), and replace the first stage by: 

1’ Computing the expected utilities 

ψ M 

(n, d, θ ) = 

∑ 

c∈{A , R} 
u M 

(c, n, θ ) p M 

(c| d, n ) 

to eliminate node C . 

The other steps 2–4 would coincide leading to n ∗
ARA 

, the size of

he sample to be offered by the manufacturer to the consumer. It

s important to stress that, in general, n ∗GT � = n ∗
ARA 

, as may be seen

n examples, as in Section 3 . 

Note, however, that the forecast p M 

( c | d , n ) is nonstandard, as it

equires strategic thinking about the behaviour of the consumer. To

acilitate M ’s assessment of C ’s behaviour, we consider C ’s problem.

.2.2. Simulating the consumer problem 

The consumer’s problem is reflected in Fig. 3 , where now the

ecision M is uncertain to the consumer, although he observes it

rior to making his own decision. In order to solve this ID, the

onsumer should have available, as stated above, p C ( θ ), p C ( d | θ , n ),

nd u C ( c , θ ). He does not actually need p C ( n ), since his decision is

ontingent upon seeing the manufacturer decision n at M . In this

ase, the consumer proceeds, for each n and d , as above, given that

e does not need to remove nodes D and M from his ID. 

However, since we do not assume common knowledge, we

ack the required ingredients u C ( c , θ ), p C ( θ ), p C ( d | θ , n ). Sup-

ose, we may model our uncertainty about them through
andom utilities and probabilities, which we designate F =
(U C (c, θ ) , P C (θ ) , P C (d| θ, n )) . Now, observing that we do not need

he denominator in Bayes’ formula (1) for optimisation purposes,

e may proceed, for each d and n , by 

2’ Computing the random functional 

�∗
C (d, n, c) = 

∫ 
U C (c, θ ) P C (θ ) P C (d | θ, n ) d θ . 

3’ Computing the random optimal alternative, given d and n : 

C ∗(d, n ) = argmax 
c∈{A , R} 

�C 
∗(d, n, c) . 

We, then, make p M 

(c| d, n ) = P r(C ∗(d, n ) = c) , which we feed

nto the manufacturer’s problem in Section 2.2.1 . Observe that the

andom functional �∗
C 
(d, n, c) in Step 2’ would be a scale transfor-

ation of ∫ U C ( c , θ ) P C ( θ | d , n ) d θ , the random expected utility. The

ssessment of C ∗( d , n ) may proceed by Monte Carlo simulation,

hrough the steps in Algorithm 1 in the Appendix. 

In general, note that P C ( θ ) and P C ( d | θ , n ) could be, respectively,

ased on p M 

( θ ) and p M 

( d | θ , n ) with some uncertainty around

hem. In discrete cases, we could model them with Dirichlet dis-

ributions, whereas, in continuous cases, we could deal with them

hrough Dirichlet processes. With respect to U C ( c , θ ), we could

ave information about the consumer interests, model a paramet-

ic form for the utility function and, finally, derive a distribution

ver the corresponding parameters. 

We illustrate the approach in an important case. 

. A Bernoulli model for acceptance sampling 

We consider a Bernoulli acceptance sampling model based on

indley and Singpurwalla (1991) , where the items in the sample

ffered by the manufacturer may be defective with probability θ .

ased on the results of such sample, the consumer accepts or re-

ects the whole lot. 

For the manufacturer, we assume that, 

• The sampling model is binomial with p M 

( d | θ , n ) ∼ Bin ( n , θ ); 
• The quality parameter θ follows a beta distribution,

p M 

( θ ) ∼βe ( β1 , β2 ); 
• The utility function u M 

( c , n , θ ) is that in Lindley and Singpur-

walla (1991) : 

– u M 

(A , n, θ ) = b 1 + b 2 θ + b 4 n, 

– u M 

(R , n, θ ) = b 3 + b 4 n, 

where b 1 > b 3 > b 1 + b 2 and b 2 , b 4 < 0. In it, b 4 represents the

unit cost of providing each sample unit, therefore being nega-

tive. The parameter b 2 represents a penalty for defectiveness;

the higher θ , the worse the corresponding cost is and, there-

fore, b 2 will be negative. The utility also reflects that when

there is rejection, the value of θ is not relevant. The inequality

b 1 > b 3 portrays the preference for having the items accepted

rather than rejected, and b 3 > b 1 + b 2 reflects that it is worse

to have a lot accepted with the worst quality, than have it re-

jected, for reputation reasons. 

In order to facilitate the assessment of p M 

( c | d , n ), which is also

equired: 

• We do not assume uncertainty about p C ( d | θ , n ) and consider it

to be the same binomial model Bin ( n , θ ) as before. 
• We have uncertainty about p C ( θ ). The random distribution

is designated P C ( θ ). We model it as a beta distribution

p c ( θ ) ∼βe ( α1 , α2 ), with uncertainty over the parameters mod-

elled through uniform distributions α1 ∼ U ∈ [ a 11 , a 12 ] , and

α2 ∼ U ∈ [ a 21 , a 22 ] . This uncertainty induces the random distri-

bution. Note that ( Lindley and Singpurwalla (1991) ) assumes a
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beta distribution with parameters α1 and α2 , known by the

manufacturer. 
• As for U C ( c , θ ), we adopt the same linear functional form in

Lindley and Singpurwalla (1991) , given by 

– u C (A , θ ) = a 1 + a 2 θ, 

– u C (R , θ ) = a 3 , 

where a 1 > a 3 > a 1 + a 2 and a 2 < 0. The consumer does not

carry out the costs of the n sample units, but the rest of the

utility function formally coincides with that of the manufac-

turer. The constraints reflect that if θ were known, acceptance

would occur for θ < 

a 3 −a 1 
a 2 

, a break even value between 0 and

1, and rejection would hold, otherwise. 

However, we do not know the values of the parameters and

assume that a 1 ∼ U[0 , A 1 ] , a 2 ∼ U[ A 2 , 0] and a 3 | a 1 , a 2 ∼ U[ a 1 +
a 2 , a 1 ] . This uncertainty leads to the random utility function.

Note that, based on these, we may compute interesting quan-

tities like P r(θ < 

a 3 −a 1 
a 2 

) , which reflects the probability that the

consumer will accept, as perceived by the manufacturer. 

Note that we use linear utility functions with the same func-

tional form as in Lindley and Singpurwalla (1991) to facilitate com-

parisons. In many cases, it could be that utilities are non-linear,

for example if we cater for risk aversion or proneness attitudes

( French & Rios Insua, 20 0 0 ). This is easily accomodated by the pro-

posed computational schemes below, albeit at a bigger computa-

tional effort. 

We specify now the simulation-optimisation scheme in

Section 2 . First, we estimate the probabilities of various con-

sumer decisions ˆ p M 

(A| d, n ) (and ˆ p M 

(R| d, n ) = 1 − ˆ p M 

(A| d, n ))

with Algorithm 2 in the Appendix. Then, we plug these into the

manufacturer’s problem 

1. Compute the expected utilities 

ψ M 

(n, d, θ ) = 

ˆ p M 

(A| d, n )(b 1 + b 2 θ − b 3 ) + (b 3 + b 4 n ) . 

2. Compute the expected utilities 

ψ M 

(n, θ ) = 

n ∑ 

d=0 

[
ˆ p M 

(A| d, n )(b 1 + b 2 θ−b 3 ) 

(
n 

d 

)
θ d (1 −θ ) n−d 

]

+ (b 3 + b 4 n ) = g 1 (n, θ ) + (b 3 + b 4 n ) . 

3. Compute the expected utilities 

ψ M 

(n ) = 

∫ 
g 1 (n, θ ) βe (β1 , β2 ) dθ + (b 3 + b 4 n ) . 

4. Compute M ’s optimal decision 

n 

∗ = arg max ψ M 

(n ) . 

Observe that in computing the expected utilities to solve M ’s

problem, the estimated probabilities ˆ p M 

(A| d, n ) are not a function

of θ . Thus in evaluating ψ M 

( n ) we may change the order of the

summation and integration and first evaluate the integral with re-

spect to θ . We can show that 

ψ M 

(n ) = 

n ∑ 

d=0 

[
ˆ p M 

(A| d, n ) 

(
n 

d 

)
B (β1 + d, β2 + n − d) 

B ( β1 , β2 ) 

×
[

b 1 − b 3 + b 2 
β1 + d 

β1 + β2 + n 

]]
+ (b 3 + b 4 n ) , 

which we may represent as ψ M 

(n ) = h 1 (n ) + (b 3 + b 4 n ) . This en-

ables us to perform computations more efficiently. 

Example. We consider a numerical illustration of the above ap-

proach, based on Lindley and Singpurwalla (1991) . 

• For the manufacturer, we use, on one hand, b 1 = 8 , b 2 = −14 ,

b 3 = 4 , b 4 = −. 02 . On the other, β1 = 1 , β2 = 3 , reflecting that

E(θ ) = 0 . 25 . 
• For the consumer, we use a 1 ∼ U[0 , 12] and a 2 ∼ U[ −15 , 0] .

We also assume that he believes that θ ∼βe ( α1 , α2 ), with

α1 ∼ U[2 , 5] , α2 ∼ U[ . 5 , 2] . These uncertainties, respectively, in-

duce the uncertainty in the utility function and the probabil-

ity distribution. Observe that the values chosen by Lindley and

Singpurwalla (1991) , α1 = 3 , α2 = 1 , a 1 = 10 , a 2 = −13 and

a 3 = 6 , are in the support of the above distributions. 

With the parameters chosen in Lindley and Singpurwalla

1991) , the optimal batch size is n ∗
GT 

= 16 . However, note that

ther parameters within such intervals lead to different solutions

o theirs. For example, when α1 = 2 , α2 = 2 , a 1 = 10 . 5 , a 2 = −13 . 5

nd a 3 = 5 . 5 , the optimal batch size is 8. Thus, by acknowledg-

ng our uncertainty about the consumer’s beliefs and preferences,

e avoid very strong common knowledge assumptions that may

ead to erroneous decisions, with very different consequences. For

 study on the robustness of the game theoretic and the ARA so-

utions in a security context see Rios Insua, Ruggeri, Alfaro, and

omez (2016) . 

In our case, given the above uncertainty, the forecasts we made

or the consumer acceptance decision are reflected in Table 1 , with

onte Carlo sample size K = 10 7 . For example, when the offered

ample size is n = 4 and d = 3 pieces are defective, the estimated

cceptance probability is ˆ p M 

(A| d = 3 , n = 4) = 0 . 26 (and the rejec-

ion probability is estimated at ˆ p M 

(R| d = 3 , n = 4) = 0 . 74 ). 

Table 2 displays the expected utilities of the manufacturer de-

isions. 

Therefore, the optimal alternative would be n ∗
ARA 

= 9 , although

e can see that the expected utility function ψ M 

( n ) is quite flat

round such solution. Note that we reach a different decision than

 Lindley & Singpurwalla, 1991 ). 

Observe that the optimisation approach proposed effectively

ries various solutions until an optimum is detected. We could per-

orm more systematic approaches typically based on a simulation

etamodel to be optimised once fitted possibly with algorithms

equiring only objective function evaluations, as in the classical

elder–Mead method. Both are described in detail in Rios Insua,

ios Insua, Martin, and Jimenez (2008) . 

. Adversarial exponential life testing 

We now consider the adversarial life testing model in Lindley

nd Singpurwalla (1993) . The items offered by the manufacturer to

he consumer will have exponential life times with mean 1/ λ. This

roblem is called reliability demonstration and the decision is to ac-

ept or reject a batch of items based on the observed durations of

 few offered items. It is also termed acceptance sampling for life

engths. 

Standards like MIL STD 781C assume a common prior for the

anufacturer and the consumer over λ. In the above mentioned

aper, Lindley and Singpurwalla allow for different priors and util-

ties, although the manufacturer must essentially know the con-

umer utility and prior, a strong common knowledge assumption

hich we weaken here. We also provide a more natural formu-

ation of the problem in which the manufacturer needs to decide

oth the size of the batch offered and the maximum test duration.

inally, we consider different, more realistic, utility functions. 

We assume, therefore, that certain items are characterized by

heir unknown life lengths X i , for i = 1 , 2 , . . . . The manufacturer

ay offer the consumer a sample of n items for testing over a

eriod of duration T . Based on such observations the consumer

ecides whether to accept or not a batch of N items. The man-

facturer needs to decide the values of T and n . Both the manu-

acturer and the consumer assume that lifetimes can be reason-

bly described as exponential, that is, p M 

( X i | λ), p C ( X i | λ) ∼ Exp ( λ),

 = 1 , 2 , . . . and independent. 
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Table 1 

Acceptance probabilities for various manufacturer decisions and experimental results. 

n = 0 1 2 3 4 5 6 7 −
ˆ p M (A| d, n ) d = 0 x 0.4 0.49 0.55 0.61 0.65 0.68 0.71 

d = 1 x 0.22 0.34 0.42 0.49 0.54 0.58 0.62 

d = 2 x x 0.19 0.29 0.37 0.44 0.49 0.53 

d = 3 x x x 0.16 0.26 0.33 0.4 0.45 

− x x x x 0.14 0.23 0.3 0.36 

Table 2 

Expected utilities of various manufacturer decisions. 

n = 1 2 3 4 5 6 

ψ M ( n ) 4.25 4.325 4.374 4.408 4.43 4.4 4 4 

− 7 8 9 10 11 12 

ψ M ( n ) 4.453 4.456 4.457 4.456 4.451 4.4 4 4 
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We describe now the required ingredients for the manufac-

urer’s decision making problem, where ( n , T ) are the decisions to

e made and x = (x 1 , . . . , x n ) are the observed lifetimes of the sam-

le units by time T , which serves as truncation time: 

• The lifetime parameter λ follows an inverse gamma prior dis-

tribution, p M 

( λ) ∼ IG ( α1 , β1 ); 
• For the manufacturer utility, we adopt the functional form: 

– u M 

(A , (n, T )) = −b 1 T − b 2 n + b 3 N, 

– u M 

(R , (n, T )) = −b 1 T − b 2 n, 

where b 1 represents the testing cost per unit time, b 2 the cost

of each sampling unit and b 3 the unit selling price. When the

customer accepts, there is an income of b 3 N which compen-

sates the expenditure of −b 1 T − b 2 n ; such income is not re-

alised when there is rejection. We are assuming risk neutral-

ity in income for the manufacturer, but the approach extends

easily when we cater for risk aversion or proneness. 

In order to facilitate the assessment of p M 

( c | x , ( n , T )), which the

anufacturer requires, we also consider that: 

• We have uncertainty about p C ( λ). The random distribution is

designated P C ( λ) and modelled as an inverse gamma IG ( α2 , β2 ),

with α2 ∼ U[ α1 
2 
, α2 

2 
] and β2 ∼ U[ β1 

2 
, β2 

2 
] . The uncertainty in α2 

and β2 induces the randomness of P C ( λ). Note that Lindley

and Singpurwalla (1993) assumes an inverse gamma model for

p C ( λ) with parameters ( α2 , β2 ) known by the manufacturer. 
• For the consumer utility, we adopt the following functional

form: 

– u C (A , y ) = a 1 
∑ N 

i =1 y 
p 
i 

− a 2 , 

– u C (R , y ) = a 3 , 

where the vector y = (y 1 , . . . , y N ) contains the life length of

the items acquired by C . The parameter −a 2 represents the

disutility to the consumer of an item that does not function

and would aggregate installation costs, among others. We have

a 1 > 0 and p ∈ (0, 1] to model the effect of time over the util-

ity that the consumer receives from each item. The case p < 1

suggests risk aversion, whereas p = 1 corresponds to risk neu-

trality. The parameter a 3 represents opportunity losses. 

We assume uncertainty about the utility function parameters

with a 1 ∼ U[ a 1 1 , a 
2 
1 ] and a 1 1 > 0 , p ∼βe [ α3 , β3 ], a 2 ∼ U[ a 1 2 , a 

2 
2 ]

and a 3 ∼ U[ a 1 
3 
, a 2 

3 
] . This uncertainty induces the random utility

model. 

Observe that the BAID describing this problem does not fully

oincide with that shown in Fig. 1 , since the utility that C receives
epends now on the future lifetimes that he will observe. We con-

ider this to be more realistic in this case. 

Suppose that during a test of duration T , the first i offered items

ail at times x 1 , x 2 , . . . , x i , smaller than T , whereas the remaining

 − i items last longer than T . Conditional on α2 , β2 , the pos-

erior p C ( λ| d , m ) is inverse gamma with parameters (α2 + i, β2 +
 i 
j=1 x j + (n − i ) T ) . We now apply our simulation-optimisation

cheme, where d = (x 1 , . . . , x i , i ) , summarise the data observed in

he experiment, and m = (n, T ) . First, we assess the probabilities of

he consumer accept–reject decisions with Algorithm 3 in the Ap-

endix. Once ˆ p M 

(A| d, m ) /K (and ˆ p M 

(R| d, m ) = 1 − ˆ p M 

(A| d, m ) ) is

btained, we proceed to the optimisation phase as follows: 

1. Compute the expected utilities 

ψ M 

(m, d, λ) = 

ˆ p M 

(A| d, m ) b 3 N − b 1 T − b 2 n. 

2. Compute the expected utilities 

ψ M 

(m, λ) = 

n ∑ 

i =0 

p(i | λ) 

∫ T 

0 

. . . 

∫ T 

0 

ψ M 

( m, ( x 1 , . . . , x i , i ) , λ) 

× f (x 1 , . . . , x i | i, λ) dx 1 . . . dx i . 

3. Compute the expected utilities 

ψ M 

(m ) = 

∫ 
ψ M 

(m, λ) p M 

(λ| α1 , α2 ) dλ. 

4. Compute her optimal decision through 

(n 

∗, T ∗) = arg max ψ M 

(n, T ) . 

Then, n ∗ would be the optimal sample size to be offered to

he customer and T ∗, the optimal testing time for the sample. In

his case, we would typically use a direct optimisation method like

elder–Mead’s coupled with a regression metamodel to find the

anufacturer’s decision in step 4. 

. Discussion 

We have outlined an ARA framework to deal with adversarial

ssues in reliability based on BAIDs. We illustrated them with a

inomial acceptance model and modified it to cope with an expo-

ential life testing model. In the first case, the model was based on

indley and Singpurwalla (1991) to allow for comparisons, showing

hat the game theoretic and the ARA approach actually lead to dif-

erent solutions, with ARA demanding less stringent assumptions.

n the second one, we departed from the formulation in Lindley

nd Singpurwalla (1993) to address more realistic cases. We have

iscussed and illustrated several issues concerning adversarial be-

iefs. For illustrations on utility modelling, including adversarial as-

ects, see Wang and Bier (2013) and Ortega, Radovic, and Rios In-

ua (2017) . In many application areas, utilities would be based not

nly on reliability related parameters, but other criteria like price,

omfort or maintenance costs. 

Our approach extends to other acceptance and life testing prob-

ems and, indeed, to other adversarial reliability areas. For exam-

le, in warranties ( Singpurwalla & Wilson, 1993 ), we may imple-

ent the proposed procedures without the need to assume the
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manufacturer’s knowledge of the consumer’s beliefs and prefer-

ences. Another important application area is software reliability

testing, see e.g. Zeephongsekul and Chiera (1995) and Ozekici and

Soyer (2003) . 

There are other issues that could be addressed. First, we have

limited the discussion to two agents: the manufacturer and the

consumer. Numerous adversarial reliability problems involve mul-

tiple agents. Relevant variants include: a manufacturer facing sev-

eral consumers; several manufacturers and one consumer; sev-

eral manufacturers and several consumers; and, several manufac-

turers, a regulator and several consumers. When more than two

agents are considered, there could be various degrees of coopera-

tion among the agents. Ideas from cooperative game theory could

then be incorporated. Such extensions have applications in supply

chain problems (e.g. Cachon and Zipkin (1999) ). 

Finally, it would be interesting to revise various quality control

standards in the light of the type of models here described. The

introduction of insurance concepts for the consumer, so as to pro-

tect from very low quality items is also relevant. It would also be

of interest to apply this type of ideas to auctions in which several

manufacturers offer a product to a buyer with reliability as one of

the criteria in consumer utilities, when we support one of the auc-

tioneers. 
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Appendix A. Algorithms 

We outline here the basic algorithms mentioned in the paper. 

Algorithm 1. It approximates the probabilities of both consumer

decisions (accept or reject) in the basic Acceptance Sampling prob-

lem, given the data ( d , n ) that he observes. 

Algorithm 1: Acceptance sampling. Simulating the Attacker 

problem. 

For Each (d, n ) 

count(d, n ) = 0 

For k = 1 , . . . , K 

Generate (U 

k 
C 
(c, θ ) , P k 

C 
(θ ) , P k 

C 
(d| θ, n )) ∼ F 

Compute �∗k 
C 

(n, d, c) 

Compute C ∗
k 
(d, n ) 

If C ∗
k 
(d, n ) = A 

count(d, n ) = count(d, n ) + 1 

end 

end 

ˆ p M 

(A| d, n ) = count(d , n ) /K ; ̂  p M 

(R| d , n ) = 1 − ˆ p M 

(A| d, n ) 
end 
lgorithm 2. It specifies Algorithm 1 for the Bernoulli acceptance

ase. 

Algorithm 2: Bernoulli acceptance sampling. Simulating the 

Attacker. 

For Each (d, n ) 

count(d, n ) = 0 

For k = 1 , . . . , K 

Generate a k 
1 

∼ U[0 , A 1 ] , a 
k 
2 

∼ U[ A 2 , 0] , a k 
3 

∼ U[ a k 
1 

+ a k 
2 
, a k 

1 
] 

Generate αk 
1 

∼ U[ a 11 , a 12 ] , α
k 
2 

∼ U[ a 21 , a 22 ] 

Compute ψ 

∗k 
C 

(n, d, A ) = a k 
1 

+ a k 
2 

αk 
1 
+ d 

αk 
1 
+ αk 

2 
+ n 

If ψ 

∗k 
C 

(n, d, A ) > a k 
3 

count(d, n ) = count(d, n ) + 1 

end 

end 

ˆ p M 

(A| d, n ) = count(d , n ) /K; ̂  p M 

(R| d , n ) = 1 − ˆ p M 

(A| d, n ) 
end 

lgorithm 3. It estimates the consumer decision probabilities in

he exponential life testing problem. 

Algorithm 3: Exponential life testing. Simulating the Attacker. 

For Each (d, m ) 

count(d, m ) = 0 

For k = 1 , . . . , K 

Generate a k 
1 

∼ U[ a 1 
1 
, a 2 

1 
] , p k ∼ βe [ α3 , β3 ] , a 

k 
2 

∼ U[ a 1 
2 
, a 2 

2 
] , 

a k 
3 

∼ U[ a 1 
3 
, a 2 

3 
] 

Generate αk 
2 

∼ U[ α1 
2 
, α2 

2 
] , βk 

2 
∼ U[ β1 

2 
, β2 

2 
] 

Compute ψ 

k 
C 
(d, m, A ) = 

a k 
1 
N 

∫ ∫ 
y p 

k 
p C (y | λ) p C (λ| d, m, αk 

2 
, βk 

2 
) dydλ − a k 

2 

If ψ 

k 
C 
(d, m, A ) > a k 

3 
count(d, m ) = count(d, m ) + 1 

end 

end 

ˆ p M 

(A| d, m ) = count(d, m ) /K; ˆ p M 

(R| d, m ) = 1− ˆ p M 

(A| d, m ) ) 
end 

Note that 
 ∞ 

0 

∫ ∞ 

0 

y p 
k 

p C (y | λ) p C (λ| d, m, αk 
2 , β

k 
2 ) dydλ= 

	(p k +1)	(αk 
2 +p k ) 

	(αk 
2 
)(βk 

2 
) p k 

, 

hich may be used to make the simulation scheme more efficient.
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