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Abstract

The restricted continuous facility location problem arises when there is a need to locate a

number of facilities to serve a discrete set of demand points, and where the location of a facility

can be anywhere on the plane except for in restricted regions. The problem finds applications

in urban planning, disaster management, and healthcare logistics. The restricted regions can

occur randomly or are known in advance. The paper describes a new model for the problem

that is based on multicommodity flows with unknown destinations and defined on a discretiza-

tion of the plane. The model and discretization are applied to both the deterministic and the

stochastic continuous restricted location problem, where the latter is converted into a determin-

istic equivalent problem by minimizing the expected value of the objective function weighted by

the probabilities of scenarios. The paper also describes a Benders decomposition algorithm to

optimally solve the model. Extensive computational results are presented on both benchmark

instances from the literature and new instances, on both the deterministic and stochastic variant

of the problem. The results indicate that the proposed algorithm is superior to an off-the-shelf

solver in terms of computational time. To the best of the authors’ knowledge, the exact algo-

rithm described here is the first to address both the deterministic and the stochastic variants of

continuous restricted location problems with any number of facilities.

Keywords. location, mathematical modeling, network design, multicommodity network flow,

Benders decomposition

1 Introduction

Restricted continuous facility location problems arise in the assembly of printed circuit boards

(Foulds and Hamacher, 1994), obnoxious facility planning (Carrizosa and Plastria 1993), urban

planning, and locating emergency facilities. These problems are concerned with locating one or

more facilities on the plane containing restricted regions. The restriction types can be classified

into three categories, namely forbidden regions, barriers and congested regions (Canbolat and

Wesolowsky, 2010). In problems with forbidden regions, locating new facilities within the region
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is not permitted but traveling through them is possible. In the case of barriers, neither locating a

facility within the barrier nor travel through the barrier is permitted. In problems with congested

regions, locating new facilities within such regions is not allowed, but traveling through them is

possible with at the expense of a penalty.

A restricted continuous location problem is said to be deterministic if the locations of all restricted

regions are known in advance of locating the facilities and do not change over time. In stochastic

restricted location problems, restricted regions occur randomly, as a result of real-world situations

such as sudden railway system failures, accidents, unplanned construction and natural disasters,

as a result of which random obstacles arise. Natural disasters such as earthquakes, typhoons and

hurricanes, for example, result in barriers due to the collapse of buildings, viaducts and bridges,

crushed cars and trucks, and rubble in the streets.

A very common example for restricted regions being formed by natural disasters is floods. Many

countries around the globe suffer from flooding caused by heavy rainfall (pluvial floods), rising

ground water, or coastal floods caused by wave actions and storm surges. Floods have adverse

effects on transportation activities due to the formation of large areas of surface water, mudslides

and possible debris after the natural disaster, all of which can be regarded as barriers in the context

of restricted location problems. Figure 1 shows a flood hazard map of Europe (Alfieri et al., 2014),

in which the darker shades show the locations of possible flood occurrences, which, in our context

correspond to probabilistic barriers. Recent examples of disruption include that due to flooding in

Central Europe in 2002, affecting several countries such as Germany, the Czech Republic, Austria,

Italy and Slovakia, causing over 100 fatalities and economic loss (Ulbrich et al., 2003). In 2009,

heavy rainfall resulted in the loss of three bridges and the temporary closure of nearly 20 bridges

(Cumbria County Council, 2011). In May 2015, flooding due to severe storms in Texas caused at

least 27 million dollars in infrastructure damage, including damage to 167 roads in the counties of

Texas and 24 causalities (Gallucci, 2015b). Observations from real-life cases show that the locating

a facility within a flood zone can be unsafe and costly. Furthermore, transportation of goods or

people through them would be difficult after a possible flood.

The stochastic restricted continuous facility location problem is to find the optimal locations of a

set of new facilities on the plane to serve a set of demand points, and where there is uncertainty in
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An evaluation of the derived flood hazard map against
national/regional maps was carried out for three areas: the
state of Saxony in Germany, the Thames, and the Severn
River basin in the United Kingdom. Maps for comparison
were provided by the Saxony State Office for Environ-
ment, Agriculture, and Geology and by the Environment
Agency of England and Wales. These maps have been
produced using high-resolution data sets and show areas
that could be affected by flooding, either from rivers or
the sea. While hazard maps for Saxony include flood
protection measures at the time they were produced, maps

for UK are obtained as if there were no flood defences.
The flood hazard maps produced for England and Wales
are based, in descending priority order, on either: (1) an
observed 1 in 100 year flood outline; (2) the output from
detailed 1D hydraulic models built with airborne laser
terrain data with a resolution of ~2m and a vertical
accuracy of <10 cm; or (3) a 2D hydraulic model built
using airborne interferometric Synthetic Aperture Radar
terrain data with 5m spatial resolution and 0.5–1m
vertical accuracy. By contrast, the only consistent terrain
data set available at a pan-European level (and therefore
used in this study) is SRTM with a spatial resolution of
90m and vertical noise of ~8.7m over Europe (Rodriguez
et al., 2006).
To compare the obtained flood hazard map with the

national/regional ones, we applied a two-step approach as
shown by Bates and de Roo (2000). First, we calculated
the area correctly classified as flooded according to the
national/regional map:

Correct %ð Þ ¼ FAPE∩FANR

FANR
� 100 (2)

where FAPE is the flooded area derived by the pan-
European map, and FANR is the flooded area derived from
the national/regional map. This measure gives an
indication of how the model simulations reproduce
reference flood hazard maps. However, it does not
penalize over-prediction of the flooded area. A second
measure is therefore calculated to account for this, which
is defined as follows:

Fit %ð Þ ¼ FAPE∩FANR

FAPE∪FANR
� 100 (3)

It is worth noting that Equations (2) and (3) represent
the spatial extension of the Hit Rate and of the Critical

Figure 4. European flood hazard map for the 100-year return period

Figure 5. Maximum flood extent and depth. Hungarian region (a) and zoom into the city of Budapest (b)
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Figure 1: European flood hazard map (Alfieri et al., 2014)

the location of the restricted regions. The objective is to minimize the total cost that is expressed

as a function of the distance between the locations of the demand points and locations of the

new facilities. We make no assumptions on the shape of the restricted region and the distance

metric. The uncertainty around the restricted region locations is characterized by a number of pre-

defined scenarios, each with a given probability. The deterministic variant of the problem where

the locations of the regions are known arises as a special case of the problem.

This paper makes four unique contributions which are listed below:

1. We propose the way in which the continuous space can be discretized, allowing for any distance

metric to be used in the objective function of the problem.

2. We present a new model for continuous restricted facility location problems, both for stochas-

tic and deterministic cases, that is based on multicommodity flows on the discretized network.

The novelty of the model is that the destination node of each commodity is unknown.

3. We describe an exact algorithm that is based on Benders decomposition to optimally solve

the proposed model.

4. We report extensive computational results on benchmark instances for the deterministic and

the stochastic variants of the problem, and for single and multiple facilities.

The remainder of this paper is organized as follows. A brief overview of the literature on restricted

facility location problems is presented in Section 2. In Section 3, we first provide a formal definition
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of the problem, then present the way in which the continuous network is discretized, and finally

describe the multicommodity network flow model with unknown destination. Section 4 describes

the Benders decomposition algorithm. The computational results are presented in Section 5. The

paper concludes in Section 6.

2 Literature Review

The deterministic restricted facility location problem has been studied to a good extent. We will

not present a review of this problem here but instead refer the reader to Oğuz et al. (2016) for a

review of single and multiple facility problems with forbidden regions, and single facility problems

with barriers. To the best of our knowledge, Bischoff et al. (2009) is the only paper to study

the (deterministic) restricted multi-facility location problem with barriers, who describe a genetic

algorithm.

In contrast, only a few studies exist on restricted location problems with probabilistic barriers.

The first of these papers, to the best of our knowledge, is by Canbolat and Wesolowsky (2010),

who consider a barrier in the form of a probabilistic line. The aim is to locate a new facility

so as to minimize total expected rectilinear distance between its location and those of a set of

demand points. The authors describe an algorithm based on dividing the problem into two, the

individual solutions of which are used to construct a solution for the original problem. Canbolat

and Wesolowsky (2010) make several strict assumptions, including the uniformity of the barrier

location and the invariability of the y-coordinate of the line barrier. A location problem with a

probabilistic line barrier that is uniformly distributed on the plane has been studied by Amiri-Aref

et al. (2011), where the objective is to minimize the maximum expected rectilinear distance from

the demand points to the new facility, and for which the authors describe a heuristic algorithm. The

multi-facility version of this problem is studied by Shiripour et al. (2012). For small size instances,

the authors use a commercial solver to solve a mixed integer quadratic programming formulation

of the problem. For larger size instances, they describe a genetic algorithm and an imperialist

competitive algorithm. Amiri-Aref et al. (2013) describe a heuristic for a restricted problem with a

probabilistic polyhedral barrier. Finally, a location problem under a multi-period planning horizon
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using rectilinear distances and a uniformly distributed line barrier is studied by Javadian et al.

(2014), who propose a genetic algorithm and an imperialist competitive algorithm.

Stochasticity in facility location has primarily been studied from the point of view of considering

uncertainty in customer demands and the ability to meet the demands under limited operational

capacity. There exists a rather significant body of work on the facility location problem under

uncertainty (Snyder, 2006) which we will not review here for the sake of conciseness, but point

out similarities and differences with our work. Compared to existing studies, we take a similar

methodological approach in terms of modeling the problem in the form of a two-stage stochastic

program and converting it into its deterministic equivalent formulation by using the probabilities

of a given set of scenarios as weights in the objective function (Correia and Saldanha da Gama,

2015). The type of uncertainty we consider here, however, is in the formation of restricted regions,

rather than customer demands, which breaks away from the general body of work in this area.

3 Modeling with Discretization and Network Flows

This section presents a formal description of the problem studied in this paper, following which two

types of network discretizations are presented. This section also describes the new multicommodity

flow formulation and the way in which it is applied to the problem using the discretized network.

3.1 Formal Problem Description

Consider a set M of demand points located on a plane, each with a positive weight zm corresponding

to the amount of demand at each m ∈M. These demand points need to be served by θ new facilities

to be located on the plane. We are also given a finite set of possible locations of the restricted

regions on the continuous plane, where the realization of the set of occurrences is modeled as a

scenario. Let S be the set of scenarios and ps be the probability of occurrence of a scenario s ∈ S.

The stochastic restricted continuous facility location problem is to find an optimal placement of

the new facilities to serve the demand points. The objective is to minimize a function expressed

as the expected value of the weighted total distance between the locations of the demand points
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and the new facilities, where the expectation is taken over the probabilities defined over the set of

scenarios. The deterministic version of the problem is a special case where |S| = 1.

3.2 Construction of the Discrete Network

A straightforward way to discretize a continuous plane is to divide the space into unit squares,

where each unit square contains four nodes and six edges. Every pair of nodes are connected

with an edge to be able to represent various distance metrics (e.g., Euclidean). An example of

this network with four unit squares, nine nodes and 20 edges is given in Figure 2. Using such a

discretization, the size of the unit square will decrease with increasing number of vertices, which is

expected to refine the approximation.

Figure 2: Unit square network

An alternative way to model the discrete network and to refine the approximation is to increase

the number of edges by using unit rectangles that are formed by unit squares. The unit rectangles

form the columns and rows of the general network, where each node is connected in a cross-cutting

manner as shown in Figure 3. In contrast to the discretization shown in Figure 2, the new approach

increases the number of diagonal edges on the general network but keeps the number of nodes the

same.

Figure 3 shows two unit rectangles, where one of the rectangles represents a column, and the other

rectangle forms a row of the discretized network. Each unit rectangle is formed by unit squares.

This means that the total number of nodes in unit square network and unit rectangle network is

the same. On the other hand, it is clearly seen that the number of edges leaving and entering

each vertex has now increased, making more links available as compared to a unit square network

with the same number of nodes. Figure 4 presents two examples of networks with same number of

nodes, one constructed by a unit square and the other with a unit rectangle network. Even though
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Figure 3: Unit rectangle network

the two networks contain the same number of unit squares and nodes, unit rectangle design offers

more edges to connect nodes, which improves the transportation flexibility between nodes.

Figure 4: Network Design Comparisons

One point of consideration is regarding the convex hull of the network formed by the locations of

the existing facilities and the vertices of the barriers. It is sufficient to construct the discretized

network within this convex hull since it is known that the global optimal facility location lies in

that region (Butt and Cavalier, 1996). A second point to note is that it is possible to develop

a tessellation based on other geometric shapes, such as triangles and hexagons. In this paper,

however, the tessellation is limited to unit squares and rectangles given the satisfactory results

obtained by the latter. The results of a numerical comparison of quality of the solutions obtained

by the two alternative discretizations will be reported in Section 5. To the best of our knowledge,

these discretization techniques have not been used previously in restricted facility location problems.
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3.3 Multicommodity Network Flows for Restricted Facility Location Problems

The nature of multicommodity network flow problems and facility location problems are, in a sense,

similar. Multicommodity network flow problems determine the flows of a set of commodities from

their origins to destinations in order to minimize the total cost of routing along the arcs of a given

graph (Moradi et al., 2015). In the original statement of the problem, the origin and destination

nodes for each commodity are known.

In the model that we propose, the destination nodes of the commodities correspond to the loca-

tions of the new facilities, and are unknown. The total number of destination nodes, however,

is known and is equal to the total number θ of facilities. Consider, now, the network G formed

by the discretization explained in the previous section, defined by a set N of nodes and a set A

of uncapacitated arcs defined between pairs of nodes as per the discretization. In the stochastic

variant of the problem, the set of available arcs is shown by the set As ⊆ A, one for each scenario

s ∈ S. Each vertical or horizontal arc in A is assumed to have a unit cost, whereas the cost of the

diagonal arcs are calculated using standard geometry.

We define a commodity for each demand point. The index set of demand points is denoted by

M, which also corresponds to the index set of commodities as there is one-to-one correspondence

between the two. In particular, a commodity m ∈M originates from demand point m ∈M, which,

in graph G, corresponds to a node shown by O(m), where O(m) ∈ N. The unit flow cost of

commodity m ∈M through the directed arc (i, j) in scenario s ∈ S is shown by csmij .

With the new notation and terminology, the problem can now be described as sending each com-

modity m ∈ M from its origin O(m) to one of the θ destinations using a least-cost path, where

the cost of a path is defined as the total cost of the arcs forming the path. We are not aware of

any other work where multicommodity flow problems with unknown destinations have been used,

especially for facility location type problems.
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3.4 A multicommodity network flow formulation

To formulate the problem, we define three sets of variables. The continuous variable xsmij ≥ 0 is

the amount of flow of commodity m through the arc (i, j) ∈ As in scenario s ∈ S. The second

variable vsmi ≥ 0 is equal to 1 if node i ∈ N is designated as the destination of commodity m ∈M

in scenario s ∈ S, and 0 otherwise. This variable is inherently binary, but does not need to be

explicitly defined so for the reasons explained below. In a similar way, we define a (binary) variable

yi that takes the value of 1 if a facility is located at node i ∈ N, and 0 otherwise.

Since there is a finite set of scenarios and the objective is to optimize an expected value, it is possible

to form a deterministic equivalent of a stochastic model (DESM) for the problem, as shown below.

minimize E
{
F (zm, csmij , xsmij)m∈M,{i,j}∈As

}
(3.1)

subject to

∑
j:(i,j)∈As

xsmji −
∑

j:(i,j)∈As

xsmij =

 −1, if i = O(m)

vsmi, otherwise
∀s ∈ S,∀i ∈ N,m ∈M (3.2)

vsmi ≤ yi ∀s ∈ S,∀i ∈ N, ∀m ∈M (3.3)∑
i∈N

yi = θ (3.4)

xsmij ≥ 0 ∀s ∈ S,∀ {i, j} ∈ As, ∀m ∈M (3.5)

vsmi ∈ {0, 1} ∀s ∈ S,∀i ∈ N, ∀m ∈M (3.6)

yi ∈ {0, 1} ∀i ∈ N. (3.7)

The objective function (3.1) minimizes the expected value of a function defining the total weighted

distance between the origin nodes (demand points) and destination nodes (new facilities). For

example, the expected value of the objective function of a median problem can be written as

follows:

minimize
∑
s∈S

∑
m∈M

∑
{i,j}∈As

zmpscsmijxsmij . (3.8)
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Other objective functions can be written in a similar manner. Constraints (3.2) model flow con-

servation for each commodity from demand point m ∈ M in scenario s ∈ S. Constraints (3.3)

state that a commodity m ∈ M can only be destined to node i ∈ N in scenario s ∈ S if yi = 1.

Constraints (3.4) set the number of destination nodes, or equivalently, the number of facilities to

be located. Constraints (3.5), (3.6) and (3.7) define the non-negativity and binary restrictions on

the decision variables, respectively.

We now present a result that allows to relax the integrality of the location variables yi.

Proposition 1 Let DESML denote model DESM where constraints (3.7) are replaced by 0 ≤ yi ≤

1 for all i ∈ N. Then, there always exists an optimal solution (xL, vL, yL) of DESML where

yLi ∈ {0, 1} for all i ∈ N.

Proof The proof is by contradiction. Assume that ∃ i ∈ N such that 0 < yLi < 1, which, by

virtue of constraints (3.4) implies that there exists at least one other node j ∈ N \ {i} such that

0 < yLj < 1. Constraints (3.3) then stipulate that there must exist at least one m ∈ M such that

0 < vLsmi < 1 and 0 < vLsmj < 1. Let Cp1 (resp. Cp2) be the cost of the path between node m and

node i (resp., node j). Assume, without loss of generality, that Cp1 ≥ Cp2 . There are two cases.

If Cp1 = Cp2 , then solution (xL, vL, yL) can be transformed into an alternative solution (x̄L, v̄L,

ȳL) with the same cost, where the flows on path p1 are fully shifted on to path p2. If, on the other

hand, Cp1 > Cp2 , then the cost of the solution (x̄L, v̄L, ȳL) is cheaper than that of (xL, vL, yL),

contradicting the assumption. 2

Even though the results of Proposition 1 reduces the complexity of the model, its size will increase

with the number of demand points and scenarios, which in turn will increase the difficulty of

optimally solving DESML. To overcome this difficulty, we describe an exact algorithm based on

Benders decomposition in the next section.
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4 Benders Decomposition

Benders decomposition (Benders, 1962) is a technique to efficiently solve large scale formulations

by decomposing a model into a subproblem and a master problem, and iterates between the two

problems to identify an optimal solution to the original model. Below, we show how standard

Benders decomposition can be applied to the DESML, where the objective function is that of the

median problem and is as shown in (3.8).

Let Y = {yi ∈ {0, 1}, i ∈ N}. Fixing the yi variables as Ȳ = {ȳi, i ∈ N}, such that ȳi ∈ {0, 1} and∑
i∈N

ȳi = θ yields the following Benders subproblem,

minimize
∑
s∈S

∑
m∈M

∑
{i,j}∈As

zmpscsmijxsmij (4.1)

subject to

∑
j∈N

xsmji −
∑
j∈N

xsmij =

 −1, if i = O(m),

vsmi, otherwise.
∀s ∈ S,∀i ∈ N,m ∈M (4.2)

vsmi ≤ ȳi ∀s ∈ S,∀i ∈ N, ∀m ∈M (4.3)

xsmij ≥ 0 ∀s ∈ S,∀ {i, j} ∈ As, ∀m ∈M (4.4)

vsmi ∈ {0, 1} ∀s ∈ S,∀i ∈ N, ∀m ∈M, (4.5)

which further decomposes by each scenario s ∈ S and each commodity m ∈ M, as shown in the

following by Ssm(Ȳ ):

minimize zmps
∑

{i,j}∈As

csmijxsmij (4.6)
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subject to

∑
j∈N

xsmji −
∑
j∈N

xsmij =

 −1, if i = O(m)

vsmi, otherwise.
∀i ∈ N (4.7)

vsmi ≤ ȳi ∀i ∈ N (4.8)

xsmij ≥ 0 ∀ {i, j} ∈ As (4.9)

vsmi ∈ {0, 1} ∀i ∈ N. (4.10)

Consider, now, the relaxation of Ssm(Ȳ ) where constraints (4.10) are replaced by 0 ≤ vsmi ≤ 1 for

all i ∈ N, and let A be the matrix of coefficients of constraints (4.7) and (4.8). When ȳi is fixed to

integer values, the subproblem possesses a special structure as shown by the next proposition.

Proposition 2 The constraint matrix A of Ssm(Ȳ ) is totally unimodular.

Proof Each column of matrix A contains exactly two non-zero entries, where one entry is equal

to 1 and the other entry is equal to −1, and where the other entries are equal to zero, therefore

satisfying the conditions for a matrix to be totally unimodular (see, e.g., Nemhauser and Wolsey,

1988). 2

Ssm(Ȳ ) is a generalization of the well-known shortest path problem, where one seeks to find, for a

given m ∈M, the path to a node i ∈ N with ȳi = 1 that yields the lowest cost, and one which can

be solved by a repeated application of the shortest path algorithm (Dijkstra, 1959). Let usmi and

wsmi be the dual variables associated to constraints (4.7) and (4.8), respectively. The dual Dsm(Ȳ )

of Ssm(Ȳ ) is shown as below:

maximize
∑
i∈N

ȳiwsmi −
∑
i∈N

i=O(m)

usmi (4.11)
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subject to

usmj − usmi ≤ zmpscsmij ∀ {i, j} ∈ As (4.12)

wsmi − usmi ≤ 0 if i 6= O(m), ∀i ∈ N (4.13)

wsmi ≤ 0 ∀i ∈ N. (4.14)

Once an optimal solution to Ssm(Ȳ ) is obtained, it is possible to compute the values of the Dsm(Ȳ )

as the following proposition shows.

Proposition 3 Let (x?, v?) be an optimal solution to the Ssm(Ȳ ) where x? = {x?smij |∀(i, j) ∈ As}

and v? = {v?smi|i ∈ N}. Then, an optimal solution (u?, w?) to the Dsm(Ȳ ), where u? = {u?smi|∀i ∈

N} and w? = {w?
smi|∀i ∈ N}, is given by the following:

u?smi = 0, if x?smij = 1 and v?smi = 1 (4.15)

u?smj − u?smi = zmpscsmij , if x?smij = 1 (4.16)

u?smj − u?smi ≤ zmpscsmij , if x?smij = 0 (4.17)

w?
smi = 0, if ȳi = 1. (4.18)

Proof Equation (4.15) is a fixing of the dual variable u?smi that corresponds to the destination of

commodity m to 0. Constraints (4.16) and inequalities (4.17) follow from complementary slackness.

As for (4.18), we first observe that when ȳi = 1 for a particular node i ∈ N, then v?smi can either

be 0 or 1 due to constraint set (3.3). First, consider the case where v?smi = 0, for a particular

node i ∈ N. In this case, the complementary slackness condition (v?smi − ȳ?i )w?
smi = 0 implies

w?
smi = 0. If, on the other hand, v?smi = 1, then the complementary slackness condition indicates

that w?
smi − u?smi = 0, which, together with (4.15) yields w?

smi = 0.2

One implication of Proposition 3 is that the first summation term of (4.11) will be zero at optimality

for any fixing ȳi to either 0 or 1. As for when ȳi = 0 for a given i ∈ N, we use the tightest values

for w?
smi given by:

w?
smi =

 u?smi, if u?smi ≤ 0,

0, otherwise.
∀s ∈ S,m ∈M. (4.19)
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Using optimal solutions (Ū , W̄ ) = {(ūsmi, s ∈ S,m ∈ M, i ∈ N), (w̄smi, s ∈ S,m ∈ M, i ∈ N)} of

the Dsm(Ȳ ), a reformulation of DESML, which corresponds to the Benders Master Problem (MP),

is given below:

minimize
∑
s∈S

∑
m∈M

αsm (4.20)

subject to

∑
i∈N

yiw̄
(k)
smi −

∑
i∈N

i=O(m)

ū
(k)
smi ≤ αsm ∀k ∈ Ksm,∀s ∈ S,∀m ∈M (4.21)

∑
i∈N

yiw̄
(l)
smi −

∑
i∈N

i=O(m)

ū
(l)
smi ≤ 0 ∀l ∈ Lsm,∀s ∈ S,∀m ∈M (4.22)

∑
i∈N

yi = θ (4.23)

0 ≤yi ≤ 1 ∀i ∈ N, (4.24)

where αsm is a continuous variable and Ksm and Lsm are the subsets of extreme points and extreme

rays of feasible space of the dual problem, respectively, for each s ∈ S and m ∈ M. Constraints

(4.21) are written for each extreme point in the feasible region of the dual problem and are known as

Benders optimality cuts. Constraints (4.22) are defined for each extreme ray of the master problem

whenever it is infeasible and are named Benders feasibility cuts.

We note that it is possible to eliminate Benders feasibility cuts by replacing them with the following

constraint in the MP, ∑
i∈Nb

yi = 0 ∀b ∈ B, (4.25)

where B is the set of barriers and Nb is the subset of nodes that fall within a barrier b ∈ B.

Constraints (4.25) ensure that any solution Ȳ will result in feasible Ssm(Ȳ ), which will in turn

always render Dsm(Ȳ ) feasible.

The way in which MP is solved is shown in Algorithm 1, which we name BDA. The algorithm which

starts with a relaxed MP, shown by MP(K’), with a (possibly empty) subset K’ of constraints (4.21),

and solves the subproblems to identify violated cuts (4.21), which are then appended to the MP(K’).

The algorithm iterates in this manner until an optimal solution is identified. At each iteration, the
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relaxed MP yields a lower bound with a solution Ȳ , whereas the summation of the objective values

of each Dsm(Ȳ ) yields an upper bound to the optimal value of the original model.

Algorithm 1 BDA for Restricted Facility Location Problems

1: NCut: Number of Iterations; z[NCut]: Optimal value of MP at iteration NCut; Z[NCut]:
Optimal value of the subproblem at iteration NCut.

2: Initialization: NCut← 0, K’← ∅.
3: START
4: Solve MP(K’). Let Ȳ be an optimal solution and vMP the optimal value.
5: z[NCut]← vMP

6: Z[NCut]←∞
7: While Z[NCut] ≥ z[NCut] + ε
8: Solve Dsm(Ȳ ) for all s ∈ S, m ∈M.
9: Let

(
Ū , W̄

)
sm

be an optimal solution and vDsm(Ȳ ) the optimal value.
10: If (Z[NCut] >

∑
s∈S

∑
m∈M

vDsm(Ȳ )) then Z[NCut] =
∑
s∈S

∑
m∈M

vDsm(Ȳ )

11: Add optimality cuts induced by
(
Ū , W̄

)
sm

to set K’
12: NCut← NCut+ 1
13: Solve MP(K’). Let Ȳ be an optimal solution and vMP the optimal value.
14: z[NCut]← vMP

15: End While
16: END

There are various ways to improve the performance of the Benders decomposition algorithm. The

Pareto-optimal cut approach (Magnanti and Wong, 1981) is a way to generate stronger optimality

cuts, which is expected to yield a decrease in the number of iterations to reach optimality, but

requires an auxiliary problem to be solved in each iteration. For further details on this approach,

see Cordeau et al. (2001), Papadakos (2008) and Papadakos (2009). We have implemented this

approach, and denoted the resulting algorithm by PBDA, which will be tested in the following

section.

5 Computational Results

In this section, we present results of computational experiments to show the efficiency of the

proposed models and algorithms. We first describe how the instances are generated in Section 5.1.

The quality of the discretization of the network is tested in Section 5.2. Sections 5.3 and 5.4 report

the computational results for the deterministic and the stochastic restricted multi-facility location

problem instances, respectively. Finally, we investigate the value of the stochastic solutions in
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Section 5.5.

All experiments in Section 5.2 were run on a PC with an Intel(R) Core(TM) 2.60 GHz processor

and 4.00 GB of RAM using CPLEX 12.5. Given the size of the instances solved in Sections 5.3 and

5.4, it was necessary to use the computer cluster IRIDIS 4 at the University of Southampton with

dual 2.6 GHz Intel Sandybridge processors and 64 GB of RAM using CPLEX 12.5. Both BDA and

PBDA were implemented in C++.

5.1 Description of the Instances

There are, to the best of our knowledge, only three restricted facility location problem instances

with barriers and four instances with forbidden regions that have been described in other studies.

Tables 1 and 2 show the characteristics of these instances including the instance name, the source,

the type, the number of demand points (|M|), the type of restricted regions (RRT), and the distance

metric used.

Table 1: Barrier instances
Name Source Type |M| RRT Distance

B1 Katz and Cooper (1981) 1-median 5 Circular Euclidean
B2 Katz and Cooper (1981) 1-median 10 Circular Euclidean
B3 Aneja and Parlar (1994) 1-median 18 Polygonal Euclidean

Table 2: Forbidden region instances

Name Source Type |M| RRT Distance

FR1 Aneja and Parlar (1994) 1-median 4 Polygonal Euclidean
FR2 Hamacher and Nickel (1994) 1-median 3 Polygonal Euclidean
FR3 Hamacher and Nickel (1994) 1-median 3 Polygonal Rectilinear
FR4 Hamacher and Nickel (1994) 1-median 3 Polygonal Chebyshev

The instances shown in Tables 1 and 2 all involve location of a single facility, which we use here to

evaluate the quality of the discretization presented in Section 3.3.

As for multi-facility instances, we have generated both deterministic and stochastic instances based

on a complex barrier instance originally described by Aneja and Parlar (1994). The original instance

has 12 polygonal barriers and 18 demand points, which are located at points with coordinates (1, 2),

(6, 1), (9, 1), (14, 2), (5, 5), (7, 4), (9, 5), (14, 4), (17, 4), (2, 8), (8, 8), (16, 8), (3, 12), (6, 11), (9, 10),
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(17, 10), (10, 12) and (19, 13). The distance metric is Euclidean. The instance is shown in Figure 5,

where each barrier is identified by a number and the demand points are shown at locations e1–e18.

Figure 5: Aneja and Parlar (1994) barrier instance

New and larger deterministic instances were generated by considering 36, 54 and 72 demand points.

For the 36 demand points case, an additional 18 points were located at coordinates (19, 2), (2, 14),

(4, 9), (5, 11), (7, 11), (8, 6), (9, 12), (10, 8), (12, 1), (12, 13), (13, 14), (15, 7), (16, 4), (17, 5), (18, 1),

(19, 5), (19, 9) and (19, 10). For the 54 demand points case, a further 18 additional points were

added to the instance with 36 demand points, located at coordinates (1, 6), (1, 10), (3, 6), (3, 1),

(4, 4), (4, 14), (6, 3), (7, 8), (8, 12), (9, 7), (10, 4), (11, 8), (13, 6), (14, 14), (15, 1), (16, 12), (17, 5) and

(5, 6). Finally, the 72 demand point instance was constructed by adding a further 18 demand points

to the instance with 54 demand points, located at coordinates (1, 13.5), (3, 11), (3, 14), (4, 1), (5, 10),

(9, 8), (9, 14), (10, 3), (10, 11), (11, 14), (12, 6), (13, 13), (14, 6), (15, 14), (17, 14), (19, 1), (10, 12)

and (19, 5).

The stochastic instances were generated with respect to different parameters, shown in Table 3

including the number of scenarios (NS), the corresponding barriers with reference to the numbers

shown in Figure 5, and three sets of probabilities. For example, in the first scenario with NS

= 2, the barriers numbered 1, 3, 5, 7, 9 and 11 occur with 50% probability in Set 1, with 60%

probability in Set 2, and with 80% probability in Set 3. In the second scenario with NS = 2, the

barriers numbered 2, 4, 6, 8, 10 and 12 in Figure 5 occur with 50%, 40% and 20% probabilities in

Sets 1, 2 and 3, respectively.
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Table 3: Probability sets for the stochastic restricted facility location instances
NS Scenarios(s) Barriers ps (Set 1) ps (Set 2) ps (Set 3)

2 1 1-3-5-7-9-11 0.5 0.6 0.8
2 2-4-6-8-10-12 0.5 0.4 0.2

3 1 1-4-7-10 0.333 0.6 0.4
2 2-5-8-11 0.333 0.2 0.3
3 3-6-9-12 0.333 0.2 0.3

4 1 1-5-9 0.25 0.3 0.4
2 2-6-10 0.25 0.3 0.1
3 3-7-11 0.25 0.2 0.4
4 4-8-12 0.25 0.2 0.1

5 1 1-6-11 0.2 0.3 0.4
2 2-7-12 0.2 0.2 0.2
3 3-8 0.2 0.1 0.1
4 4-9 0.2 0.3 0.1
5 5-10 0.2 0.1 0.2

6 1 1-7 0.1667 0.2 0.4
2 2-8 0.1667 0.1 0.2
3 3-9 0.1667 0.2 0.1
4 4-10 0.1667 0.1 0.1
5 5-11 0.1667 0.3 0.1
6 6-12 0.1667 0.1 0.1

The use of three probability sets, four instance groups (with 18, 36, 54, 72 demand points), six values

for θ = 1, ..., 6, and five different combinations of scenarios give rise to a total of 3×4×6×5 = 360

stochastic problem instances.

5.2 Quality of the Discretization

In this section, we assess the quality of the two types of discretization, namely the unit square and

the unit rectangle network described in Section 3.2, by solving the deterministic instances shown

in Tables 1 and 2. Optimal or near-optimal solutions for the continuous problems were obtained

using the models proposed by Oğuz et al. (2016). The solutions obtained from the discretization

and the original solutions are compared by comparing the relative gap between them.

5.2.1 Unit Square Network

We initially consider instance B1 and solve it using different number of discretization points. The

best-known objective value for this instance is 48.257 and is reported in Butt and Cavalier (1996);

Klamroth (2001); Bischoff and Klamroth (2007); Klamroth (2004) and Oğuz et al. (2016), which

we use to assess the approximation quality of the unit square network. Table 4 presents the number
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of nodes (NN) used in the unit square network and the percentage gap (PG) between the best-

known objective value of the continuous problem (OVCP) and the optimal objective value of the

discretized problem (OVDP), calculated as PG = 100 × (OVDP-OVCP)/OVCP.

Table 4: B1 results with unit square network
NN PG

400 6.76%
1,600 5.74%
6,400 5.68%
25,600 5.59%
102,400 5%

Table 4 shows that increasing the number of nodes improves the approximation. However, even

with 102, 400 nodes on the discretized network, the percentage gap remains at 5%, which is unsat-

isfactory for the purposes of an exact algorithm. The results suggest that the unit square network

discretization is inefficient in producing near-optimal approximations.

We believe the main reason for the inefficiency of the unit square network is due to the limited

number of links leaving a node. In particular, a flow leaving a node can only travel through three

possible links in this case.

5.2.2 Unit Rectangle Network

To test the quality of the unit rectangle network, all instances shown in Tables 1 and 2 are discretized

and solved using this network. All the instances described in Table 1 were constructed with 400

and 1600 nodes in the resulting graph, with the exception of one instance, FR1, necessitated by

the size of this instance.

Tables 5 presents the results obtained for the barrier instances, where the best known values (OVCP)

are from Bischoff and Klamroth (2007) and Oğuz et al. (2016) for instance B2 and from Aneja and

Parlar (1994), Bischoff and Klamroth (2007) and Oğuz et al. (2016) for instance B3.

Comparing the new results obtained for instance B1 with those in Table 4, a fewer number of

nodes is needed to achieve much better percentage gaps as compared with the 5%. In particular,

the PG is only 1.2% with 400 discretization points, and is further reduced to 0.67% when 1600

discretization points are used. Similar results are obtained for instances B2 and B3.
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Table 5: Barrier instances results comparison
Name NN OVCP OVDP PG

B1 400 48.257 48.817 1.2%
B1 1600 48.257 48.581 0.67%
B2 400 88.326 90.188 2.1%
B2 1600 88.326 89.218 0.99%
B3 400 119.139 120.573 1.2%
B3 1600 119.139 119.53 0.33%

The best known solutions for the forbidden region instances are from Aneja and Parlar (1994) and

Oğuz et al. (2016) for instance FR1 and Hamacher and Nickel (1994) and Oğuz et al. (2016) for

instances FR2–FR4. Table 6 shows the comparison results.

Table 6: Forbidden region instances results comparison
Name NN OVCP OVDP PG

FR1 484 48.5 48.738 0.49%
FR1 1936 48.5 48.655 0.32%
FR2 400 8.566 8.595 0.33%
FR2 1600 8.566 8.594 0.32%
FR3 400 10 10 0%
FR3 1600 10 10 0%
FR4 400 8 8 0%
FR4 1600 8 8 0%

Both Tables 5 and 6 show that all instances in Tables 1 and 2 solved using the unit rectangle

network yield satisfactory gaps, all within 1%. The construction of the unit rectangle network

leads to better results as compared to the unit square network as more links are made available in

the former. For this reason, all results presented in the following section will use the unit rectangle

network with 1600 nodes.

5.3 Deterministic Restricted Multi-facility Location Problem Instances

The deterministic instances arise as a special case of the stochastic restricted facility location

problem in which there is a single scenario. A total of 24 instances were generated and solved

for the deterministic case. To solve the resulting model, we used three different methods, namely

DESML solved by CPLEX 12.5, BDA and PBDA. The results are shown in Table 7, which shows,

for each instance, the total number |M| of demand points, the number θ of new facilities, the

optimal objective value v?, the total CPU time tC (in seconds) spent by CPLEX 12.5 to solve the

formulation, the total CPU time tD (in seconds) required by BDA, the average CPU time tM (in
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seconds) required to solve the master problem at each iteration of BDA, the total number ηi of

BDA iterations, the total CPU time tP (in seconds) needed to solve each instance by PBDA, and

the total number ηp of PBDA iterations.

Table 7: Results for the deterministic restricted multi-facility location instances
|M| θ v? tC tD tM ηi tP ηp

18 1 119.53 29.02 1.21 0.008 3 296.43 2
2 90.68 33.35 2.01 0.008 5 372.89 4
3 66.38 30.91 2.37 0.008 6 366.93 5
4 50.22 29.08 2.57 0.004 6 559.1 5
5 42.64 29.06 3.74 0.005 9 427.2 8
6 36.56 28.42 4.04 0.004 9 370.18 6

36 1 270.69 66.33 3.21 0.013 4 697.49 2
2 176.51 63.73 5.45 0.012 7 1272.07 6
3 139.9 63.58 7.35 0.014 7 966.63 7
4 111.91 60.11 8.13 0.011 9 937.38 6
5 95.53 58.48 6.91 0.011 8 952.4 6
6 86.06 57.74 18.86 0.012 17 1212.22 10

54 1 388.48 94.28 3.43 0.015 3 1257.49 2
2 279.05 107.71 12.55 0.014 8 2650.29 6
3 222.12 99.37 12.68 0.013 8 2525.77 9
4 181.24 90.05 12.53 0.016 11 1653.59 7
5 159.52 89.98 16.85 0.017 13 2965.54 13
6 141.09 90.61 16.87 0.018 11 1890.73 9

72 1 538.08 140.56 4.65 0.02 3 2153.84 2
2 395.52 153.47 9.21 0.02 6 2801.23 5
3 314.2 151.79 17.75 0.019 9 2990.04 7
4 256.98 128.24 13.52 0.017 8 3521.19 8
5 224.57 133.44 22.68 0.018 14 LIMIT 0
6 196.95 119.61 20.33 0.014 9 LIMIT 0

The results shown in Table 7 indicate a clear dominance of BDA over both CPLEX 12.5 and PBDA

in terms of the solution time.

Table 8 presents average CPU time statistics for solving instances under columns t̂C , t̂D, and t̂P

for CPLEX 12.5, BDA and PBDA, respectively, the average savings (in percent) between CPLEX

12.5 and BDA (SAVC), and between PBDA and BDA (SAVP), as well as the average number η̂i

of iterations in BDA and the average number η̂p of iterations in PBDA.

Table 8: Average savings gained by BDA over CPLEX 12.5 and PBDA
|M| t̂C t̂D t̂P SAVC SAVP η̂i η̂p

18 29.97 2.66 398.79 91.14% 99.33% 6.333 5
36 61.83 8.32 1006.37 86.55% 99.17% 8.667 6.167
54 95.33 12.49 2157.24 86.90% 99.42% 9 7.167
72 137.85 14.69 − 89.34% − 8.167 −

The results in Table 8 show that the average solution CPU times for instances obtained by BDA
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are significantly less than those for CPLEX 12.5 and PBDA. The average reduction in computa-

tion time by BDA are more than 85% and 99% over CPLEX 12.5 and PBDA, respectively. These

results confirm that the performance of the BDA is superior to the other two techniques. Another

interesting point in Table 8 is that the stronger cuts generated by PBDA require fewer iterations

as compared to the BDA, however this comes at the expense of a significant increase in the compu-

tational time as the results indicate. The instances with 72 demand points are not included in the

columns related to PBDA, since those with five or six new facilities could not be solved by PBDA

due to the limitations posed by the available computer memory.

Table 9 shows summary statistics for all instances, namely the average time t̂M to solve the MP,

the average total time T̂M to solve the MP within the BDA, and the ratio of the total time required

to solve the MP as a fraction of the total solution time.

Table 9: MP average solution times
|M| t̂M T̂M Ratio

18 0.006 0.038 1.42%
36 0.012 0.106 1.28%
54 0.015 0.139 1.11%
72 0.018 0.147 1%

As can be seen in Table 9, solving the relaxed MP in BDA consumes significantly less time compared

to the other steps of the algorithm.

5.4 Stochastic Restricted Location Problem Instances

In this section, we report the computational results for the 360 stochastic restricted location problem

instances with up to six facilities using BDA. Detailed computational results for the whole set of

instances are presented in the Appendix as supplementary material.

For illustrative purposes, we depict the solution of an instance with 36 demand points, six new

facilities and two scenarios using probability Set 1. Figure 6a shows the locations of the new

facilities and the paths from demand points to these facilities when the barriers in scenario 1 occur,

whereas Figure 6b shows the resulting solution under scenario 2.

A summary of the results for 18 and 36 demand point instances is presented in Tables 10 and 11,
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Figure 6: Solutions for the instance with 36 demand points and 6 new facilities using probability
set 1
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respectively, with results averaged across the scenarios for each probability set. The Ratio column

presents the time spent to solve the MP in the algorithm as a fraction of the overall solution time.

Table 10: Summary of results for 18 demand points instances
θ v̂? t̂C t̂D SAVC t̂M η̂i Total t̂M Ratio

Set 1 1 113.21 181.1 5.27 97.09% 0.026 2.8 0.073 1.38%
2 83.18 212.06 11.41 94.62% 0.024 6.4 0.15 1.32%
3 62.76 194.11 14.53 92.52% 0.021 7.8 0.166 1.14%
4 48.68 169.69 11.40 93.28% 0.021 6 0.127 1.12%
5 41.36 164 16.24 90.1% 0.047 8.6 0.401 2.47%
6 35.56 153.01 19.78 87.07% 0.023 9.4 0.217 1.09%

Set 2 1 113.5 184.51 5.55 96.99% 0.022 3 0.066 1.19%
2 83.58 219.89 11.25 94.88% 0.022 6.4 0.14 1.25%
3 62.91 191.94 13.48 92.98% 0.023 7.4 0.168 1.25%
4 48.93 166 16.16 90.26% 0.021 9 0.19 1.18%
5 41.48 162.88 15.7 90.36% 0.02 8.6 0.17 1.08%
6 35.62 154.6 23.63 84.71% 0.021 11.2 0.238 1.01%

Set 3 1 112.95 189.06 5.55 97.07% 0.023 3 0.069 1.24%
2 83.48 222.52 10.83 95.13% 0.022 6.2 0.134 1.24%
3 62.40 194.3 13.12 93.25% 0.028 7.4 0.208 1.59%
4 48.92 165.83 13.93 91.60% 0.021 7.4 0.155 1.11%
5 41.57 162.95 16.04 90.16% 0.021 8.8 0.186 1.16%
6 35.71 154.63 27.18 82.42% 0.02 13.6 0.276 1.02%

Table 11: Summary of results for 36 demand points instances
θ v̂? t̂C t̂D SAVC t̂M η̂i Total t̂M Ratio

Set 1 1 249.14 471.17 10.74 97.72% 0.038 3 0.114 1.06%
2 161.93 534.27 22.38 95.81% 0.043 6.4 0.275 1.23%
3 130.57 478.45 36.66 92.34% 0.041 10.2 0.416 1.13%
4 107.12 430.67 31.67 92.65% 0.039 8.6 0.335 1.06%
5 91.42 364.85 28.2 92.27% 0.038 7.6 0.289 1.03%
6 83.136 362 50.69 86% 0.04 14.4 0.569 1.12%

Set 2 1 249.53 475.25 11.04 97.68% 0.042 3 0.126 1.14%
2 162.56 502.19 19.38 96.14% 0.04 5.8 0.233 1.2%
3 130.97 478.98 26.16 94.54% 0.04 7.2 0.29 1.11%
4 107.5 423.11 31.93 92.45% 0.039 8.6 0.334 1.05%
5 91.66 356.95 26.53 92.57% 0.039 7.6 0.293 1.11%
6 83.38 364.03 47.55 86.94% 0.04 10.8 0.427 0.9%

Set 3 1 246.62 451.97 10.54 97.67% 0.04 3 0.12 1.14%
2 160.54 495.16 18.46 96.27% 0.04 5.4 0.217 1.18%
3 130.03 473.4 28.94 93.89% 0.041 7.8 0.319 1.1%
4 107.71 381.33 31.72 91.68% 0.041 8.8 0.359 1.13%
5 91.9 362.38 53.45 85.25% 0.043 11.8 0.511 0.96%
6 83.58 370.38 100.14 72.96% 0.046 23 1.066 1.06%

The results shown here confirm once again that BDA is superior to CPLEX 12.5 for the stochastic

instances in terms of computational time. The time reduction by BDA for 18 and 36 demand points

instances on probability sets 1, 2 and 3 for up to six new facilities are presented in Figures 7a and

7b, respectively. The highest levels of savings in computational time are in single facility problem

instances, varying between 96.99% and 97.72%. When the number of new facilities increases, the

24



performance gap between BDA and CPLEX 12.5 decreases, but the BDA is still faster by at least

72.96%, which is attained for the instances with 36 demand points, six new facilities, and under

probability set 3.

Figure 7: Savings (%) vs. number of demand points for 18 and 36 demand points instances

To solve the instances with 54 and 72 demand points using CPLEX 12.5 a large amount of memory

is needed, for which reason RAM was increased to 256 GB. Table 12 shows the total number NV of

variables and the total number NC of constraints of DESML for 54 and 72 demand points instances

for each scenario.

Table 12: Total number of variables and constraints for 54 and 72 demand points Instances
|M| NS NV NC

54 2 276,654,400 347,201
3 414,980,800 520,001
4 553,307,200 692,801
5 691,633,600 865,601
6 829,960,000 1,038,401

72 2 368,872,000 462,401
3 553,307,200 692,801
4 737,742,400 923,201
5 922,177,600 1,153,601
6 1,106,612,800 1,384,001
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Using CPLEX 12.5, only 39 of the 90 instances with 54 demand points could be solved, but it was

unable to solve any of the instances with 72 demand points. BDA optimally solved all 54 and 72

demand points instances even with no increase in RAM.

Table 13: Summary of results for 54 demand points instances
θ v̂? t̂D t̂M η̂i Total t̂M Ratio

Set 1 1 359.95 23.28 0.063 3.8 0.238 1.02%
2 253.15 31.02 0.059 6.2 0.366 1.18%
3 204 46.32 0.059 8.4 0.497 1.07%
4 171.6 57.34 0.061 10.2 0.627 1.09%
5 150.04 159.23 0.079 19.8 1.555 0.98%
6 133.61 67.30 0.056 11 0.614 0.91%

Set 2 1 360.25 17.7 0.057 3.2 0.183 1.04%
2 254.34 34.15 0.06 6.6 0.397 1.16%
3 204.77 49.04 0.06 8.8 0.526 1.07%
4 172.24 49.66 0.057 9 0.514 1.04%
5 150.74 99.07 0.061 15.6 0.952 0.96%
6 134.42 53.17 0.059 9.6 0.565 1.06%

Set 3 1 357.52 21.1 0.059 3.6 0.213 1.01%
2 250.78 34.74 0.064 6.6 0.419 1.21%
3 203.47 82.04 0.067 13.6 0.917 1.12%
4 172.28 66.75 0.062 12.2 0.752 1.13%
5 151.15 136.84 0.069 18.4 1.278 0.93%
6 134.96 60.55 0.059 10.2 0.597 0.99%

Table 14: Summary of results for 72 demand points instances
θ v̂? t̂D t̂M η̂i Total t̂M Ratio

Set 1 1 493.31 21.60 0.076 3 0.228 1.06%
2 363.17 59.97 0.087 8.2 0.716 1.19%
3 290.89 90.96 0.085 11.4 0.97 1.07%
4 239.54 71.55 0.076 10.2 0.771 1.08%
5 208.37 176.24 0.093 17.2 1.592 0.9%
6 185.45 104.43 0.076 12 0.908 0.87%

Set 2 1 493.63 36.39 0.083 4.6 0.382 1.05%
2 364.53 62.17 0.088 8.8 0.778 1.25%
3 291.99 87.89 0.083 11.2 0.926 1.05%
4 240.21 133.76 0.081 10.8 0.875 0.65%
5 209.26 146.14 0.084 15.6 1.308 0.89%
6 186.57 102.81 0.078 11.4 0.889 0.87%

Set 3 1 489.48 21.53 0.076 3 0.228 1.06%
2 360.60 70.81 0.086 9.4 0.804 1.14%
3 290.47 394.71 0.145 37.2 5.395 1.37%
4 240.01 79.76 0.075 10 0.753 0.94%
5 209.20 132.18 0.08 14.8 1.187 0.9%
6 187.17 148.40 0.081 15.2 1.232 0.83%

As in the deterministic case, Tables 10–11 and 13–14 show that the solution times of each master

problem in each iteration is significantly smaller. The ratios between average total time for solving

MPs and average solution time for BDA varies from 0.65% to 2.47% with an overall average of

1.11%. This shows that decomposing the model and solving each Dsm(Ȳ ) with a shortest path
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algorithm leads to a significant gain in performance in terms of computational time. Large sized

models cannot be solved by CPLEX 12.5 to optimality even with 256 GB of memory. These

results along with those in the previous section indicate that BDA is an efficient algorithm to solve

both deterministic and stochastic restricted location problems that have been discretized using the

proposed modeling framework.

5.5 The Value of the Stochastic Solution

One question of concern is the value of solving the stochastic restricted facility location problem over

solving the deterministic counterpart, if all the random variables were replaced by their expected

values. The deterministic counterpart would be computationally less difficult to solve, compared

to stochastic version, and would lead to implementable first stage results, which, in our case, are

the decisions on the locations of the new facilities. This problem is called expected value problem

or mean value problem (EV) (Birge and Louveaux, 1997).

Birge and Louveaux (1997) introduced the concept of the value of the stochastic solution (VSS),

which aims to measure the value of solving stochastic problem by comparing the result obtained

from stochastic problem (RP) and the expected result of using the EV solution (EEV). VSS is

computed as follows,

VSS = v?EEV − v?RP , (5.1)

where v?RP is the value of the stochastic problem. To overcome the dependency of VSS on the

parameters of a given problem instance, we instead use the relative value of the stochastic solution

computed as:

PVSS = 100×
v?EEV − v?RP

v?EEV

. (5.2)

The v?EEV and PVSS values of all 360 stochastic instances are presented in the Appendix, according

to which 95% of the instances have a positive PVSS, whereas only 18 instances have a PVSS equal

to zero.

A summary of these results across all the different probability sets from 1 to 3 is presented in

Table 15, which shows the minimum, maximum and average PVSS. For example, in instances with
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|M| = 18 and the probability set is 1, the percentage minimum saving is 0.11%, the percentage

maximum saving is 3.89% and the percentage average saving is 1.53%.

Table 15: Savings of the stochastic instances
PVSS

Probability Set 1 Probability Set 2 Probability Set 3
|M| Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

18 0.11 3.89 1.53 0.18 4.80 1.59 0.20 4.73 1.81
36 0.00 2.50 0.88 0.00 3.24 0.95 0.00 3.21 1.17
54 0.00 3.78 1.43 0.00 4.07 1.42 0.00 4.07 1.66
72 0.49 4.67 2.05 0.42 4.77 2.00 0.66 4.36 2.17

Considering the number of demand points and the probability sets, Table 15 indicates a consistency

in the results for all stochastic instances. For all probability sets, the least minimum, maximum and

average PVSS are obtained for instances with 36 demand points. In contrast, the highest values

are seen for instances with 72 demand points.

Even if the PVSS seems rather low at a first glance, they might lead to significant savings in terms

of the cost values of the problem. Table 16 shows, as an example, the PVSS for two instances from

probability set 2 with 18 and 72 demand points.

Table 16: PVVs and VSSs of two chosen instances
|M| θ NS PVSS VSS (distance)

18 2 5 4.80% 4.06
72 6 6 4.77% 10.29

In particular, the VSS of the instance with 72 demand points is more than double the VSS of the

instance with 18 demand points, even though they have a similar PVSS. It is also obvious that an

increase in the unit flow costs will lead to an increase in VSS, but not in PVSS. From a managerial

perspective, even if the PVSSs are not large, the VSS can still be significant.

6 Conclusions

This paper described a model and a solution algorithm for stochastic and deterministic restricted

facility location problems originally defined on the plane. The model is of a multicommodity net-

work flow formulation with unknown destinations constructed on a discretization of the continuous
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plane, and provides an approximate representation of the original problem. Computational results

on the instances in the literature indicated that the percentage gaps between the best-known opti-

mal solutions and the approximate results were less than 1% for all instances, which showed that

the quality of the network approximation was satisfactory in solving the original problem.

The algorithm itself is based on Benders Decomposition and provides an exact solution for the

model. It exploits the structure of the discrete network by decomposing the subproblem over

the number of demand points and the scenarios. Each subproblem can be solved through the

use of a shortest path algorithm. The algorithm proved effective in solving the proposed model,

yielding significant time reductions over an off-the-shelf solver for over a total 384 instances. The

performance of the latter dropped significantly with an increase in the number of demand points.

In particular, 56.67% of the instances with 54 demand points and none of the instances with 72

demand points could be solved by the off-the-shelf solver, whereas all of these instances could be

solved by the proposed solution technique within at most a few hundred seconds.

In this paper, we have tested the model and the algorithm in solving both stochastic and deter-

ministic restricted facility location problems with forbidden regions and barriers, with single and

multiple facilities, and with various distance metrics. One extension of this work would be to in-

vestigate the use of the approach taken here to solve problems arising in emergency logistics using

risk-averse models (e.g., minimax-with-regret or conditional value-at-risk as in Alem et al., 2016).
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