
Multi-objective minmax robust combinatorial optimization with

cardinality-constrained uncertainty

Andrea Raitha, Marie Schmidtb, Anita Schöbelc, and Lisa Thomc,*

aDepartment of Engineering Science, The University of Auckland, postal address: Private Bag 92019,
Auckland 1142, New Zealand, email address: a.raith@auckland.ac.nz
bDepartment of Technology and Operations Management, Rotterdam School of Management,
Erasmus University Rotterdam, postal address: PO Box 1738, 3000 DR Rotterdam, The
Netherlands, email address: schmidt2@rsm.nl
cInstitut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, postal
address: Lotzestr. 16-18, 37083 Göttingen, Germany, email addresses:
schoebel@math.uni-goettingen.de (Anita Schöbel), l.thom@math.uni-goettingen.de (Lisa Thom)
*Corresponding author, email address: l.thom@math.uni-goettingen.de

Abstract

In this paper we develop two approaches to find minmax robust efficient solutions for
multi-objective combinatorial optimization problems with cardinality-constrained uncer-
tainty. First, we extend an algorithm of Bertsimas and Sim (2003) for the single-objective
problem to multi-objective optimization. We propose also an enhancement to acceler-
ate the algorithm, even for the single-objective case, and we develop a faster version for
special multi-objective instances. Second, we introduce a deterministic multi-objective
problem with sum and bottleneck functions, which provides a superset of the robust
efficient solutions. Based on this, we develop a label setting algorithm to solve the multi-
objective uncertain shortest path problem. We compare both approaches on instances of
the multi-objective uncertain shortest path problem originating from hazardous material
transportation.

Keywords: Multiple objective programming; Robust optimization; Combinatorial op-
timization; Multi-objective robust optimization; Shortest path problem

1 Multi-objective robust combinatorial optimization

1.1 Introduction

Two of the main difficulties in applying optimization techniques to real-world problems
are that several (conflicting) objectives may exist and that parameters may not be known
exactly in advance. In multi-objective optimization several objectives are optimized si-
multaneously by choosing solutions that cannot be improved in one objective without
worsening it in another objective. Robust optimization hedges against (all) possible pa-
rameter values, e.g., by assuming the worst case for each solution (minmax robustness).
Often it is assumed that the uncertain parameters take any value from a given interval
or that discrete scenarios are given. A survey on robust combinatorial optimization with
these uncertainty sets is given in [ABV09]. Based on the interval case, Bertsimas and
Sim propose in [BS04] to consider scenarios where only a bounded number of parameters

1

ar
X

iv
:1

70
1.

06
31

7v
1

 [
m

at
h.

O
C

]
 2

3
Ja

n
20

17

differ from their expected value (cardinality-constrained uncertainty). This leads to less
conservative solutions that are of high practical use. In [BS03] an algorithm is provided
to find robust solutions for combinatorial optimization problems under this kind of un-
certainty.
Only recently have robust optimization concepts for multi-objective problems been de-
veloped. A first extension of minmax robustness for several objectives was introduced in
[KL12] and [FW14]. They consider the uncertainties in the objectives independently of
each other. Ehrgott et al. developed another extension of minmax robustness [EIS14], in
which they include the dependencies between the objectives, and which was generalized in
[IKK+14]. These concepts have been extensively applied, e.g., in portfolio management
[FW14], in game theory [YL13] and in the wood industry [ITWH15]. An overview on
multi-objective robustness, including further robustness concepts, is given in [IS16] and
[WD16]. Newest developments in this field include [Chu16] and [KDD16]. Cardinality
constrained uncertainty has been extended to multi-objective optimization in [DKW12]
(only for uncertain constraints) and [HNS13] (for uncertain objective functions and con-
straints).
To the best of our knowledge, only Kuhn et al. have developed a solution algorithm for
multi-objective uncertain combinatorial optimization problems [KRSS16]. They consider
problems with two objectives, of which only one is uncertain, with discrete and polyhedral
uncertainty sets.
In this paper, however, we consider problems with arbitrarily many objectives of which
all may be uncertain. The main contributions of this paper are that we develop two solu-
tion approaches for multi-objective combinatorial optimization problems with cardinality-
constrained uncertainty and derive specific algorithms for the multi-objective uncertain
shortest path problem.
The remainder of this paper is structured as follows: In Section 1 we give a short intro-
duction to multi-objective robust optimization. We present two solution approaches for
multi-objective combinatorial optimization problems with cardinality-constrained uncer-
tainty in Section 2: In Section 2.1 we extend an algorithm from [BS03] to multi-objective
optimization and, additionally, propose an acceleration for both the single-objective and
the multi-objective case and a faster version for multi-objective problems with a special
property. In Section 2.2 we introduce a second approach and show how it can be applied to
solve the multi-objective uncertain shortest path problem as an example. In Section 3, we
compare our methods on instances of the multi-objective uncertain shortest path problem
originating from hazardous material transportation.

1.2 Multi-objective optimization

First, we will give a short introduction to multi-objective optimization.

Definition 1. Given a set X of feasible solutions and k objective functions z1, ..., zk :
X → R with k ≥ 2, we call

min
x∈X

z(x) =

z1(x)
...

zk(x)


a multi-objective optimization problem (MOP).

A solution that minimizes all objectives simultaneously does usually not exist. There-
fore, we use the concept of efficient solutions.

Notation 2. For two vectors y1, y2 ∈ Rk we use the notation

y1 ≤ y2 ⇔ y1
i 5 y2

i for i = 1, ..., k and y1 6= y2,

y1 5 y2 ⇔ y1
i 5 y2

i for i = 1, ..., k.

2

In the following, we will only use the symbols < (strictly less than) and 5 (less than
or equal to) to compare scalars.

Definition 3. A solution x′ ∈ X dominates another solution x ∈ X if z(x′) ≤ z(x). We
also say that z(x′) dominates z(x). A solution x ∈ X is an efficient solution, if there is
no x′ ∈ X such that x′ dominates x. Then z(x) is called non-dominated.

Solving a multi-objective optimization problem min{z(x) = (z1(x), ..., zk(x)) : x ∈ X}
means to find its efficient solutions.

Definition 4. Two efficient solutions x, x′ ∈ X are called equivalent if z(x) = z(x′). A
set of efficient solutions X̄ ⊆ X is called complete if all x ∈ X \ X̄ are either dominated
by or equivalent to at least one x′ ∈ X̄ .

1.3 Robust optimization

We briefly introduce robust optimization for single-objective problems.
In robust optimization the uncertain input data is given as an uncertainty set U , contain-
ing all possible scenarios that can occur. For each scenario ξ ∈ U we obtain a different
instance of the optimization problem minx∈X z(x, ξ).

Definition 5. Given a feasible set of solutions X , an uncertainty set U and an objective
function z : X × U → R, we define an uncertain optimization problem as the family of
parameterized problems on X (

min
x∈X

z(x, ξ), ξ ∈ U
)
.

We only consider problems with uncertainty in the objective function, not in the
constraints. This is because, in the considered robustness concepts, a solution is only
robust feasible if it is feasible for every scenario. This is reasonable for many combinatorial
optimization problems, e.g., when choosing a path in a road or transportation network: If
we decide on a path to take without knowing which scenario will occur, this path should
at least exist for every scenario. Hence, we have deterministic constraints.
There are different robustness concepts offering a definition of a robust solution for an
uncertain optimization problem, usually by defining a deterministic problem, called the
robust counterpart (see [GS16] for an overview). The concept of minmax robustness,
also called strict or worst case robustness, seeks solutions, for which the worst possible
objective value is minimized. The solutions can be found by solving the robust counterpart

min
x∈X

sup
ξ∈U

z(x, ξ).

The considered uncertainty set often strongly influences the solvability and the solution
approaches. A finite uncertainty set consists of finitely many scenarios, whereas, in an
interval uncertainty set, the coefficients vary in intervals independently of each other. If
the coefficients vary in intervals, but only a given number of coefficients may differ from
their minimal values, we speak of cardinality-constrained uncertainty [BS03].

1.4 Multi-objective robust optimization

If several objective functions and uncertainties in (some of) these functions are given, we
obtain a multi-objective uncertain optimization problem.

Definition 6. Given a feasible set of solutions X , an uncertainty set U and a multi-
objective function z : X × U → Rk, the family of multi-objective optimization problems(

min
x∈X

z(x, ξ), ξ ∈ U
)

(1)

is called a multi-objective uncertain optimization problem.

3

There are several definitions of robust efficiency for multi-objective uncertain problems
(see, e.g., [IS16]). The concept of minmax robust optimality for single-objective uncertain
problems has been generalized to several objectives in various ways, since the notion of
worst case is not clear in the multi-objective case. An intuitive concept, introduced by
Kuroiwa and Lee [KL12], is to determine the worst case independently for each objective
(see Definition 7). This yields a single vector for each solution and these vectors can be
compared using the methods of multi-objective optimization.

Definition 7. A solution x ∈ X is robust efficient for Problem (1) if x is an efficient
solution for the robust counterpart

min
x∈X

zR(x) =

supξ∈U z1(x, ξ)
...

supξ∈U zk(x, ξ)

 .

Remark 8. In this paper, we only consider uncertainty sets where the uncertainties in
the objectives are independent of each other. That means that robust efficiency, as defined
in Definition 7, is the same as point-based and set-based minmax robust efficiency defined
in [EIS14]. Therefore, all results shown in this paper are valid for both concepts.

Analogously to Definition 4 we define:

Definition 9. Two robust efficient solutions x, x′ ∈ X are called equivalent if zR(x) =
zR(x′). A set of robust efficient solutions X̄ ⊆ X is called complete if all x ∈ X \ X̄ are
either dominated w.r.t. zR or equivalent to at least one x′ ∈ X̄ .

1.5 Multi-objective robust combinatorial optimization

An instance (E,Q,U , c) of a multi-objective uncertain combinatorial optimization problem
is given by a finite element set E, a set Q ⊆ 2|E| of feasible solutions, which are subsets
of E, an uncertainty set U and a function c, that assigns a cost vector cξe = (cξe,1, ..., c

ξ
e,k)

to each element e ∈ E and scenario ξ ∈ U . For each scenario ξ the cost z(q, ξ) of a set q
with respect to ξ is the sum of the costs of its elements. We aim to find a complete set of
robust efficient solutions (according to Definition 7) for(

min
q∈Q

z(q, ξ) =
∑
e∈q

cξe, ξ ∈ U

)
,

i.e., to find a complete set of efficient solutions for the robust counterpart

min
q∈Q


maxξ∈U

∑
e∈q c

ξ
e,1

...

maxξ∈U
∑
e∈q c

ξ
e,k

 .

1.6 Example: The multi-objective uncertain shortest path prob-
lem

Consider a graph G = (V,E) with node set V and edge set E, a start node s ∈ V and a
termination node t ∈ V . Let U be an uncertainty set and c be a function that assigns a
cost or length cξe = (cξe,1, ..., c

ξ
e,k) to each edge e ∈ E and scenario ξ ∈ U . For a path q in

G and a scenario ξ ∈ U the cost or length z(q, ξ) of q w.r.t. ξ is obtained by following the
path and adding up the costs cξe of the edges traversed.
We distinguish between simple paths, which contain each node at most once and paths,
which may contain nodes and edges more than once. In the deterministic case, there

4

s t
2 | 1 1 | 1

-1 | 0

C

q

Figure 1: In Example 10 every robust shortest path contains a cycle.

always either exists a simple path being a shortest path, or no finite shortest path exists.
On the contrary, robust shortest paths that contain a cycle but are not optimal without
the cycle can exist, even in case of only one objective (see Example 10).
In the following we assume conservative edge costs, i.e., every cycle C has non-negative
cost z(C, ξ) ≥ 0 for each scenario ξ ∈ U and objective i = 1, ..., k. Then, there always
exists a complete set of robust efficient paths containing only simple paths and the multi-
objective uncertain shortest path problem is(

min
q∈Q

z(q, ξ) =
∑
e∈q

cξe, ξ ∈ U

)

with Q being the set of simple paths from s to t in G. Because simple paths do not
contain any edge more than once, this is a combinatorial optimization problem.

The following single-objective example shows that, when edge costs are not conser-
vative, we can indeed have robust shortest paths which contain cycles while no simple
robust shortest path exists.

Example 10. Let G be a graph that consists of a simple path q from s to t and a cycle
C connected to q (Figure 1). Let two scenarios ξ1, ξ2 be given and let the cost of C be
z(C, ξ1) = −1 and z(C, ξ2) = 0 and the cost of q be z(q, ξ1) = 3 and z(q, ξ2) = 2. Let qi

for i ∈ N denote the path that consists of q and i times the cycle C. Then,

max
ξ∈{ξ1,ξ2}

z(q, ξ) = 3 > 2 = max
ξ∈{ξ1,ξ2}

z(q1, ξ) = max
ξ∈{ξ1,ξ2}

z(qi, ξ) ∀ i = 1,

and q is not robust optimal, but q1 is robust optimal.

We use the following notation to specify subpaths.

Notation 11. Let q be a simple path and v, w two nodes on q (v before w). Let then qv,w
denote the part of q from node v to node w.

2 Algorithms for multi-objective combinatorial opti-
mization problems with cardinality-constrained uncer-
tainty

The idea of cardinality-constrained uncertainty is to assume that the worst case will not
happen for all edges simultaneously, e.g., there will not be an accident on every road of a
transportation network at the same time. Therefore, only those scenarios are considered
where no more than a given number of elements are more expensive than their minimum
costs. Bertsimas and Sim were the first to introduce cardinality-constrained uncertainty
for single-objective uncertain optimization problems [BS03]. One possibility to extend
this concept to multi-objective optimization is the following (see [HNS13]):

5

Definition 12. For each element e ∈ E and each objective zi let two real values ĉe,i and
δe,i = 0 be given. We assume that the uncertain cost ce,i can take any value in the interval
[ĉe,i, ĉe,i + δe,i], with ĉe,i being the undisturbed value, called the nominal value. For each
objective zi let an integer Γi 5 |E| be given. The cardinality-constrained uncertainty set
contains all scenarios, in which for each scenario i at most Γi elements differ from their
nominal costs:

U := {c ∈ R|E|×k : ce,i ∈ [ĉe,i, ĉe,i+δe,i] ∀ e ∈ E, ∀ i = 1, ..., k, |{e : ce,i > ĉe,i}| 5 Γi ∀ i = 1, ..., k}

An instance of a multi-objective combinatorial optimization problem with cardinality-
constrained uncertainty is hence given by (E,Q, ĉ, δ,Γ = (Γ1, ...,Γk)).

2.1 Deterministic Subproblems Algorithm (DSA)

The algorithms in this subsection are built upon an algorithm by Bertsimas and Sim
for single-objective cardinality-constrained uncertain combinatorial optimization problems
[BS03], which we call Deterministic Subproblems Algorithm (DSA). Its idea is to find
solutions for the uncertain problem by solving up to |E|+ 1 deterministic problems of the
same type and comparing their solutions.
We describe first the algorithm of Bertsimas and Sim for single-objective problems and
present several ways to reduce the number of subproblems to be solved (Section 2.1.1).
In Section 2.1.2, we show that DSA can be adjusted for multi-objective problems with a
special property. Lastly, we extend the algorithm for the general multi-objective case in
Section 2.1.3.

2.1.1 DSA for one objective

We first consider the single-objective uncertain problem (minq∈Q z(q, ξ), ξ ∈ U) with

U = {c ∈ R|E| : ce ∈ [ĉe, ĉe + δe] ∀ e ∈ E, |{e : ce > ĉe}| 5 Γ}.

The worst case for a set q ∈ Q with respect to this uncertainty is a scenario, where the
costs of its Γ elements with the largest intervals δe take their maximal value (resp. all
elements in q, if q has less than Γ elements). Assume that the elements are ordered with
respect to the interval length δ, i.e.,

δ̄1 := δe1 = δ̄2 := δe2 = ... = δ̄|E| := δe|E| = δ̄|E|+1 := 0.

For each l ∈ {1, ..., |E|+ 1} we define the function gl as follows [BS03]:

gl(q) :=
∑
e∈q

ĉe + Γ · δ̄l +
∑
ej∈q
j5l

(δej − δ̄l).

The function gl(q) is an approximation of the worst case costs of the set q. It contains

• the nominal cost ĉe for each element e ∈ q, which has to be paid also in the worst
case,

• δ̄l · Γ since, in the worst case, the interval length δe has to be added to the costs for
(at most) Γ elements,

• the positive summand max{0, δe − δ̄l} for each element e ∈ q to account for all
elements in the set with higher interval lengths than δ̄l.

6

The idea of the algorithm of [BS03] is to solve all problems

(P(l)) min
q∈Q

gl(q)

for l = 0, 1, . . . |E|+ 1 and choose the best of the obtained solutions. This idea works due
to the following two properties:

1. For every set q and every l ∈ {0, . . . , |E| + 1} we have that gl(q) is always greater
than or equal to the worst case cost zR(q).

2. For every set q there exists some l ∈ {0, . . . , |E|+1} such that gl(q) equals the worst
case cost zR(q).

To show the first property, let q be a set and let {ea1 , . . . , eah} be a subset of h elements in q

with the largest cost intervals, where h = min{|q|,Γ}. Then zR(q) =
∑
e∈q ĉe+

∑h
j=1 δeaj

and we get

gl(q) =
∑
e∈q

ĉe +

h∑
j=1

δ̄l +

h∑
j=1

max{0, δeaj
− δ̄l} = zR(q).

For the second property we show that for each set q there exists at least one index l with
gl(q) = zR(q): If q has less than Γ elements, then

g|E|+1(q) =
∑
e∈q

ĉe + Γ · 0 +
∑
e∈q

(δe − 0) = zR(q).

If q has at least Γ elements, let el be the element in q with the Γ-th smallest index. Then
the Γ elements {ej ∈ q : j 5 l} have the largest cost intervals in q and it follows that

gl(q) =
∑
e∈q

ĉe + Γ · δ̄l +
∑
ej∈q
j5l

(δej − δ̄l) =
∑
e∈q

ĉe +
∑
ej∈q
j5l

δ̄l +
∑
ej∈q
j5l

(δej − δ̄l) = zR(q).

Having these two properties, we see that a robust optimal solution q∗ is also optimal for
problem (P(l)) with l : gl(q) = zR(q), since none of the other sets can have a better
objective value. Therefore, at least one robust optimal solution will be found by the
iterative algorithm.
The efficiency of the algorithm depends on the time complexity to solve the subproblems
(P(l)). Because the summand Γ · δ̄l is solution-independent, a solution for (P(l)) can be
found efficiently by solving a problem of the same kind as the underlying deterministic
problem with element costs

clej :=

{
ĉej + (δej − δ̄l) for j < l

ĉej for j = l.
(∗)

Algorithm 1 shows the basic structure of the algorithm by Bertsimas and Sim ([BS03]).
First, the elements are ordered with respect to their interval lengths, then the subproblems
defined above are solved and finally the worst case values of all obtained solutions are
compared to find the robust optimal ones. Because the solutions of each subproblem can
be obtained by solving a deterministic problem of the same kind, this algorithm finds a
robust optimal solution in polynomial time for many combinatorial optimization problems,
e.g., for the minimum spanning tree and the shortest path problem.

In the following, we show how Algorithm 1 can be enhanced. It is not necessary to
solve all of the |E| + 1 subproblems introduced above. The following three results from
[BS03, PL07, LK14] can be used to reduce the number of subproblems (Lemma 13): First,
if two elements have the same interval length δe, then their associated subproblems are

7

Algorithm 1 Basic structure of DSA (based on [BS03])

Input: an instance I = (E,Q, ĉ, δ,Γ) of a single-objective cardinality-constrained uncertain combina-
torial optimization problem

Output: a robust efficient solution for I
1: Sort E w.r.t. δe such that δ̄1 := δe1 = δ̄2 := δe2 = ... = δ̄|E| = δ̄|E|+1 := 0.
2: Determine L := {1, ..., |E|+ 1}.
3: For all l ∈ L find an optimal solution ql for (P(l)).
4: Compare the objective values zR(ql) for all l ∈ L to obtain a robust optimal solution.

equal. Second, the worst case cost of a set equals its objective value not only for the
special subproblem shown above, but also for the next subproblem. Therefore, we do not
miss any solutions if we only solve every second problem. Third, none of the first Γ − 1
elements can be the one with the Γ-th smallest index for any set in Q, so their associated
subproblems need not to be solved.

Lemma 13 ([BS03, PL07, LK14]). The number of subproblems to be solved by Algorithm 1

can be reduced to at most
⌈
|E|−Γ

2

⌉
+ 1 in the following ways:

1. If there are several elements el, ..., e(l+h) with the same interval length δel = ... =
δel+h

, only one of the subproblems P(l), ...,P(l + h) needs to be solved [BS03].

2. Only every second subproblem and the last subproblem need to be solved [LK14].

3. It is sufficient to start with the Γ-th subproblem [PL07].

Using these results we can replace Step 2 of the basic structure with Algorithm 2.

Algorithm 2 Improved Step 2 of Algorithm 1: Determine the subproblems to be solved.

Input: an edge set E with cost interval lengths δ, a value Γ 5 |E|
Output: an index set L of subproblems to be solved in Algorithm 1

1: l := Γ + 1 . Lemma 13 (3., 2.)
2: L := {l}
3: while l < |E|+ 1 do
4: while l < |E|+ 1 and δel = δel+1

do l := l + 1 . Lemma 13 (1.)
5: end while
6: if l < |E|+ 1 then l := l + 1
7: if l < |E|+ 1 then l := l + 1 . Lemma 13 (2.)
8: end if
9: L := L ∪ {l}

10: end if
11: end while

Depending on the solutions that are found, while the algorithm is executed, we can
further reduce the number of subproblems to be solved. We will refer to this enhancement
as solution checking.

Lemma 14. Let 1 5 l̃ 5 l 5 |E|+ 1 and let ql̃ be an optimal solution for P(l̃). If ql̃ does
not contain any of the elements e1, ..., el−1, then it is optimal for P(l).

Proof. We can find a solution of P(l) by solving a problem with the deterministic costs

8

given in (∗). For these costs we have

l̃ 5 l⇒ δ̄l̃ = δ̄l ⇒ cl̃ej 5 clej ∀ ej : j < l̃,

j 5 l⇒ δej = δ̄l ⇒ cl̃ej = ĉej 5 ĉej + (δej − δ̄l) = clej ∀ ej : l̃ 5 j < l,

l̃ 5 l⇒ cl̃ej = ĉej = clej ∀ ej : j = l.

If ql̃ does not contain any element ej : j < l, then∑
e∈ql̃

cle =
∑
e∈ql̃

cl̃e 5
∑
e∈q

cl̃e 5
∑
e∈q

cle ∀ q ∈ Q,

hence, ql̃ is optimal for P(l).

We can therefore replace Step 3 of the basic structure (Algorithm 1) with Algorithm 3.

Algorithm 3 Improved step 3 of Algorithm 1: Solve subproblems (with solution checking).

Input: I = (E,Q, ĉ, δ,Γ) with E ordered w.r.t. δe, δ̄, an index set L of subproblems
Output: a set of solutions {ql : l ∈ L}

1: l̃ := 0
2: for all l ∈ L in increasing order do

3: if l̃ = 0 or ql̃ contains any element in {e1, ..., el−1} then
4: Find an optimal solution ql for (P(l)).

5: else ql := ql̃

6: end if
7: l̃ := l
8: end for

Lemma 14 does not contain any theoretical complexity result since, in the worst case,

still
⌈
|E|−Γ

2

⌉
+ 1 subproblems are solved. Nevertheless, the results of our experiments in

Section 3 show the practical use of this improvement.

2.1.2 Extension to the multi-objective problem with objective-independent
element order

In this section we adjust Algorithm 1 for multi-objective problems with the following
property:

Definition 15. An instance (E,Q, ĉ, δ,Γ) has objective independent element order if

• there exists an order of the elements, such that

δe1,i = ... = δe|E|,i ∀ i = 1, ..., k,

• and for all objective functions, the number of elements that may differ from the
nominal value is the same, that is Γ1 = Γ2 = ... = Γk. In the following we use Γ1 to
denote the bound on the number of elements that may differ from the nominal value
for each individual objective function.

For multi-objective subproblems with objective independent element order, Algorithm
1 can be adjusted in the following way:

9

In step 3, since Γ, δe, ĉe are vectors instead of scalars, the subproblems to be solved are
the multi-objective problems

(MP(l)) min
q∈Q

gl(q) :=
∑
e∈q

ĉe + Γ ◦ δ̄l +
∑
ej∈q
j5l

(δej − δ̄l)

for l = 1, ..., |E|+1, with ◦ being the Schur (entry-wise) product and δ̄|E|+1 = (0, ..., 0), δ̄j :=
δej ∀ ej ∈ E. Because we solve multi-objective problems, we are looking for a complete set
of efficient solutions for each subproblem instead of a single solution. Such a solution set
can be found by solving a deterministic multi-objective problem. We denote the solution
set, that we obtain for (MP(l)), by OPT l.
In Step 4, every found solution q whose objective vector zR(q) is not dominated by the
objective vector of any of the other solutions is robust efficient. We will refer to this spe-
cial version of the DSA for multi-objective instances with objective independent element
order as objective independent DSA or DSA-oi.

Algorithm 4 DSA for multi-objective instances with objective independent element order
(DSA-oi)

Input: an instance I = (E,Q, ĉ, δ,Γ) of a multi-objective cardinality-constrained uncertain combina-
torial optimization problem with objective independent element order

Output: a complete set of robust efficient solutions for I
1: Sort E w.r.t. δe such that δ̄1 := δe1 = δ̄2 := δe2 = ... = δ̄|E| = δ̄|E|+1 := (0, ..., 0).
2: Determine L := {1, ..., |E|+ 1}.
3: For all l ∈ L find a complete set of efficient solutions OPT l for (MP(l)).
4: Compare the objective vectors zR(q) of all solutions in ∪l∈LOPT l. The solutions with non-

dominated objective vectors form a complete set of robust efficient solutions.

Theorem 16. Algorithm 4 finds a complete set of robust efficient solutions for multi-
objective cardinality-constrained uncertain combinatorial optimization problems with ob-
jective independent element order.

Proof. First, we show that gl never underestimates zR for any objective. Further, we prove
that for each feasible solution q there is an l ∈ {Γ1, ..., |E| + 1} ⊆ L with gl(q) = zR(q).
We conclude that Algorithm 4 finds a complete set of robust efficient solutions.
For each q ∈ Q and l = 1, ..., |E|+1 we show zR

i (q) 5 gli(q) ∀ i = 1, ..., k. Let {ea1 , . . . , eah}
be a set of h elements in q with the largest cost intervals, where h = min{|q|,Γi}. Then,

gli(q) =
∑
e∈q

ĉe,i + Γi · δ̄l,i +
∑
ej∈q
j5l

(δej ,i − δ̄l,i)

=
∑
e∈q

ĉe,i + Γi · δ̄l,i +
∑
e∈q

max{0, δe,i − δ̄l,i} since j 5 l⇒ δej = δ̄l, j > l⇒ δej 5 δ̄l

=
∑
e∈q

ĉe,i + Γi · δ̄l,i +

h∑
j=1

max{0, δeaj
,i − δ̄l,i} since {ea1 , . . . , eah} ⊆ q

=
∑
e∈q

ĉe,i + Γi · δ̄l,i +

h∑
j=1

(δeaj
,i − δ̄l,i)

=
∑
e∈q

ĉe,i +

h∑
j=1

δ̄l,i +

h∑
j=1

(δeaj
,i − δ̄l,i) = zR

i (q) since |{ea1 , . . . , eah}| 5 Γi.

10

We show now that there is an l ∈ {Γ1, ..., |E|+ 1} with gl(q) = zR(q): For any set q ∈ Q
with at least Γ1 elements, let el be the element with the Γ1-th smallest index. Then the
Γ1 elements {ej ∈ q : j 5 l} have the largest cost intervals in q with respect to every
objective. It follows for all i = 1, ..., k that

gli(q) =
∑
e∈q

ĉe,i + Γi · δ̄l,i +
∑
ej∈q
j5l

(δej ,i − δ̄l,i)

=
∑
e∈q

ĉe,i +
∑
ej∈q
j5l

δ̄l,i +
∑
ej∈q
j5l

(δej ,i − δ̄l,i) = zR
i (q) since |{ej ∈ q : j 5 l}| = Γi.

For any set q ∈ Q with less than Γ1 elements, we have for all i = 1, ..., k

g
|E|+1
i (q) =

∑
e∈q

ĉe,i + Γi · 0 +
∑
ej∈q

(δej ,i − 0) = zR
i (q).

We conclude: If q is robust efficient, then zR(q) = gl(q) for some l ∈ L and there is no
q′ ∈ Q with zR(q′) ≤ zR(q). It follows that

@q′ ∈ Q : zR(q′) 5 zR(q)
zR(q′)5gl(q′)
⇒ @q′ ∈ Q : gl(q′) 5 zR(q) = gl(q).

Therefore, q or an equivalent solution is found at least once in the algorithm. It follows
that in Step 4 the objective vector of each found solution is compared to all non-dominated
objective vectors, thus only robust efficient solutions remain. It follows that the output
is a complete set of robust efficient solutions.

Now, we consider the enhancements proposed in Algorithms 2 and 3. The results of
Lemma 13 remain valid, Step 2 can hence be implemented as in Algorithm 2.

Lemma 17. The number of subproblems to be solved by Algorithm 4 can be reduced to⌈
|E|−Γ1

2

⌉
+ 1 in the same ways as in the single-objective case:

1. If there are several elements el, ..., e(l+h) with the same interval length δel = ... =
δel+h

, only one of the subproblems MP(l), ...,MP(l + h) needs to be solved.

2. Only every second subproblem and MP(|E|+ 1) need to be solved.

3. It is sufficient to start with MP(Γ1).

Proof.

1. From δel = ... = δel+h
follows directly gl(q) = ... = gl+h(q) and therefore OPT l(q) =

... = OPT l+h(q).

2. For any q ∈ Q with less than Γ1 elements we have zR(q) = g|E|+1(q). For any q ∈ Q
with at least Γ1 elements let el be the element with the Γ1-th smallest index in q.
From the proof of Theorem 16 we know that zR(q) = gl(q). We further have

gl(q) =
∑
e∈q

ĉe + Γ ◦ δ̄l +
∑
ej∈q
j5l

(δej − δ̄l) + Γ ◦ (δ̄l+1 − δ̄l) + Γ ◦ (δ̄l − δ̄l+1)

=
∑
e∈q

ĉe + Γ ◦ δ̄l+1 +
∑
ej∈q
j5l

(δej − δ̄l+1) because |{ej ∈ q : j 5 l}| = Γi ∀ i

=
∑
e∈q

ĉe + Γ ◦ δ̄l+1 +
∑
ej∈q
j5l+1

(δej − δ̄l+1) = gl+1(q).

11

Therefore, if we only solve every second subproblem, we will still solve at least one
subproblem MP(l′) with gl

′
(q) = zR(q) for each q ∈ Q with at least Γ1 elements.

It follows, that we only need to solve every second subproblem and in addition the
(|E|+ 1)-th subproblem.

3. In the proof of Theorem 16 we show that for every q ∈ Q there is an l ∈ {Γ1, ..., |E|+ 1}
with zR(q) = gl(q), because none of the elements e1, ..., eΓ1−1 can be the element
with the Γ1-th smallest index in q. It follows, that we do not need to solve the
problemsMP(1), ...,MP(Γ1−1) to find a complete set of robust efficient solutions.

From statement 2 we know that at most |E| + 1 − (Γ1 − 1) problems need to be solved.
From statement 3 it follows that of these problems only the last one and every second of
the other ones must be solved, this leads to at most⌊

|E|+ 1− (Γ1 − 1)− 1

2

⌋
+ 1 =

⌊
|E| − Γ1 + 1

2

⌋
+ 1 =

⌈
|E| − Γ1

2

⌉
+ 1

subproblems.

The result of Lemma 14 is valid for multi-objective problems with objective indepen-
dent element order as well. However, to be able to skip the solving of problem MP(l)

none of the sets in OPT l̃ is allowed to contain any element ej with j < l. Therefore we
replace Step 3 with Algorithm 5.

Algorithm 5 Improved step 3 of Algorithm 4: Solve subproblems (with solution checking).

Input: I = (E,Q, ĉ, δ,Γ) with E ordered w.r.t. δi, δ̄, an index set of subproblems L
Output: a set of solutions ∪l∈LOPT l

1: l̃ := 0
2: for all l ∈ L in increasing order do

3: if l̃ = 0 or any of the sets in OPT l̃ contains any element in {e1, ..., el−1} then
4: Find a complete set of efficient solutions OPT l for (MP(l))

5: else OPT l := OPT l̃

6: end if
7: l̃ := l
8: end for

Lemma 18. Let 1 5 l̃ 5 l 5 |E| + 1 and let Gl̃ be a complete set of efficient solutions

for MP(l̃). If none of the sets in Gl̃ contains any of the elements e1, ..., el−1, then Gl̃ is
a complete set of efficient solutions for MP(l).

Proof. A complete set of solutions for MP(l) can be found by solving a deterministic
multi-objective problem with costs cle := (cle,1, ..., c

l
e,k):

clej ,i :=

{
ĉej ,i + (δej ,i − δ̄l,i) for j < l

ĉej ,i for j = l.

From the proof of Lemma 13 we know that cl̃ej ,i 5 clej ,i ∀ ej : j < l and cl̃ej ,i = clej ,i ∀ ej :

j = l. It follows that any q ∈ OPT l̃ not containing any element in {e1, ..., el−1} is also

efficient w.r.t. cl. If none of the sets in OPT l̃ contains any element in {e1, ..., el−1}, then

for any q′ /∈ OPT l̃ exists a q ∈ OPT l̃ with∑
e∈q

cle =
∑
e∈q

cl̃e 5
∑
e∈q′

cl̃e 5
∑
e∈q′

cle

12

and q′ is either dominated w.r.t. cl or has an equivalent solution in OPT l̃. Therefore,

OPT l̃ is a complete set of solutions for MP(l).

Corollary 19. If we replace in Algorithm 4 Step 2 with Algorithm 2 and Step 3 with Algo-
rithm 5, it finds a complete set of robust efficient solutions for multi-objective cardinality-
constrained uncertain combinatorial optimization problems with objective independent el-

ement order, solving at most
⌈
|E|−Γ1

2

⌉
+ 1 deterministic subproblems.

2.1.3 The Deterministic Subproblems Algorithm in the general multi-
objective case

In general, the sorting of the elements by interval lengths results in a different order for
each objective. An element that has the Γ-th longest interval in q for all objectives is not
likely to exist. To ensure that the worst case vector of q equals the objective vector of a
subproblem, we have to iterate through all elements for each objective independently and
consider all possible combinations.
Let Eij be a set of the j elements with the largest intervals for the i-th objective, i.e.,

|Eij | = j and δe,i = δe′,i ∀ e ∈ Eij , e′ ∈ E \ Eij and let δ̄ij := mine∈Ei
j
δe,i.

We define δ̄i|E|+1 := 0 ∀ i. For each l = (l1, ..., lk) ∈ {1, ..., |E|+ 1} × ...× {1, ..., |E|+ 1}
we define the problem

(GMP(l)) min
q∈Q

gl(q) :=


∑
e∈q ĉe,1 + Γ1 · δ̄1

l1
+
∑
e∈q∩E1

l1

(δe,1 − δ̄1
l1

)

...∑
e∈q ĉe,k + Γk · δ̄klk +

∑
e∈q∩Ek

lk

(δ̄e,k − δ̄klk)

 .

As before, each of these (|E|+1)k problems can be solved as a deterministic multi-objective
problem of the same kind.
Algorithm 6 preserves the basic structure of DSA: First, the elements are sorted w.r.t. δe,i
for each i = 1, ..., k. Instead of changing the indices, we store the set Eij of the first j
elements for all j = 1, ..., |E|, because the order of the elements depends on the objective.
Then the set L is determined, which contains vectors instead of scalar values. For each
element in L the subproblem defined above is solved and their solutions are compared to
obtain the robust efficient solutions.

Algorithm 6 DSA for general multi-objective instances

Input: an instance I = (E,Q, ĉ, δ,Γ) of a multi-objective cardinality-constrained uncertain combina-
torial optimization problem

Output: a complete set of robust efficient solutions for I
1: For i := 1, ..., k: Sort E w.r.t. δe,i descending and save the first j elements in Eij for j = 1, ..., |E|.

Set Ei|E|+1 := E. Set δ̄ij := mine∈Ei
j
δe ∀ j = 1, ..., |E| and δ̄i|E|+1 := 0.

2: Determine L = L1 × L2 × ...× Lk: Li := {1, ..., |E|+ 1} ∀ i = 1, ..., k.
3: For all l ∈ L find a complete set of efficient solutions OPT l for (GMP(l)).
4: Compare the objective vectors zR(q) of all solutions in ∪l∈LOPT l. The solutions with non-

dominated objective vectors form a complete set of robust efficient solutions.

Theorem 20. Algorithm 6 finds a complete set of robust efficient solutions for multi-
objective cardinality-constrained uncertain combinatorial optimization problems.

Proof. Analogously to the proof of Theorem 16 it can be shown that zR(q) 5 gl(q) ∀ q ∈ Q
and that for every q ∈ Q and i ∈ {1, ..., k} there exists an l with li ∈ {1, ..., |E|+ 1} and
zR
i (q) = gli(q). Since we consider every combination of the values of l1, ..., lk it follows that

13

for every q ∈ Q it exists a problem GMP(l) with zR
i (q) = gli(q) ∀ i = 1, ..., k. It follows

that a complete set of robust efficient solutions is returned.

As before, we can reduce the number of subproblems to be solved. The proof of
Lemma 17 still holds for each objective independently. Therefore, we can apply the
reduction on each objective (Algorithm 7) and obtain L := L1 × L2 × ... × Lk with

|Li| =
⌈
|E|−Γi

2

⌉
+ 1 .

Algorithm 7 Improved Step 2 of Algorithm 6: Determine the subproblems to be solved.

Input: an edge set E with cost interval lengths δ, a k-dimensional vector Γ with Γi 5 |E| ∀i
Output: an index set L of subproblems to be solved in Algorithm 6

1: for i = 1, ..., k do
2: Determine Li as in Algorithm 2 with Γ = Γi, δe = δe,i.
3: end for

Here again, we can use solution checking, i.e., skip some additional subproblems, depend-
ing on the solutions found so far.

Lemma 21. Let l, l̃ ∈ Zk be given with l ≤ l̃ and let I be the set of indices i with li < l̃i.

Let OPT l̃ be a complete set of efficient solutions for GMP(l̃). If for all i for which li < l̃i,

none of the sets in OPT l̃ contains an element in ∪i∈IEili , then OPT l̃ is a complete set
of efficient solutions for GMP(l).

Proof. Since Γi · δ̄lii are solution independent constants, the minimization problem to be
solved is a deterministic multi-objective problem with costs cle = (cle,1, ..., c

l
e,k) :

cle,i :=

{
ĉe,i + (δe,i − δ̄ili) for e ∈ Eili
ĉe,i else.

Therefore,

cle,i = cl̃e,i ∀ i with li = l̃i, ∀ e ∈ E

cle,i = cl̃e,i ∀ i with li < l̃i, ∀ e ∈ E \ Eili
cl̃e,i 5 cle,i ∀ i, ∀ e ∈ E.

Hence, for all objective functions i we have cle,i = cl̃e,i for all elements that are contained

in any set in OPT l̃, and cl̃e,i 5 cle,i for all elements that are not contained in a set in

OPT l̃. Analogously to the proof of Lemma 18, it follows that OPT l̃ is a complete set of

efficient solutions for GMP(l) if no solution in OPT l̃ contains any element in ∪i∈IEili .

A fast way to use this result is to replace Step 3 of Algorithm 6 with Algorithm 8.

Lemma 22. In Line 8 of Algorithm 8, if l̃h 6= (0, ..., 0), then 1 5 l̃h < lh 5 |E| + 1 and
l̃i = li ∀ i = 1, ..., k, i 6= h.

Proof. For every i = 1, ..., k let l1i := minli∈Li
li be the minimal element in Li. We use

the following observations:

1. Because h = 1 and l̃1 = (0, ..., 0) in the first iteration, the first subproblem is solved
and then l̃i is set to l̃i := (l11, l

1
2, ..., l

1
k) for all i = 1, ..., k in Line 13. Thereafter, l̃i is

changed in Line 13 if and only if h 5 i.

14

Algorithm 8 Improved step 3 of Algorithm 6: Solve subproblems (with solution checking).

Input: an instance I = (E,Q, ĉ, δ,Γ), δ̄, edge sets Eij ∀ i, j, an index set L of subproblems

Output: a set of solutions ∪l∈LOPT l
1: l̃1 := (0, ..., 0)
2: h := 1
3: for all l1 ∈ L1 in increasing order do
4: for all l2 ∈ L2 in increasing order do
5: ...
6: for all lk ∈ Lk in increasing order do
7: l := (l1, ..., lk)

8: if l̃h = (0, ..., 0) or any of the sets in OPT l̃
h

contains any element in Ehlh then

9: Find a complete set of efficient solutions OPT l for (GMP(l)).

10: else OPT l := OPT l̃
h

11: end if
12: for i = h, ..., k do
13: l̃i := l
14: end for
15: h := k
16: end for
17: ...
18: h := 2
19: end for
20: h := 1
21: end for

2. The value of h is changed to ĥ whenever one iteration of the for-loop changing lĥ is

finished. Then li = l1i ∀ i > ĥ during the next execution of Lines 8 to 15.

3. In Line 8

h = min{i ∈ {1, ..., k} : li has changed since the last execution of Line 8}.

We consider the state of the algorithm during any iteration of Line 8 and show l̃hh < lh
and l̃hi = li ∀ i 6= h. Let ĥ denote the value of h at this moment.

• i > ĥ: When l̃ĥ was changed last, h 5 ĥ < i hold (1.), so l̃ĥi was set to l1i (2.). It

follows l̃ĥi = l1i
2.
= li.

• i < ĥ: When l̃ĥ was changed, either h < i or h = i hold. If it was h < i then l̃ĥi was

set to l1i (2.) and it follows l̃ĥi = l1i
2.
= li.

If it was h = i, then li was not changed since then, otherwise l̃ĥ would have been

changed again, because of i < ĥ (1.). It follows li = l̃ĥi .

• i = ĥ: We show first that lĥ changed at most once since the last change of l̃ĥ. During

the first execution of Line 8 after the first change of lĥ it holds h = ĥ (3.). So l̃ĥ is
changed again in Line 13, before lĥ could be changed a second time.
From (3.) follows, that lĥ has changed since the last execution of Line 8, but lĥ−1
hasn’t. Therefore, the for-loop changing lĥ−1 has not been finished. Hence, lĥ can

not have been set to l1
ĥ

again, but was increased. This was the only change of lĥ

since l̃ĥ was set to its current value. It follows l̃ĥ
ĥ
< lĥ.

15

Corollary 23. If we replace in Algorithm 6 Step 2 with Algorithm 2 and Step 3 with
Algorithm 8, it still finds a complete set of robust efficient solutions for general instances
of multi-objective cardinality-constrained uncertain combinatorial optimization problems.

During its execution at most
∏k
i=1

(⌈
|E|−Γi

2

⌉
+ 1
)

deterministic subproblems have to be

solved.

The number of subproblems to be solved for general instances is hence a lot higher
than for instances with objective independent element order. But if there exists a common
element order for only a subset of the objectives, we can already reduce the number of
subproblems significantly:

Definition 24. An instance (E,Q, ĉ, δ,Γ) has partial objective independent element order
if there is a subset {i1, ..., ir} ⊂ {1, ..., k} with

• Γi1 = Γi2 = ... = Γir and

• there exists an order of the elements, such that

δe1,i = ... = δe|E|,i ∀ i ∈ {i1, ..., ir}.

Lemma 25. Let an instance (E,Q, ĉ, δ,Γ) with partial objective independent element or-
der be given and let {i1, ..., ir} be the subset from definition 24. Then the nested for-loops
changing li1 , ..., lir in Algorithm 8 can be replaced by a single for-loop. The number of
solved deterministic subproblems in Algorithm 6 with Algorithm 2 as Step 2 and Algo-
rithm 8 as Step 3 is then less or equal to(⌈

|E| − Γi1
2

⌉
+ 1

)
·

∏
i∈{1,...,k}\{i1,...,ir}

(⌈
|E| − Γi

2

⌉
+ 1

)
.

Proof. This follows directly from the proofs of Theorem 16 and Lemma 17.

2.2 Bottleneck approach

DSA is especially useful for problems with high Γi, because fewer subproblems have to
be solved for higher values of Γi. For small Γi the method described in 2.2.1 might be
preferred. Its idea is to transfer the multi-objective uncertain combinatorial optimization
problem with k objectives into a deterministic combinatorial optimization problem of the
same kind with

∑k
i=1(Γi + 1) objective functions, some of which are bottleneck functions

instead of sum functions. The concept is particularly useful if an efficient algorithm for
solving the deterministic multi-objective problem with sum and bottleneck functions is
available. As an example we present such an algorithm for the shortest path problem in
Section 2.2.2.

2.2.1 Bottleneck approach for cardinality-constrained uncertain com-
binatorial optimization problems

We first consider the single-objective uncertain problem (minq∈Q z(q, ξ), ξ ∈ U). Its min-
max robust counterpart is

min
q∈Q

(
zR(q) := max

ξ∈U
z(q, ξ)

)
. (2)

Definition 26. For a set A ⊆ R let j- max (A) denote the j-greatest element of A.
For a set q ⊆ E let j- maxe∈q δe := j- max ({δe : e ∈ q}) denote the j-highest value δe
which appears in q. If q has less than j elements we define j- maxe∈q δe := 0

16

Theorem 27. Every optimal solution for (2) is an efficient solution for the deterministic
multi-objective problem

min
q∈Q

zL(q) :=



∑
e∈q ĉe

maxe∈q δe
2- maxe∈q δe

...
Γ- maxe∈q δe

 . (3)

Proof. Let q be an optimal solution for Problem (2). Assume that q is not efficient for
Problem (3). Then there exists a solution q′ ∈ Q that dominates q and it follows∑

e∈q′
ĉe 5

∑
e∈q

ĉe and j- max
e∈q′

δe 5 j- max
e∈q

δe ∀ j = 1, ...,Γ, with at least one inequality

⇒ zR(q′)=
∑
e∈q′

ĉe +

Γ∑
j=1

j- max
e∈q′

δe <
∑
e∈q

ĉe +

Γ∑
j=1

j- max
e∈q

δe = zR(q),

because the worst case scenario for any feasible set is a scenario where the cost of its
Γ elements with the largest cost intervals take their maximal values. This contradicts q
being optimal for (2).

The reverse of Theorem 27 does not hold: There exist efficient solutions for (3), which
are not optimal for (2), as the following example shows.

Example 28. Let G be a graph that consists of two disjoint paths q, q′ from s to t with
three edges each. Let the cost interval of all edges in q be [1, 1] and of all edges in q′ be
[0, 1] and let Γ = 2. Then both paths are efficient solutions for Problem (3), because

zL(q) = (3, 0, 0) � (0, 1, 1) = zL(q′) and zL(q′) = (0, 1, 1) � (3, 0, 0) = zL(q).

But only q′ is robust efficient, because

zR(q′) = 2 < 3 = zR(q).

Lemma 29. A complete set of efficient solutions for Problem (3) contains at least one
optimal solution for Problem (2).

Proof. Let Q′ ⊆ Q be a complete set of efficient solutions for (3). Assume, that (2) has an
optimal solution q that is not contained in Q′. According to Lemma 27, q is an efficient
solution for Problem (3), so Q′ contains a solution q′ with

∑
e∈q ĉe

maxe∈q δe
2- maxe∈q δe

...
Γ- maxe∈q δe

 =



∑
e∈q′ ĉe

maxe∈q′ δe
2- maxe∈q′ δe

...
Γ- maxe∈q′ δe

⇒ zR(q) =
∑
e∈q

ĉe +

Γ∑
j=1

j- max
e∈q

δe = zR(q′)

and q′ is optimal for (2).

Now, we transfer this approach to the multi-objective case. For a problem with k
objectives, we construct a deterministic problem with

∑k
i=1(Γi + 1) objectives.

17

Theorem 30. Every efficient solution for the multi-objective robust counterpart

min
q∈Q

zR(q) =

maxξ∈U z1(q, ξ)
...

maxξ∈U zk(q, ξ)

 (4)

is an efficient solution for the deterministic multi-objective problem

min
q∈Q

zL(q) :=



∑
e∈q ĉe,1

maxe∈q δe,1
2- maxe∈q δe,1

...
Γ1- maxe∈q δe,1∑

e∈q ĉe,2
maxe∈q δe,2

...
Γk- maxe∈q δe,k


. (5)

A complete set of solutions for (5) contains a complete set of solutions for (4).

Proof. Let q be an efficient solution for Problem (4). Assume that q is not efficient for
Problem (5). Analogously to the proof of Lemma 27, there is a path q′ ∈ Q dominating q
and it follows that zR

i (q′) < zR
i (q) for at least one i ∈ {1, ..., k}, which contradicts q being

efficient for (4).
Assume now, that q /∈ Q′ with Q′ being a complete set of efficient solutions for Problem
(5). Since q is efficient for Problem (5), there is a solution q′ ∈ Q′ equivalent to q w.r.t. the
objective function of Problem (5) and it follows zR(q) = zR(q′) analogously to the proof
of Lemma 29.

With an algorithm solving the deterministic Problem (5) and a method to filter the
obtained solutions we can now find a complete set of robust efficient solutions for the
uncertain problem. In the case of a single-objective uncertain problem, an algorithm to
solve Problem (3) was introduced in [GKR12].

2.2.2 Label setting algorithm (LSA) for the cardinality-constrained
uncertain shortest path problem

In this section, we show how to apply the bottleneck approach to the cardinality-constrained
uncertain shortest path problem. We propose an adjustment of standard multi-objective
labeling algorithms (label setting or label correcting) to find a complete set of robust
efficient solutions.
Let the cardinality-constrained uncertain shortest path problem be defined as in Section
1.6, i.e., E is the edge set of a graph and Q the set of simple paths from a given start
node s to a given end node t. For simplicity we consider the single-objective uncertain
shortest path problem, i.e., we show how to solve Problem (3), but the adjustments can
be used for Problem (5) in the same way. Additionally we assume non-negative edge costs
(ĉe = 0 ∀ e ∈ E) and adjust a label setting algorithm as an example.
We first recall the definition of a label, which is used in common multi-objective labeling
algorithms. A label l = (z, v′, l′) at a node v consists of

• a cost vector z, here z = (z0, ..., zΓ),

• a predecessor node v′, and

• a predecessor label l′.

18

Every label at a node v 6= s with predecessor node v′ represents a path q from s to v whose
last edge is (v′, v). That means that its cost equals the cost of q and its predecessor label
l′ represents the subpath of q from s to v′. We assume here, that no parallel edges exist,
such that v and v′ uniquely define an edge (v′, v). If parallel edges have to be considered,
the respective edge can be contained in the label as well. The labels are constructed
iteratively from existing labels at the predecessor nodes and can at any time be either
temporary or permanent.
Algorithm 9 is a label setting algorithm for solving a shortest path problem of type (3).
It is based on the label setting algorithm of Martins for multi-objective shortest path
problems [Mar84], but we make the following adjustments:

1. In Step 3 a label must be chosen whose cost is not dominated by the cost of any other
temporary label. In [Mar84] the lexicographically smallest label is chosen. Based
on [IMP10], we choose the label with the smallest aggregate function

∑
i=0,...,Γ zi

instead.

2. In multi-objective label setting algorithms with only sum functions (as in [Mar84])
a new label l = (z, v′, l′) at v is created by adding the cost z′ of the predecessor label
l′ to the edge cost. For min-max functions the (entry-wise) maximum of the edge
cost and the predecessor label’s cost is taken (see [GBR06]). To solve Problem (3)
we need a new way to construct the labels: For the sum objective function, we add
the nominal costs ĉe of the edge e := (v′, v) to the corresponding predecessor cost
entry z0. For the j- max objective functions, we compare the interval length δe of
e to each of the Γ longest interval lengths so far z′1, ..., z

′
Γ and insert it at the right

position (see Algorithm 10). We will use the following notation: z := z′ ⊕ (ĉe, δe).

3. In [Mar84] a newly created label is only deleted if it is dominated by a label at the
same node. We delete the new label even if another label with equal cost exists at
the same node, because we are only looking for a complete set of efficient solutions.
This is also the reason why we do not need to consider hidden labels, which were
introduced by [GBR06] for problems with bottleneck functions. Since new labels
with the same cost as existing labels are immediately deleted, Algorithm 9 works
even without the assumption that no cycles of cost (0, ..., 0) exist.

Algorithm 9 Label setting algorithm to solve a shortest path problem of type (3)

Input: an instance I = (E,Q, ĉ, δ,Γ) of a multi-objective shortest path problem of type (3)
Output: permanent labels at t, representing a complete set of efficient solutions for I

1: Create a temporary label l0 with cost (0,...,0) at node s.
2: while there exists at least one temporary label do
3: Select a temporary label l′ (at any node v′) with minimal aggregate cost

∑
i=0,...,Γ z

′
i and make

it permanent.
4: for all outgoing edges (v′, v) of v′ do
5: Create a new temporary label l at v by Algorithm 10.
6: if the cost of l is dominated by or equal to the cost of another label at v then
7: Delete l.
8: else if l dominates any temporary labels at v then
9: Delete these labels.

10: end if
11: end for
12: end while

Lemma 31. In Algorithm 9 for every label l = (z, v′, l′) at a node v there exists a path q
from s to v with z = zL(q).

19

Algorithm 10 Step 5 of Algorithm 9: Create a new temporary label.

Input: an edge (v′, v), a label l′ with cost z′ at a node v′

Output: a new label l at v with predecessor label l′

1: z0 := z′0 + ĉ(v′,v)

2: i := 1
3: while i 5 Γ do
4: if δ(v′,v) > z′i then
5: zi := δ(v′,v)

6: for j := i+ 1, ...,Γ do zj := z′j−1

7: end for
8: i := Γ + 1
9: else

10: zi := z′i
11: i := i+ 1
12: end if
13: end while
14: Create the temporary label l := ((z0, ..., zΓ), v′, l′) at node v.

Proof. We show the statement by induction:
The first label has cost (0, ..., 0) and represents the path only consisting of node s.
Let z′ = (z′0, ..., z

′
Γ) be the cost of the predecessor label l′ and assume that z′ equals the

cost of a path q′ from s to v′. Then we have

z0 = z′0 + ĉ(v′,v) =
∑
e∈q′

ĉe + ĉ(v′,v) =
∑

e∈q′∪(v′,v)

ĉe.

For the other objectives we distinguish two cases:

• Case 1: δ(v′,v) 5 z′i ∀i = 1, ...,Γ. In this case the Γ edges e with biggest intervals
δe of q′ and q′ ∪ (v′, v) are the same and zi = z′i for all objectives. Therefore,
(z0, ..., zΓ) = zL(q ∪ (v′, v)).

• Case 2: Either δ(v′,v) > z′i for i = 1 or ∃i ∈ {2, ...,Γ} with z′i−1 = δ(v′,v) > z′i. Then

∀ j < i : zj = z′j and j- max
e∈q′

δe = j- max
e∈q′∪(v′,v)

δe

for j = i : zj = δ(v′,v) = j- max
e∈q′∪(v′,v)

δe

∀ j : Γ = j > i : zj = z′j−1 = j- max
e∈q∪(v′,v)

δe

It follows (z0, ..., zΓ) = zL(q′ ∪ (v′, v)).

In the deterministic case with only sum functions, subpaths of efficient paths are
efficient as well, which plays an important role in the proof of Martin’s algorithm. If some
of the objective functions are bottleneck functions, this property does not hold any more
[GBR06]. In our case, since we only look for a complete set of efficient solutions, the
following weaker property is sufficient (this was observed but not proven in [IMP10]).

Lemma 32. Let q from s to t be an efficient path with respect to zL and v, w two nodes
on q (v before w). Then either qv,w is an efficient path from v to w or there exists an
efficient path p such that q′ := qs,v ∪ p ∪ qw,t is equivalent to q.

20

Proof. Assume that qv,w is not efficient. Then there exists an efficient path p from v to
w that dominates qv,w. We have∑

e∈q′
ĉe =

∑
e∈qs,v

ĉe +
∑
e∈p

ĉe +
∑
e∈qw,t

ĉe 5
∑
qs,v

ĉe +
∑
e∈qv,w

ĉe +
∑
e∈qw,t

ĉe =
∑
e∈q

ĉe

and for i = 1, ...,Γ it follows from j- maxe∈p δe 5 j- maxe∈qv,w
δe that ∀ j 5 i

i- max
e∈q′

δe

= i- max

(
{j- max

e∈qs,v
δe : j = 1, .., i} ∪ {j- max

e∈p
δe : j = 1, .., i} ∪ {j- max

e∈qw,t

δe : j = 1, .., i}
)

5 i- max

(
{j- max

e∈qs,v
δe : j = 1, .., i} ∪ {j- max

e∈qv,w

δe : j = 1, .., i} ∪ {j- max
e∈qw,t

δe : j = 1, .., i}
)

= i- max
e∈q

δe.

It follows zL(q′) 5 zL(q) and we conclude zL(q′) = zL(q), because q is efficient with
respect to zL.

Theorem 33. When Algorithm 9 (with Algorithm 10 as Step 5) stops, the permanent
labels at t represent a complete set of efficient solutions for Problem (3).

Proof. We have to show that each permanent label at t represents an efficient path from
s to t and that for each efficient path q from s to t a permanent label at t representing q
or an equivalent path exists.
The proof of the first part is analogous to the proof in [Ehr06] of the multi-objective label
setting algorithm by Martins [Mar84]. For substituting the lexicographic order with the
aggregate cost order see [IMP10].
Now, we show that the algorithm finds a complete set of efficient solutions. Assume that
we have an efficient path q from s to t, such that there is no permanent label l at t with
label costs z = zL(q). Consider the predecessor node v′ of t on q. From Lemma 32 it
follows, that there is an efficient path p from s to v′ with zL(p ∪ (v′, t)) = zL(q).
If there exists a permanent label l′ at v′ with label costs z′ = zL(p), then, at the moment
when it was made permanent during the algorithm, a new label l̄ at node t with label
costs z̄ = z′ ⊕ (ĉ(v′,t), δ(v′,t)) would have been constructed. It follows

z̄ = z′ ⊕ (ĉ(v′,t), δ(v′,t)) = zL(p)⊕ (ĉ(v′,t), δ(v′,t)) = zL(p ∪ (v′, t)) = zL(q).

Consider the first label with cost zL(q) that was constructed at node t. If this label
was deleted again, its costs are dominated, which contradicts the efficiency of q. If it
was not deleted, then it was made permanent, which contradicts our assumption that no
permanent label with costs zL(q) exists at t.
Therefore, there is no permanent label at the predecessor node v′ of t with costs z′ such
that z′⊕ (ĉe, δe) = zL(q). In the same way, we can show that there is no permanent label
at the predecessor node v′′ of v′ with costs z′′ such that(

z′′ ⊕ (ĉ(v′′,v′), δ(v′′,v′))
)
⊕ (ĉ(v′,t), δ(v′,t)) = z′ ⊕ (ĉ(v′,t), δ(v′,t)) = zL(q).

By induction it follows that there is no permanent label at node s with cost (0, ..., 0), which
is a contradiction, because such a label is constructed in Line 1 and made permanent
during the first execution of Line 3.
We conclude that for each efficient path q from s to t there exists a permanent label at
t representing q or a path that is equivalent to q. Furthermore, each permanent label
at t represents an efficient path from s to t. Therefore, the paths represented by the
permanent labels are a complete set of efficient solutions.

21

To find a robust optimal solution (in the multi-objective case: a complete set of robust
efficient solutions) we have to filter the solutions obtained by the labeling algorithm (see
Algorithm 11).

Algorithm 11 LSA for the shortest path problem with cardinality-constrained uncertainty

Input: an instance I = (E,Q, ĉ, δ,Γ) of the (single-objective) cardinality-constrained uncertain short-
est path problem

Output: a robust optimal solution for I
1: Solve Problem (3) with Algorithm 9.
2: Compare the aggregate cost of all permanent labels in t to find a minimal one.
3: Obtain the path represented by this label by backtracking the predecessor labels.

Corollary 34. Algorithm 11 finds an optimal solution for (2) with non-negative edge
costs.

Remark 35. The algorithms in this section can easily be extended for the multi-objective
case. We will also use the abbreviation LSA to refer to the multi-objective version.

3 Experiments

In this paper we have presented two approaches to solve multi-objective, cardinality-
constrained uncertain combinatorial optimization problems. DSA solves the uncertain
problem, assuming that we know how to solve the deterministic multi-objective problem.
To use the bottleneck approach we need a method to solve a deterministic multi-objective
problem with several objective functions, some of which are sums and some are bottleneck
functions. We have introduced such an algorithm for the shortest path problem (LSA)
and, hence, we test our approaches on the multi-objective uncertain shortest path problem.

3.1 Hazardous material transportation

We test our algorithms for the multi-objective uncertain shortest path problem on a haz-
ardous material transportation instance: When transporting hazardous materials, on one
hand, the shipping company wants to minimize travel time, distance or fuel costs. On
the other hand, if an accident happens, environment and population are exposed to the
hazardous material, hence, another objective is to keep the risk and negative impacts
of accidents to a minimum. An overview about objectives for hazardous material trans-
portation and about approaches for estimating the risk and the impacts of an accident is
given in [ETV07].
For our experiments we consider the travel time and the population affected by a potential
accident. We assume a nominal travel time on each road and a potential delay resulting
from congestion or incidents like accidents or road construction works on some of the
roads. We further assume a nominal population level, which can be increased locally by
events like fairs or sport events, or due to regular shifts in population during the workday.
Our problem instance for hazardous material transportation is based on the instance used
in [KRSS16] to test an algorithm for bi-objective shortest path problems with only one
uncertain objective. The underlying network is a sector of the Chicago region road net-
work available at [BGKLS] (Chicago-regional). The sector contains 1301 nodes and 4091
edges.
To obtain plausible travel times in [KRSS16] a traffic assignment problem is solved with
an iterative algorithm. It models the simultaneous movement of network users, assuming
travelers follow their shortest paths. Congestion effects are taken into account by a non-
linear relationship between the flow on an edge and the travel time. Until an equilibrium

22

Figure 2: Section of the Chicago regional road network with distribution of population from
[KRSS16]. The red dots show start and end node chosen for our experiments and two exem-
plary robust efficient paths are marked in blue.

solution is found, each iteration of the algorithm produces a flow and resulting travel
times on the edges. To obtain the lower (upper) limit of the travel time interval for each
edge we choose the smallest and largest travel times obtained during several stages of the
iterative equilibrium algorithm.
For the population we use the distribution of the population described in [KRSS16] as
nominal values (lower interval limits). We randomly assign integer interval lengths (δe,2)
up to x% of the respective nominal value. By varying x we obtain several test instances.
We call x the population uncertainty.
We choose an appropriate start and end node with an agglomeration of population be-
tween them. Figure 2 shows two exemplary robust efficient paths for the instance with
x = 10 and Γ = (5, 5). One of the paths goes directly through the area with high popu-
lation, here the time objective function has a small value, whereas the number of people
exposed to the risk of health damage in case of an accident is relatively high. The other
path avoids highly populated areas, which results in a longer travel time.

3.2 Results

The algorithms are implemented in C++, compiled under Debian 8.6 with g++ 4.9.2
compiler, and run on a Laptop with 2.10 GHz quad core processor and 7.71 GB of RAM.
If not stated otherwise, we use an implementation of DSA that contains all enhancements
described in Section 2.1 and uses the special version DSA-oi for instances with objective
independent element order (see Section 2.1.2). For solving the subproblems we use an
implementation of the Algorithm of Martins [Mar84] (with the difference that the labels
are selected w.r.t. their aggregate cost instead of using the lexicographic order). There
and in the implementation of LSA, we additionally delete new labels at any node if they
are dominated by an existing label at t.
In the figures, one data point represents one measurement, except for Section 3.2.3, where
we took the average running time of 40 runs.
To compare the performance of our solution approaches, we solve the bi-objective haz-
ardous material transportation instance described above for different values of population
uncertainty x and Γ (to keep the number of parameters low, we always choose the same
value for Γ1 and Γ2 and we will refer to this value as Γi in the following). In addition, we
compare the performance of the algorithms on an instance with three objectives and on
an instance with two correlated objective functions. We further evaluate the improvement

23

1 2 3 4 5

0

500

1,000

1,500

2,000

2,500

3,000

Γ1(= Γ2)

ti
m

e
in

se
co

n
d

s

DSA, 5%

DSA, 10%

DSA, 50%

DSA, 100%

LSA, 5%

LSA, 10%

LSA, 50%

LSA, 100%

(a) Γ1 = Γ2 ∈ {1, ..., 5}

10 20 30 40 50

0

200

400

600

800

Γ1(= Γ2)
ti

m
e

in
se

co
n

d
s

DSA, 5%

DSA, 10%

DSA, 50%

DSA, 100%

(b) Γ1 = Γ2 ∈ {5, 10, ..., 50}

Figure 3: Running time of DSA and LSA for several values of Γi and population uncertainty
x on two different scales.

gained by our enhancement of DSA (solution checking). Finally, we generate an instance
with objective independent element order and compare the running time of DSA-oi for
such instances to the general DSA.

3.2.1 Comparison of the two solution approaches for the hazardous
material transportation instance

Figure 3 shows the running time of DSA and LSA for several values of Γi and x. The
running time of LSA increases with Γi, whereas the running time of DSA decreases (see
also Figure 6). The reason is that for increasing Γi, the number of objectives in the
deterministic multi-objective problem solved during LSA increases as well, whereas the
maximal number of subproblems solved during DSA decreases. For small values of Γi
LSA solves the given instances faster, for higher values DSA has a better performance.
If we choose a higher value for x, which results in a greater maximal and mean deviation
from the nominal value and a higher number of different values of δe,2, the running time
of both algorithms increases. In the case of DSA, the increase of the running time can be
explained by the higher number of different values of δe,2, which leads to a higher number
of subproblems.

3.2.2 Three objectives

Since we are also interested in the performance of the algorithms for problems with more
than two objectives, we generate an artificial third objective using, again, the nominal
population. We generate random interval lengths in the same range as the other popu-
lation objective, i.e., the value of population uncertainty in general is the same for both
population objectives, but the specific interval lengths of each edge may differ. Figure 4
shows the running times on this instance in comparison to the instance with two objectives
described above.

24

1 2 3 4 5

0

500

1,000

1,500

2,000

2,500

3,000

Γ1(= Γ2)

ti
m

e
in

se
co

n
d

s

DSA, 3 obj.

DSA, 2 obj.

LSA, 3 obj.

LSA, 2 obj.

(a) Population uncertainty 5%

1 2 3 4 5

0

500

1,000

1,500

2,000

2,500

3,000

Γ1(= Γ2)
ti

m
e

in
se

co
n

d
s

DSA, 3 obj.

DSA, 2 obj.

LSA, 3 obj.

LSA, 2 obj.

(b) Population uncertainty 10%

Figure 4: Running time of DSA and LSA for an instance with three objectives and an instance
with two objectives.

The running time of both algorithms increases by including the additional objective.
The relative difference between the running time of the instance with two objectives and
the instance with three objectives increases with Γi for LSA, whereas it decreases for
DSA.

3.2.3 Correlated objective functions

We additionally generate an instance with two strongly correlated objective functions:
We use the travel time as one objective and generate a second travel time objective by
multiplying the nominal times and the interval lengths each by a random factor between
0.9 and 1.1.

Both algorithms benefit a lot from the correlation, all running times are now less than
four seconds, as shown in Figure 5. In comparison, LSA benefits more from correlated
objective function values: The values of Γi, for which it is still faster than DSA, are much
higher on this instance than on the original hazardous material transportation instance
considered in Section 3.2.1. For small values of Γi it is much faster than DSA.

3.2.4 Evaluation of the improvement obtained by solution checking

To evaluate the obtained improvement by using solution checking in DSA, we use Algo-
rithm 8 as Step 3 of Algorithm 6. We compare the running time of the version containing
solution checking to the running time of the version without this enhancement, and, ad-
ditionally, count the solved subproblems (Figure 6). Where fewer subproblems have been
solved because of the enhancement, the running times differ significantly, for all other
instances they are nearly equal. Hence, the check itself does not slow down the algorithm
significantly in comparison to the acceleration that we obtain when subproblems can be
skipped. We conclude that it is worth using the enhancement, but as Γi increases solution
checking becomes less effective.

25

0 10 20 30 40 50

0

1

2

3

4

Γ1(= Γ2)

ti
m

e
in

se
co

n
d

s

DSA

LSA

Figure 5: Running time of DSA and LSA for an instance with two strongly correlated objective
functions.

Note that, since Lemma 21 allows to exclude even more subproblems than excluded in
Algorithm 8, further speed-ups may be achieved by implementing a more sophisticated
solution checking. However, already when using Algorithm 8, the benefit of solution
checking is clearly visible.

3.2.5 Evaluation of DSA for instances with objective independent el-
ement order

To compare the performance of the objective independent DSA (DSA-oi) from Section
2.1.2 to the general algorithm, we generate an instance with objective independent element
order: Instead of generating interval lengths for the population objective we use the
interval lengths of the travel time objective. Figure 7 shows that DSA-oi has a much
better performance than the general algorithm. The test, whether the instance is objective
independent, only takes a small fraction of the running time (for our instances 1.4 · 10−5

seconds). Therefore, it is reasonable to check each instance for objective independent
element order before solving it with DSA.

4 Conclusion

In this paper we have developed two approaches to find minmax robust solutions for multi-
objective combinatorial optimization problems with cardinality-constrained uncertainty.
We have extended an algorithm from [BS03] (DSA) to multi-objective optimization, have
suggested an enhancement and developed a special version for instances with objective
independent element order. We have also introduced a second approach and used it to
develop a label setting algorithm (LSA) for the multi-objective uncertain shortest path
problem.
We have tested our algorithms on several instances of the multi-objective uncertain short-
est path problem arising from hazardous material transportation. On most of the tested
instances DSA has a better performance, but LSA is faster for small values of Γi. If
the two objective functions are strongly correlated, which appears often in shortest path
problems, where, e.g., the distance, travel time and fuel consumption are correlated, LSA
is competitive even for higher values of Γi.

26

10 20 30 40 50

150

200

250

300

Γ1(= Γ2)

ti
m

e
in

se
co

n
d

s

with Algorithm 8

without Algorithm 8

(a) Running time.

10 20 30 40 50
1,500

2,000

2,500

3,000

3,500

Γ1(= Γ2)
n
u

m
b

er
of

su
b

p
ro

b
le

m
s

with Algorithm 8

without Algorithm 8

(b) Number of Subproblems.

Figure 6: Running time and number of solved subproblems of DSA with and without solution
checking (Population uncertainty 50%).

10 20 30 40 50

0

100

200

300

Γ1(= Γ2)

ti
m

e
in

se
co

n
d

s

DSA-oi

DSA

Figure 7: Comparison of DSA and DSA-oi for instances with objective independent element
order.

27

When implementing DSA we recommend to use the proposed enhancements and to check
whether the special version for instances with (partly) objective independent element or-
der can be used. The checks do not take long in comparison to the total running time,
and if their result is positive, the algorithm can be accelerated significantly.
For further investigations other variants of multi-objective cardinality-constrained uncer-
tainty are of interest. A second way to extend the single-objective concept is to require
the edges whose costs differ from their minimal values to be the same for all objectives.
In this case the uncertainties in the objectives are no longer independent of each other
and using point-based or set-based minmax robust efficiency leads to different solution
sets. An interesting variation of cardinality-constrained uncertainty is not to consider a
bound on the cardinality, but on the sum of the deviation from their minimal values.
Further research on robust multi-objective optimization includes other types of uncer-
tainty, e.g., discrete scenario sets or polyhedral or ellipsoidal uncertainty. Also the case of
decision uncertainty, in which the solution found can not be realized exactly, is of interest,
see [EKS15] for first results.
The algorithms for the multi-objective cardinality-constrained uncertain shortest path
problem presented in this paper can easily be extended to the multi-objective single-
source shortest path problem, where a complete set of efficient paths from a start node s
to all other nodes has to be found. Since, in the deterministic case, there exist algorithms
(e.g. the algorithm of Martins [Mar84]) for which it can be shown that the running time
is polynomial in the output size, it would be interesting to investigate whether this is the
case for the uncertain problem, too.

Acknowledgments

Lisa Thom was supported by DFG RTG 1703 “Resource Efficiency in Interorganizational
Networks”.

References

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max regret
versions of combinatorial optimization problems: A survey. European Journal
of Operational Research, 197(2):427–438, 2009.

[BGKLS] H. Bar-Gera, C. Kwon, J. Li, and B. Stabler. Transportation networks. https:
//github.com/bstabler/TransportationNetworks. Accessed: 2016-11-04.

[BS03] D. Bertsimas and M. Sim. Robust discrete optimization and network flows.
Mathematical programming, 98(1):49–71, 2003.

[BS04] D. Bertsimas and M. Sim. The price of robustness. Operations research,
52(1):35–53, 2004.

[Chu16] T. D. Chuong. Optimality and duality for robust multiobjective optimization
problems. Nonlinear Analysis: Theory, Methods & Applications, 134:127–143,
2016.

[DKW12] E.K. Doolittle, H.L. M. Kerivin, and M. M. Wiecek. A robust multiobjective
optimization problem with application to internet routing. Technical Report
R2012-11-DKW, Clemson University, 2012.

[Ehr06] M. Ehrgott. Multicriteria optimization. Springer, Berlin, Heidelberg, 2006.

[EIS14] M. Ehrgott, J. Ide, and A. Schöbel. Minmax robustness for multi-objective
optimization problems. European Journal of Operational Research, 239:17–31,
2014.

28

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks

[EKS15] G. Eichfelder, C. Krüger, and A. Schöbel. Multi-objective regularization ro-
bustness. Technical Report 2015-13, Preprint-Reihe, Institut für Numerische
und Angewandte Mathematik, Georg-August Universität Göttingen, 2015.

[ETV07] E. Erkut, S. A. Tjandra, and V. Verter. Hazardous materials transportation.
Handbooks in operations research and management science, 14:539–621, 2007.

[FW14] J. Fliege and R. Werner. Robust multiobjective optimization & applications in
portfolio optimization. European Journal of Operational Research, 234(2):422–
433, 2014.

[GBR06] X. Gandibleux, F. Beugnies, and S. Randriamasy. Martins’ algorithm revisited
for multi-objective shortest path problems with a maxmin cost function. 4OR,
4(1):47–59, 2006.

[GKR12] J. Gorski, K. Klamroth, and S. Ruzika. Generalized multiple objective bottle-
neck problems. Operations Research Letters, 40(4):276–281, 2012.

[GS16] M. Goerigk and A. Schöbel. Algorithm engineering in robust optimization. In
L. Kliemann and P. Sanders, editors, Algorithm Engineering: Selected Results
and Surveys, volume 9220 of LNCS State of the Art, pages 245–279. 2016.

[HNS13] F. Hassanzadeh, H. Nemati, and M. Sun. Robust optimization for multiobjec-
tive programming problems with imprecise information. Procedia Computer
Science, 17:357 – 364, 2013.

[IKK+14] J. Ide, E. Köbis, D. Kuroiwa, A. Schöbel, and C. Tammer. The relation-
ship between multi-objective robustness concepts and set valued optimization.
Fixed Point Theory and Applications, 2014(83), 2014.

[IMP10] M. Iori, S. Martello, and D. Pretolani. An aggregate label setting policy for
the multi-objective shortest path problem. European Journal of Operational
Research, 207(3):1489–1496, 2010.

[IS16] J. Ide and A. Schöbel. Robustness for uncertain multi-objective optimization:
A survey and analysis of different concepts. OR Spectrum, 38(1):235–271,
2016.

[ITWH15] J. Ide, M. Tiedemann, S. Westphal, and F. Haiduk. An application of deter-
ministic and robust optimization in the wood cutting industry. 4OR, 13(1):35–
57, 2015.

[KDD16] M. Kalantari, C. Dong, and I. J. Davies. Multi-objective robust optimisation of
unidirectional carbon/glass fibre reinforced hybrid composites under flexural
loading. Composite Structures, 138:264–275, 2016.

[KL12] D. Kuroiwa and G. M. Lee. On robust multiobjective optimization. Vietnam
J. Math, 40(2-3):305–317, 2012.

[KRSS16] K. Kuhn, A. Raith, M. Schmidt, and A. Schöbel. Bicriteria robust optimiza-
tion. European Journal of Operational Research, 252:418–431, 2016.

[LK14] T. Lee and C. Kwon. A short note on the robust combinatorial optimization
problems with cardinality constrained uncertainty. 4OR, 12(4):373–378, 2014.

[Mar84] E. Q. V. Martins. On a multicriteria shortest path problem. European Journal
of Operational Research, 16(2):236–245, 1984.

[PL07] K.-C. Park and K.-S. Lee. A note on robust combinatorial optimization prob-
lem. Management Science and Financial Engineering, 13(1):115–119, 2007.

[WD16] M. M. Wiecek and G. M. Dranichak. Robust multiobjective optimization for
decision making under uncertainty and conflict. In Optimization Challenges
in Complex, Networked and Risky Systems, pages 84–114. INFORMS, 2016.

[YL13] H. Yu and H. M. Liu. Robust multiple objective game theory. Journal of
Optimization Theory and Applications, 159(1):272–280, 2013.

29

	1 Multi-objective robust combinatorial optimization
	1.1 Introduction
	1.2 Multi-objective optimization
	1.3 Robust optimization
	1.4 Multi-objective robust optimization
	1.5 Multi-objective robust combinatorial optimization
	1.6 Example: The multi-objective uncertain shortest path problem

	2 Algorithms for multi-objective combinatorial optimization problems with cardinality-constrained uncertainty
	2.1 Deterministic Subproblems Algorithm (DSA)
	2.1.1 DSA for one objective
	2.1.2 Extension to the multi-objective problem with objective-independent element order
	2.1.3 The Deterministic Subproblems Algorithm in the general multi-objective case

	2.2 Bottleneck approach
	2.2.1 Bottleneck approach for cardinality-constrained uncertain combinatorial optimization problems
	2.2.2 Label setting algorithm (LSA) for the cardinality-constrained uncertain shortest path problem

	3 Experiments
	3.1 Hazardous material transportation
	3.2 Results
	3.2.1 Comparison of the two solution approaches for the hazardous material transportation instance
	3.2.2 Three objectives
	3.2.3 Correlated objective functions
	3.2.4 Evaluation of the improvement obtained by solution checking
	3.2.5 Evaluation of DSA for instances with objective independent element order

	4 Conclusion

