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Abstract

A problem that arises in the context of multi-period service territory design is the scheduling of

customer visits. In this problem, customer visits must be assigned to the days of the planning

horizon subject to customer-specific requirements. We consider a highly relevant planning sce-

nario of this problem and present an exact branch-and-price algorithm. We propose specialized

acceleration techniques, particularly a fast pricing heuristic and techniques to reduce the sym-

metry inherent to the problem. Experiments on real-world data sets show that instances with

up to 55 customers and a planning horizon of four weeks with five days per week can be solved

to optimality in reasonable running times.

Keywords: transportation, multi-period service territory design, scheduling of customer visits,

branch-and-price, acceleration techniques

1. Introduction

Classical service territory design problems consist of grouping customers into larger clusters,

which are called territories or districts, such that some relevant planning criteria, e.g., compact-

ness and balance, are met (Kalcsics, 2015). In each district, a service provider, e.g., a salesperson

or service technician, is responsible for providing services at the customers’ sites. In many cases,

these services must be provided several times during a given planning horizon, which extends

the classical problem to a multi-period setting. The resulting problem, the Multi-Period Service

Territory Design Problem (MPSTDP), has recently been introduced by Bender et al. (2016).

One of the subproblems that arises in the MPSTDP is the scheduling subproblem MPSTDP-S.

In this subproblem, the districts are already given and customer visits need to be scheduled for

each district individually. In this paper, we consider a highly relevant planning scenario of the

MPSTDP-S, which we denote by MPSTDP-S*. It can formally be described as follows.

Given a planning horizon consisting of weeks W = {1, ..., |W |} and days D = {1, ..., |D|}, and

given the set of customers B = {1, ..., |B|} of a district, the task is to assign customer visits to

the weeks and days of the planning horizon. Each customer b ∈ B must receive on-site service
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by the service provider who is responsible for the district, and the service must be provided

according to a customer-specific week rhythm rb ∈ N+, which means that each customer must

be visited regularly every rb weeks, with the first service taking place in the first rb weeks of

the planning horizon. The number of weeks |W | in the planning horizon is defined as the least

common multiple of week rhythms {rb}b∈B. Each service of a customer requires a service time

tb ∈ R+. In order to balance the service provider’s workload over the time periods of the planning

horizon, the total service time on each day must be within the interval
[
LBday, UBday

]
, and

the total service time in each week is limited to the interval
[
LBweek, UBweek

]
, where LBday,

UBday, LBweek and UBweek denote appropriate minimum and maximum cumulative service

times. The distance from customer b to customer b′ is given by cbb′ ∈ R+, b, b′ ∈ B. In order

to reduce the travel time required for serving the customers, the objective is to schedule the

customer visits in such a way that customers who are served on the same day or in the same

week are geographically close to each other (see Bender et al., 2016, for the benefits of having a

geographically compact service area in each week). More precisely, the objective is to minimize

the sum of the distances between all customers that are served in the same time period (day

or week) and a customer that is selected as the center for that time period. We adopt the

terminology of Bender et al. and call the latter customers day centers and week centers. Note

that a week center does not have to be served in the week it acts as the week center. This

applies analogously to day centers. Furthermore, we denote the subsets of customers that are

served on the same day or in the same week as day clusters and week clusters, respectively.

One might argue that, rather than striving for geographically compact day and week clus-

ters, the daily route lengths should be optimized. However, since service visits might have to be

rescheduled in day-to-day business (e.g., due to short-term customer requests), explicitly consid-

ering routing decisions is only of little use. Moreover, geographically compact clusters provide a

high degree of flexibility to cope with short-term customer requests and other unexpected events

in day-to-day operations. A detailed discussion on these aspects is provided in Bender et al.

(2016).

Compared to the problem studied in Bender et al. (2016), the MPSTDP-S* contains the

following assumptions. As opposed to Bender et al., we do not consider the possibility that a

customer demands more than one service per week. We assume that there are no restrictions

with respect to the days on which a customer can be served, whereas Bender et al. take into

account customer-specific weekday patterns, which can be used to restrict service to particular

combinations of weekdays. Moreover, we assume that always the same service time tb is incurred

for customer b ∈ B, while Bender et al. allow the specification of different service times for each

visit of a customer. Due to these assumptions, the MPSTDP-S* fails to cover some of the

applications of the more general MPSTDP-S, such as the filling of beverage or cigarette vending

machines, in which several service visits per week might be required, or the selling of hairdressing

equipment to hair salons, where individual rest days might have to be considered. Nevertheless,

the assumptions hold for the majority of the real-word projects of our industry partner PTV

Group1, a commercial provider of districting and clustering software. Hence, we study a highly

1http://www.ptvgroup.com
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relevant planning scenario of the problem introduced by Bender et al.

For a recent review of related problems, we refer the reader to Bender et al. (2016). Since the

problem under study has been introduced only recently, no specialized exact solution methods

have been proposed yet. However, we are aware of three papers that use column generation

for similar problems. Mehrotra et al. (1998) study a single-period political districting prob-

lem and propose a branch-and-price based heuristic. The master problem corresponds to a

set-partitioning problem with an additional constraint enforcing the required number of territo-

ries. The objective is to optimize compactness. Each column in the master problem represents

a feasible territory, i.e., a territory which is contiguous and balanced in terms of population.

Accordingly, the pricing problems correspond to two-sided knapsack problems with contiguity

constraints. The authors incorporate some heuristic elements to increase computational effi-

ciency, e.g., simplified contiguity constraints and distance-based variable fixing. de Fréminville

et al. (2015) deal with a special single-period districting problem which they call the financial

product districting problem. In this problem, customers must be partitioned into territories

such that the expected customer-dependent cost price of a financial product is relatively the

same for all customers that belong to the same territory. The authors formulate the master

problem as a set-partitioning problem with additional side constraints. They aim at minimizing

a weighted sum of the cost price variances within the territories. Each column corresponds to a

feasible territory, which means that it must be contiguous and contain a given minimum number

of customers. As the reduced cost of a column includes the cost price variance, the objective

function of the pricing problem is nonlinear. The authors propose a greedy multi-start heuristic

to solve the pricing problem and two heuristic procedures to determine an integer solution to

the master problem. Mourgaya and Vanderbeck (2007) study a tactical variant of the period

vehicle routing problem. The objective is to obtain geographically compact clusters for each

time period and vehicle, and to balance workload between vehicles. In the master problem of

their column generation reformulation, clusters, i.e., subsets of customers whose workload does

not exceed a given upper bound, are selected for the time periods of the planning horizon. The

authors propose a greedy insertion heuristic to solve the pricing problems, which correspond to

quadratic knapsack problems. They alternately solve the linear programming (LP) relaxation

of the restricted master problem and fix some of the variables to construct an integer solution.

The problems studied by Mehrotra et al., de Fréminville et al., and Mourgaya and Vanderbeck

differ from our problem in the following aspects: The problems tackled by Mehrotra et al. and

de Fréminville et al. consider a single-period setting where each customer must be assigned

to exactly one territory. Furthermore, contiguity is explicitly required in both problems. In

contrast to this, we deal with a multi-period problem in which customers have to be assigned to

multiple clusters, and we do not consider contiguity as a relevant planning criterion. Moreover,

geographical compactness, which is the objective in our problem, is not taken into account by

de Fréminville et al. In the problem studied by Mourgaya and Vanderbeck (2007), geographical

compactness is relevant only with respect to one time scale (days), whereas we consider geo-

graphical compactness with respect to two time scales (days and weeks). Finally, in terms of

solution methodology, the authors of the three papers propose heuristics, whereas we strive for

the development of an exact method.
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The main contributions of this paper are as follows:

• This paper is the first to present an exact branch-and-price algorithm for the scheduling

task of the MPSTDP.

• We propose specially-tailored techniques to speed up the algorithm, such as a fast greedy

heuristic to solve the pricing problems and techniques to reduce the symmetry inherent to

the MPSTDP-S*.

• We show the effectiveness of our algorithm through extensive computational experiments

on real-world instances and investigate the impact of individual algorithmic features. In-

stances with up to 55 customers can be solved to optimality in reasonable running times.

• Compared to solving the compact formulation of the MPSTDP-S* with a general purpose

mixed integer programming (MIP) solver, we achieve an average reduction in running time

of more than 98.1%.

The remainder of this paper is organized as follows. In Section 2, we present a compact

linear integer programming (IP) model for the MPSTDP-S*. This model is reformulated in

Section 3 into a master problem and several pricing problems, which serve as the basis for

our branch-and-price algorithm. Moreover, we introduce some definitions and basic concepts

about symmetry in this section. In Section 4, we present the details of our algorithm, including

specialized techniques that aim at reducing running time. In Section 5, we report the results of

extensive experiments on real-word test instances, which prove the effectiveness of the proposed

algorithm. Finally, we provide a short conclusion and an outlook on future research on this

topic in Section 6.

2. A Compact Formulation

In this section, we present a compact IP formulation for the MPSTDP-S*. It is based on

the formulation of Bender et al. (2016), but adapts their formulation to the planning scenario

studied in this paper. We introduce the following additional notation. Let D(w) ⊂ D represent

the days in week w ∈W , and denote by λ ∈ [0, 1] a user parameter to weight the importance of

compact week clusters versus compact day clusters. 1 (0) means that the compactness of day

clusters (week clusters) is irrelevant to the user, intermediate values represent trade-offs between

the two extremes. Furthermore, define the following decision variables:

uwib =


1 if customer b ∈ B is served in week w ∈W and assigned to week center

i ∈ B
0 otherwise

vdib =


1 if customer b ∈ B is served on day d ∈ D and assigned to day center

i ∈ B
0 otherwise

xwb =

1 if customer b ∈ B is the week center in week w ∈W

0 otherwise
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ydb =

1 if customer b ∈ B is the day center on day d ∈ D

0 otherwise

Using this notation, the MPSTDP-S* can be modeled as the following compact IP, which we

denote by (COMP ):

(COMP ) λ
∑
b∈B

∑
i∈B

∑
w∈W

cibu
w
ib + (1− λ)

∑
b∈B

∑
i∈B

∑
d∈D

cibv
d
ib → min (1)

s.t.
∑
i∈B

∑
w∈W,w≤rb

uwib = 1 b ∈ B (2)

∑
i∈B

uwib =
∑
i∈B

u
((w−1) mod rb)+1
ib b ∈ B,w ∈W,w > rb (3)

uwib ≤ xwi b, i ∈ B,w ∈W (4)∑
b∈B

xwb = 1 w ∈W (5)∑
b∈B

∑
i∈B

tbu
w
ib ≥ LBweek w ∈W (6)∑

b∈B

∑
i∈B

tbu
w
ib ≤ UBweek w ∈W (7)∑

i∈B

∑
d∈D(w)

vdib =
∑
i∈B

uwib b ∈ B,w ∈W (8)

vdib ≤ ydi b, i ∈ B, d ∈ D (9)∑
b∈B

ydb = 1 d ∈ D (10)∑
b∈B

∑
i∈B

tbv
d
ib ≥ LBday d ∈ D (11)∑

b∈B

∑
i∈B

tbv
d
ib ≤ UBday d ∈ D (12)

uwib ∈ {0, 1} b, i ∈ B,w ∈W (13)

vdib ∈ {0, 1} b, i ∈ B, d ∈ D (14)

xwb ∈ {0, 1} b ∈ B,w ∈W (15)

ydb ∈ {0, 1} b ∈ B, d ∈ D (16)

The Objective Function (1) optimizes the geographical compactness of the week and day clusters

as a weighted sum. Constraints (2) ensure that the first service visit of each customer b ∈ B
is scheduled for the first rb weeks, and Constraints (3) guarantee that the service recurs every

rb weeks. Constraints (4) make sure that assignments can only be made to customers that are

selected as the week center of the respective week. Constraints (5) enforce that exactly one week

center is selected for each week. The total service time of each week is guaranteed to be within

the feasible time interval through Constraints (6) and (7). The weeks and days of the planning

horizon are linked by Constraints (8). Constraints (9)–(12) impose restrictions at the level of

days that are analogous to those defined by Constraints (4)–(7) for the level of weeks. Lastly,

Constraints (13)–(16) define the binary decision variables.
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Experiments have shown that model (COMP ) can be solved only for very small problem

instances to proven optimality in reasonable running time by a general purpose MIP solver (see

the computational results in Section 5.5). This motivated the development of our branch-and-

price algorithm.

3. A Column Generation Reformulation

In the following, we reformulate the compact model (COMP ) of the previous section as a

master problem and several pricing problems. Furthermore, we define what we understand by

the term symmetry and show that the master problem exhibits a high degree of symmetry.

3.1. Master Problem

For the formulation of the master problem, we need to introduce some additional notation.

Let the set Sweek contain all feasible week clusters, i.e., all subsets of customers B that yield in

total a service time within the interval
[
LBweek, UBweek

]
. Analogously, denote by Sday the set

containing all feasible day clusters, i.e., all subsets of customers B that yield in total a service

time in the interval
[
LBday, UBday

]
. Furthermore, denote by Sw ⊆ Sweek the clusters that can

be selected for week w ∈ W and by Sd ⊆ Sday the clusters that can be selected for day d ∈ D.

This notation is required since the restricted master problem in Section 4 may contain proper

subsets Sw ⊂ Sweek and Sd ⊂ Sday of all feasible clusters, and these subsets may vary from

time period to time period. Moreover, let cs = mini∈B
∑

b∈s cib denote the compactness for each

cluster s ∈ S = Sweek ∪ Sday. The lower the value of cs, the more compact cluster s ∈ S is.

Let parameter asb be equal to 1 if cluster s ∈ S contains customer b ∈ B, and 0 otherwise.

Moreover, introduce the following binary decision variables:

δws =

1 if cluster s ∈ Sw is selected for week w ∈W

0 otherwise

δds =

1 if cluster s ∈ Sd is selected for day d ∈ D

0 otherwise

Then, the master problem can be formulated as the following IP, which we denote by model (MP ):

(MP ) λ
∑
w∈W

∑
s∈Sw

csδ
w
s + (1− λ)

∑
d∈D

∑
s∈Sd

csδ
d
s → min (17)

s.t.
∑
s∈Sw

δws = 1 w ∈W (18)

rb∑
w=1

∑
s∈Sw

asbδ
w
s = 1 b ∈ B (19)∑

s∈Sw

asbδ
w
s =

∑
s∈Sw

asbδ
((w−1) mod rb)+1
s b ∈ B,w ∈W,w > rb (20)∑

s∈Sd

δds = 1 d ∈ D (21)

∑
d∈D(w)

∑
s∈Sd

asbδ
d
s =

∑
s∈Sw

asbδ
w
s b ∈ B,w ∈W (22)
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δws ∈ {0, 1} w ∈W, s ∈ Sw (23)

δds ∈ {0, 1} d ∈ D, s ∈ Sd (24)

The Objective Function (17) optimizes the compactness. Constraints (18) make sure that

exactly one cluster per week is selected. Constraints (19) guarantee that there is exactly one

service visit of each customer b ∈ B in the first rb weeks, and Constraints (20) ensure that each

customer b ∈ B is served every rb weeks. Constraints (21) make sure that exactly one cluster

per day is selected. Weeks and days are linked by Constraints (22). Constraints (23) and (24)

are the domain constraints.

3.2. Pricing Problems

Let πw0 , πb1, π
b,w
2 , πd3 , and πb,w4 denote the dual variables for Constraints (18), (19), (20), (21),

and (22), respectively. Then, the pricing problem can be formulated as follows:

(PP ) λ
∑
b∈B

∑
i∈B

∑
w∈W

cibu
w
ib + (1− λ)

∑
b∈B

∑
i∈B

∑
d∈D

cibv
d
ib

−
∑
w∈W

πw0 −
∑
b∈B

πb1

rb∑
w=1

∑
i∈B

uwib

−
∑
b∈B

∑
w∈W,w>rb

πb,w2

∑
i∈B

(
uwib − u

((w−1) mod rb)+1
ib

)

−
∑
d∈D

πd3 −
∑
b∈B

∑
w∈W

πb,w4

∑
i∈B

 ∑
d∈D(w)

vdib − uwib

→ min

s.t. (4)–(7), (9)–(16)

(25)

From the following observations it can be seen that model (MP ) in combination with model

(PP ) indeed corresponds to model (COMP ) (for the sake of simplicity, we consider only the

level of days): Day-related Constraints (9)–(12), (14), and (16) of model (COMP ) have been

moved to the pricing problem (PP ). The only day-related constraints that remain in model

(MP ) are Constraints (8), which link the level of days with the level of weeks. In model (MP ),

this is achieved by Constraints (22). Moreover, we ensure in model (MP ) that exactly one

day cluster per day is selected; observe that this is implicitly enforced in model (COMP ) since

exactly one day center (and consequently exactly one day cluster) per day is selected. Since

exactly one day cluster per day is generated in model (PP ) and since each generated day cluster

appears with a coefficient of one in Constraint (21) for the respective day in model (MP ), dual

values πd3 are constants in model (PP ). In contrast, dual values πb,w4 are included in the objective

function of (PP ) only if customer b is part of a generated day cluster for the respective week.

Model (PP ) decomposes into |W | independent pricing problems for the weeks and into |D|
independent pricing problems for the days, which gives us the following result.
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Pricing Problems for the Weeks. Define parameters c̄wib, b, i ∈ B, w ∈W , as follows:

c̄wib =

λcib − π
b
1 +

|W |
rb
−1∑̂

w=1

π
b,(w+ŵrb)
2 + πb,w4 if w ≤ rb

λcib − πb,w2 + πb,w4 otherwise

(26)

The pricing problem for week w can then be stated as the following IP (for better readability,

the superscript w of the variables is omitted):

(PPw)
∑
b∈B

∑
i∈B

c̄wibuib − πw0 → min (27)

s.t.
∑
b∈B

xb = 1 (28)

uib ≤ xi b, i ∈ B (29)∑
b∈B

∑
i∈B

tbuib ≥ LBweek (30)∑
b∈B

∑
i∈B

tbuib ≤ UBweek (31)

uib ∈ {0, 1} b, i ∈ B (32)

xb ∈ {0, 1} b ∈ B (33)

Pricing Problems for the Days. With φ(d) ∈W representing the week that contains day d ∈ D
and parameter c̄dib = (1 − λ)cib − π

b,φ(d)
4 , the pricing problem for day d ∈ D can be formulated

as follows (again, the superscript d of the variables is omitted):

(PP d)
∑
b∈B

∑
i∈B

c̄dibvib − πd3 → min (34)

s.t.
∑
b∈B

yb = 1 (35)

vib ≤ yi b, i ∈ B (36)∑
b∈B

∑
i∈B

tbvib ≥ LBday (37)∑
b∈B

∑
i∈B

tbvib ≤ UBday (38)

vib ∈ {0, 1} b, i ∈ B (39)

yb ∈ {0, 1} b ∈ B (40)

3.3. Symmetry in model (MP )

As Bender et al. (2016) have already noted, problem MPSTDP-S contains a lot of symmetry.

This applies also to model (MP ) of the column generation reformulation. Symmetry can be

present on the level of weeks and days. In the following, we formally define week and day

symmetry, and derive a minimum amount of symmetry that can be found in any solution. Note

that we use vectors in the remainder of this paper to specify week (day) clusters in chronological

sequence. This means that the first component of such a vector represents the week (day) cluster
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of the first week (day) of the planning horizon, the second component represents the week (day)

cluster of the second week (day), and so on.

3.3.1. Week symmetry

By the term week symmetry we mean the symmetry that is due to the temporal rearrange-

ment of a solution’s week clusters. It is defined as follows.

Definition 1. Given two feasible solutions with respective week clusters C = (C1, ..., C |W |) and

C̃ = (C̃1, ..., C̃ |W |), the two solutions are said to be week-symmetric if there exists a permutation

σ : W 7→W with Cσ(w) = C̃w for each week w ∈W .

Next, we define what we mean by a feasible week cluster permutation for a solution and by

a maximally week-symmetry constrained solution.

Definition 2. Given the week clusters C = (C1, ..., C |W |) of a feasible solution, a permutation

σ : W 7→ W is said to be a feasible week cluster permutation for that solution if in the week

clusters (Cσ(1), ..., Cσ(|W |)) each customer b ∈ B is served every rb weeks.

Definition 3. A solution consisting of week clusters C = (C1, ..., C |W |) is said to be maximally

week-symmetry constrained with respect to the set of week rhythms R ⊆ {rb}b∈B if each week

cluster Cw, w ∈W , contains for each week rhythm r ∈ R a customer b ∈ B with rb = r.

In the following, we state a special property of week cluster permutations that are feasible

for maximally week-symmetry constrained solutions. This property will play an important role

in the development of symmetry reduction techniques in Section 4.3.

Lemma 1. If a week cluster permutation is feasible for a solution that is maximally week-

symmetry constrained with respect to the set of week rhythms R, it is feasible for any other

solution that consists only of customers b ∈ B with rb ∈ R.

Proof. Consider a solution that is maximally week-symmetry constrained with respect to the

set of week rhythms R. Clearly, removing a customer from the solution does not reduce the

number of feasible week cluster permutations for that solution. Likewise, (feasibly) inserting an

additional customer with rb ∈ R does not reduce the number of feasible week cluster permuta-

tions for that solution since each week cluster already contains a customer b ∈ B with rb = r for

each r ∈ R and, hence, the newly inserted customer does not impose any additional restrictions.

Since, starting from a maximally week-symmetry constrained solution, any other solution can

be generated by inserting additional customers and removing present customers, a week cluster

permutation that is feasible for a maximally week-symmetry constrained solution with respect

to R is also feasible for any other solution that consists only of customers b ∈ B with rb ∈ R.

From Lemma 1 we can derive a minimum amount of week symmetry inherent in any solution.

Consider, for example, a planning horizon of |W | = 4 weeks, and suppose that rb ∈ R = {1, 2, 4}
for each customer b ∈ B. The week cluster permutations shown in Table 1 are feasible for a

maximally week-symmetry constrained solution with respect to R and, hence, also for any other

solution in which the customers’ week rhythms are restricted to the set R. This means that

there are (at least) eight week-symmetric solutions to any solution consisting only of customers

b ∈ B with rb ∈ R. Note that, when a solution is not maximally week-symmetry constrained,

there might be even more week symmetry than given by Lemma 1.
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Table 1: Feasible week cluster permutations for a maximally week-symmetry constrained solution with respect to
R = {1, 2, 4} and a planning horizon of |W | = 4 weeks. Example adopted from Bender et al. (2016).

Permutation no. σ(1) σ(2) σ(3) σ(4) Permutation no. σ(1) σ(2) σ(3) σ(4)

1 1 2 3 4 5 3 4 1 2
2 1 4 3 2 6 3 2 1 4
3 2 3 4 1 7 4 1 2 3
4 2 1 4 3 8 4 3 2 1

3.3.2. Day symmetry

With m = |D|
|W | denoting the number of days per week, we define day symmetry as follows.

Definition 4. Given a week w ∈ W , two feasible solutions, and their respective day clusters

C = (Cw,1, ..., Cw,m) and C̃ = (C̃w,1, ..., C̃w,m) in week w, the two solutions are said to be day-

symmetric with respect to week w if there exists a permutation σ : {1, ...,m} 7→ {1, ...,m} with

Cw,σ(d) = C̃w,d for each weekday d ∈ {1, ...,m} in week w.

Since there are no restrictions with respect to the distribution of a customer’s service visits

to the days within a week, any rearrangement of the day clusters within a week is feasible.

Consequently, there are m! day-symmetric solutions for each week w ∈ W , which results in

(m!)|W | day-symmetric solutions for the entire planning horizon. Consider again the example

with a planning horizon of |W | = 4 weeks from Section 3.3.1 and suppose that each week consists

of m = 5 days. Combining week and day symmetry, there are (at least) 8 · (5!)4 symmetric

solutions to any feasible solution. We will propose techniques to reduce this tremendous amount

of symmetry in Section 4.3.

4. Branch-and-Price Algorithm

We propose a branch-and-price algorithm (see, e.g. Barnhart et al., 1998; Lübbecke and

Desrosiers, 2005) to solve model (MP ). A branch-and-price algorithm is a branch-and-bound

algorithm for solving integer programs, in which the LP relaxation in each node of the branch-

and-bound tree is solved using column generation. When the solution in a node is fractional

and better than the current incumbent solution, branching is performed. In the following, we

explain these steps in detail and present specialized techniques to reduce week and day symmetry.

Furthermore, we present an extension of the algorithm which involves the generation of cutting

planes to tighten the linear relaxation of model (MP ). To the best of our knowledge, this is the

first specially-tailored exact method for the scheduling task of the multi-period service territory

design problem.

4.1. Column Generation

In each node of the branch-and-bound tree, we use column generation to solve the corre-

sponding linear relaxation of model (MP ), i.e., the linear relaxation of model (MP ) extended

by the branching decisions and, if applicable, by the cutting planes that are generated in the

node. The basic idea of column generation is to work with a restricted master problem (RMP),

which contains only a subset of the columns of model (MP ) and to add new columns only if they
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might improve the objective value. Two steps are performed iteratively. (1) The LP relaxation

of the RMP is solved to obtain primal and dual solutions. (2) Pricing problems (PPw) and

(PP d) are solved using the dual multipliers from step 1 to find negative reduced cost columns.

If such columns exist, these columns are added to the RMP and the LP relaxation of the RMP

is solved again; otherwise the current solution is an optimal solution to the LP relaxation of the

RMP. An extensive introduction to column generation can be found in Desrosiers and Lübbecke

(2005).

To obtain an initial set of feasible columns for the RMP, we solve the problem at hand

with the location-allocation heuristic of Bender et al. (2016). Furthermore, we add one artificial

binary variable with high objective function coefficient to each of Constraints (18), (19), and

(21) to ensure feasibility when columns that would violate a branching decision are removed

from the RMP.

To solve the pricing problems, we proceed as follows. As in Mehrotra et al. (1998), we break

problems (PPw) and (PP d) down into smaller subproblems by fixing the week or day center i ∈
B. Fixing the week center i in problem (PPw) yields the following IP, which we denote by (PPwi ):

(PPwi )
∑
b∈B

c̄wibub − πw0 → min (41)

s.t.
∑
b∈B

tbub ≥ LBweek (42)∑
b∈B

tbub ≤ UBweek (43)

ub ∈ {0, 1} b ∈ B (44)

Analogously, we obtain problem (PP di ) when the day center i is fixed in problem (PP d):

(PP di )
∑
b∈B

c̄dibvb − πd3 → min (45)

s.t.
∑
b∈B

tbvb ≥ LBday (46)∑
b∈B

tbvb ≤ UBday (47)

vb ∈ {0, 1} b ∈ B (48)

Note that we omitted the subscript i for the variables in both models.

As a result, we obtain |B| · |W | problems to generate promising week clusters and |B| · |D|
problems to generate promising day clusters. The problems are similar to knapsack problems

with two peculiarities: There can be negative profits for the items, and the weight of each

knapsack must exceed a threshold value. We solve problems (PPwi ) and (PP di ) for each center

i ∈ B and pass all columns with negative reduced costs to the RMP. The advantage of this

procedure is that we can generate up to |B| · (|W | + |D|) negative reduced cost columns in a

single pricing iteration. If we solved problems (PPw) and (PP d) instead, we could generate at

most |W |+ |D| such columns per iteration.

We opted for a two-stage procedure to speed up the algorithm. First, we try to find promising
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columns by means of a fast greedy heuristic. Only if the heuristic does not find any columns

with negative reduced costs, we switch to an exact method to guarantee optimality of the overall

algorithm.

The heuristic solves problem (PPwi ) for a given center i ∈ B and a given week w ∈ W

as illustrated by the pseudocode of Algorithm 1. Obviously, the heuristic has to take into

account the fixations in the current node of the branch-and-bound tree. As will be explained in

more detail in Section 4.2, a fixation may either enforce or forbid the assignment of a customer

to a week or a day. For the remainder of this paper, we denote by Bavail(d,N) ⊆ B and

Bavail(w,N) ⊆ B the subset of customers that are available for being scheduled to day d ∈ D and

week w ∈ W , respectively, in node N of the branch-and-bound tree. A customer is considered

available for a day or a week in node N if there is no fixation in the node which prohibits

the customer’s assignment to that time period, e.g., through a fixation to a week which, in

combination with the customer’s week rhythm rb, is not compatible with a visit in the considered

time period. The basic idea of the heuristic is to first add all customers to the cluster that must

be served in week w (i.e., weekly customers and customers fixed to week w), and then to add

more customers in non-decreasing order of parameters c̄wib. Irrespective of whether the exact or

the heuristic pricing method has been used, we set the cluster center to the customer j ∈ B

that minimizes the sum of the distances to all customers in the cluster. Thus, the reduced cost

of the final cluster s ⊆ B for week w can be computed as

min
j∈B

∑
b∈s

c̄wjb − πw0 . (49)

If this value is negative, the cluster is passed to the RMP. The time complexity of Algorithm 1

is dominated by the calculation of the optimal center in step 13, i.e., its complexity is O(|B|2).

Algorithm 1 Heuristic to solve problem (PPwi ) for given center i ∈ B and given week w ∈W
Input: Center i ∈ B; week w ∈W ; fixations in node N
Output: s ⊆ B: A cluster with negative reduced cost if such a cluster can be found
1: determine Bavail(w,N) and sort it in non-decreasing order of c̄wib
2: s← ∅
3: for b ∈ Bavail(w,N) do
4: if (b is fixed to week w) or (rb = 1) then
5: s← s ∪ {b}
6: end if
7: end for
8: for b ∈ Bavail(w,N) \ s do
9: if (

∑̂
b∈s

tb̂ + tb ≤ UBweek) and (c̄wib < 0 or
∑̂
b∈s

tb̂ < LBweek) then

10: s← s ∪ {b}
11: end if
12: end for
13: if (

∑̂
b∈s

tb̂ ≥ LB
week) and (min

j∈B

∑
b∈s

c̄wjb − πw0 < 0) then

14: return s
15: end if

The heuristic to solve pricing problem (PP di ) for a given center i ∈ B and a given day d ∈ D
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is analogous to Algorithm 1, therefore, we refrain from giving an explicit explanation. But we

want to point out one peculiarity. To this end, we introduce the concept of day groups:

Definition 5. A day group with respect to node N of the search tree is an equivalence class

based on the following equivalence relation on the set of days D: Days d1 ∈ D and d2 ∈ D are

equivalent if and only if they are in the same week, i.e., φ(d1) = φ(d2), and have identical sets

of available customers, i.e., Bavail(d1, N) = Bavail(d2, N).

Note that φ(d1) = φ(d2) implies c̄d1ib = c̄d2ib for all b ∈ B and i ∈ B. Hence, it follows from

this definition that, in a certain node of the search tree, pricing problems (PP d1i ) and (PP d2i )

have the same optimal solutions for any two days d1 and d2 that are in the same day group. The

reduced costs of the resulting day clusters differ only by the difference in the values of constants

πd3 , d ∈ {d1, d2}. Thus, to save computation time, we solve problems (PP di ) only for one day of

each day group explicitly. As our heuristic pricing method also yields the same solutions for all

days of a day group, we proceed the same way in heuristic pricing.

4.2. Branching

When we obtain a fractional solution in a node of the branch-and-bound tree, branching is

necessary. As other authors have already noted (e.g., Savelsbergh, 1997; Savelsbergh and Sol,

1998), branching on the variables of the master problem changes the structure of the pricing

problems and makes them harder to solve as one needs to take care that forbidden columns are

not re-generated in the pricing problems. Therefore, our branching is based on the compact

formulation (COMP ), i.e., we branch on the assignment of customers to time periods. These

assignments can easily be derived from the solution to the LP relaxation of the RMP. The

assignment of customer b ∈ B to week w ∈W is calculated as uwb =
∑

s∈Sw asbδ
w
s . Analogously,

the assignment of customer b ∈ B to day d ∈ D is given by vdb =
∑

s∈Sd asbδ
d
s .

Branching is performed hierarchically. As long as there are fractional assignments of cus-

tomers to weeks, we branch on the week assignments uwb . Only if all customers are unambiguously

assigned to weeks, we branch on the assignments of customers to days vdb . In both cases, we gen-

erate two child nodes, with one node forcing the corresponding assignment to take on a value of

one and the other forcing it to zero. The fixations must be taken into account in the RMP of the

newly generated nodes and in the corresponding pricing problems. In the RMP, we take care of

the fixations by removing all clusters from the model that would violate a fixation. In the exact

pricing method, we simply adopt the fixations into the IP model, and in the pricing heuristic

we consider all fixations in the sets Bavail(d,N) and Bavail(w,N) as explained in Section 4.1.

We implement two different rules to decide which assignments to branch on. We illustrate

this in the following using the example of week assignments, but the procedure is analogous for

day assignments. Our first branching rule is largest split (LS) branching. In LS branching, we

select a fractional customer-week assignment with maximum value, i.e., we select

〈b?, w?〉 ∈ arg max
〈b,w〉

{uwb | uwb /∈ {0, 1}, w ≤ rb}. (50)

Since uwb = uŵb if w mod rb = ŵ mod rb, we consider only the first rb weeks for each customer

b ∈ B.
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Our second branching rule is pseudocost (PSD) branching. This rule is inspired by the

works of Achterberg et al. (2005) and Linderoth and Savelsbergh (1999). The basic idea is to

estimate the increase of the objective value when a fractional assignment is forced to take on an

integer value compared to the objective value of the parent node. Branching priority is given to

assignments that are expected to lead to a large deterioration in the objective value. Thus, this

rule aims at a quickly rising lower bound.

Consider a particular node N in the branch-and-bound tree. Denote by fN its objective

value, and by f+ and f− the objective values of the two child nodes when the branching variable

uwb is forced to one and zero, respectively. Then, the increase in the objective value per unit

change in the branching variable can be calculated as follows:

∆+
b,w =

f+ − fN

1− uwb
, (51)

∆−b,w =
f− − fN

uwb
. (52)

We could now calculate scores for each possible branching variable uwb . But our preliminary tests

have shown that the number of branching decisions is not large enough to derive meaningful

scores on such a fine-grained scale. Therefore, we do not calculate customer- and week-specific

scores, but aggregate the scores per customer. With ∆+
b,d being the counterpart of ∆+

b,w for day

assignments, we denote by θ+b the sum over all ∆+
b,w and ∆+

b,d for all past upward branching

decisions on a week or day assignment of customer b ∈ B. θ−b is defined analogously for the

case of downward branching. Moreover, we denote by n+b and n−b the number of upward and

downward branching decisions, respectively, on a week or day assignment of customer b. Then,

two score values Score+b and Score−b are calculated for each customer b. They represent the

average relative increase in the objective value for upward and downward branching on a week

or day assignment of the customer.

Score+b =
θ+b
n+b

(53)

Score−b =
θ−b
n−b

(54)

Finally, the score for each customer-week assignment is calculated as

Scorewb = (1− uwb ) · Score+b + uwb · Score−b . (55)

As the customer-week assignment to be branched on we select a fractional assignment with

maximum score, i.e., we select

〈b?, w?〉 ∈ arg max
〈b,w〉

{Scorewb | uwb /∈ {0, 1}, w ≤ rb}. (56)

We always use LS branching for the first nmin branching decisions to initialize the scores. If,

after nmin iterations, either all Score+b values are uninitialized or all Score−b values are uninitial-

ized, we perform additional iterations with LS branching until we obtain at least one initialized
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Score+b value and one initialized Score−b value. Afterwards, we switch to PSD branching. Dur-

ing the course of the algorithm, uninitialized scores Score+b and Score−b are set to the average

of the respective initialized scores, i.e.,

Score+b =

∑
b̂∈B+

Score+
b̂

|B+|
, (57)

Score−b =

∑
b̂∈B−

Score−
b̂

|B−|
, (58)

where B+ and B− denote the set of customers with initialized values of Score+b and Score−b , re-

spectively. This way of initializing the scores seems to be more plausible than other alternatives,

e.g., taking the maximum or minimum values.

Irrespective of the selected branching rule, we adopt the idea of early branching (see, e.g.,

Desaulniers et al., 2002) to accelerate our algorithm. The potential benefit of early branching

becomes obvious through the following observations: The exact solution of the pricing problems

(PPwi ) and (PP di ) is computationally expensive. Moreover, preliminary tests showed that, in

many cases, exact pricing does not find any negative reduced cost columns, but is executed

only to prove optimality. Even if negative reduced cost columns are found, their impact on the

objective value of the node is usually fairly small. Therefore, we skip the exact pricing step

under certain conditions. More precisely, when the pricing heuristic does not find any more

negative reduced cost columns, we skip exact pricing if the current solution to the LP relaxation

of the RMP is fractional and if its objective value is better than that of the current incumbent

solution. As a consequence, exact pricing is called less often. Note that when early branching

is applied, the objective value of a node might be better than that of its parent node, i.e., the

objective value does not provide a valid lower bound any more. Hence, before a node can be

pruned, re-optimization with our exact pricing method must be performed. A node is pruned

only if the objective value after re-optimization is not better than that of the incumbent solution.

We use a best-first strategy to explore the branch-and-bound tree, i.e., we always select

the node with the best initial objective value, which is inherited from the parent node, to be

processed next.

4.3. Symmetry Reduction

As illustrated in Section 3.3, model (MP ) contains a lot of symmetry. Thus, efficient symme-

try handling is crucial for the design of a successful branch-and-price algorithm. In this section,

we propose two techniques to reduce symmetry. In the first technique, we fix a single customer a

priori to a particular day of the planning horizon. In the second, more sophisticated technique,

we introduce additional variable fixations during the course of the algorithm and prune certain

subtrees if we can guarantee that they contain only solutions that are symmetric to solutions in

other parts of the search tree. In the following, we explain the techniques in detail.

4.3.1. Fixing a Reference Customer

A simple, yet effective way to eliminate some of the symmetry inherent to the MPSTDP-S* is

to fix one service of a particular customer, which is called the reference customer, to a particular
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day of the planning horizon. This approach is similar to the idea presented by Mourgaya and

Vanderbeck (2007) in the context of the periodic vehicle routing problem. In the following, we

prove that such a fixation can be done without losing optimality.

Lemma 2. A right-shift of week clusters, defined as the week cluster permutation σ : W 7→ W

with σ(1) = |W | and σ(w) = w − 1 for each w > 1, is a feasible week cluster permutation for

any feasible solution.

Proof. Consider the week clusters C = (C1, ..., C |W |) of a feasible solution. Since the solution

is feasible, each customer b ∈ B of the solution is served regularly every rb weeks with the

first service in the first rb weeks. This means that there exists for each customer b ∈ B an

nb ∈ {0, ..., rb−1} such that each Cw, w ∈W , contains customer b if and only if w mod rb = nb.

Let C̃ = (C̃1, ..., C̃ |W |) denote the week clusters obtained by a right-shift of C. Since |W | is

the least common multiple of the week rhythms {rb}b∈B and, hence, |W | mod rb = 0 for each

b, C̃w contains b if and only if w mod rb = (nb + 1) mod rb = ñb. Thus, a right-shift of the

week clusters of a feasible solution yields a feasible solution and, hence, is a feasible week cluster

permutation.

Proposition 1. For any arbitrary customer b∗ ∈ B and any day d∗ ∈ D of the planning horizon,

there exists an optimal solution with customer b∗ being scheduled to day d∗.

Proof. Given any optimal solution, one can, according to Lemma 2, obtain a feasible week-

symmetric solution in which customer b∗ is served in week φ(d∗) by performing an appropriate

number of right-shifts of the week clusters. Afterwards, as there are no restrictions on the

re-orderings of the day clusters within a week, a day-symmetric solution with respect to week

φ(d∗) can be obtained in which customer b∗ is served on day d∗. Two week- or day-symmetric

solutions consist of the same week and day clusters (merely arranged in a different order) and,

hence, have the same objective value. Therefore, the resulting solution is optimal.

Obviously, the extent of symmetry reduction that can be achieved by such a fixation depends

on the selected reference customer. The reduction of week symmetry depends on the customer’s

week rhythm. The greater the week rhythm rb of a customer b ∈ B, the more possibilities

exist to assign the customer to the weeks of the planning horizon. Hence, to achieve maximal

week symmetry reduction, we select a reference customer b∗ ∈ B with rb∗ = maxb∈Brb. Then,

we fix customer b∗ to a day d∗ ∈ D(w∗) with w∗ ≤ rb∗ in the root node of the branch-and-

bound tree. Through this simple technique we can already reduce symmetry by factor m · rb∗ .
Clearly, if rb∗ < |W |, customer b∗ can additionally be fixed to an arbitrary day in each of weeks

w ∈ {w∗ + rb∗ , w
∗ + 2rb∗ , ..., |W |+ w∗ − rb∗}.

4.3.2. Symmetry-reduced Branching

In this section, we introduce a technique which we call symmetry-reduced branching. It was

developed by Pouls (2016) and is an enhancement of the branching scheme introduced in Section

4.2 with the aim of reducing both week and day symmetry.
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Reduction of Week Symmetry. Suppose that uw
∗

b∗ is the week assignment that is selected to be

branched on in a particular node N of the branch-and-bound tree. Recall that, in standard

branching, we always create two child nodes N+ and N− of N . We fix uw
∗

b∗ = 1 in node N+,

and uw
∗

b∗ = 0 in node N−. The idea of symmetry-reduced branching is to add additional week

fixations to node N− if we can guarantee that, to any solution that becomes infeasible in node

N− by such an additional fixation, there is a week-symmetric solution in the other branch.

We denote by S the set of feasible week cluster permutations for a solution that is maximally

week-symmetry constrained with respect to the set of week rhythms R = {rb | b ∈ B, 1 < rb <

|W |}. Note that customers b ∈ B with week rhythm rb = 1 or rb = |W | do not have to be

considered since they do not restrict the feasibility of the permutations. By fixing the week or

day assignments of customers, as done in the nodes of the branch-and-bound tree, permutations

from the set S are gradually rendered infeasible in the course of the algorithm. We denote by

S(N) = {σ ∈ S | σ is feasible with respect to all fixations present in node N}. Week symmetry

can be reduced as follows.

Proposition 2. If there exists a permutation σ ∈ S(N) in node N of the search tree and a week

ŵ ∈W with ŵ 6= w∗, ŵ ≤ rb∗ and ((σ(ŵ)−1) mod rb∗) + 1 = w∗, the additional fixation uŵb∗ = 0

can be added to node N− without losing optimality.

Proof. If the condition above is fulfilled, then there exists a feasible week cluster permutation

which maps the first service of customer b∗ from week ŵ to week w∗. In this case, we can

guarantee to find a solution in the subtree of node N+ that is week-symmetric to any solution

in the subtree of node N− in which customer b∗ is served in week ŵ. Hence, we cannot forfeit

optimality if we introduce the additional fixation uŵb∗ = 0 to node N−.

If, after the insertion of additional fixations, there are no more feasible week assignments left

for customer b∗ in node N−, we immediately prune node N−.

Consider the following example. Suppose again that the planning horizon consists of |W | = 4

weeks and that the week rhythms rb ∈ R = {1, 2, 4} for all customers b ∈ B. As we can see in

Table 1, there are at least eight feasible permutations of the week clusters in this setting. Figure

1 illustrates the difference between standard branching and symmetry-reduced branching. We

assume that a reference customer b∗ ∈ B with week rhythm rb∗ = 4 has been fixed to the first day

and, hence, also to the first week of the planning horizon. This reduces the feasible permutations

to permutations no. 1 and 2 from Table 1, i.e., to (1, 2, 3, 4) and (1, 4, 3, 2). Moreover, we assume

that no other fixations exist in node 1. Suppose that we branch on the week assignment u2b in

node 1 and that rb = 4. In standard branching, this would lead to two child nodes, with node

2 fixing the assignment to one, and node 3 fixing it to zero. But for each solution in which the

customer is assigned to week w = 4 in node 3, permutation no. 2 gives us a week-symmetric

solution in which the customer is served in week w = 2, which is identical to the situation in

node 2. Hence, in symmetry-reduced branching, we add the additional fixation u4b = 0 to node 3.

Reduction of Day Symmetry. Suppose that we branch on the day assignment vd
∗
b∗ in nodeN of the

search tree. As in the branching on week assignments, two child nodes N+ and N− are generated

in standard branching with fixations vd
∗
b∗ = 1 in node N+ and vd

∗
b∗ = 0 in node N−. In symmetry-

reduced branching, we add, again, additional fixations to node N− in order to reduce symmetry.
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1

2 3

u2b = 1 u2b = 0

(a) Standard branching

1

2 3

u2b = 1 u2b = u4b = 0

(b) Symmetry-reduced branching

Figure 1: Comparison of standard branching and symmetry-reduced branching for an exemplary week assignment

Recall that there are no restrictions with respect to the assignment of customers to days

within a week. Hence, as long as there are no day fixations in a particular week, the day clusters

of the week can be arbitrarily rearranged. But even when some day fixations have already been

introduced, day symmetry might still be present. Based on the concept of day groups (see

Definition 5), day symmetry can be reduced as follows.

Proposition 3. Let G be a day group in week φ(d∗), i.e., G ⊆ D(φ(d∗)), with respect to node

N of the search tree. Then, the following fixations can be added to node N− without losing

optimality. If G does not contain the branching day d∗, additional fixations vdb∗ = 0 can be added

for all days d ∈ G except one. Otherwise, these fixations can be added for each day d ∈ G,

d 6= d∗.

Proof. Since all days d ∈ G have the same set of available customers Bavail(d,N), all rearrange-

ments of the corresponding day clusters yield day-symmetric solutions. If G does not contain

d∗, we can therefore forbid the assignment of customer b∗ to any but one of the days of day

group G in node N−. If G contains d∗, we can forbid any solution in which b∗ is served on a

day d ∈ G in node N− since node N+ contains a day-symmetric solution. Hence, optimality is

guaranteed in both cases.

Consequently, we check for each day group in week φ(d∗) if additional fixations can be

introduced. If the additional fixations leave no feasible day assignments for customer b∗ and

week φ(d∗) in node N−, we immediately prune node N−. There is, however, one peculiarity. It

might occur that we obtain an integer week assignment for a customer, although the customer

is not fixed to a particular week. When we branch on the day assignment of such a customer,

the customer’s week assignment is implicitly fixed to week φ(d∗) in node N+. If, at the same

time, the available customers Bavail(d,N) are identical for each day d ∈ D(φ(d∗)), we prune

node N−, and, hence, discard the possibility of the customer being assigned to a different week.

Therefore, if this situation occurs, we generate an additional child node, in which we force the

customer to be scheduled to a different week, i.e., in which we set u
φ(d∗)
b∗ = 0.

Consider the example shown in Figure 2 and assume that there are m = 5 days per

week. Further, assume that we branch on day assignment v3b1 in node 1 and that the avail-

able customers Bavail(d,N) are the same for each day d ∈ D(φ(3)), i.e., there exists only

one day group G1 = {1, 2, 3, 4, 5} consisting of all days of the week. In standard branch-

ing, this would again lead to the creation of two child nodes, one with v3b1 = 1 and the
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other with v3b1 = 0. In symmetry-reduced branching, we would add the additional fixations

v1b1 = v2b1 = v4b1 = v5b1 = 0 to node 3, which would leave no feasible day assignments left for

customer b1 in week φ(3). Hence, node 3 can immediately be pruned. Note that for this ex-

ample we assume that customer b1 has previously been fixed to week φ(3) such that we do

not have to create an additional child node which allows the assignment to a different week.

Suppose that the next branching is performed on the day assignment v3b2 in node 2. Due to

the fixation v3b1 = 1 we now have the two day groups G2 = {3} and G3 = {1, 2, 4, 5}. Since

the branching day 3 is not part of day group G3, we can forbid the assignment of customer

b2 to any of the days of day group G3 except one. Hence, we add the additional fixations

v2b2 = v4b2 = v5b2 = 0 to node 5.

1

2

4 5

3v3b1 = 1 v3b1 = 0

v3b2 = 1 v3b2 = 0

(a) Standard branching

1

2

4 5

3v3b1 = 1

v3b2 = 1 v3b2 = v2b2 = v4b2 = v5b2 = 0

(b) Symmetry-reduced branching

Figure 2: Comparison of standard branching and symmetry-reduced branching for exemplary day assignments

4.4. Cut Generation

In an attempt to strengthen the LP relaxation of the RMP, we experimented with an ex-

tension of the proposed algorithm by the incorporation of cutting planes. After the column

generation phase, we look for valid inequalities that are violated by the current solution to

the LP relaxation of the RMP and add them to the RMP. Note that model (MP ) has set-

partitioning-like components, e.g., Constraints (19) define a set-partitioning polytope. Hence,

valid inequalities for the set-packing and set-partitioning polytope, such as the well-known clique

inequalities and odd-hole inequalities (see, e.g., Padberg, 1973), could be used to strengthen the

LP relaxation of the RMP. For the week clusters in the RMP, we could formulate clique or

odd-hole inequalities based on a conflict graph derived from Constraints (18)–(20) (or a subset

of them). However, adding these inequalities to the RMP significantly changes the structure

of the pricing problems. While our pricing heuristic could easily be adapted to consider these

changes, solving the pricing problems to optimality would become much more complex. The

difficulty is to determine whether a column participates in a certain clique or odd-hole inequality

of the RMP, and, hence, whether the associated reduced costs must be considered in the pricing

problem. Preliminary tests confirmed that the solution of models (PPwi ) and (PP di ), extended

to consider the reduced costs of clique cuts, becomes computationally too expensive. Therefore,

we opted to use subset-row (SR) inequalities (Jepsen et al., 2008). They were proposed for a
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set-partitioning formulation of the vehicle routing problem with time windows and mitigate to

some extent the above mentioned disadvantage of clique and odd-hole inequalities.

We define an SR inequality q on a subset of Constraints (19), and, since each constraint

corresponds to a customer, also on a subset Bq ⊆ B of customers. An SR inequality can be

stated as ∑
w∈W

∑
s∈Sw

1

k

∑
b∈Bq |w≤rb

asb

 δws ≤ ⌊ |Bq|k
⌋

, (59)

where k is a parameter with 0 < k ≤ |Bq|. It can be interpreted as follows. For every k customers

b ∈ Bq that are contained in a week cluster s of a week w with w ≤ rb, the coefficient of the

cluster on the left-hand side of the inequality increases by one. Since each customer b must be

served exactly once in the first rb weeks of the planning horizon, at most
⌊
|Bq |
k

⌋
such clusters

may be selected in an integer solution.

For the separation of SR inequalities, we set parameter k to a fixed value and restrict ourselves

to subsets Bq of cardinality nsr. We check for each subset Bq with |Bq| = nsr if Inequality (59) is

satisfied in the current solution to the LP relaxation of the RMP and add all violated inequalities

to the RMP.

Integrating SR inequalities into pricing problems (PPwi ) yields the following result:

(PPwi –SR)
∑
b∈B

c̄wibub − πw0 −
∑
q∈Q

πq5zq → min (60)

s.t.
∑
b∈B

tbub ≥ LBweek (61)∑
b∈B

tbub ≤ UBweek (62)

zq ≥

1

k

∑
b∈Bq |w≤rb

ub

− 1 + ε q ∈ Q (63)

ub ∈ {0, 1} b ∈ B (64)

zq ∈ N0 q ∈ Q (65)

In model (PPwi –SR), Q denotes the set of SR cuts contained in the RMP, πq5 denotes the dual

variable for SR cut q ∈ Q, and ε represents a parameter with value slightly greater than zero.

Assuming that k ∈ N+, ε must be set to a value 0 < ε ≤ 1
k . This makes sure that Constraints (63)

in conjunction with the integrality requirements on variables zq as defined in Constraints (65)

mimic the floor function of the left-hand side of Inequality (59): For each SR cut q ∈ Q, variable

zq is increased by one for every k customers b ∈ Bq with w ≤ rb which are contained in the week

cluster that is generated in the pricing problem. Note that it is not necessary to add constraints

which define an upper bound for zq since all πq5 are nonpositive and, therefore, zq implicitly

takes on the smallest feasible value.

We adapt our pricing heuristic to reflect the modification of the pricing problems. The

mechanism to generate new week clusters remains the same as described in Section 4.1, but we

need to consider the values of πq5 in the calculation of the reduced cost of the final cluster. For
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cluster s and week w the reduced cost is calculated as follows:

min
j∈B

∑
b∈s

c̄wjb − πw0 −
∑
q∈Q

πq5

1

k

∑
b∈Bq |w≤rb

asb

 . (66)

We pass the corresponding column to the RMP only if this value is smaller than zero.

In addition to SR cuts for week clusters, we also generate SR cuts for day clusters. Recall

that Constraints (19) enforce that each customer b ∈ B must be served exactly once in the first

rb weeks of the planning horizon. From this we can derive the following constraints on the level

of day clusters:
rb∑
w=1

∑
d∈D(w)

∑
s∈Sd

asbδ
d
s = 1 b ∈ B (67)

Based on these constraints, we formulate SR cuts for day clusters. The formulation, separation,

and pricing is analogous to the SR cuts for week clusters. Therefore, we do not give any

additional explanations. We found out in preliminary tests that the impact of cutting planes on

the optimal objective value of the LP relaxation of the RMP declines rapidly with the number

of performed cutting phases. Since the first cutting phase yields by far the largest impact on the

objective value, we decided to execute the cutting phase only once in each node of the branch-

and-bound tree, namely after the first column generation phase. In all other cases, we proceed

from the column generation phase directly to the branching phase. Moreover, we decided that

a node does not inherit the cuts from its parent node.

5. Computational Evaluation

In the following, we evaluate our algorithm on real-world test instances provided by PTV.

The test set comprises 16 service territories of a German manufacturer of paints and coatings.

The week rhythms rb of the customers are from the set {1, 2, 4}. The total number of visits

per territory ranges from 71 to 107, the time to serve a customer, tb, ranges from ten to 330

minutes. The planning horizon consists of |W | = 4 weeks and m = 5 days per week. A detailed

overview of the test instances is given in Table 2.

For all tests, we weight the compactness of week clusters with λ = 1
3 and the compactness

of day clusters with 1 − λ = 2
3 . With T =

∑
b∈B tb ·

|W |
rb

denoting the total service time over

all customers, we limit the total service time of each week to the interval
[
LBweek, UBweek

]
=[

0.9 · T
|W | , 1.1 ·

T
|W |
]

and the total service time of each day to the interval
[
LBday, UBday

]
=[

0.8 · T|D| , 1.2 ·
T
|D|

]
. To initialize the scores in the case of PSD branching, we use LS branching

for at least the first nmin = 5 branching decisions. For the separation of SR inequalities, we set

parameters k = 2 and nsr = 3 since this configuration yielded the best results in our preliminary

tests. The algorithm was coded in Java. All tests are performed under Ubuntu 16 on a machine

with an Intel Xeon E5-2650 v2 CPU at 2.6 GHz and 128 GB of RAM. We use Gurobi 7.0.12 to

solve the LP relaxation of the RMP and the IPs in the exact pricing step.

2http://www.gurobi.com
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Table 2: Overview of test instances.

Instance no. 1 2 3 4 5 6 7 8

Number of customers 31 26 32 25 35 55 36 33
Week rhythms 1, 2, 4 1, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 4 1, 2, 4
Number of visits 80 74 76 71 84 106 72 78

Instance no. 9 10 11 12 13 14 15 16

Number of customers 33 31 32 50 39 42 37 52
Week rhythms 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4
Number of visits 88 89 88 107 86 94 96 88

We analyze the impact of different features of our algorithm on its running time. In particu-

lar, we evaluate the impact of the proposed symmetry reduction techniques, we compare the two

branching rules LS and PSD, and we analyze the effect of early branching and cutting planes.

If not stated otherwise, the algorithm is configured as follows:

• Full symmetry reduction is applied, i.e., the fixation of a reference customer is combined

with symmetry-reduced branching.

• PSD branching in combination with the presented early branching strategy is used.

• The generation of cutting planes is deactivated.

5.1. Impact of Symmetry Reduction Techniques

To evaluate the impact of symmetry reduction techniques on running time, we test three

different variants of the algorithm: No symmetry reduction at all (NONE), fixing the first visit of

a reference customer (FRC), and a combination of reference customer fixing and the symmetry-

reduced branching scheme (FRC+SRB). We restrict the experiments in this section to the nine

instances with at most 35 customers since for variants NONE and FRC it is not possible to solve

larger instances in reasonable time. Furthermore, we set a time limit of ten hours per instance.

The running times (Ttotal, in seconds), the number of processed nodes (NumNodes) as well as

the objective values (Obj) for each instance are reported in Table 3. Furthermore, we report

the percentage deviation in the running time and in the number of processed nodes relative to

variant NONE. Negative values indicate an improvement in the respective value. Note that the

deviation between FRC and NONE could not be calculated for those test instances for which in

both variants no optimal solution could be found within the time limit. In the table we denote

these cases by N/A. Additionally, we use bold-faced numbers to indicate the most successful

variant on each instance with respect to running time and number of nodes.

The results show the tremendous impact of the proposed symmetry reduction techniques

both on the running time and the number of processed nodes. Without any symmetry reduction

techniques, two out of nine instances cannot be solved to optimality within the time limit.

Although the fixation of a reference customer is a relatively simple technique, its effect is already

remarkable. The average reduction in running time amounts to 75.0%, the average reduction

in the number of processed nodes to 74.5%. However, one instance (no. 4) can still not be

solved to optimality within the time limit, and for one instance (no. 9) the optimal solution is
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found but optimality cannot be proven within the time limit. When the fixation of a reference

customer is combined with symmetry-reduced branching, all nine instances can be solved to

proven optimality within the time limit. Moreover, the average reduction in running time and

in the number of explored nodes is 89.1% and 90.0%, respectively, compared to the case without

symmetry reduction.

5.2. Impact of Different Branching Rules

In the following, we compare the performance of the two branching rules LS and PSD. We

report in Table 4 the running time, the number of processed nodes, and the relative deviation

between PSD and LS branching with respect to the two performance figures.

PSD branching clearly outperforms LS branching. While LS branching is not able to solve

three out of the 16 test instances to optimality within the time limit, PSD branching solves

all instances to proven optimality. On average, the running times of PSD branching are 37.4%

below those of LS branching. The average reduction in the number of processed nodes is 45.9%.

Table 4: Comparison of LS and PSD branching: Running time, number of processed nodes, and deviation of PSD
branching relative to LS branching.

LS PSD Relative deviation

Instance no. Ttotal NumNodes Ttotal NumNodes Ttotal NumNodes

1 93 290 54 167 -42.3% -42.4%
2 2 7 2 7 -1.4% 0.0%
3 178 738 114 429 -35.7% -41.9%
4 2,235 32,590 458 6,181 -79.5% -81.0%
5 36,0001 189,426 2,113 8,231 -94.1%2 -95.7%2

6 36,0001 28,725 17,385 6,639 -51.7%2 -76.9%2

7 1,181 4,776 738 2,269 -37.5% -52.5%
8 125 332 84 201 -32.9% -39.5%
9 1,887 9,802 416 2,031 -78.0% -79.3%
10 38 137 29 97 -23.4% -29.2%
11 18 78 16 60 -9.8% -23.1%
12 4,403 4,097 3,844 2,914 -12.7% -28.9%
13 4,099 7,290 1,700 3,023 -58.5% -58.5%
14 476 639 435 528 -8.7% -17.4%
15 40 36 40 36 0.6% 0.0%
16 36,0001 23,527 24,208 7,436 -32.8%2 -68.4%2

Average 7,673 18,906 3,227 2,516 -37.4% -45.9%
1 No proven optimal solution found within the time limit.
2 Compared to the values obtained for LS branching at the time limit.

5.3. Impact of Early Branching

Next, we analyze the impact of early branching on the performance of the algorithm. Table

5 contains the computational results for two variants of the algorithm, namely a variant in which

early branching is deactivated (No EB), and a variant in which early branching is enabled (EB).

We report again the running times, the number of processed nodes, and the relative deviation
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between the two variants for each test instance. Additionally, we include the number of times

that the exact pricing method was called (NumEP ).

The aim of early branching is to reduce the number of times that the exact pricing method is

called. As the results show, this effect is achieved for 13 of the 16 test instances with an average

reduction of 22.4%. Unfortunately, the reduction in the number of exact pricing calls does not

translate into reduced running times. In fact, running time is reduced only on five instances,

whereas it is increased on 11 instances. The average increase in running time amounts to 11.8%

and is largely caused by an increase in the number of processed nodes by 16.9%. Since the search

trees in the two variants of the algorithm might differ greatly on the same test instance, the

reason for the increase in the number of nodes cannot conclusively be explained. We conclude

that early branching does, on average, not have the desired effect on the performance of the

algorithm, although on specific instances early branching might be beneficial.

5.4. Impact of Subset-row Cuts

In the following, we evaluate the impact of SR cuts on running time and on the number

of processed nodes. Again, we compare two variants of the algorithm, one with cut generation

being disabled (No Cuts), and one with activated cut generation (SR Cuts). The results are

shown in Table 6.

There is no clear tendency whether SR cuts improve the performance of the algorithm. On

the one hand, the number of processed nodes can be reduced on ten test instances by enabling

cut generation, whereas it is increased only on three test instances. Note that for test instances

6 and 16 it is not possible to evaluate the impact of cut generation as the instances could not be

solved optimally within the time limit when cut generation is enabled. The average reduction in

the number of processed nodes for the remaining test instances amounts to 8.3%. Without the

large outlier obtained on test instance 10, this reduction would even amount to 26.5%. On the

other hand, the reduction in the number of processed nodes does not consistently translate into

shorter running times. SR cuts reduce the running time on eight test instances, and they also

increase the running time on eight test instances. This effect can be explained by the results

in Table 7. When SR cuts are applied, the average number of column generation iterations per

node ( NumIter
NumNodes

) increases. At the same time, the LP relaxation of the RMP and the exact

pricing problems become more complex by the inclusion of SR cuts, which can be seen by the

increase in the average time per column generation iteration for solving the LP relaxation of

the RMP (T imeRMP
NumIter

, in milliseconds) and by the increase in the average time per call of the

exact pricing method (T imeEP
NumEP

, in milliseconds). The latter effect can be observed particularly

on test instances 6 and 16, the two test instances with the highest average number of generated

cuts per node ( NumCuts
NumNodes

). Here, the solution times of Gurobi rise dramatically for some exact

pricing problems due to the complexity induced by the large number of SR cuts. These results

suggest that, in principle, SR cuts have the potential to accelerate the algorithm, but adding

too many of them is detrimental. A more successful strategy could be obtained by adding only

a subset of the violated SR inequalities to the RMP such that, on the one hand, the size of

the LP relaxation of the RMP and the resulting exact pricing problems is manageable and, on

the other hand, still a significant improvement in the number of processed nodes is achieved.

Further research is required to investigate such an approach.
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Table 6: Impact of cut generation: Running time, number of processed nodes, and deviation of variant SR Cuts
relative to the variant without cutting planes.

No Cuts SR Cuts Relative deviation

Instance no. Ttotal NumNodes Ttotal NumNodes Ttotal NumNodes

1 54 167 49 123 -8.3% -26.3%
2 2 7 2 7 12.6% 0.0%
3 114 429 155 288 36.0% -32.9%
4 458 6,181 239 2,854 -47.7% -53.8%
5 2,113 8,231 1,989 5,119 -5.9% -37.8%
6 17,385 6,639 36,0001 1,424 107.1%2 N/A
7 738 2,269 805 1,637 9.2% -27.9%
8 84 201 124 217 47.4% 8.0%
9 416 2,031 683 3,240 64.2% 59.5%
10 29 97 107 318 271.2% 227.8%
11 16 60 12 30 -26.5% -50.0%
12 3,844 2,914 1,338 561 -65.2% -80.7%
13 1,700 3,023 1,097 1,717 -35.5% -43.2%
14 435 528 334 361 -23.2% -31.6%
15 40 36 38 26 -4.9% -27.8%
16 24,208 7,436 36,0001 5,041 48.7%2 N/A

Average 3,227 2,516 4,936 1,435 23.7% -8.3%
1 No proven optimal solution found within the time limit.
2 According to the values obtained for variant SR Cuts at the time limit.

Table 7: SR cuts tend to increase the complexity of the exact pricing problems and of the linear relaxation of the
RMP, and they result in a higher number of column generation iterations per node.

No Cuts SR Cuts

Instance no. NumIter
NumNodes

T imeEP
NumEP

T imeRMP
NumIter

NumIter
NumNodes

T imeEP
NumEP

T imeRMP
NumIter

NumCuts
NumNodes

1 8.0 41.7 18.5 10.3 42.7 17.8 89.8
2 7.6 38.5 9.8 7.9 42.5 9.8 0.4
3 8.4 53.4 12.1 11.5 113.5 14.3 58.0
4 3.9 34.4 3.9 3.9 35.0 4.4 2.1
5 8.2 47.5 14.2 10.0 67.1 15.1 78.9
6 19.6 137.5 81.4 23.4 89,963.5 181.0 718.0
7 9.0 56.1 17.2 11.5 82.8 17.3 64.0
8 7.8 48.9 30.2 11.7 84.8 23.4 117.7
9 5.6 54.9 10.7 6.0 55.8 9.1 1.1
10 8.9 44.2 13.7 8.1 45.1 16.4 18.1
11 6.2 42.3 22.3 8.8 42.7 23.2 26.8
12 9.9 81.3 92.0 16.9 132.8 84.9 400.0
13 12.1 69.4 23.5 14.1 70.4 21.3 32.7
14 11.9 61.1 44.7 15.5 65.4 35.7 68.5
15 11.9 73.1 63.3 17.0 79.8 57.5 46.3
16 15.0 107.9 163.3 20.7 20,042.5 228.2 805.0

Average 9.6 62.0 38.8 12.3 6,935.4 47.5 158.0
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5.5. Comparison with Gurobi

We compare the running time of the proposed branch-and-price algorithm with the running

time we obtain when we solve the compact formulation (COMP ) using the general purpose

MIP solver Gurobi. To ensure a fair comparison, we extend model (COMP ) as follows.

We add symmetry breaking constraints to sort the day clusters within each week by the

smallest customer index:

∑
i∈B

vdib ≤
∑
i∈B

b−1∑
b′=1

vd−1ib′ b ∈ B \ {1}, w ∈W,d ∈ D(w) \ {(w − 1)m+ 1} (68)

Sorting day clusters in this way implies that variables vdib can be fixed to zero for all i ∈ B and

b < ((d− 1) mod m) + 1.

Based on Proposition 1, we fix the service visits of reference customer b = 1 as follows:∑
i∈B

vdi1 = 1 d ∈ {1,mr1 + 1, 2mr1 + 1, ..., |D| −mr1 + 1} (69)

Moreover, we warm-start Gurobi with the solution computed by the location-allocation heuristic

of Bender et al. (2016) because we use this solution also to obtain an initial set of columns for

our branch-and-price algorithm.

Since only very small instances can be solved with Gurobi, we restrict our experiments again

to the nine instances with at most 35 customers. We set the time limit for Gurobi to ten

hours per instance and its optimality tolerance with respect to the relative MIP gap to 0.01%.

Table 8 contains for both solution methods their respective running times and objective values.

Furthermore, we include the relative MIP gap as reported by Gurobi (Gap) and the relative

percentage deviation in running time obtained by using the branch-and-price algorithm instead

of Gurobi. A star behind the objective value of Gurobi indicates that Gurobi has found an

optimal solution.

While Gurobi is able to solve eight of the nine instances to optimality, it fails to prove

optimality on four of these eight instances. The average running time obtained with Gurobi is

roughly seven hours, whereas it is only about six minutes for the branch-and-price algorithm.

The average relative reduction in the running time amounts to more than 98.1%. These results

show the huge benefit of a specially-tailored algorithm over a general purpose MIP solver to

solve problem MPSTDP-S*. Our branch-and-price algorithm is able to solve instance sizes to

proven optimality that are far out of reach for Gurobi.

6. Conclusions and Outlook

In this paper, we studied a highly relevant planning scenario of the scheduling task arising

in the context of multi-period service territory design. As far as we are aware, this is the first

paper to present an exact branch-and-price algorithm for this problem. In order to accelerate

our algorithm, we introduced a fast heuristic to solve the pricing problems and we presented

specially-tailored symmetry reduction techniques. In addition, we adopted well-known tech-

niques from literature, such as PSD branching, early branching and SR cuts. We performed
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Table 8: Comparison of the performance of Gurobi and the branch-and-price algorithm

Gurobi B&P Relative deviation

Instance no. Ttotal Obj Gap Ttotal Obj Ttotal

1 1,132 1,908.5? 0.01% 54 1,908.5 -95.27%
2 36,000 1,228.6? 1.91% 2 1,228.6 -100.00%
3 36,000 1,893.7? 0.64% 114 1,893.7 -99.68%
4 12,493 1,702.5? 0.01% 458 1,702.5 -96.34%
5 36,000 2,006.4? 0.17% 2,113 2,006.4 -94.13%
8 24,468 2,070.6? 0.01% 84 2,070.6 -99.66%
9 36,000 1,949.1 2.99% 416 1,946.6 -98.84%
10 36,000 1,714.8? 1.27% 29 1,714.8 -99.92%
11 9,844 2,067.8? 0.00% 16 2,067.8 -99.84%

Average 25,326 1,838.0 0.78% 365 1,837.7 -98.19%

extensive computational experiments on real-world instances and investigated the impact of the

individual techniques. In particular, the symmetry reduction techniques and PSD branching

have proven to increase the performance of the algorithm significantly. On the contrary, early

branching did not show the expected effect and the computational experiments on the SR cuts

yielded ambivalent results, which necessitates further research. Overall, the results show the

effectiveness of our algorithm as all test instances could be solved to proven optimality in rea-

sonable running time. A comparison with the general purpose MIP solver Gurobi revealed that

the branch-and-price algorithm reduces running time by over 98.1% on average. This emphasizes

the benefit of using a highly specialized algorithm for the problem under study.

The work presented in this paper provides several opportunities for future research. On the

one hand, we intend to work on further accelerating the algorithm such that larger problem in-

stances can be tackled. One promising approach for this purpose is the identification of additional

families of valid inequalities to tighten the linear relaxation and reduce the number of explored

nodes. It is also interesting to investigate if a different decomposition into master and pricing

problems is more favorable, e.g., with respect to the development of a fast exact pricing method

that is capable of considering additional families of valid inequalities. Moreover, we plan to trans-

form the proposed algorithm into a fast column generation-based heuristic, e.g., by omitting the

exact pricing step or by using a heuristic symmetry reduction scheme. Lastly, the individual

components of the proposed algorithm can be used as building blocks in problem-specific solution

methods for similar problems. On the other hand, the proposed algorithm can be extended to

take into account additional planning criteria. Criteria that arise in some applications are, e.g.,

multiple visits of a customer per week, the restriction to serve a customer only on certain week-

days, different service times for different visits of a customer, and the requirement to serve a cus-

tomer always on the same weekdays (Bender et al., 2016). While each of these criteria alone could

be integrated relatively easily into our algorithm, their combination requires further research.
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