Compromise Solutions for Robust Combinatorial
Optimization with Variable-Sized Uncertainty

André Chassein*! and Marc Goerigk'?

!Fachbereich Mathematik, Technische Universitiit Kaiserslautern, Germany
2Department of Management Science, Lancaster University, United Kingdom

Abstract

In classic robust optimization, it is assumed that a set of possible
parameter realizations, the uncertainty set, is modeled in a previous step
and part of the input. As recent work has shown, finding the most suitable
uncertainty set is in itself already a difficult task. We consider robust
problems where the uncertainty set is not completely defined. Only the
shape is known, but not its size. Such a setting is known as variable-sized
uncertainty.

In this work we present an approach how to find a single robust solu-
tion, that performs well on average over all possible uncertainty set sizes.
We demonstrate that this approach can be solved efficiently for min-max
robust optimization, but is more involved in the case of min-max regret,
where positive and negative complexity results for the selection problem,
the minimum spanning tree problem, and the shortest path problem are
provided. We introduce an iterative solution procedure, and evaluate its
performance in an experimental comparison.

Keywords: robustness and sensitivity analysis; robust combinatorial opti-
mization; min-max regret; variable-sized uncertainty

1 Introduction

Classic optimization settings assume that the problem data are known exactly.
Robust optimization, like stochastic optimization, instead assumes some de-
gree of uncertainty in the problem formulation. Based on the seminal papers
[BTN98, BTN00, BTN02|, most approaches in robust optimization formalize
this uncertainty by assuming that all uncertain parameters ¢ are described by
a set of possible outcomes U, the uncertainty set.

For general overviews on robust optimization, we refer to [BTGN09, BBC11,
GMT14]. Other surveys focus on robust combinatorial optimization [ABV09,
KZ16], algorithmic developments [GS16] or present tutorials to the field [GYdH15,
CG16].

*Email: chassein@mathematik.uni-kl.de
T Corresponding author. Email: m.goerigk@lancaster.ac.uk

While the discussion of properties of the robust problem for different types
of uncertainty sets U has always played a major role in the research commu-
nity, only recently the data-driven design of useful sets U has become a focus
of research. In [BGK13], the authors discuss the design of U taking problem
tractability and probabilistic guarantees of feasibility into account. The pa-
per [BB09] discusses the relationship between risk measures and uncertainty
sets, and [YdH12] constructs uncertainty sets by data-driven approximations of
ambiguous chance constraints.

In distributionally robust optimization, one assumes that a probability dis-
tribution on the data is roughly known; however, this distribution itself is sub-
ject to an uncertainty set U of possible outcomes (see [GS10, BTdHdW ™13,
WKS14]).

Another related approach is the globalized robust counterpart, see [BTGN09].
The idea of this approach is that a relaxed feasibility should be maintained, even
if a scenario occurs that is not specified in the uncertainty set. The larger the
distance of ¢ to U, the further relaxed becomes the feasibility requirement of
the robust solution.

In this work we present an alternative to constructing a specific uncertainty
set U. Instead, we only assume knowledge of a nominal (undisturbed) scenario,
and consider a set of possible uncertainty sets of varying size based on this
scenario. That is, a decision maker does not need to determine the size of
uncertainty, but only its shape. Our goal is to construct a solution for which
the worst-case objective with respect to any possible uncertainty set performs
well on average over all uncertainty sets parameterized this way.

The general idea of variable-sized uncertainty that this work is based upon
was recently introduced in [CG18]. There, the aim is to construct a set of
robust candidate solutions that requires the decision maker to chose one that
suits him best. This is inspired by parametric optimization, where one traces the
change in the optimal solution while problem parameters vary. In our setting, we
consider all uncertainty sizes simultaneously, and generate a single solution as
a compromise approach to the unknown uncertainty. It can hence be regarded
as a goal programming approach for variable-sized uncertainty. We call this
setting the compromise approach to variable-sized uncertainty.

We focus on combinatorial optimization problems with uncertainty in the
objective function, and consider both min-max and min-max regret robustness
(see [KZ16]).

This work is structured as follows. In Section 2, we briefly formalize the
setting of variable-sized uncertainty. We then introduce our new compromise
approach for min-max regret robustness in Section 3. We present complexity
results for the selection problem, the minimum spanning tree problem, and
the shortest path problem in Section 4, before discussing the case of min-max
robustness in Section 3. In Section 6, we evaluate our approach in a computation
experiment, and conclude this paper in Section 7.

2 Variable-Sized Uncertainty

In the following, we use the notation [n] := {1,...,n} and write vectors and
matrices in bold, e.g., & = (2;);c[,). We briefly summarize the setting of [CG18],
where the term ”variable-sized uncertainty” was coined. Consider an uncertain

combinatorial problem of the form
min {cz :x € X'} (P(e))

with & C {0,1}", and an uncertainty set ¢/(\) C R’ that is parameterized by
some value A € A. For example,

e interval-based uncertainty U(A) = [];c,y[(1 — A)é, (1 + A)&;] with A €
[0,1],

e general interval-based uncertainty U(\) = [] [¢; — Ad;, é; + Ad;] with

1€[n]
d € R}, or

e cllipsoidal uncertainty U(A) = {¢: ¢ = ¢+ C¢, ||€|l= < \} with A C Ry,
C e R™™ £ cR™,

We call ¢ the nominal scenario, and any & € X that is a minimizer of P(¢) a
nomanal solution.

In their setting of variable-sized uncertainty, the aim is to find a minimal set
of solutions & C X that contains an optimal solution to each robust problem
over all A. Here, the robust problem is either given by the min-max counterpart

min max cx
TEX ecU(N)

or the min-max regret counterpart

min max (c:l: — min cy) .
TEX ceU(N) yexX

In the case of min-max robustness, such a set can be found through methods

from multi-objective optimization in O(|S|-T'), where T denotes the complexity

of the nominal problem, for many reasonable uncertainty sets. However, S may

be exponentially large.

This setting is related to two other approaches from the optimization liter-
ature. The first is fuzzy optimization, which draws on possibility distributions
to describe the problem uncertainty. A fuzzy set A consists of a reference set (2
and a membership function p; : €@ — [0,1]. The value of the membership
function can be interpreted as the degree of membership of an element in A.
A)-cut is then defined as all elements with membership at least A, i.e., the
set AN = {v € Q:pji(v) > A} The A\-cut with A = 1 is called the core of a
fuzzy set. For details on possibility theory we refer to [DP8S]; its relationship to
min-max regret is discussed in [KZ10]. In variable-sized uncertainty, one may
consider the uncertainty set i as being fuzzy. The set Hie[n] [¢i,¢;] is then the
core of the uncertainty, and each set U(\) corresponds to a A-cut in possibility
theory. More general ways to model possibility distributions exist, which may
constitute an interesting way to extend variable-sized uncertainty in the future.

The second related approach is parametric optimization. In this setting,
one considers a family of optimization problems that are parameterized through
some value A\. The general goal is to compute regions where the optimal solution
does not change, meaning that all possible problems with respect to A are solved
simultaneously. Variable-sized uncertainty can be seen as a parametric problem,

where the parameter defines the uncertainty set. We refer to [WOBD13] for a
discussion of robustness and parametric (multi-objective) optimization.

The drawback of variable-sized uncertainty is that the solution set S may
be of exponential size, which would require some processing of solutions before
they can be presented to the decision maker. The idea of our compromise
approach is to present only one solution with a good overall performance instead.
Furthermore, this solution is not necessarily in S, which means that the previous
approach might not be able to find it. We introduce our new approach in the
following section.

3 Compromise Solutions in the Min-Max Re-
gret Model

In this paper we are interested in finding one single solution that performs well
on average over all possible uncertainty sizes A € A. Recall that in classic
min-max regret, one considers the problem

min max cx — opt(c
zEX ceU(N) P ()

with opt(c) = minycx cy. We define the compromise approach to variable-sized
uncertainty as the following problem:

min val(z) with wval(z) = / (max cr — opt(c)) A (CMMR)
A \c€U(N)

In the following, we focus our analysis on the classic interval uncertainty sets
UA) = TLiep[(1 = A)éi, (1 + A)é]. To simplify the presentation, we further
assume A = [0,1]. The previous work on variable-sized uncertainty aims at
presenting the decision maker with a set of solutions, and assumes that the
decision maker will then choose the solution that suits his requirements best.
Not presenting a single solution but a set of solution respectively a probability
distribution of solutions was also proposed in [MJC15]. There the authors in-
troduce the concept of randomized min-max regret in which the goal is to find a
probability distribution over solutions such that the expected maximum regret
is minimal. Note that in this concept the uncertainty set size is assumed to be
fixed.

In contrast, the concept of compromise min-max regret produces only a
single solution that represents a good overall trade-off for all uncertainty set
sizes. More precise, the compromise min-max regret solution minimizes the
average of the maximum regret over all considered uncertainty set sizes. It
can therefore be seen in the tradition of goal programming for multi-objective
optimization. As a motivation for our approach, consider the example shown in
Figure 1.

We calculated the solution to problem (CMMR) and a minimizer of the
min-max regret problem with uncertainty set ¢(0.3). Plotted is the difference
in the regret objective function between both solutions for different values of
A, normalized such that the zero-line stands for the (CMMR) solution. By
construction, the optimal regret solution for 2/(0.3) has a good performance for
A = 0.3, but it has a higher regret on average. Furthermore, it may be that the

0.5

Regret Difference
o

-0.5

0 0.2 0.4 0.6 0.8 1
Lambda

Figure 1: Example regret difference for a shortest path instance.

optimal solution to (CMMR) is not an optimal solution to any min-max regret
problem with fixed parameter A; hence, it would not be ”visible” to the decision
maker when using the previous approach for variable-sized uncertainty. On the
other hand, if a single solutions turns out to be optimal for all uncertainty set
sizes, it is also optimal for (CMMR).

3.1 Structure of the Objective Function

We first discuss the objective function val(z) for some fixed z € X. A well-
known result (see, e.g., [ABV09]) states that for fixed x, the scenario that
maximizes the regret is given as

Ci\T, = . .
(1—)\)@‘ if i3 =0

Using this result we find that

reg(x,\) : = cIEI}/{a();) cz — opt(c)

= c(z, \)x — opt(c(z, \))
- T+ Néz — 3 &1 — A+ 202:)y;.
znea/%((+ Nz Z éi(+ 2)z;)y

i€[n]

Hence, reg(z, \) is a piecewise linear function in A, where every possible regret
solution y defines an affine linear regret function e¢(z, A\)(z — y). Note that
reg(z,\) is convex in A.

In the following, we use a theoretical example to illustrate how a general
formula for val(z) can be derived. Figure 2 illustrates the objective function
with two brake points at A1 and As. In red is the maximum over all regret
functions, which defines val(z). On the interval [0, 1], the regret of some
solution z is defined through g2, while solution y? defines the regret on [A1, Aa],
and y* defines the regret on [Ay, 1]. In this case, we can hence compute

1 1
val(z) = / reg(x, \)d\ = / (max ¢t — mincy) X
0 0

ceU(N) yex

c(z,\)(z —y)

)I\1)I\z 1

Figure 2: Illustration of the structure of reg(z, A).

A1 A2 1
= / max cx — cy?d\ + / max cx — cy>d\ + max cx — cy*d\
0 A

ceU(N) L ceUN) Aoy CEU(N)

1

)\1)\2
- / o@, \)(z —y?)dA + / oz, \)(@ — 3*)dA + / ez, \)(z — y")dA
0 A

1 A2

Using that the functions ¢(z, \)(z — y°) are linear in A\, we can now rewrite the
integrals using the midpoint in each interval to find

val(z) = A\ie (:1;, Al) (—y°) + (X2 — A1)e (-’L‘, M ;)\2) (x —y°)

2
+ (1 —A2)e <:1:, >\2+1> (x —yh)

2

In general, to compute val(z), we need to determine all relevant regret so-
lutions y, and the intersections of the resulting regret functions. Because X is
a finite set, every calculation of val(z) can be written in the above form.

3.2 Problem Formulation

Let A(z) € A be the set of change points of the piecewise linear function
reg(z,-). To formulate problem (CMMR) as a linear integer program, we use
aset A D UgexA(z). As X is a finite set, there always exists a set A that is
finite. In general, it may contain exponentially many elements.

For the ease of notation, we assume A = {\1,..., g} with \; < X\j11, A\ =0
and Agy1 := 1. As a first approach, we model val(z) by using all possible regret
solutions y € X.

min Y (A1 —)z (1)

JelK]
s.t. z; > Z (1 +Xj)éz.1‘z - Z (1 —Xj + QXjZ‘i)éiyf Vj e [[(],’yZ exX
i€[n] i1€[n]
re kX

where A; = 1(\; +A;41) for all j € [K]. Problem (1) calculates val(z) by using
the rectangle rule for integration on each of its linear parts, i.e.,

Aj+1 _
val(z) = /Areg(:r,)\) d\ = Z /}\ reg(z,) d\ = Z (ANjr1—Aj)reg(z, X))
JE[K] "7

JE[K]

as A D UgexA(z).

Problem (1) can also be used with any arbitrary set A. In that case, the
optimal objective value is still a lower bound on val(z) (as the rectangle rule
underestimates convex functions). This property will be used in our solution
algorithm.

If the problems P(c) have a duality gap of zero, i.e., if solving the dual of the
linear relaxation also gives an optimal objective value to P(c), this formulation
can be simplified. Examples where this is the case include the shortest path or
the minimum spanning tree problem. Let us assume that the linear relaxation
of X is given by

X ={z R} : Az > b}

For the regret problem mingex{e(z, \)xz — opt(e(z,\))} we may then write the
following equivalent problem using the dual (see [ABV09)]):

min{c(z, \)x —b'u:x € X, uc Y} withY = {u >0: A'u < c¢(z,\)}

Using this reformulation, we rewrite problem (1). Variables z; represent the
regret of solution & with respect to the uncertainty set U(\;). By substitut-
ing these variables with the dual problems to calculate the regret, we find the
following program for (CMMR)

min S (Aja1 — A)) (c(x,xj)x - btuf‘) 2)
JEIK]

st. Alu? < e(z,))) Vj € [K]
reX
w ey Vj € [K]

For binary variables z, the product ¢(z, A;)z can then be linearized. If a set A
can be found that is of polynomial size, this is a compact formulation. We
analyze set A in more detail for the selection, minimum spanning tree, and
shortest path problem in Section 4. In general, constraints and variables can
be added in an iterative algorithm that generates new candidate values for \ in
Problem (2). This approach is explained in the following section. If the zero
duality gap assumption does not hold, we can use Formulation (1), where both
values for A and regret solutions y need to be generated.

3.3 General Algorithm

In Algorithm 1 we describe how to compute the set A(zx) of change points and
the corresponding set Y (x) of regret solutions for reg(zx, -).

We begin with only two regret functions, for the extreme points A(z) =
{0,1}. The resulting two regret functions will intersect at one new candidate
change point A. We find the regret solution y maximizing the regret at this point

Algorithm 1 Algorithm to compute A(z) and V()

Input: An instance of (CMMR), a fixed solution z € X'
1: Az) + {0,1}, A" (z) « A=)

2: y(.’L‘) +—0

3: for all A e A" () do

4: Solve P(e(z, A)). Let y be the resulting solution.
s g <Yy

6: A (@)« A\ {\}

7. end for

8: change <« false

9: for all y*,y’ € V() do

10: Calculate A as the point where the affine linear regret functions defined
by y* and ¥y’ intersect.

11: if A\ ¢ A(z) then

12: A(x) + A(z) U{\}

——new

13: A V@) — N (@) U}
14: change < true

15: end if

16: end for

17: if change = true then

18: Goto 3

19: end if

20: Reduce A(z) and Y(z) such that only change points and regret functions
remain that define the maximum over all affine linear functions.
21: return A(z), V(z)

by solving the problem P(e(z, A)). We then repeat this process by iteratively
calculating the regret at all current intersection points. Note that if there exists
any regret function that is larger than all current regret functions at some point
A, then it is also larger than all current functions at the intersection point
between two of them. Hence, Algorithm 1 finds all relevant change points .
As it may also produce unnecessary candidates A, we reduce the solution sets
at the end to contain only those change points and regret functions that define
the maximum.

Algorithm 1 is used to solve Formulation (2) in the case of a zero duality
gap for P(c) as described in Algorithm 2.

The algorithm begins with a starting set A = {0,1} as a guess for relevant
change points. Using the current set A, it then solves Formulation (2). Recall
that the objective value that is found is only a lower bound LB* on the true
optimal objective value of the problem. To evaluate the resulting candidate solu-
tion z¥, we compute val(z") in Step 3. As z* is a feasible solution to (CMMR),
val(z") gives an upper bound on the optimal objective value. Hence, if lower
and upper bound coincide, an optimal solution has been found. Otherwise, we
extend the set A in Step 7 and repeat the procedure.

If P(¢) has a duality gap larger than zero, the same algorithm can be used
with the adjustment that Problem (1) is solved in Step 2. To this end, also the
regret solutions)(z*) generated in the computation of val(z*) in Step 3 have
to be collected and used.

Algorithm 2 Exact algorithm for (CMMR)

Input: An instance of (CMMR).
A« {01}, k+0
2: Solve Formulation (2) using A. Let the solution be z*, and the objective
value LB,
: Use Algorithm 1 to find A(z*). Compute val(z").
. if val(z*) = LB* then
END: z* is an optimal solution.
else
A« AU
k+—k+1
Go to 2
10: end if

© P NPT R W

3.4 Extensions

We briefly mention possible extensions of the (CMMR) approach as introduced
at the beginning of this section.

One possible direction to extend the concept is to consider different un-
certainty sets. The more general interval uncertainty sets U(A) = ;¢ (6 —
Ad;, ¢; + A\d;] are a direct generalization of the classic interval uncertainty sets.
For these sets the scenario maximizing the regret for a fixed solution z is given

by
Ci—>\d7; 1f1’1:0

We assume again that A € [0,1] and that 0 < d; < ¢é. This ensures that
ci(z,A) > 0. In this case, the previous arguments of this section are still valid
and the same algorithms can be used to solve the resulting problems. Note that
the problem formulations need to be adapted accordingly.

Using ellipsoidal uncertainty sets which have been introduced in min-max
regret only recently (see [CG17]) turns out to post more difficult problems. In
this setting, ¢;(x, \) does not obey the simple structure as in the case of interval
sets. Hence, the presented methods are not applicable for this case. Note that
using ellipsoidal uncertainty sets for min-max regret problems is problematic
since already evaluating the regret of a given solution turns out to be an NP-
complete problem even for basic problems like the minimum spanning tree or
shortest path problem (see [CG17]).

A further extension is to use a weight function w : A — [0, 1] that reflects
the decision maker’s preferences, e.g., if smaller or larger degrees of uncertainty
should be focussed on. The resulting variant of (CMMR) is then given as

min val(z) with wval(z) = / w() (max cr — opt(c)) dX
A ceU(N)

Note that the solution algorithms from this section can be extended to this
model if w is given as a piecewise constant function. To this end, one needs to
ensure that A = {A1,..., Ak} contains all change points of w.

Furthermore, the previous discussion focussed on continuous sets A. For a
discrete set A we may hence be interested in the problem

min » ~w()) (max ¢z — opt(c)>

ceU(N)

instead. Our concept is then a direct extension of the classic min-max regret
approach with A being a singleton. The algorithms presented here can still be
applied in a simplified way, as all relevant value for \ are already given.

3.5 Approximation

We now consider the approximability of problem (CMMR). For classic min-max
regret problems with interval uncertainty, the following result is known:

Theorem 1. [KZ06] LetU = [];¢(,
and let & be an optimal solution to the scenario € := %(a +b). Then

[a;, b;] be an interval-based uncertainty set,

& — opt(c)) < 2mi — opt
max (e — opt(c)) < 2 minmax (ex — opt(c)),

i.e., the midpoint solution is a 2-approximation for the min-maz regret problem.
We can hence also approximate the compromise problem.

Corollary 1. Any optimal solution & with respect to P(¢€) is also a 2-approzimation
for problem (CMMR).

Proof. Using Theorem 1, we find:

val(Z) = / reg(Z,\)dA <2 [minreg(z, \)d\ < 2min/ reg(z, \) dA
A A

ATEX zeX

O

Note that the example instance used in [KZ06] uses uncertainty intervals
of the form [1,1] and [0, 2], which is more general than our setting U(\) =
[Licpmy[(1 = A)éi, (1 4+ A)é] allows. Therefore one might hope that a better
approximation ratio can be achieved in our setting. However, Figure 3 shows a
shortest path instance with costs &, where the midpoint solution also performs
as a 2-approximation for any A € (0,1]. One can assume that the midpoint
solution chooses the path along the top two edges with regret 4\. The path using
the middle edge has a regret of only 2\, which shows that the approximation
guarantee is still tight.

4 Min-Max Regret Compromise Solutions for
Specific Problems
4.1 Minimum Selection

The minimum selection problem is given by

min | cx : in:p, z e {0,1}"

i€[n]

10

Figure 3: Instance where approximation guarantee of midpoint solution is
tight.

and has been frequently studied in the literature on min-max regret optimization
(see [KZ16]). While the classic selection problem can be solved in O(n), the the
min-max regret version can be solved in O(n - min{n,n — p}) time, see [Con04].
We show that also problem (CMMR) can be solved in polynomial time.

Theorem 2. Let U(A) = [[;cy[(1 = A&, (14+N)é] for a fived A € 0,1]. Then

the nominal solution & is an optimal solution to the min-maz regret selection
problem.

Proof. We assume that items are sorted with respect to ¢. Let £ be an optimal
solution with z; = 0 for an item 7 < p. We assume i is the smallest such item.
Then there exists some j > p with Z; = 1. Consider the solution 2’ with 2}, = Zj,
for k #i,j and 2} =1, 2, = 0.

Let g be a regret solution for . We can assume that g; = 1, as (1 — \)¢;
must be one of the p cheapest items. We can also assume §; = 0, as (1 + A)é;
is not among the p cheapest items. Let 4’ be the regret solution for z’.

The solutions # and z’ differ only on the two items ¢ and j. Hence, the
following cases are possible:

e Casey; =1and y; =0, ie,y =y We have

reg(®,\) —reg(x’, \) =(1+ X\)é; — (L+N)é& — (1= N)é + (14 N)é
=(14+XN)¢ —(1—-XN)é >0
e Case y; = 1 and y; = 1, y;, = 0 for some k > 7 with g = 1. Note that
this means (14 X)¢; > (1 — A+ 2T \)é, as otherwise, the regret solution
y could be improved. Hence,
reg(Z,A) —reg(®’,\) =(14+N)¢; — (L+A)é — (1= N)é + (1 4+ N
— (I = X+2XZg)e + (1 — N)¢j
=(1-MN(E —&)+Q+Né — (1 —=X+2\T)é, >0
e Case y; = 0 and y, = 1 for some ¢ > i with g, = 0. As the costs of item

1 have increased by using solution 2’ instead of Z, the resulting two cases
are analogue to the two cases above.

Overall, solution ' has regret less than or equal to the regret of Z. O

11

Note that this result does not hold for general interval uncertainty sets, where
the problem is NP-hard. It also does not necessarily hold for other combinatorial
optimization problems; e.g., a counter-example for the assignment problem can
be found in [CG18].

Finally, it remains to show that val(z) can also be computed in polynomial
time.

Theorem 3. For the compromise min-maz regret problem of minimum selection
it holds that |A(z)| € O(min{p,n — p}) for any firedx € X.

Proof. If x is fixed, then there are p items ¢ with costs (1 + A)é;, and (n — p)
items ¢ with costs (1 — X)é&;. The regret solution is determined by the p smallest
items. Accordingly, when A increases, the regret solution only changes if an
item ¢ with x; = 1, that used to be among the p smallest items, moves to the
(n — p) largest items, and another item j with z; = 0 becomes part of the p
smallest items. There are at most min{p,n — p} values for A\ where this is the
case.

O

Note that A = UzexA(z) has O(n?) many elements.. As the size of A(z) is
polynomially bounded, val(z) can be computed in polynomial time, and we get
the following conclusion.

Corollary 2. The compromise min-max regret problem of minimum selection
can be solved in O(n), and evaluated in O(nmin{p,n — p}).

Proof. As the nominal solution can be computed in O(n), the first claim follows.
For the second claim, we need to evaluate the regret of at O(min{p,n — p})
many points. Each evaluation can be done in O(n). O

4.2 Minimum Spanning Tree

The min-max regret spanning tree problem in a graph G = (V, E)) has previously
been considered, e.g., in [YKPO1, KZ11]. The regret of a fixed solution can be
computed in polynomial time, but it is NP-hard to find an optimal solution.
We now consider the compromise min-max regret counterpart (CMMR).

Let any spanning tree be fixed. To compute val(z), we begin with A = 0
and calculate a regret spanning tree by solving a nominal problem with costs ¢.
Recall that this can be done using Kruskal’s algorithm that considers edges
successively according to an increasing sorting

e, <...<¢

with respect to costs. If A\ increases, edges that are included in & have costs
(I1+MN)ée (i-e., their costs increase) and edges not in z have costs (1 — \)é, (i.e.,
their costs decrease). Kruskal’s algorithm will only find a different solution if
the sorting of edges change. As there are |V| — 1 edges with increasing costs,
and |E| — |V| + 1 edges with increasing costs, the sorting can change at most
(V] = 1D(E| = |V| + 1) = O(|E|?) times (note that two edges with increasing
costs or two edges with decreasing costs cannot change relative positions). We
have therefore shown:

12

Theorem 4. A solution to the compromise min-maz regret problem of minimum
spanning tree can be evaluated in polynomial time.

If the solution z is not known, we can still construct a set A with size
O(|E|?) that contains all possible change points along the same principle. We
can conclude:

Theorem 5. There exists a compact mized-integer programming formulation
for the compromise min-max regret problem of minimum spanning tree.

Note that Theorem 5 does also hold in the more general setting of general
interval uncertainty sets. However, we show in the following that solving the
compromise problem is NP-hard. To this end, we use the following result:

Theorem 6. [AL0J] The min-maz regret spanning tree problem is NP-hard,
even if all intervals of uncertainty are equal to [0,1].

Note that if all intervals are of the form [a,b] (i.e., U :=][;c(,[a, 0]), then

Iglef%/){((— opt(c Z br, — mln Z by, + Z aye

ecFE ecE ecE
ze=1 ze=0

= (V] =1Db—min | (VI=1)p= 3 (b—a)y

ecE
ze=0

(b — a) max
ma Zy

a:p70

Therefore, the min-max regret problem with costs [0,1] is equivalent to the
min-max regret problem with any other costs [a,b], in the sense that objective
values only differ by a constant factor and both problems have the same set
of optimal solutions. In particular, a solution y that maximizes the regret of
x with respect to cost intervals [a,b] is also a maximizer of the regret for any
other cost intervals [a’, b']. We can conclude:

Theorem 7. The compromise problem of min-max regret minimum spanning
tree is NP-hard.

Proof. Let an instance of the min-max regret spanning tree problem with cost
intervals [0, 1] be given. Consider an instance of the compromise problem with
¢e = 1 for all e € E. Then

val(z) = / reg(z, \)d\ = / 2\ max Z Ye | AN = max Z Ye

e€E e€E
xe=0 re=0

Hence, any minimizer of val(z) is also an optimal solution to the min-max regret
spanning tree problem. O

13

4.3 Shortest Path

For the shortest path problem, we consider X’ as the set of all simple s —t paths
in a graph G = (V, E) (for the min-max regret problem, see, e.g., [AL0O4]). As
for the minimum spanning tree problem, the regret of a fixed solution can be
computed in polynomial time, but it is NP-hard to find an optimal solution.
For the compromise problem (CMMR), we have:

— 1 b — | mi 1 ¢ 1—\)é
reg(x, \) ;(+ A)ée min CEE(+ N)éeye + ;(A)éele

ze=1 ze=1 ze=0

=) 1+ Nee+ | min A Y 2eeye + (1= X)) éeye
eE€E yex ecE eck
ze=1 ze=1

We can interpret the minimization problem as a weighted sum of the bicriteria

problem
cer 2CeYe
min sz:ElA Y ye X
Srep éelie

The number of solutions we need to generate to compute val(z) can therefore
be bounded by the number of solutions we can find through such weighted sum
computations (the set of efficient extreme solutions &, see, e.g., [Ehr06]).

Lemma 1. For the compromise shortest path problem, it holds that |A(z)| < |€|.

Depending on the graph G, the following bounds on the number of efficient
extreme solutions & can be taken from the literature [Car83, CG18]:

e for series-parallel graphs, £ € O(|E|)

e for layered graphs with width w and length ¢, £ € O(2'°swlog(t+1))
e for acyclic graphs, £ € O(|V|°& V1)

e for general graphs & € 22(eg” V)

We conclude:

Corollary 3. A solution to the compromise min-mazx regret problem of shortest
path can be evaluated in polynomial time on series-parallel graphs and layered
graphs with fixed width or length.

Note that Lemma 1 and Corollary 3 hold also in the case of general interval
uncertainty sets. Note that the number of extreme efficient solutions is only an
upper bound on A(z). Unfortunately, we cannot hope to find a better perfor-
mance than this bound on general graphs, as the following result demonstrates.

Theorem 8. For any bicriteria shortest path instance with costs (a,b), a. >0
for alle € E, there is an instance of (CMMR) and a solution x where A(z) = |£].

14

Proof. Let an instance of the bicriteria shortest path problem be given, i.e.,
a directed graph G = (V, F) with arc costs ¢, = (ae,b.) for all e € E. As
a. > 0 for all e € E, we rescale costs such that 2a. > b, for all e € E without
changing the set of efficient extreme solutions. We create the following instance
of (CMMR).

Every arc e = (i,j) € E is substituted by three arcs ¢/ = (i,4'(e)), e’ =
(i'(e), 5’ (e)) and " = (j'(e), 5). We set Cer = ac— %, éer = % and ¢ = 0 (see
Figure 4 for an example of such a transformation). Let E’, E” and E’" contain
all edges of the respective type. Additionally, we choose an arbitrary order of
edges (e1,...,en), and create arcs Epy = {(s,4'(e1)), (j'(e1),4'(e2)), ..., (5 (em), t)}.
We set costs of these arcs to be a sufficiently large constant M. Finally, let x
be the path that follows all edges in E); and E”. Note that edges in £’ can
be contracted, but are shown for better readability.

(a1,b1) (az,b2)

(a37 b3)

(a) Bicriteria shortest path instance.

(b) Compromise shortest path instance. Dashed lines indicate x.

Figure 4: Example for the transformation used in the proof of Theorem 8.

Note that M is sufficiently large so that no regret path y will use any edge in
E);. Hence, if y uses an edge in E’, it will also have to use the following edges
in E” and E", i.e., y corresponds to a path in the original graph G = (V, E).

15

The regret of x is

reg@ A) = > (L+NM+ Y (1+N)é — min S+ Neeye + > (1= N)éeye

ecEn ecE" e€E ecE
re=1 xe=0

be

= (14 \) - const. — ;n&;; ((1 + /\)% + (1= N)(ae — 2)) Ye

=(14+N)- t. — mi e+ Abe — ae)) Ye
(1+X) - cons %Eaﬂ ae)y

Therefore, if A goes from 0 to 1, all extreme efficient paths in the original graph
G are used to calculate reg(z, \). O

We now consider the complexity of finding a solution & € X’ that minimizes
val(z). Note that the reduction in [AL04] uses interval costs of the form [0, 1]
and [1,1], which does not fit into our cost framework [(1 — A)ée, (1 + A)é.].
Instead, we make use of the following result:

Theorem 9. [CG18] The min-max regret shortest path problem is NP-hard for
layered graphs with interval costs [0, 1].

Note that for layered graphs, all paths have the same cardinality. Hence,
reg(x) = (b—a) maxycx Y cer Ye (see Section 4.2), and the problem with costs
Te=0
[0,1] is equivalent to the problem with costs [a, b] for any a < b. Analog to the
last section, we can therefore conclude:

Theorem 10. Finding an optimal solution to the compromise shortest path
problem is NP-hard on layered graphs.

5 Compromise Solutions in the Min-Max Model

We now consider the compromise approach for min-max problems. Using the
extension presented in Section 3.4, we apply a weight function w : A — [0,1]
and consider the compromise problem

min val(z) with wval(z) = / w(\) < max c:l:> A (CMM)
zEX A cetd(N)

The solution of this problem minimizes the weighted average of the worst cast
performance over all considered uncertainty set sizes. In the following, we as-
sume that val(x) is well-defined (e.g., A has bounded support) and consider
(CMM) for different shapes of U(\).

Theorem 11. Let U(A) = [[;¢,[(1 = A)éi, (1 + A)éi] be an interval-based un-
certainty set with A € A = [0,1]. Then, a nominal solution I is an optimal
solution of (CMM).

Proof. As max.cyr)cx = (1 + A)eéx, we get

val(z) = /01 W) (14 Né) dA = </01(1 + A)w(A)dA) P

Therefore, a minimizer of the nominal problem with costs ¢ is also a minimizer
of (CMM). O

16

Theorem 12. Let U(A) = [[,c(,[é — Adi, & + Ady] be an general interval un-
certainty set with A € A C Ry. Then, an optimal solution to (CMM) can be
found by solving a single robust problem with general interval uncertainty.

Proof. Using that max.cy(x) €z = ¢x + A\dz, we find that

val(x) = /A w(o) (& + M)A

_ </A w()\)dA) éx + (/A Aw(A)dA) de

To find a minimizer of val(z), we can solve the min-max robust counterpart of
P(c) using an uncertainty set U(\') with X' = ([, Aw(X)dA)/([, w(X)dX). O

Lemma 2. For an ellipsoidal uncertainty set U(N) = {&¢ + C& : ||€]l2 < A} with
A e Ry, it holds that

max cx = ¢éx + \||C'z|2

celd(N)
Proof. This result has been shown in [BTN99] for A = 1. The proof holds
analogously. O

Theorem 13. Let U(X) = {¢+C& : ||€]l2 < A} be an ellipsoidal uncertainty set
with A € A CRy. Then, an optimal solution to (CMM) can be found by solving
a single robust problem with ellipsoidal uncertainty.

Proof. Using Lemma 2, we find

val(z) :/Aw()\)(éx+/\||0tw||g)d/\

- (/Aw()\)d)\> éx + (/A Aw(A)dA> IC" x|

To find a minimizer of val(z), we can solve the min-max robust counterpart
of P(c) using an uncertainty set 2/(\') with X' = ([, Aw(A)d\)/([, w(X)dA) by
applying Lemma 2 again. O

Note that ([, Aw(A)dA)/([w(\)dX) = 1, if w()) = 1, i.e., the compromise
solution simply hedges against the average size of the uncertainty. In general,
recall that this formula gives the centroid of the curve defined by w.

The results of this section show that compromise solutions are easy to com-
pute, as the resulting problems have a simple structure. This is due to the
linearity of the robust objective value in the uncertainty size A, which was not
the case for min-max regret.

6 Experiments

6.1 Setup

In this section, we present two experiments on compromise solutions to min-
max regret problems with variable-sized uncertainty. The first experiment is
concerned with the computational effort to find such a solution using the itera-
tive algorithms presented in Section 3.3. In the second experiment we compare

17

these solutions to the alternatives of using classic regret solutions for various
uncertainty set sizes.
Both experiments are conducted on shortest path instances of two types.

The first type consists of complete layered graphs. We parameterize such
instances by the number of layers, width and cost types. Each graph consists of
a source node, a sink node, and node layers of equal width between. For N + 1
layers of width k, an instance has a total of (N + 1)k + 2 nodes and Nk? + 2k
edges. We use N =5 to N = 55 in steps of size 5, and k = 5,10, 15,20. Graph
sizes thus vary from 32 nodes and 130 edges to 1,122 nodes and 22,040 edges.

Edges connect all nodes of one layer to the nodes of the next layer. Source
and sink are completely connected to the first and last layer, respectively. We
considered two types of cost structures to generate é. For type A, all costs
are chosen uniformly from the interval [1,100]. For type B costs, we generate
nominal costs in [1,30] U [70, 100], i.e., they are either low or high.

In total, there are 11 -4 -2 = 88 parameter combinations. For each combi-
nation, we generate 20 instances, i.e., a total of 1,760 instances.

The second type consists of graphs with two paths, that are linked by diago-
nal edges. For some length parameter L, we generated two separate paths from
a node s to a node t, each with L nodes between. We then generate diagonal
edges in the following way. On one of the two paths, we choose the ith node
uniformly randomly. We then connect this node with the jth node on the other
path, where j > i. The jth node is chosen with probability %(i)j_i_l, i.e., long
diagonal edges are unlikely (ensuring that j is at most L).

Edges along the two base paths have length chosen uniformly from the in-
terval [1,100]. For diagonal edges, we determine their length by sampling from
the same interval (j — ¢) times, and adding these values, i.e., all paths have the
same expected length.

We generate instances with length L from 50 to 850 in steps of 100, and set
the number of diagonal edges to be d- L for d € {0.05,0.10,0.15}. The smallest
instances therefore contain 102 nodes and 105 edges; the largest instances con-
tain 1,702 nodes and 1,830 edges. For each parameter combination, we generate
20 instances, i.e., a total of 9 -3 -20 = 540 instances.

The classic min-max regret shortest path problem on instances of both types
is known to be NP-hard, see [Chal6]. We investigate both types, as we expect
the nominal solution to show a different performance: For layered graphs, the
nominal solution is also optimal for (1), as for every path there also exists a
disjoint path. Therefore, the regret of a path P with respect tolf(1)1is >, p 2¢.
For the second type of instances, a good solution with respect to min-max regret
can be expected to intersect with as many other paths as possible. We can
therefore expect the nominal solution to be different to the optimal solution of
Uu).

All experiments were conducted using one core of a computer with an Intel
Xeon E5-2670 processor, running at 2.60 GHz with 20MB cache, with Ubuntu
12.04 and Cplex v.12.6.

18

6.2 Experiment 1: Computational Effort
6.2.1 Layered Graphs

We solve the compromise approach to variable-sized uncertainty for each in-
stance using the algorithms described in Section 3.3 and record the computation
times. Average computation times in seconds are presented in Table 1. In each
column we average over all instances for which this parameter is fixed; i.e., in
column ”width 5” we show the results over all 440 instances that have a width
of 5, broken down into classes of different length. The results indicate that
computation times are still reasonable given the complexity of the problem, and
mostly depend on the size of the instance (width parameter) and the density
of the graph, while the cost structure has no significant impact on computation
times.

Width Costs

5 10 15 20 A B

5 0.05 0.13 0.21 0.40 0.20 0.20
10 0.22 0.49 0.89 1.43 0.75 0.77
15 0.47 0.99 1.78 2.98 1.47 1.64
20 1.17 2.31 3.61 6.78 3.45 3.49
25 1.99 4.17 7.53 11.47 5.97 6.61
30 3.77 7.86 13.13 21.14 11.50 11.45
35 6.05 11.08 19.87 35.51 18.28 17.97
40 9.46 21.85 35.37 49.58 28.64 29.48
45 | 13.77 29.64 56.30 85.48 47.23 45.37
50 | 21.58 46.37 67.88 141.14 | 66.33 72.16
55 | 26.61 69.56 125.95 193.30 | 105.94 101.76

Layers

Table 1: Average computation times to solve (CMMR) in seconds.

We present more details in Tables 2 and 3, where the number of iterations
(i.e., how often was the relaxation of (CMMR) solved in Line 2 of Algorithm 2)
and the size of A at the end of the algorithm are presented, respectively.

We find that the average number of iterations is stable and small, with
around two iterations on average (the maximum number of iterations is three).
This value seems largely independent of the problem size. For the number of
generated change points |A|, however, this is different. It increases with the
number of layers, but it decreases with the width of the graph. Recall that the
regret of a solution z is roughly determined by the number of edges a regret path
y has in common. With increasing width, regret paths are less likely to use the
same edges, which explains why the size of A(z) decreases. As before, we find
that the cost structure does not have a significant impact on the performance
of the solution algorithm.

6.2.2 Two-Path Graphs

The Tables 4, 5 and 6 correspond to the Tables 1, 2 and 3 from the last experi-
ment, respectively. Computation times are sensitive to the parameter d, i.e., the
number of diagonal edges. For small values of d, the computational complexity

19

Width Costs

5 10 15 20 A B

51198 198 1.73 1.80 | 1.89 1.85
10 | 2.02 1.98 1.98 200|198 2.01
15 | 208 2.02 1.98 198 | 2.01 2.01
20 | 2.08 2.08 2.00 2.08 | 2.06 2.05
25 1 2.00 2.02 202 205|204 201
30 | 2.15 210 2.08 205|211 2.08
351|210 2.02 210 205|206 2.08
40 | 2.10 2.15 2.10 2.02 | 2.11 2.08
45| 2.12 215 2.12 205 | 2.10 2.12
50 | 2.17 2.08 2.05 2.15 | 2.05 2.17
55 | 2.10 2.10 2.02 2.12 | 2.10 2.08

Layers

Table 2: Average numbers of iterations.

Width Costs

5 10 15 20 A B

5| 3.06 295 217 227 | 259 264
10| 505 3.7 333 3.10]| 3.71 3.90
15| 6.72 495 433 4.10| 4.92 5.12
20| 9.00 6.53 5.03 520 | 640 @ 6.47
25| 10.47 7.70 6.65 5.60 | 742 7.79
30| 11.68 9.43 7.28 6.70 | 9.00 8.54
35| 13.10 9.32 762 7.10 | 899 9.59
40 | 1495 11.05 9.35 7.78 | 10.95 10.61
45 | 16.10 11.35 10.35 &.53 | 11.85 11.31
50 | 18.73 12.57 10.05 9.47 | 12.56 12.85
55 | 19.77 14.40 11.43 9.62 | 13.68 13.94

Layers

Table 3: Average size of A at the end of the algorithm.

20

of problem (CMMR) scales well with the length of the graph; however, for larger
values of d, the problem becomes intractable.

d

0.06 0.10 0.15

50 | 0.04 0.05 0.08
150 | 0.13 0.29 0.67
250 | 0.22 0.79 2.23
350 | 0.48 2.07 11.76
450 | 0.78 5.37 28.22
950 | 1.33 12.01 57.44
650 | 2.06 19.65 165.17
750 | 3.01 36.70 488.51
850 | 3.84 73.42 3186.18

Length

Table 4: Average computation times to solve (CMMR) in seconds.

While the number of iterations is relatively small overall, as in the last
experiment, the size of A increases with d, which makes the master problems
larger and more difficult to solve.

d

0.05 0.10 0.15

50 | 2.00 2.05 2.00
150 | 2.06 2.15 2.20
250 | 2.05 2.10 2.30
350 | 2.10 2.20 245
450 | 2.10 2.35 2.45
550 | 2.20 2.30 2.40
650 | 2.15 230 2.55
750 | 2.20 2.35 2.50
850 | 2.05 2.50 2.35

Length

Table 5: Average numbers of iterations.

6.3 Experiment 2: Comparison of Solutions
6.3.1 Layered Graphs

In our second experiment, we compare the compromise solution to the nominal
solution (which is also the min-max regret solution with respect to the uncer-
tainty sets U(0) and U(1)), and to the min-max regret solutions with respect to
U(0.3), U(0.5) and U(0.7).

To compare solutions, we calculate the regret of the compromise solution for
values of A in [0,1]. We take this regret as the baseline. For all other solutions,
we also calculate the regret depending on A, and compute the difference to the
baseline. We then compute the average differences for fixed A over all instances
of the same size. The resulting average differences are shown in Figure 5 for four

21

d

0.06 0.10 0.15

50 | 2.75 3.55 3.95
150 | 420 6.45 8.90
250 | 5.15 915 13.15
350 | 6.95 1225 18.05
450 | 8.05 16.25 21.40
550 | 9.95 1845 27.80
650 | 11.20 20.20 30.25
750 | 12.35 2245 32.70
850 | 13.05 27.00 39.00

Length

Table 6: Average size of A at the end of the algorithm.

instance sizes. To set the differences in perspective, the average regret ranges
from U(0) to U(1) of the compromise solutions are shown in the captions.

By construction, a min-max regret solution with respect to U()\) has the
smallest regret for this A\. Generally, all presented solutions have higher regret
than the nominal solution for small and for large values of A\, and perform better
in between. By construction, the compromise solution has the smallest integral
under the shown curve. It can be seen that it presents an interesting alternative
to the other solutions by having a relatively small regret for small and large
values of A, but also a relatively good performance in between.

6.3.2 Two-Path Graphs

We generate the same plots as in Section 6.3.1 using the two-path instances.
Recall that in this case, the nominal solution is not necessarily an optimal
solution with respect to ¢(1). We therefore include an additional line for /(1)
in Figure 6.

It can be seen that the nominal solution performs different to the last exper-
iment; the regret increases with A in a rate that part of the line needed to be cut
off from the plot for better readability. The solution to 2(0.5) performs very
close to the compromise solution overall. Additionally, the scale of the plots
show that differences in regret are much larger than in the previous experiment.
Overall, it can be seen that using a robust solution plays a more significant
role than in the previous experiment, as the nominal solution shows poor per-
formance. The solutions that hedge against large uncertainty sets (¢4(0.7) and
U(1.0)) are relatively expensive for small uncertainty sets and vice versa. The
compromise solution (as 2/(0.5), in this case) presents a reasonable trade-off over
all uncertainty sizes.

7 Conclusion

Classic robust optimization approaches assume that the uncertainty set U is
part of the input, i.e., it is produced using some expert knowledge in a previous
step. If the modeler has access to a large set of data, it is possible to follow
recently developed data-driven approaches to design a suitable set &/. In our

22

Regret Difference

Regret Difference

Regret Difference

-0.2 -

0 0.2 0.4 0.6 0.8
Lambda
(a) Layers = 20, Width = 5.
Value range [0.1,376.4].

0.35

0.3

0.25

0.2

-0.1

-0.15

-0.2

0 0.2 0.4 0.6 0.8 1
Lambda
(b) Layers = 20, Width = 20.
Value range [0.1,108.4].

Regret Difference

! 0 0.2 0.4 0.6 0.8
Lambda
(¢) Layers = 55, Width = 5.
Value range [0.5,1055.5].

0 0.2 0.4

0.6 0.8 1
Lambda
(d) Layers = 55, Width = 20.
Value range [0.1,309.3].

Figure 5: Difference in regret compared to nominal solution depending on A.

23

400 — T T T

Nom ==
U(0.3) —
U(0.5) —

300 ¢ U(0.7) — 1
u(1.0)

200 | H]

100]

Regret Difference
o
Regret Difference

600

400 -

n

o

o
T

|
100 - q
-200 R -200
-300 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6
Lambda Lambda
(a) Length = 150, d = 0.05. (b) Length= 150, d = 0.15.
Value range [197.4,10608.4]. Value range [249.1,11493.1].
2500 T — T T 2500 T T T T
H Nom =
U3 —]
2000 | U(0.5) — 2000
i U(0.7) —
u(1.0) 1500]
1500 - R
H 1000 1
g 1000 - 1g
o i & 500 1
& ; &
a 500 18
e e 0
o o
o o -500 1
T—
4 -1000 1
Nom
-1500 ¢ U 0.3) — A
-1000 | U(0.5) —
- u@.7) —
L 2000 | 0(1.0)
-1500 D ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Lambda
(¢) Length = 750, d = 0.05.
Value range [1215.2,51225.2].

Lambda
(d) Length = 750, d = 0.15.
Value range [1502.0, 54567.2].

Figure 6: Difference in regret compared to nominal solution depending on .

24

approach, we remove the necessity of defining U by using a single nominal
scenario, and considering all uncertainty sets generated by scaling this scenario
using a single parameter. Following a goal programming perspective, the aim
of the compromise approach is to find a single solution that performs well on
average in the robust sense over all possible uncertainty set sizes.

For min-max combinatorial problems, we showed that our approach can
be reduced to solving a classic robust problem of particular size. The setting
is more involved for min-max regret problems, where the regret objective is a
piecewise linear function in the uncertainty size. We presented a general solution
algorithm for this problem, which is based on a reduced master problem, and
the iterative solution of subproblems of nominal structure.

For specific problems, positive and negative complexity results were demon-
strated. The compromise selection problem can be solved in polynomial time.
Solutions to the compromise minimum spanning tree problem can be evalu-
ated in polynomial time, but it is NP-hard to find an optimal solution. For
compromise shortest path problems, the same results hold in case of layered
graphs; however, it is still an open problem if polynomial time algorithms exist
for special classes such as series-parallel graphs.

In computational experiments we highlighted the value of our approach in
comparison with different min-max regret solutions, and showed that computa-
tion times can be within few minutes for instances with up to 22,000 edges.

References

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and
min-max regret versions of combinatorial optimization prob-
lems: A survey. FEuropean Journal of Operational Research,
197(2):427-438, 2009.

[ALO4] I. Averbakh and V. Lebedev. Interval data minmax regret net-
work optimization problems. Discrete Applied Mathematics,
138(3):289-301, 2004.

[BB0Y] D. Bertsimas and D. B. Brown. Constructing uncertainty sets
for robust linear optimization. Operations research, 57(6):1483—
1495, 2009.

[BBC11] D. Bertsimas, D. Brown, and C. Caramanis. Theory and appli-
cations of robust optimization. SIAM Review, 53(3):464-501,
2011.

[BGK13] D. Bertsimas, V. Gupta, and N. Kallus. Data-driven robust

optimization. arXiv preprint arXiv:1401.0212, 2013.

[BTdHdW™13] A. Ben-Tal, D. den Hertog, A. de Waegenaere, B. Melen-
berg, and G. Rennen. Robust solutions of optimization prob-
lems affected by uncertain probabilities. Management Science,
59(2):341-357, 2013.

[BTGNO09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Opti-
mization. Princeton University Press, Princeton and Oxford,
20009.

25

[BTNOS]

[BTNYY]

[BTNOO]

[BTNO2]

[Car83]

[CG16]

[CG17]

[CG18]

[Chal6]

[Con04]

[DP8S]

[Ehr06]

[GMT14]

[GS10]

[GS16]

A. Ben-Tal and A. Nemirovski. Robust convex optimization.
Mathematics of operations research, 23(4):769-805, 1998.

A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain
linear programs. Operations Research Letters, 25(1):1-13, 1999.

A. Ben-Tal and A. Nemirovski. Robust solutions of linear pro-
gramming problems contaminated with uncertain data. Math-
ematical programming, 88(3):411-424, 2000.

A. Ben-Tal and A. Nemirovski. Robust optimization—
methodology and applications. Mathematical Programming,
92(3):453-480, 2002.

P. J. Carstensen. The complexity of some problems in paramet-
ric linear and combinatorial programming. University of Michi-
gan, 1983.

A. Chassein and M. Goerigk. Performance analysis in robust
optimization. In Robustness Analysis in Decision Aiding, Op-
timization, and Analytics, pages 145-170. Springer, 2016.

A. Chassein and M. Goerigk. Minmax regret combinatorial op-
timization problems with ellipsoidal uncertainty sets. Furopean
Journal of Operational Research, 258(1):58-69, 2017.

A. Chassein and M. Goerigk. Variable-sized uncertainty and
inverse problems in robust optimization. Furopean Journal of
Operational Research, 264(1):17-28, 2018.

A. Chassein. Robust Optimization: Complexity and Solution
Methods. PhD thesis, TU Kaiserslautern, 2016.

E. Conde. An improved algorithm for selecting p items with un-
certain returns according to the minmax-regret criterion. Math-
ematical Programming, 100(2):345-353, 2004.

D. Dubois and H. Prade. Possibility theory: An approach to
the computerized processing of information, 1988.

M. Ehrgott. Multicriteria optimization. Springer Science &
Business Media, 2006.

V. Gabrel, C. Murat, and A. Thiele. Recent advances in robust
optimization: An overview. Furopean journal of operational

research, 235(3):471-483, 2014.

J. Goh and M. Sim. Distributionally robust optimization and
its tractable approximations. Operations research, 58(4-part-
1):902-917, 2010.

M. Goerigk and A. Schobel. Algorithm engineering in robust
optimization. In L. Kliemann and P. Sanders, editors, Algorithm
Engineering: Selected Results and Surveys, volume 9220, pages
245-279. Springer, 2016.

26

[GYdH15]

[KZ06]

[KZ10]

[KZ11]

[KZ16]

[MJC15]

[WKS14]

[WOBD13]

[YdH12]

[YKPO1]

B. L Gorissen, 1. Yamkoglu, and D. den Hertog. A practical
guide to robust optimization. Omega, 53:124-137, 2015.

A. Kasperski and P. Zieliniski. An approximation algorithm for
interval data minmax regret combinatorial optimization prob-
lems. Information Processing Letters, 97(5):177-180, 2006.

A. Kasperski and P. Zieliniski. Minmax regret approach and
optimality evaluation in combinatorial optimization problems
with interval and fuzzy weights. FEuropean Journal of Opera-
tional Research, 200(3):680-687, 2010.

A. Kasperski and P. Zieliriski. On the approximability of ro-
bust spanning tree problems. Theoretical Computer Science,
412(4):365-374, 2011.

A. Kasperski and P. Zielinski. Robust discrete optimization
under discrete and interval uncertainty: A survey. In Robust-
ness Analysis in Decision Aiding, Optimization, and Analytics,
pages 113-143. Springer, 2016.

Andrew Mastin, Patrick Jaillet, and Sang Chin. Random-
ized minmax regret for combinatorial optimization under un-
certainty. In International Symposium on Algorithms and Com-
putation, pages 491-501. Springer, 2015.

W. Wiesemann, D. Kuhn, and M. Sim. Distributionally robust
convex optimization. Operations Research, 62(6):1358-1376,
2014.

K. Witting, S. Ober-Blébaum, and M. Dellnitz. A varia-
tional approach to define robustness for parametric multiob-
jective optimization problems. Journal of Global Optimization,
57(2):331-345, 2013.

L. Yanikoglu and D. den Hertog. Safe approximations of am-
biguous chance constraints using historical data. INFORMS
Journal on Computing, 25(4):666-681, 2012.

H. Yaman, O. E. Karagan, and M. C. Pinar. The robust span-
ning tree problem with interval data. Operations Research Let-
ters, 29(1):31-40, 2001.

27

