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Abstract

This paper introduces a single-ship routing problem with stochastic travel times that is faced by

a chemical shipping company in the Port of Houston. We take into explicit consideration the

uncertain waiting times associated with the terminals inside the port, and the resulting inefficient

transits caused by severe congestion. We show that the problem can be modeled as a stochastic

Traveling Salesman Problem with Pickups and Deliveries (TSPPD), in which the goal is to find

the route within the port with maximized probability that its total length does not exceed a

threshold. We show that it is important to properly address the inefficient transits, and that

including uncertainty in the travel times can have an impact in the choice of optimal route inside

a port. We further show that the layout of the relevant terminals as well as their distances to the

anchorage are important drivers of such impact. We conclude with the suggestion that one can

use the proposed model and method to find a set of alternative routes, followed by a re-evaluation

process since our method encompasses an approximation that underestimates the variation of the

route completion time.
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1 Introduction

Maritime transportation (Christiansen et al., 2007) is the backbone of globalization and

cross-border transport networks that support supply chains and enable international trade.
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In 2015, world seaborne trade volumes were estimated to have exceeded 10 billion tons,

which accounted for over 80 percent of total world merchandise trade (UNCTAD, 2016).

It is customary to divide maritime transportation into several sectors by cargo types, e.g.,

container shipping, dry bulk (iron ore, coal, grain, etc.) and liquid bulk (petroleum/crude

oil, liquefied natural gas, chemicals, etc.). The chemical shipping market belongs to the

liquid bulk sector, and includes the carriage of a range of products such as organic and

inorganic bulk liquid chemicals, vegetable/animal oils and fats and clean petroleum prod-

ucts. Worldwide, seaborne trade in the chemical sector accounted for 1.82% of the total

trade volume at sea and was estimated at 998 millions ton-miles in 2016 (UNCTAD, 2016).

One distinct characteristic that separates chemical shipping from other major sectors in

the tanker market (characterized by the usage of different types of tankers to provide

transport services), such as oil and gas, is that the shipments are relatively small. A

typical chemical tanker can have 15 to over 50 segregated tanks allowing the carrier to

transport cargoes of different product types on one single tanker, and the cargoes in these

tanks can be designated to a number of different charterers (customers). This special

characteristic of chemical shipping has given rise to the issue of in-port transits made by

chemical tankers as they typically make multiple “terminal calls” during a single port call

(a stop or visit at the port to service the cargoes therein). Common to most chemical

shipping companies, as a result, are the inefficiencies involved in their port calls and longer

time spent in ports.

Odfjell, a leading company in the chemical shipping sector, is no exception. According

to Hammer (2013), Odfjell vessels are spending 44% of their available time in port. There-

fore, optimizing port call operations and thereby reducing time spent in ports are in their

best interest, as more efficient port calls would increase the transport availability of the

ships. Arnesen et al. (2017) made one of the first contributions on this topic, considering

a single ship servicing numerous terminals and aiming to find an optimized route with

shortest time spent in port. The authors modeled the problem as a Traveling Salesman

Problem with Pickups and Deliveries, Time Windows and Draft Limits (draft of a ship

is the vertical distance between the waterline and the bottom of its hull, determining the

minimum depth of water the ship can safely navigate), or TSPPD-TWDL. Figure 1 illus-

trates a small example of this problem in the Port of Houston. In this example the ship

approaches the port via an anchorage point, and leaves the port after visiting all three

terminals. In reality, as the terminals schedule vessel berthing requests on a first-come,

first-serve basis, there are also waiting times at the terminals before they can accept the

ship. In Arnesen et al. (2017), however, the authors simplify the problem by assuming

deterministic waiting times. Hence the associated transit times between the terminals are

also fixed and known.

This study addresses a similar in-port routing problem faced by the chemical shipping
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Figure 1: Illustration of a port call. The ship approaches the Port of Houston from an

anchorage point in the Galveston Bay and visits three terminals within the port.

company Odfjell, and considers a more realistic scenario in the Port of Houston. Not

mirrored anywhere else in the world, the Houston ship channel is 80 kilometers long and

only 160 meters wide. Because of its layout and the recent boost in demand due to large

expansions of U.S. energy and chemical companies, the channel is increasingly congested

(Arnsdorf and Murtaugh, 2014). Once a vessel is inside the Galveston Islands, there

is literally no place for a vessel to pull over or berth for a short time to accommodate

scheduling difficulties, i.e., the vessel cannot wait “outside” or near any terminal (Kruse,

2015). Therefore, as required by the port authority, when a ship begins moving from one

terminal, it must go to another terminal, the Bolivar Roads anchorage area (the Anchorage

point in Figure 1), or an offshore anchorage which is typically several miles further out to

sea. This has resulted in a large number of inefficient transits made by chemical tankers

towards layberths or anchorages due to unavailability of terminals, and a lot of time wasted

in port. Statistics show that in 2014, around 18% of all transits made by chemical tankers

in the Port of Houston are these inefficient transits (Kruse, 2015).

In this study, we explicitly take into account the inefficient transits due to a special

sailing pattern, i.e., the ship will sail immediately towards the anchorage point after ser-

vicing a terminal, and only change its course back to the next terminal upon receiving the

notification that the terminal is ready to accept the ship. The unavailability of a terminal
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is described by an uncertain waiting time from the point the ship leaves the previous ter-

minal and send out the berthing request (known as a NOR, Notice of Readiness), to the

point when the next terminal receiving the NOR becomes available. Hence the travel time

taken from one terminal to the next is also uncertain, depending on the realized waiting

time of the next terminal, and also on where the ship is located when the next terminal

becomes available, as the ship may still be close by or it may already be “parking” at the

anchorage.

In Figure 2 we illustrate three different cases for a transit between two terminals. In

all three cases a ship is leaving Terminal A and is scheduled to service Terminal B next.

Assume that the ship will sail at a constant speed and that Terminal B is located on its way

back from Terminal A to Anchorage. In Case 1 where the waiting time at Terminal B, wB,

turns out to be 1.5 hrs, the ship has not passed Terminal B upon receiving the notification

that it is ready to accept the ship. Hence the travel time is 2 hrs which corresponds to a

direct movement from Terminal A to Terminal B. In Case 2 where wB = 3 hrs, the ship

has passed Terminal B but not yet reached Anchorage, the resulting travel time is then 4

hrs as the ship turns around and spends one more hour retracing part of its route back to

Terminal B. Finally in Case 3 where wB = 4 hrs, the ship has just arrived at Anchorage

when it gets the green light from Terminal B and the resulting travel time becomes 6 hrs.

This example shows how the transit time (travel time) from one terminal to the next can

be uncertain depending on the realized waiting time at the destination terminal, and on

the relative locations of the origin, destination terminals and the anchorage point.

This paper presents a stochastic routing model in which the special sailing pattern

described above is explicitly addressed and the travel times are uncertain. The goal is

to find the route within the port with maximized probability that its total length does

not exceed a threshold. In particular, given the initial cargoes on board to be delivered

when entering the port, and also a number of cargoes to be picked up during the port

call, we model the problem as a stochastic Traveling Salesman Problem with Pickups and

Deliveries (TSPPD) and aim to find the route that maximizes the probability that the

port call can be completed within a threshold time period. This is a practical objective

for the company: since there are usually multiple port calls along a ship trade, it benefits

the planning of the voyage to the next port if the company knows with higher certainty

how long the current port call will take.

In our case study, to better reflect on the realistic situation in the Port of Houston,

we derive probability distributions for the uncertain travel times using Monte Carlo sim-

ulations based on real port data from Odfjell. We then solve the stochastic TSPPD by

adapting the binary search enumeration method based on quasi-convex maximization in-

troduced by Nikolova et al. (2006), and compare the optimal routes with those stemmed

from solving the problem deterministically, e.g., using expected travel times between the

4



Figure 2: Example showing three cases with different travel times for a transit from

Terminal A to Terminal B.
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terminals. We show that it is important to properly address the special sailing pattern,

and that including uncertainty in the travel times can have an impact in the choice of op-

timal route inside a port. In addition, in response to the question raised by the shipping

company, “whether we lose much by not considering uncertainty and using a deterministic

model”, we show that in current situations at Port of Houston the numerical benefits of

using a stochastic model are limited. However, since new anchorages and layberths closer

to the channel are currently under development, we show that including uncertainty in the

travel times has a much higher impact when the anchorage point is close to the terminals.

The contribution of this paper is twofold. First, it introduces and models the stochastic

TSPPD with uncertain travel times based on the real in-port routing problem faced in

the Port of Houston, while proposing a simulation method to handle the special sailing

pattern. Second, by solving the problem and analyzing the results it demonstrates the

usage of the model and the solution method as a decision support tool, providing the

shipping company with guidance on how to obtain potentially optimal routes in the port

and how they should be evaluated correctly. The remainder of the paper is organized as

follows. Section 2 provides a brief literature review. Section 3 presents the mathematical

model and introduces the solution method. Section 4 discusses the input data and the

instance generation process, in which a simulation-based approximation scheme is used.

A computational study is given in Section 5. We conclude in Section 6.

2 Literature Review

This study is most closely related to the work of Arnesen et al. (2017) in which the authors

present a a Traveling Salesman Problem with Pickups and Deliveries (TSPPD, see also

Berbeglia et al., 2007 for a classification for pickup and delivery problems) with draft limits

and deterministic travel times between the terminals in the Port of Houston, and propose

a dynamic programming method to solve the problem. Malaguti et al. (2018) study a

similar TSPPD with draft limits (without time windows) and propose an exact branch-

and-cut algorithm, as well as heuristics for obtaining feasible solutions in short computing

times. Based on the model of Arnesen et al. (2017), Wang et al. (2018) propose a combined

model taking both in-port routing and the allocation of chemical cargoes to tanks into

consideration. Rakke et al. (2012) have also proposed models and solution methods for a

class of TSPs with draft limits that arise in maritime transportation. These studies have

not considered any uncertainty in their problems.

There exists a rather limited literature on the TSP and TSPPD with stochastic travel

times, examples are Kao (1978), Sniedovich (1981), Carraway et al. (1989), Jula et al.

(2006), Chang et al. (2009), Bertazzi and Maggioni (2015) and Perboli et al. (2017),

wherein travel time distributions are often assumed to be independent and are such that
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the distribution of the sum of those random variables can be readily computed (e.g., Nor-

mal, Poisson and Gamma(a,b) with constant b). In this paper the same assumption of

independence and additivity is made using independent normal distributions, while the

associated means and variances of the stochastic travel times are obtained through simu-

lation using real data to handle the special sailing pattern illustrated earlier in Figure 2.

To our best knowledge, there are no other studies in the literature that consider such a

sailing pattern which is particularly relevant in the Port of Houston.

Our problem is also related to the Stochastic Vehicle Routing Problem (SVRP) which

is a generalization of the stochastic TSP. Surveyed in Gendreau et al. (1996) and Oyola

et al. (2016), the SVRPs arise when some elements of a vehicle routing problem are

uncertain, and most articles consider stochastic demands or (the presence of) customers.

There are, however, some efforts made in SVRP with uncertain travel or service times.

Among those articles most have assumed quantifiable costs associated with the violation

of soft time windows (e.g., Ando and Taniguchi, 2006; Russell and Urban, 2008; Yan

et al., 2014), the overtime of the whole route (e.g., Woensel et al., 2007; Lei et al., 2012)

or both (e.g., Li et al., 2010; Ta et al., 2013; Zhang et al., 2013); and others have used

probabilistic constraints to ensure the service level related to time windows by means of

chance constrained programs (CCP) (e.g., Zhang et al., 2012; Gómez et al., 2016). In

practice, however, it is not always straightforward to quantify the costs for route “failure”

when some time constraints are violated. This is also the case for Odfjell. Also, it is the

company’s experience that the time windows for the customer cargoes (chemicals) in the

Port of Houston are usually very wide, we have therefore not considered time windows in

this paper.

3 In-Port Routing with Uncertain Travel Times

We consider a chemical tanker arriving at a port with a given set of pickup and delivery

commitments to be fulfilled during the port call, indicating the characteristics of the

cargoes and their respective terminals for loading/unloading operations. A pre-planned

(nonadaptive) route is to be determined prior to entering the port. Note that it can

become adaptive by replanning the route on the fly with updated information. To start

the port call, the tanker enters the port via an anchorage point to the first terminal in

its visiting sequence, carrying a number of contracted delivery cargoes that are to be

delivered to their respective destination terminals. The tanker then sails a planned route

with sequenced terminal visits within the port to unload these cargoes, while also loading

a set of pickup cargoes from different terminals along the route before finishing the port

call. When inside the port, the tanker must sail immediately towards the anchorage after

leaving a terminal until receiving notification that the next terminal is ready to accept
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the ship. All terminals in the port have their respective draft limits which are represented

in terms of maximum weights the ship can safely carry on board when approaching and

leaving the terminals. A tanker may even have to make two stops at the same terminal

because of its draft limit – for instance, the water depth may not be sufficient until other

cargoes have been discharged. Additionally, the total capacity (in deadweight tonnes) of

the ship must always be respected, which can be another cause for multiple visits to the

same terminal.

This in-port routing problem is formulated as a stochastic TSPPD with draft limits

and uncertain travel times, in which the goal is to find the optimal route within the port

with maximized probability that its total length does not exceed a threshold. We present

its mathematical formulation in Section 3.1, and introduce the exact method used to solve

the problem in Section 3.2.

3.1 Mathematical Model

The stochastic TSPPD is defined on a directed graph G = (N,A), where N = {0, ...., n+1}
is the set of nodes and A the set of admissible arcs, which is a subset of {(i, j) : i, j ∈
N, i 6= j}. Nodes 0 and n + 1 represent the origin and destination nodes, respectively,

and are both associated with the anchorage. In other words, the route is assumed to be

a round trip that both starts from and ends in the same anchorage point. Note that if

time spent in port is calculated up to the final terminal visited instead of the anchorage,

those routes that end in a terminal deep inside the port channel may be unfairly favored.

Let NC = {1, ..., n} be the set of all cargo nodes, and every cargo is, according to the

contracts, either a pickup node or a delivery node. Note that as mentioned earlier, it is

not always possible for the ship to service all cargoes located in the same terminal during

one terminal visit due to draft and capacity limitations, we thus cannot aggregate the

cargo nodes according to their associated terminals. Also note that different nodes may

correspond to the same physical terminal in the port. Let N+ represent the set of pickup

nodes and N− the set of delivery nodes, N+∪N− = NC . We show in Table 1 the notation

of parameters and decision variables used in the model.

A route can then be described by the values of the binary variables xij , and a feasible

route is defined as one that originates and ends in the anchorage and visits every cargo

node exactly once, while respecting the total ship capacity and the draft limitations at

all times. The total length (time) of a given feasible route can then be computed by∑
(i,j)∈A Tijxij . We aim to find the route which maximizes the probability that its total

length does not exceed a threshold H. We therefore solve

max Pr

( ∑
(i,j)∈A

Tijxij ≤ H
)
, (1)
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Table 1: Notation of parameters and decision variables.

Parameters

Qi signed weight of cargo i, positive for pickup cargoes and negative for

delivery ones.

Q+, Q− total tonnage of the pickup and delivery cargoes, respectively. These are

both positive values.

Di draft limit for the service of cargo i, represented in terms of maximum

weight (in deadweight tonnes) the ship can safely carry on board when

approaching and leaving the terminal in which cargo i is located.

K total capacity of the ship in deadweight tonnes.

Tij stochastic travel time from node i to node j representing the duration

of all activities from the start of service for i to the start of service for j.

Note that when i and j are located in the same terminal, such duration

does not involve actual “traveling” and only consists of the service time

at node i.

Decision Variables

xij binary flow variables, equal to 1 if the ship sails directly from node i to

node j, and 0 otherwise.

yij total weight on board the ship when sailing from i to j.
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∑
j∈N

x0j = 1, (2)

∑
i∈N

xi,n+1 = 1, (3)∑
j∈N |(i,j)∈A

xij = 1, i ∈ NC , (4)

∑
i∈N |(i,j)∈A

xij = 1, j ∈ NC , (5)

∑
j∈NC

y0j = Q−, (6)

∑
i∈N |(j,i)∈A

yji −
∑

i∈N |(i,j)∈A

yij = Qj , j ∈ NC , (7)

y0j ≤ Q−x0j , (0, j) ∈ A, (8)

yi,n+1 ≤ Q+xi,n+1, (i, n+ 1) ∈ A, (9)

Qixij ≤ yij ≤ (K −Qj)xij , (i, j) ∈ A | i, j ∈ N+, (10)

(Qi −Qj)xij ≤ yij ≤ Kxij , (i, j) ∈ A | i ∈ N+, j ∈ N−, (11)

−Qjxij ≤ yij ≤ (K +Qi)xij , (i, j) ∈ A | i, j ∈ N−, (12)

yij ≤ min{K −Qj ,K +Qi}xij , (i, j) ∈ A | i ∈ N−, j ∈ N+, (13)

yij ≤ Dj xij , (i, j) ∈ A | j ∈ N−, (14)

yij ≤ Di xij , (i, j) ∈ A | i ∈ N+, (15)

xij ∈ {0, 1}, (i, j) ∈ A, (16)

yij ≥ 0, (i, j) ∈ A. (17)

Constraints (2) and (3) ensure the conservation of flow in the origin and destination

nodes, respectively, while constraints (4) and (5) ensure that every cargo within the port

is serviced exactly once. Constraint (6) states that the ship leaves from the anchorage

carrying the total load that is to be delivered to the terminals within the port. Constraints

(7) ensure that the difference between ingoing and outgoing shiploads of each node equals

the weight of the cargo serviced at the node. Constraints (8) and (9) connect the xij and

yij variables out from the origin node and into the destination node. Constraints (10)-(13)

ensure that the load on board the ship along the route never exceeds the total capacity of

the ship. Constraints (14) and (15) represent the draft limit restrictions when arriving at

delivery nodes and departing from pickup nodes, respectively. The variable domains are

given by constraints (16) and (17).
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3.2 Solution Method

Assuming that each Tij is an independent normally distributed random variable, i.e.,

Tij ∼ N(µij , σ
2
ij), the probability in objective function (1) can be computed by

Pr

( ∑
(i,j)∈A

Tijxij ≤ H
)

= Φ

(
H −

∑
(i,j)∈A µijxij√∑

(i,j)∈A σ
2
ijxij

)
, (18)

where Φ(·) is the cumulative distribution of the standard normal random variable N(0, 1).

Also since Φ is monotonically increasing, its maximization is equivalent to maximizing its

argument, i.e., to maximize Eq. (18) one needs to solve

max
H −

∑
(i,j)∈A µijxij√∑

(i,j)∈A σ
2
ijxij

. (19)

To solve this non-linear and non-convex maximization problem we use the exact

method proposed in Nikolova et al. (2006), which is generalized in Nikolova (2010), for

stochastic shortest path problems based on quasi-convex maximization. Recall that we

denote by A the set of admissible arcs, which is a subset of {(i, j) : i, j ∈ N, i 6= j}. By

indexing all arcs in A by 1, 2, ...,m we can denote a feasible route by its incidence vector

x = (x1, ..., xm) where xk = 1 if arc k is present in the route and xk = 0 otherwise. Denote

also the vector of means of all arcs by µ = (µ1, ..., µm) and the vector of variances by

σ2 = (σ21, ..., σ
2
m). The set of all feasible routes is then a subset of the vertices of the unit

hypercube in m dimensions (the m-dimensional analogue of a 2-dimensional square or a

3-dimensional cube), and we call the convex hull of these feasible vertices the path polytope

which corresponds to the feasible region given by constraints (2) – (17). Thus, the optimal

route in our problem is a solution to

max
H − µ · x√
σ2 · x

(20)

s.t. x ∈ path polytope

x ∈ {0, 1}m.

Figure 3 illustrates the projection of the hypercube vertices (representing all incidence

vectors) and the path vertices (representing the feasible incidence vectors or feasible routes)

onto the (µ, σ2)-plane. The projection of the convex hull of the path vertices, i.e., the

shadow of the path polytope, is also shown, with its dominant represented using (red)

solid lines. Then, for example, computing the leftmost and lowermost vertices of the path

polytope shadow correspond to finding the shortest path, in terms of arc means and arc

variances, respectively. It is shown in Nikolova et al. (2006) that objective function (20)

has a special structure such that, as long as the deadline H is no less than the mean of

the smallest-mean path (i.e., the leftmost vertex of the path polytope shadow), objective
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Figure 3: Projection of the hypercube vertices, path vertices and their respective convex

hulls onto the (µ, σ2)-plane (Nikolova et al., 2006).

function (20) is quasi-convex and its maximum always lies at one of the extreme points on

the dominant of the path polytope shadow. It is further shown in Nikolova et al. (2006)

that there is a one-to-one correspondence between the extreme points on the dominant

of the path polytope shadow on the (µ, σ2)-plane and the breakpoints of the parametric

shortest path problem with edge weights µ + λσ2, λ ∈ [0, 1]; and that each such extreme

point thus corresponds to solving the minimization problem (notice that a lower route

mean or a lower route variance helps objective function (20) to achieve a higher value)

with a linear objective of the following form for some α ∈ [0, 1]:

min αµ · x+ (1− α)σ2 · x. (21)

We use the exact binary search enumeration method suggested in Nikolova (2010) to

find all breakpoints of the parametric shortest path problem, i.e., all the extreme points

on the shadow dominant. We show in Figure 4 its implementation using an example.

The method starts with setting α = 1 and then α = 0, solves the two corresponding

deterministic routing problems by replacing the objective function (1) with (21) and using,

e.g., a commercial solver for general mixed integer linear programs (MILPs). The resulting

two solutions, represented by points a and b on the (µ, σ2)-plane in Figure 4, correspond

to the route with the smallest mean and the route with the smallest variance, respectively.

We next set α so that the slope of the linear objective is the same as the slope of the line

12



Figure 4: Implementation of the binary seach method on an example problem showing

the order in which new points (routes) are found.
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connecting points a and b. We solve the deterministic problem with the updated α, and

denote the resulting route by point c (see Figure 4). The search then continues similarly

to find a route between a and c, and between c and b, etc., until no further new routes

are found. In the example shown in Figure 4, after point c we first search to its left (using

updated α corresponding to line 2), finding point d. We search to the left, again, of point

d, however finding that there exists no new point in that direction. We then turn to the

right of point d, to find new points between points d and c, and between points c and b,

and so on. In Figure 4 the points a, b, ..., f therefore indicate the order in which feasible

points are found, and the numbers 1, 2, ..., 8 represent the order in which the slopes of the

corresponding edges are used to update α in the linear objective. Note that in this way,

by finding all the points minimizing some positive linear combination of the mean and

variance, we obtain all extreme points of the shadow dominant, regardless of the sequence

in which they are found (which depends on the direction to which we perform the search

after finding a new point). Then, since the optimal point always lies in this set of extreme

points, we may compare the obtained solutions in terms of objective function (20) and the

optimal route is the one that maximizes this objective.

4 The Input and Test Instances

The input data used for our computational study is based on real operating data of

Odfjell in the Port of Houston. In Section 4.1 we present the geography of the port

and the layout of the terminals. We discuss in Section 4.2 the relation between un-

certain waiting and travel times, and we propose the simulation-based approximation

method to handle the special sailing pattern. Finally in Section 4.3, we provide an

overview of the randomly generated instances. These instances may be downloaded from:

http://dx.doi.org/10.17632/mx6cpkwdt9.1.

4.1 Geography

We consider in total 11 terminals in the Port of Houston shown as Terminals A–K in

Figure 5. The anchorage is located outside the port, some 22 nautical miles from Terminal

A. During a port call, Odfjell’s chemical tankers normally visit a subset of these terminals

and may service several cargoes at each terminal. Since all the terminals are located

along the narrow port channel, without much loss of accuracy, we can see them as being

distributed along a straight line (as shown in Figure 6) in order to facilitate our tests and

analysis. Figure 6 also shows the approximated direct sailing times (in hours) between

any two adjacent terminals, as well as between the anchorage and Terminal A. These are

calculated by assuming a constant sailing speed of 4.3 knots in the port.

Depending on the locations of the service commitments, the tanker usually visits a
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Figure 5: The 11 terminals in the Port of Houston that are considered in the tests.

Figure 6: The terminals A–K and the anchorage (point 0) seen as points distributed on a

straight line. The numbers on the line indicate the direct sailing times in hours between

the adjacent points.

different set of terminals each time when calling the port, and that seldom includes all 11

terminals shown above. In this paper, we consider the most common scenario based on the

company’s daily operations and hence always include six terminals when constructing our

test instances. However, to diversify the instances we differentiate among three types of

layout of the relevant terminals in the port, namely Even, Far and Split. The Even layout

indicates that all terminals are relatively spread out along the ship channel, while the Far

layout represents a situation where all terminals are located deep inside the channel and

thus relatively far from the anchorage. Finally in the Split layout, the terminals are split

into two groups, one deep inside the channel and the other located close to the outlet of

the channel.

In our computational study we use three different sets of (six) terminals to approximate

the three types of layout (see Figure 5): Terminals A, B, D, G, I, K for the Even layout;

Terminals F, G, H, I, J, K for the Far layout; and Terminals A, B, H, I, J, K for the Split

layout.

4.2 Uncertain Waiting and Travel Times

Recall that in our model we assume each travel time Tij , defined as the duration of all

activities from the start of service for node i to the start of service for node j, is an inde-

pendent normally distributed random variable, i.e., Tij ∼ N(µij , σ
2
ij). The travel time Tij

consists of two major components: a deterministic component, denoted Li, that consists

in the service duration of cargo i, including its loading/unloading time as well as tank
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(a) Even layout

(b) Far layout

(c) Split layout

Figure 7: Three different types of layout of terminals.
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washing time if i is a delivery cargo, which are fixed and known a priori; and a stochastic

component, TOD – the actual sailing time to move from the origin terminal (associated

with node i) to the destination terminal (associated with node j). As illustrated in Fig-

ure 2, the actual sailing time does not solely depend on the direct sailing distance between

the two terminals, but also on the waiting time for the destination terminal which is de-

fined as the time from the point the ship leaves the origin terminal to the point when the

destination terminal (or one of its berths) is ready to receive the ship.

The dependency between waiting time and actual sailing time can be described as

follows. Consider the move from Terminal O to Terminal D. Let tOA and tDA be the

(known) time taken to sail from Terminal O and Terminal D, respectively, to Anchorage.

For ease of presentation, we use tOD to represent the direct movement time between

Terminal O and Terminal D, i.e., tOD = |tOA− tDA|. Further let w be the waiting time for

Terminal D. Then, if Terminal D is located between Terminal O and Anchorage, the actual

sailing time from Terminal O to Terminal D, TOD, can be expressed with the following

equations:

TOD =


tOD if w < tOD,

2w − tOD if tOD ≤ w < tOA,

w + tDA if w ≥ tOA.

(22)

Note that the three cases in Equations (22) correspond to the following three scenarios

of where the ship is when the waiting time has elapsed (much like the cases illustrated in

Figure 2), respectively: the ship has not passed Terminal D; the ship has passed Terminal

D but not arrived at Anchorage yet; the ship is already parked at Anchorage.

Similarly, if Terminal O lies between Terminal D and Anchorage, then

TOD =

2w + tOD if w < tOA,

w + tDA if w ≥ tOA.
(23)

Also, if Terminal O and Terminal D are in fact the same, i.e., if nodes i and j are

located in the same terminal, then TOD = 0.

Clearly, to better represent the stochasticity of travel times Tij = Li + TOD (where

terminals O and D correspond to nodes i and j, respectively), it is useful to start with

the reality of waiting times for the terminals. We have therefore acquired from Odfjell

a data set containing nearly 400 waiting times experienced by their tankers in the Port

of Houston. This set of data contains a small portion of data points that we consider to

be obviously erroneous such as waiting times that are excessively long. Also, some berth

visits lack the specifics of the associated terminal names, mainly because the collection of

this type of data has not been part of their operational routine. However, this set of data

can give us a general picture of the uncertainty faced by the company. We have therefore
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not tried to fit some distribution to the data points due to the noise therein, and instead

only make use of the fact that the median of all waiting times is around 5 hours. We

thus denote the waiting time for each cargo j ∈ NC by wj and assume it follows a normal

distribution, i.e., wj ∼ N(mj , s
2
j ). Then, we let all mj be independent random variables

that are uniformly distributed over a support [0, 10], and then set the standard deviations

to 50% of their respective means, i.e., sj = 0.5×mj for all j ∈ NC .

We then use Monte Carlo simulation to derive the parameters for the stochastic travel

times Tij . Recall that in our model we assume Tij ∼ N(µij , σ
2
ij), and that Tij = Li +TOD,

where terminals O and D correspond to nodes i and j, respectively. For every pair of i and

j, we can then run a Monte Carlo simulation to observe the outcomes for TOD, based on

sampling the values for wj ∼ N(mj , s
2
j ), and subsequently computing TOD with Equations

(22) and (23). The mean and variance of these outcomes, E[TOD] and VAR[TOD], are then

used to estimate the parameters for Tij , i.e., µij = Li + E[TOD], and σ2ij = VAR[TOD].

We illustrate in more detail the process of simulating outcomes for TOD with two

examples. Consider the moves from Terminal C to Terminal E, and from Terminal G to

Terminal E (see Figures 5 and 6 for their locations), and wj ∼ N(5, 2.52) in both cases.

For the move from Terminal C to Terminal E, we can draw 10,000 realizations of wj , and

then based on each of them calculate the realized sailing time TOD using Equations (23).

In this way we obtain 10,000 realized sailing times, which are aggregated and shown as

a histogram in Figure 8a. Similarly, using Equations (22), we can obtain 10,000 realized

sailing times for the move from Terminal G to Terminal E, shown in Figure 8b.

(a) Terminal C → Terminal E (b) Terminal G → Terminal E

Figure 8: Two examples of Monte Carlo simulation for actual sailing time where the

waiting time of the destination terminal is subject to N(5, 2.52): Terminal C → Terminal

E for Example (a) and Terminal G → Terminal E for Example (b).

One may notice the tall bars at the leftmost of the histograms in Figure 8. In Figure 8a,

for instance, the tall bar represents the occurrence of actual sailing times within the range

[2.5, 3.0). This is because when drawing realizations for the normally distributed wj we
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Table 2: The results of measuring the mean, variance and skewness of two sets of realized

sailing times shown in Figure 8.

Sample measures (a) C → E (b) G → E

mean 12.4 9.4

variance 4.72 4.82

skewness -0.1 (right skewed) 0.2 (left skewed)

set those negative values (which happens with a probability of 2.28% when the standard

deviation is 50% of the mean) to 0 for practical purposes, and because the sailing time

should be at least 2.54 hours which is the direct distance (in hours) between the two

terminals.

We further show the mean, variance and skewness of the set of realized sailing times

for the two examples in Table 2. In the first case, for example, where the ship moves

from node i in Terminal C to node j in Terminal E, the simulation yields 12.4 and 4.72 as

E[TOD] and VAR[TOD], respectively. Then, given the deterministic service time Li of node

i, the simulated stochastic travel time from i to j is such that Tij ∼ N(Li + 12.4, 4.72).

In this way we can obtain the Monte Carlo estimates for the µ’s and σ2’s of all Tij , given

the specifics of the nodes (location, deterministic service time, etc.) and their respective

waiting time distributions, by running a simulation for each pair of nodes (i, j) ∈ A. Note

that there are two special situations where no simulation is required for node pair (i, j):

(1) when i and j are located in the same terminal, in which case the service of j will

carry out immediately after that of i and the corresponding sailing time is 0; (2) when

j = n + 1 representing the final transit back to the anchorage after servicing all cargoes,

the corresponding µij is then Li plus the distance (in hours) from i to the anchorage, and

the corresponding σ2ij is 0.

In addition, to ensure the validity using Monte Carlo estimation, we also check the

goodness of fit of the finishing times of a complete route to the normal distribution by

running whole-route simulations (detailed in Section 5.4). It will be shown later that the

normality assumption for a complete route holds, but disregarding the skewness and the

“leftmost bars” may lead to underestimation of route variance.

4.3 Generating the Test Instances

The test instances used in our computational study are generated based on real data and

a randomized process. We first give an overview of the input data used to generate the

instances in Table 3 before explaining in more detail. The ranges in the “Values” column

indicate that the associated input parameters are chosen uniformly at random from the

given intervals. As mentioned earlier in Section 4.1, every instance considers six terminals
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according to a chosen layout, Even, Far or Split, which determines which six terminals to

include.

Table 3: Summary of input data used to generate the instances.

Input Data Values

Layout Even, Far, Split

Number of terminals 6

Number of cargoes 20

Number of pickup cargoes 8 - 12

Total pickup/delivery load as % of total ship capacity 80% - 90%

Draft limits as % of total ship capacity 50% - 90%

Mean of waiting time 0 - 10 hours

SD as % of mean 50%

Loading/unloading time 0.5 - 14 hours

Tank cleaning time 3 - 15 hours

The chemical tankers used by Odfjell have capacities ranging from 4,000 to 50,000

deadweight tonnes (dwt). In our computational study, we only consider one type of ship

with 19,805 dwt capacity for all test instances. However, we let draft limits and cargo

sizes be expressed as percentages of the total ship capacity when generating the instances,

so that the instances are representative for more than one type of ship.

We consider for every instance 20 cargoes, each of them is either a pickup or a delivery

cargo. In each instance, we randomly choose 8 to 12 to be pickup cargoes and the rest

are delivery cargoes. The total load to be picked up and the total load to be delivered are

both randomly set to between 80% and 90% of the total ship capacity. The size of each

cargo is then assigned at random (with a lower bound) such that the sums of all pickup

and delivery cargoes equal the total pickup load and total delivery load, respectively.

The draft limits at the terminals determine the maximum weight on board the ship

when approaching and leaving every terminal along the route, and, as shown in Arnesen

et al. (2017), they can be restrictive and significantly affect the routing decisions. For our

problem to be feasible, at least one terminal must have large enough draft limit for the

ship to enter the port with total delivery load on board, and also at least one terminal

for the ship to leave with total pickup load on board. Therefore, for every instance we

always draw one or two terminals at random and set their draft limits to 120% of total

ship capacity to increase the likelihood of feasibility of the problem. The draft limits for

the remaining terminals are then chosen randomly between 50% and 90% of the total ship
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capacity.

To obtain the means and variances for the travel times Tij in our model, as explained

in Section 4.2, we first generate the distribution for the waiting time wj ∼ N(mj , s
2
j )

associated with each cargo node j. Also, since at Port of Houston the uncertainty of the

waiting times mainly come from queuing for available berths at the terminals and not the

loading/unloading preparation of the cargoes, we generate the waiting time distributions

based on terminals. Therefore, with each terminal we associate a mean waiting time

randomly chosen between 0 and 10, and then let all nodes located in this terminal have

this same mean. After the mean waiting times (mj ’s) are chosen for all cargo nodes, we

let the standard deviations (sj ’s) be 50% of their respective means. Furthermore, the

deterministic components of the travel times are generated as follows to represent real-life

situations: the loading/unloading time of a cargo is chosen uniformly at random between

0.5 and 14 hours; and the tank cleaning time associated with a delivery cargo is random

between 3 and 15 hours.

5 Computational Study

For the computational study we start with creating three sets of instances based on the

terminal layout: the Even set, the Far set and the Split set; each set containing 100

instances randomly generated as described in Section 4.3. When solving the problem

instances, the binary search algorithm for the stochastic TSPPD is implemented in Matlab

R2015a, while the deterministic subproblems (with linear objectives) therein are solved

using the general MILP solver in FICO Xpress 7.8. All experiments are run on an Intel

3.4 GHz processor with 16 GB memory.

In Section 5.1 we use a small illustrative example to show how the optimal solution

changes according to the specific criterion used, e.g., with and without the consideration

of uncertainty. We then show the difference between the deterministic and stochastic

solutions to a realistically generated instance in Section 5.2. The impacts of different

instance characteristics are discussed in Section 5.3, and we evaluate our Monte Carlo

approximation method in Section 5.4.

5.1 Optimal Route Incorporating Risk

In the absence of uncertainty, such as in Arnesen et al. (2017) where the problem is to find

the best route that visits all cargoes while respecting all routing constraints, the definition

of the optimal route can be simple and straightforward (though solving the problem is

not): the feasible route with the least completion time. In a stochastic context, however,

it is sometimes not clear how to define the optimal route: is it the one that minimizes

the expected completion time, its variance or some combination of the two? In real-life
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planning, it of course depends on the preference of the decision maker.

Figure 9 shows a small illustrative problem with three terminals and three cargoes as

well as two feasible routes for the problem. Three terminals, A, B and C, are represented

by grey squares, with their respective waiting time distributions (in hours) and draft

limits (abbreviated as DL) shown above, and each terminal contains one cargo with a

positive/negative number indicating its pickup/delivery load. For example, there is a

delivery cargo weighing 4,000 tonnes in Terminal A, in which the waiting time follows

distribution N(10, 52) and the draft limit is 10,000 tonnes. Note that the waiting times

at both Terminals B and C are assumed to be deterministic, hence both follow N(0, 0).

Also note that the draft limit at Terminal B is intentionally set to be low (2,000 tonnes),

so that the ship must unload the delivery cargo at Terminal A prior to visiting Terminal

B.

Figure 9: Comparing two different routes for an illustrative problem: Route 1 is the

smallest-mean route, whereas Route 2 has slightly higher mean but much lower variance.

Two feasible routes are then illustrated in Figure 9 showing their respective visiting

sequences: [Anch.→A→C→B→Anch.] for Route 1, and [Anch.→C→A→B→Anch.] for

Route 2. The travel time distribution for each transit is also indicated, e.g., the travel

time for the [C→A] transit in Route 2 follows N(12.5, 3.12) which is obtained through

simulation. Also since we assume deterministic waiting times at Terminals B and C, the

travel times of all transits destined in these two terminals are also deterministic. Notice

that for both routes there is only one transit having an uncertain travel time (with a

non-zero variance): the one that is destined in Terminal A, i.e., [Anch.→A] for Route 1

and [C→A] for Route 2. In this particular case, approaching Terminal A from deep inside

the channel (Terminal C), instead of from the anchorage, reduces the travel time variance
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from 25 to 9.6 (or by 62%).

By comparing the total completion time of the two routes, one can notice that Route

1 has a smaller mean (32), and Route 2 has a smaller variance (9.6). Hence, one that

seeks only to minimize the expected completion time would clearly favor Route 1 despite

its higher variance which indicates a higher degree of uncertainty. However, if the decision

maker takes into account some measure of risk in their objective, the choice of a better

route is less straightforward. For example, if we seek to maximize the probability of

completing the route within 36 hours (represented by H in our model), Route 2 has

a probability of 87.1% in contrast to only 78.8% for Route 1; and if H is set to 40

hours, the numbers are 99.2% for Route 2 and 94.5% for Route 1. Therefore, under some

circumstances a shipping company may find Route 2 a better choice.

For this small example problem, Route 1 is in fact the optimal solution if the objective

is to minimize the expected completion time; and Route 2 is the optimal solution when the

objective is as proposed in our model and when H is at least 33.4 hours (the breakpoint

is somewhere between 33.3 and 33.4 where the corresponding probability is around 60%).

In the remaining of this paper, we call the solution like Route 1 in the former case, i.e.,

the smallest-mean route, the deterministic solution of a stochastic problem, as finding

such a route may be seen as a deterministic problem in which the uncertain travel times

are replaced by their means. The stochastic solution of a particular problem instance, in

contrast, should depend on the value of the threshold H chosen for that instance. Since

we generate the test instances on a random basis, including the loading/unloading times

and tank cleaning times etc., we do not use a constant H for all instances. Instead, for

every instance we set H to a value such that the associated deterministic solution gives

a 95% probability of completing within this threshold value. For the example discussed

above, this H is 40.2 for the deterministic solution (Route 1), and the stochastic solution

(Route 2) in turn gives 99.4% as the probability of keeping the completion time within

40.2 hours. Note that such “95% rule” is arbitrarily chosen in this study as the criterion

to determine the optimal stochastic solution, and other values or other criteria may be

used in practice.

5.2 Difference between Deterministic and Stochastic Solutions

As mentioned earlier, in the small example illustrated in Figure 9 the difference in route

variance stems from the way the ship approaches Terminal A. By making the [C→A]

transit, i.e., placing Terminal A in the visiting sequence right after the relatively deep

and far Terminal C, the ship sailing Route 2 mitigates the variance associated with the

waiting time at Terminal A. This is partly because Terminal A (in the case of Figure 9) is

located very close to the anchorage and therefore the ship, having finished its previous call

at Terminal C, is sailing towards the anchorage and hence Terminal A “anyway”. In this
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way, Route 2 (or the stochastic solution in that case) is able to reduce the total variance

by nearly 62% at the expense of a small increase in total mean (less than 2%), compared

with its deterministic counterpart Route 1.

Figure 10: An example instance Even-46 from the Even set.

However, our preliminary tests have shown that in a more realistic scenario which

normally has more cargoes and terminals involved, and waiting time uncertainty in almost

every terminal, the difference between the deterministic and stochastic solutions can be

less significant. To confirm this we start by solving all 100 instances in the Even set.

The results show that out of 100 instances, only 18 of them have a stochastic solution

(using the “95% rule”) that differs from its deterministic counterpart, i.e., for the rest 82

instances the deterministic solution is also the optimal one in the stochastic setting.

We use one instance (for which deterministic and stochastic solutions are not the

same) as an example, described in Figure 10. We call this instance Even-46 as it is the

46th instance in the Even set. This problem includes six terminals and 20 cargoes to pick

up or deliver, and unlike the previous small illustrative example in Figure 9, the anchorage

point is quite far from all of the terminals as is the case in the Port of Houston.

Using the binary search method introduced in Section 3.2 we find four routes, shown

in Figure 11a as numbered points on a (µ, σ2)-plane indicating their route means and

variances. Route 1 is essentially the deterministic solution to the problem having the

smallest route mean, while the other three can be seen as its alternatives with a higher

mean but lower variance. In Figure 11b we show the cumulative distribution function

(CDF) for the completion time of the four routes. The stochastic solution is determined

by setting the threshold H to 391, such that Route 1 has a confidence level of 95% (that it

can be finished within 391 hours), and by comparing the resulting confidence levels given

by all four routes. Route 3 is, therefore, chosen as the stochastic solution to the problem
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Figure 11: Four feasible routes for instance Even-46 found using the binary search method.
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as it gives the highest confidence level of around 96% when H = 391. Also note that

H = 378 is the breakpoint above which Route 3 replaces Route 1 to be the stochastic

solution, which is also shown in Figure 11b.

In this example, the quality of Route 1 (the deterministic solution) is fundamentally

good. For the given H = 391 the confidence level of Route 1 is only about 1% lower than

that of Route 3 (the stochastic solution) which indicates that the deterministic solution

is as good as the stochastic one in this case. However, compared with its deterministic

counterpart, Route 3 manages to reduce the route variance by around 12% (from 119.5 to

105.0) at the expense of only 0.07% increase in route mean (from 373.24 to 373.49). To

compare the deterministic and stochastic solutions in more detail, we show the terminal

and cargo visiting sequence of the two routes in Figure 12. The travel time distribution is

shown above each transit, and the cargoes being serviced at a terminal visit are indicated

by their numbers (see Figure 10 for the numbering of all cargoes). We also highlight the

parts of the two routes that differ from each other in Figure 12, i.e., [A→K→D→G] for

Route 1 in contrast to [A→D→K→G] for Route 3, and further compare these different

parts in Table 4.

Table 4: Comparison of the transits which differ between Routes 1 and 3 for instance

Even-46.

Route 1 Route 3

Transit µ σ2 Transit µ σ2

[A→K] 9.7 2.32 = 5.4 [A→D] 8.2 2.92 = 8.4

[K→D] 7.6 4.42 = 19.0 [D→K] 7.5 2.32 = 5.5

[D→G] 10.8 4.62 = 20.8 [K→G] 12.6 4.12 = 16.9

sum 28.1 45.2 sum 28.3 30.8

From Table 4 we can see that three transits are different between Route 1 and Route 3,

and that the [D→K] transit in Route 3 is the one that contributes the most to the reduced

route variance of the stochastic solution. On the other hand, the opposite [K→D] transit

in Route 1, which is an “originating from deep inside the channel and heading towards

the anchorage” transit, has a high variance (19.0). Remember that for the illustrative

example in Figure 9, a similar type of transit ([C→A]) that originates from deep inside

the channel is able to reduce the relatively high waiting time variance at the destination

terminal (from 25 to 9.6). This is because in that illustrative example the anchorage is

very close to the destination terminal, and thus the ship is more likely to be parking at the

anchorage when the waiting time is longer than expected. This is not the case in Port of

Houston where the anchorage is located further into the sea. Therefore, despite that the
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Figure 12: The terminal and cargo visiting sequence of the deterministic and stochastic

solutions to instance Even-46.
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[K→D] transit is started by “heading towards the anchorage and the destination terminal

anyway”, its travel time variance is still high as the ship may find itself having to turn

around at different points between terminal A and the anchorage.

Based on the analysis of the example instance Even-46 and its solutions we emphasize

the following insights. First, when planning a route inside a port it is important to properly

address the special sailing patterns (if any) instead of making certain assumptions to

simplify the problem. In this study, for example, we see that the actual travel time for

an in-port transit is simultaneously determined by the distance between the origin and

destination terminals, the waiting time uncertainty in the destination terminal and the

relative location of the anchorage. This combined effect cannot be captured, in any way,

by assuming that the ship can wait “right outside” the terminal even if the uncertainty

of such waiting time is taken into account. Second, one should always try to solve the

stochastic problem in order to obtain some alternatives in addition to smallest-mean route

(the deterministic solution). A company with risk-averse requirements may favor routes

with a low variance in order to facilitate their planning for the voyage afterwards. In this

case, the criteria with regards to smallest-mean or even our probabilistic objective based

on some given threshold may be less important; the company should instead be presented

with a set of alternative routes each representing some trade-off between low expected

completion time and low risk. Third, the fact that the observation regarding the transits

heading towards the anchorage (derived from the illustrative example in Figure 9) being

not a consistent conclusion (when the anchorage is further away) suggests that this is not

an appropriate rule for determining the mean-variance trade-off. It also points to the fact

that the relative distance from the anchorage to the terminals may be an important factor,

which we discuss in more detail in Section 5.3.

5.3 Comparing the Impacts of different Instance Characteristics

The results for instance Even-46 in fact represent the general situation of most test in-

stances that we realistically generated based on Port of Houston, i.e., the deterministic

(smallest-mean) solution, which considers the special sailing pattern but only utilizes the

means (without variances) of the travel times, is as good as the stochastic solution un-

der most circumstances. However, it is worth noting that one should not always assume

good performance of the deterministic solution before actually solving the stochastic prob-

lem. As shown by the illustrative example in Figure 9, under certain circumstances the

stochastic solution may still be considerably better when considering some measure of risk.

We test on some other sets of instances in order to investigate the impact of differ-

ent instance settings. This is to answer the question: Under what circumstances is the

stochastic solution more likely to differ from its deterministic counterpart? Apart from the

Even, Far and Split sets that represent different types of terminal layout, we generate one
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additional set of instances where the anchorage is closer to the terminals. This corresponds

to the fact that currently new anchorages, layberths and other lay-by facilities that are

closer to the channel (e.g., a mid-bay anchorage inside Galveston Bay) are being actively

developed to address the scheduling issues in Houston and to provide better services for

chemical ship operators (see Kruse, 2015 for more details). This may also represent a

situation faced in some other port having a similarly narrow ship channel but with the

possibility for the ships to park closer to the terminals therein. To achieve this we simply

modify every instance in the Even set by shortening the distance between Terminal A and

the anchorage from 5.12 hours to 1 hour, see Figure 13 for an approximated illustration.

We call the resulting set of 100 new instances the Even-1h set.

Figure 13: The Even-1h layout, where the distance between Terminal A and the anchorage

is shortened to 1 hour.

To evaluate the impact of using a stochastic model rather than its deterministic coun-

terpart, it is common to compute the Value of Stochastic Solution (VSS) for a stochastic

problem, see Birge (1982) and Maggioni and Wallace (2012) for more details. However,

since our deterministic and stochastic models have different types of objectives, the compu-

tation of VSS might not be as meaningful as for typical stochastic programming problems.

We therefore propose the following alternative measures. For each instance set, we solve all

100 instances and record the number of instances for which the deterministic and stochas-

tic solutions are different. Furthermore, for every pair of deterministic and stochastic

solutions that are not the same, we introduce a SD/Mean ratio to indicate how much

the stochastic solution is able to, compared with its deterministic counterpart, reduce the

standard deviation of the route relative to the resulting increase in route mean. For ex-

ample, the deterministic and stochastic solutions for the instance Even-46 (see Figure 12)

correspond to N(373.24, 119.5) and N(373.49, 105.0), respectively, and the SD/Mean ra-

tio in this case is calculated as (10.93− 10.25)/(373.49− 373.24) = 2.72, where 10.93 and

10.25 are the square roots of 119.5 and 105.0, respectively. The results are presented in

Table 5 showing two measures, “percentage of instances that have different deterministic
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and stochastic solutions” and “average SD/Mean ratio for these particular instances”, for

four sets of instances Even, Far, Split and Even-1h.

Table 5: Results of solving four sets of instances Even, Far, Split and Even-1h showing

two measures: percentage of instances that have different deterministic and stochastic

solutions, and average SD/Mean ratio for these particular instances.

Instance Set Even Far Split Even-1h

No. of instances 100 100 100 100

% diff determ & stoch 18% 20% 22% 56%

Average SD/Mean ratio 1.24 1.51 1.99 2.29

From Table 5 we see marginal increases in the numbers of instances having different

deterministic and stochastic solutions for the Far and Split settings, compared with the

Even setting. The increases in average SD/Mean ratio are larger, e.g., 1.99 for the Split

set in contrast to 1.24 for the Even set. In general, we may conclude that the layout of

the terminals has certain but limited impact on the two measures; and when the terminals

both close to the outlet and deep inside the channel are to be serviced (hence the Split

layout), taking route variance into account is more likely to be beneficial.

When the anchorage is closer to the terminals (the Even-1h setting), we see significant

increases in both measures. Benchmarked with the original Even set, the number of

instances having different deterministic and stochastic solutions has more than tripled

from 18 to 56, and the average SD/Mean ratio also almost doubled from 1.24 to 2.29. This

confirms our observation that the relative distance from the anchorage to the terminals

is an important factor in the in-port routing problem discussed in this study. When a

shipping company is facing a similar routing problem where the anchorage is close to the

terminals, e.g., at Port of Houston with a new anchorage location or at some other port,

it is important to examine the alternatives to the smallest-mean route as there may be

some route with a slightly increased mean but much lower variance.

5.4 Evaluation of the Monte Carlo Approximation

Finally, we examine the validness of the normality assumption for a complete route and

of using Monte Carlo estimates for the means and variances of the travel times. This is to

evaluate what and how much is lost by using standard normal distributions to approximate

the skewed distributions with “leftmost bars” as shown in Figure 8.

We use as examples Routes 1 and 3 of instance Even-46 as illustrated in Figure 12. We

have shown that by summing up the mean and variance (computed through Monte Carlo

approximation) of every individual transit along the route, we can obtain the approximated

normal distributions for the two routes, N(373.24, 119.5) and N(373.49, 105.0) for Route
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1 and Route 3, respectively. However, to get a feel for their “real” completion time

distributions, we now perform whole-route simulations for these two routes.

Take Route 1 for instance. This route, i.e., [Anch.→A→K→D→G→I→B→D→A→Anch.],

consists of nine transits. At each run of the whole route simulation, we follow the route,

sequentially draw the random waiting time and calculate the corresponding travel time for

each transit, and record the final completion time of the route. We run the simulation in

this way 10,000 times, and obtain the same number of outcomes for the final completion

time. In Figure 14a these 10,000 outcomes are shown as a histogram where the x- and

y-axes are completion time and frequency, respectively. By comparing the histogram to

the approximated standard normal distribution (shown as the bell curve in Figure 14a),

we see that the approximation is quite good and has described the “true” distribution

well. The whole-route simulation is also done for Route 3 and a similar conclusion may

be drawn from the resulting diagram shown in Figure 14b.

Figure 14: Results of the whole-route simulation for two routes showing the goodness of

fit of the completion time realizations to normal distribution.

We then show in Table 6 the results of measuring the mean, variance and skewness of

the simulation outcomes for the two routes (in the Simulation column), and compare them

with their “theoretical” counterparts derived from approximation (in the Approximation

column). We see that the difference in the variance for the same route between simulation

and approximation is still quite significant, e.g., for Route 1 the sample variance of the

10,000 outcomes is 150.3 while the approximation only gives an estimation of 119.5. Such

underestimation of route variance comes from the fact that our approximation procedure

disregards the skewness and those “leftmost bars” when generating the Monte Carlo es-

timates for individual transits. It is, however, important to emphasize that using the

approximated distributions still gives us the fair comparison across different routes, e.g.,
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Route 3 having significantly lower variance but slightly increased mean in comparison with

Route 1. This observation also applies to other instances in our experiments. Also, based

on the whole-route simulation results in Table 6 the SD/Mean ratio (decrease in standard

deviation relative to increase in mean) given by choosing Route 3 over Route 1 is 4.05,

in contrast to 2.74 based on the approximation results. This is also a strong indication

that the benefit of sailing the stochastically obtained route may be larger in practice than

what we have shown in this study in theory using approximation.

Table 6: Measuring the mean, variance and skewness of the whole-route simulation results,

compared with approximations.

Simulation Approximation

Route 1 Route 3 Route 1 Route 3

Mean 373.37 373.58 373.24 373.49

Variance 150.3 130.2 119.5 105.0

Skewness -0.14 -0.21 0 0

Therefore, despite its underestimation on the variance of an individual route, the

Monte Carlo approximation provides fair and reliable indications with respect to the mean-

variance trade-off across different routes. This correct prediction of the mean-variance

trade-off may also reflect the robustness of the problem with respect to solution methods,

i.e., other approximation methods might also indicate such mean-variance trade-off even

the methods are not accurate by themselves. In practice, this is a good problem attribute

(though not obvious at all); it means that the decision maker can safely put aside the

skewness and “leftmost bars” (as in Figure 8) of the travel time distributions to find a

set of good routes, and then take the skewness and leftmost bars back into consideration

by means of a final re-evaluation among the set of routes to make a final decision. More

specifically, we suggest that one starts with the proposed approximation method in order

to find the theoretically smallest-mean route (deterministic solution) as well as its alter-

natives. Then, we suggest that one re-evaluates these routes by running the whole-route

simulation to obtain a more accurate comparison, in order to choose the one optimal route

for the shipping company based on its chosen threshold.

6 Conclusion

In this paper we have introduced a ship routing problem with uncertain travel times that

arises in the chemical shipping industry. Based on the study of Arnesen et al. (2017), we

have proposed a stochastic TSPPD model that takes in consideration the uncertain travel

times for in-port transits and the special sailing pattern in the Port of Houston, in which
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the objective is finding the route which maximizes the probability that its total length

does not exceed a given threshold. We solve the problem by adapting the binary search

enumeration method proposed in Nikolova et al. (2006).

Several sets of test instances are generated on a random basis representing different

cases faced in Port of Houston, including three types of terminal layout (Even, Far and

Split) and also one additional situation where the anchorage is closer to the terminals

(Even-1h) which may also arise in reality. Assuming independent normally distributed

travel times, Monte Carlo simulation is used to estimate the means and variances of the

distributions for the individual transits when generating the instances. We show that it is

important to properly address the special sailing pattern, and that the actual travel time

for an in-port transit is simultaneously determined by the distance between the origin and

destination terminals, the waiting time uncertainty in the destination terminal and the

relative location of the anchorage. This combined effect cannot be captured, in any way,

by assuming that the ship can wait “right outside” the terminal even if the uncertainty of

such waiting time is taken into account.

Our computational study also shows that in the case of Odfjell operating in the Port

of Houston, the deterministic solution, obtained by utilizing only the means (without vari-

ances) of the travel times, is as good as the stochastic solution under most circumstances.

However, we show that in cases when the anchorage is closer to the terminals, it is im-

portant to examine the alternatives to the smallest-mean (deterministic) route since there

may be some route with a slightly increased mean but much lower variance, which may

be particularly valuable for some companies, as it benefits the planning of the voyage to

the next port if the company knows with higher certainty how long the current port call

will take.

By evaluating the effects of the approximation which encompasses the usage of Monte

Carlo estimates for the means and variances of travel times, we show that although the

normality assumption for a complete route holds, the approximation procedure underes-

timates the route variance. However, the comparison across different routes based on the

approximated distributions still gives the correct indication. Therefore, we suggest that

one should first use the approximation method and the model proposed in this study to

find the smallest-mean route and its alternatives, and then re-evaluate them by running

whole-route simulations.

Many perspectives remain open with respect to this study. First, in this paper we

assume that the tanker only send the NOR (Notice of Readiness) to one terminal after

servicing a cargo, whereas in practice the tanker sometimes send out NOR to up to three

different terminals and only sail to the one that responds first. Therefore a possible future

study is to find the optimal strategy regarding the selection of terminals to send the NOR

after servicing a cargo, in the light of different uncertain waiting time distributions for the
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terminals. Second, apart from the exact method proposed by Nikolova et al. (2006) used

in this paper, there are other approaches in the literature for solving similar problems,

e.g., Cheng and Lisser (2015) show that the maximum probability shortest path problem

can be reformulated and solved as a chance constrained problem. A comparison of the

two methodologies can then be part of another possible future study.
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