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Abstract

This paper addresses several problems relating to the ‘energy available after the transmission
of a given amount of data in a capacitated networkyThe arcs have an associated parameter
representing the energy consumed during the transmission along the arc and the nodes have
limited power to transmit data. In the first part of the paper, we consider the problem of de-
signing a path which maximizes the minimum of the residual energy remaining at the nodes.
After formulating the problem and proving the main theoretical results, a polynomial time
algorithm is proposed based<n omputing maxmin paths in a sequence of non-capacitated
networks. In the secondpart of the paper, the problem of obtaining a quickest path in this
context is analyzed. <First, the bi-objective variant of this problem is considered in which
we aim to minimize the transmission time and to maximize the minimum residual energy.
An exact polynomial'time algorithm is proposed to find a minimal complete set of efficient
solutions‘which @mounts to solving shortest path problems. Second, the problem of comput-
ing an energy-constrained quickest path which guarantees at least a given residual energy
at themodes is reformulated as a variant of the energy-constrained quickest path problem.
The algorithms are tested on a set of benchmark problems providing the optimal solution
or the Pareto front within reasonable computing times.

Keywords: networks; quickest path; energy constraint; minsum-maxmin; bi-objective

optimization



1. Introduction

When transmitting data in a capacitated network, the transmission time depends on
two parameters, an additive function which represents the traversal time or the delay along
the path and a bottleneck function which represents the path capacity.4Thelquickest path
problem (QPP) has been proposed by Chen and Chin [6] to model these kinds of transmission
problems when the goal is to design a path in a directed network whichyminimizes the time
taken to transmit a given amount of data. Previously, the/QPPshad been introduced by
Moore [21] to model flows of convoy-type traffic. Martins and Santos [20] and Pelegrin and

Fernandez [24] approached the QPP as a special minstm-maxmin bi-objective path problem.

Let G = [N, A] be a directed network without multiple arcs and self loops, where A/
denotes the set of nodes and A the set of directed arcs. Let n be the number of nodes
and m the number of arcs. Let s and 4«be two distinguished nodes in the network called,
respectively, origin and destinationsLet o%€ RT be the size of the message, i.e. the data
units to be sent from node s tornede ¢t Each arc (u,v) € A has associated to it a capacity
c(u,v) > 0 and a delay time Iat, v)’> 0. The capacity represents the amount of data that
can be sent through arc{{u, ») per time unit. The delay time is the time required to traverse

the arc (u,v).

A simple path or loopless path P from node s to node t is a sequence of distinct nodes
and arcs P =Ws.= uy, us,...,up = t) such that u; € N, i =1,... &k, and (u;, u;41) € A,
t=1,...5k —/1. In the paper, we use the term path instead of simple or loopless path for
shortias well as the term s — ¢ path instead of a path from s to . We assume that the set

of s — t paths in the network G is nonempty.
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Assuming that a message is transmitted as a continuous stream along the arc (u,v) at
a constant flow rate p < c(u,v), a message of o data units is sent from node u to node
v through arc (u,v) in l(u,v) + ¢ time. This expression takes its minimum value when

p = c(u,v). Hence, the minimum required transmission time is [(u, v) + R

If 0 data units are sent at a constant rate from s to ¢t along the s — ¢t path\P with no
buffering at intermediate nodes (circuit switching mode), the minimum transmission time

or end-to-end delay of path P is [26]:

g

(P) @

T,(P) = I(P) +

where [(P) and ¢(P) denote the delay time and the capacity of'path P, respectively:

Z(P) = El(ui;ui—kl)
2)

c(P) = i:f}?’%_lc(umuiﬂ)

Hence, the QPP is formulated as:
min T,(P)

s.t. (3)

P is an s — t path in the network G

In a sense, the QPP/can be viewed as a generalization of the shortest path problem.
However, it is werthsmentioning that the QPP does not satisfy the property known as ‘the
optimality principle’) that is to say, an s’ — ¢’ subpath of an optimal s — ¢ path is not
necessarily an "= t’ optimal path. Several polynomial time algorithms have been proposed
in the literature for solving the QPP, all of them with time complexity O(r(m + nlog(n))),
wheref is the number of distinct capacities in the network [3, 6, 20, 21, 22, 24, 27, 28]. They
are based on solving a sequence of shortest path problems, using label-setting techniques or
applying the fact that a quickest path is a supported efficient solution of the bi-objective
problem whose objectives are to minimize the delay time and maximize the capacity of the

path. Although all the algorithms have the same time complexity, it is worth mentioning
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at this point that they do not have the same space complexity. The algorithms developed
in [3, 6, 22| use O(rm + rn) space, whereas the algorithms proposed in [20, 21, 24, 27, 28|

use O(m + n) space.

Climaco et al. [7] applied the QPP to the routing of data packets in Internet networks.
Hamacher and Tjandra [11] proposed the model in a special evacuation préblem where
evacuees may use only a single path or tunnel to move from their initial pesition. Problems
in which the QPP is constrained in some way have also been consideredvin the literature.
Chen and Hung [5] and Rosen et al. [27] studied the QPP constrained t6*contain a given
subpath. Calvete and del-Pozo [2] analyzed the problem of determining the transmission
process when data are transmitted in batches of variable size.btit with required limits. The
QPP when traversal times can fluctuate depending on traffic conditions was considered in [1].
The problem of computing a quickest path constrained te have a given reliability was studied
in [3]. Lin [17, 18] considered the case when thgcapagity of arcs is assumed to be stochastic.
Lin then evaluated the probability that a sgochagtic low network allows the transmission of
a given amount of flow through one pathy[1%] & multiple disjoint paths [18] within a fixed
amount of time. Exact algorithmsguere developed for solving these NP-hard problems. El
Khadiri and Yeh [14] proposedgo perform estimations by a Monte-Carlo simulation method
to deal with the problem addressedl in [17]. Pascoal et al. [23] provide a survey on the

subject.

In a recent paper,Calvete et al. [4] have introduced the problem of computing a quick-
est path problem imyan energy-constrained capacitated network. In this context, each arc
(u,v) € Ahassansadditional parameter associated to it representing the energy consumed
at node wduring the transmission of the message along the arc, while each node u € N is
endowed with a limited power to transmit messages. Then, the energy-constrained quickest
path problem is formulated as the problem of finding a quickest path whose nodes are able

to support the transmission of the given data units.

The importance of dealing with the residual energy at nodes has been considered in some



papers [9]. As indicated in [13], a precise management of energy affecting factors is critical
in order to obtain network lifetimes which are long enough. For instance, a load-balancing
of the energy consumption of individual sensor nodes is critical for data preservation in
wireless networks under bandwidth constraints [29]. Also, preserving and balancing the
residual energy capacities in a wireless sensor network is addressed in [16]. Following this
line of thinking, in this paper we focus on the residual energy at the nodes aftér'transmitting
a given amount of data in an energy-constrained capacitated network. In«he first part of the
paper, we introduce the maxmin energy-constrained path problem {mm-EPP) whose goal
is to find a path which allows the data transmission and maximizes the minimum residual
energy at the nodes after the transmission of the message. The mainstheoretical result proves
that an optimal solution can be obtained by solving a maxminsproblem without additional
constraints on the available energy in a subnetwork of the original network. Based on this
result, and taking into account that this subnetwork,is unknown a priori, a polynomial time
algorithm is developed which computes maxmin paths in a sequence of subnetworks of the
original network which allows the transmission at a certain flow rate. In the second part
of the paper, we introduce the minsum-maxmin bi-objective energy-constrained quickest
path problem (msmm-EQPP) which aims to find a path which is able to transmit the given
data units while minimizingdthe/transmission time and maximizing the minimum residual
energy. We prove that the set of all efficient paths can be obtained by solving minsum-
maxmin bi-objectivedpath problems in the above mentioned subnetworks and we develop
a polynomial timie algorithm to determine the set of non-dominated points. Finally, the
problem of obtaining’an energy-constrained quickest path which preserves at least a given
residual énergy“at the nodes is analyzed. It is proved that this can be reformulated as
an energy-eonstrained quickest path problem by redefining the residual energy. The paper
is structured as follows. In Section 2 additional notations and definitions are provided.
Section 3 analyzes the mm-EPP and proves the main theoretical results which support the
polynomial algorithm developed for solving it. Section 4 formally sets out the msmm-EQPP
and goes on to study its properties and develop a polynomial algorithm for finding a minimal

complete set of efficient paths. Section 5 reformulates the problem of computing a QPP
6



in the set of paths which guarantee a certain residual energy at the nodes as an energy-
constrained quickest path problem. Section 6 presents the results of the computational
experiment carried out to assess the performance of the algorithms. Finally, our conclusions

are presented in Section 7.
2. Preliminaries

Before setting out the problems which are the subject of this paperj.in this section
we introduce some additional definitions and notations. Let G=[Af, A] be the network
introduced in Section 1. We assume that each arc (u,v) € A has,associated to it an energy
rate w(u,v) > 0, which measures the energy required at, 116de 4 to transmit data units
along the arc (u,v) per time unit. Each node u € N _has an associated power b, > 0 which
represents the limited energy available for transmissien.atinode u. This available power must
be considered when selecting a path to transmitsthe message since the energy consumed at
node u due to the transmission of the message along the arc (u,v) depends on the units of
time during which node u is active, i.e."while it is sending data. Hence, it depends on the

rate at which data are transmitted:.

If 0 data units are transmittéd from node u to node v through arc (u,v) at a constant
flow rate p < ¢(u,v), the'node wis active during % time units. Hence the required energy

at node u is w(u, v) 2. Without loss of generality, we assume that

< by, V(u,v) € A (4)

Otherwise, the.arc (u,v) cannot support the transmission of the o data units and should be

remeoved.

Leth P = (s = uj,ug,...,up = t) be an s — t path. The capacity ¢(P) provides the
maximum rate at which data can be transmitted along the path P, hence it is the flow
rate which needs the least time to send the o data units along P. At this flow rate every

node in the path is active for the least time and so the required energy at each node is the
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least. Hence, assuming that this flow rate is used for the transmission, we define the residual
energy at node u after transmitting ¢ data units along the path P as:
by — w(u,ujr1)—— ifu=wu,i=1...,k—1
bu(0, P) = o(P) (5)
by, otherwise
An s — t path P is of interest if it is able to transmit the o data units. Hen€ej we say that
P is an s — t feasible path if b, (o, P) > 0, Yu € P. In other words, an s t path is feasible

if all its nodes are able to transmit the message of size o at a rate e(P).

Without loss of generality, in what follows we will assume_that there are r different arc

capacities ¢; < ¢y < - -+ < ¢, in the network G.

3. The maxmin energy-constrained path problem

In this section, we focus on the problem of'obtaining an s — ¢ feasible path in G which
maximizes the minimum of the residual energy remaining at the nodes after transmitting
o data units. No attention is paid to the, transmission time, which will be dealt with in
Section 4. Therefore, only the capacity and energy rate parameters associated to the arcs

as well as the energy available at the nodes are relevant.

Let P = (s = uy, ugs. , W = t) be an s —t feasible path. From (5), after transmitting o
data units by using'thepath P, only the energy available at nodes uq, ..., u;_1 is modified.
The power of nede‘u, = t is not altered because this is the end node of the path, so it is
not a ‘sender’.node. We define the minimum residual energy of the path P as:

R,(P)= min b,/(o,P) (6)

i=1,... k—1

Hence, the problem of finding a path which maximizes the minimum residual energy at the



nodes, called the maxmin energy-constrained path problem, can be formulated as:
mm-EPP : max R,(P)

s.t.
bu(o,P) > 0,u e N

P is an s —t path in G

The mm-EPP is a maxmin problem with an additional constraint on.the residual energy.
Next we will prove that, in order to solve this problem, it is enoughute’solve a sequence of
raw maxmin problems in subnetworks of the original network in which'it is assured that the
energy available at the nodes allows the transmission of the'meéssage at a certain flow rate.
For this purpose, for each arc (u,v) € A we define:

Cmin(u,v) = ‘min {ci : bu e W(U,U)Z > 0}

i=1,...,r C;

This value provides the minimum rate at which'the node u can support the transmission of
the o data units along the arc (u,v). s a consequence, the arc (u,v) can be in an s — ¢

feasible path P only if ¢(P) > ™™ (us0).
Let us define G; = [N, A;}{'j = 1,4, r, a subnetwork of G where

(u,v) € A; Niff (u,v) € A, c(u,v) = ¢; and ™ (u,v) < ¢ (8)

Networks G; weredntroduced in [4] to solve the energy-constrained quickest path problem.
As mentioned there; in general the network G, is not a subnetwork of G; and so the number
of arcs im the successive networks does not necessarily decrease. Hence, paths can ‘appear’
or ‘disappear” in successive subnetworks. By way of illustration, let us consider a network
G with' three different arc capacities ¢; < ¢o < c3. Let P be an s — t path with capacity
c(P) = ¢y such that ¢™™(uy, up) = ¢; and ™ (uy, ujq1) = ¢, @ = 2,...,k — 1. Then, P is
not an s — ¢ path in G; since ™™ (u;, u;11) € c1,i=2,...,k—1. Indeed, P is an s — t path
in G, since c(u;, uiy1) = ¢ and ™ (ug, ui1q) < ¢, i =1,...,k—1. Finally, P isnot an s —¢

path in the network Gs since ¢(P) = ¢y and so c(u;, u;1) 2 c3, for some i =1,... k — 1.
9



Notice that the network G; contains the arcs (u,v) € A with capacity greater than or
equal to ¢;, such that its start node u is able to support the transmission of the message
through this arc at a flow rate ¢;. Therefore, by construction, the network G; contains the
s —t paths P with capacity ¢(P) > ¢; which can transmit the given data at a rate ¢;. In

particular, G, contains all the s — ¢ feasible paths with capacity c;.

In the network G;, we associate to each arc (u,v) € A; a weight:

‘ o

by (u, v) = by — w(u,v) — (9)
¢Gj

This parameter represents the residual energy at node u after transmitting o data units

along the arc (u,v) at a constant flow rate c;.

Let P = (s = uy,ug,...,u; =t) be an s —t path in Gj. We define the minimum residual

energy of the path P in the network G; as:

RI(P)= min lbf;(ui,ui+1) (10)

i=Ty gk —
i.e. it is assumed that the transmission is'made at flow rate ¢;. It is worth pointing out that
if Pis an s —t path in G; and ¢(P) =\¢;, then R,(P) = RI(P). In contrast, if ¢(P) > ¢;,
then R,(P) > RI(P).

Let us introduce theffollowing maxmin path problem in G;:
mm-PP; : max RI(P)
s.t. (11)
P is an s —t path in G;

To simplify the notation, a path P which solves problem (11) will be called an s — ¢ maxmin
path in G;. The following results establish the relationship between problems mm-EPP and
mm-PP;, j=1,...,7r.

Lemma 1. Let P = (s = uy,ug,...,up =t) be an s —t path in G;. Then, P is an s —t

feasible path for the mm-EPP.
10



PROOF. As P is an s —t path in G;, it is an s — ¢t path in G. Moreover, ¢(P) > ¢; >

cmin(ui,uiﬂ), 1= 1, ey k — 1. Thus

o g
(0. P) = by — (g, ey — > by — (s, ey >
bus (07 P) = bu, = ot i) oy > b = s i) s > 0

Nodes which are not in P do not consume energy. Hence, b,(c, P) > 0, Vu € N O

Lemma 2. Let P = (s = uy,us,...,up =t) be an s — t feasible path forsthe mm-EPP with

capacity ¢(P) = ¢;. Then, P is an s —t path in G;.

PROOF. Since the path P is feasible, b,.(o, P) > 0,4 =1,. .4, k.="1Therefore,
MM (ug i) < e(P) = ¢ < clupu Yy i=1,... k-1

Hence, the arc (u;, u;41) € Aj, i =1,...,k — 1, and'the conclusion follows. O

Lemma 3. If P is an s —t maxmin path inGpand c(P) = ¢, > ¢;, then there is no optimal

solution of the mm-EPP with capacity c;.

PROOF. Let ) be an s — t feagible. path for the mm-EPP with capacity ¢;. Then @ is a
path in G; and
RO’(‘P> > Rgr(P) = Rgf(Q) = RU(Q)

Thus, () cannot.be@n eptimal solution of the mm-EPP. O

Theorem 4. Let P* be an optimal solution of the mm-EPP and ¢(P*) = ¢,. Then P* is
an $ =t _mazxmin path in Gy and any s —t maxmin path in G, is an optimal solution of

the mm-EPP.

ProOF. The path P* is an s — t feasible path for the mm-EPP with capacity c;, therefore

P*is an s — t path in G.

11



Let Q be an s — ¢ path in G,. If R"(Q) > R"(P*), then
Re(Q) > Ry(Q) > Ry(P*) = Ro(P7)
which contradicts the optimality of P*. Therefore, P* is an s — ¢t maxmin path in G.

On the other hand, let P be an s — ¢ maxmin path in G,. If c(ﬁ) > ¢y, by applying
Lemma 3, there would be no optimal solution of the mm-EPP with capacity c,; which
contradicts the optimality of P*. Hence, any s — ¢ maxmin path P "G, has ¢(P) = ¢,
and so can transmit the given data units at flow rate 0(15) As a consequience, Pisans—t

feasible path for the mm-EPP verifying R"(P) = R"(P*) and $o is an optimal solution of
the mm-EPP. O

Theorem 4 allows us to conclude that any optimal‘solution to the mm-EPP can be
obtained as an s —t¢ maxmin path in G;, for some j'€ {1;...,r}. Based on this property, we
propose to find an optimal solution of the mm-EPP"by solving all the mm-PP;, j =1,...,r.
Then, from the set of optimal solutions to, these problems, we select the paths P which

maximize R,(P). Next we describe the algorithm in a precise way:

The algorithm mm-EPA
Step 0.

Set j=1,&E=10
Step 1.

Solve the mm-PPydn G;.

If there'is nows# t maxmin path in G;, go to Step 2.

Let P;'be an s —t maxmin path in G;. If ¢(Pj) =¢j set E=E U P;.
Step 2¢

If j = r go to Step 3. Otherwise, set 7 = j + 1 and go to Step 1.
Step 3.

If £ =0, then the mm-EPP is not feasible.

Otherwise, find a path P € &£ such that R,(P) = max R,(F;)

Pje&

12



P solves the mm-EPP.

Remark 5.

It is worth pointing out that in Step 1, at the iteration j, it is only necessary to keep the
s —t maxmin path if its capacity equals c;. Otherwise, it can be skipped. Indeedy let () be
an optimal solution of the mm-PP;. If ¢(Q) > ¢;, from Lemma 3 no path with capacity c;
can be an optimal solution of the mm-EPP. On the other hand, @) is"an s\— ¢ path in the
network Gy, where ¢, = ¢(Q). If it is an s — ¢ maxmin path in the'network G, it will be a
candidate to be an optimal solution of the mm-EPP and at this\point it will deserve to be

included in &.

Moreover, it is not necessary to compute all the maxmin paths in G; with capacity c;.
Indeed, if P and P, are s — ¢ maxmin paths in'g; such that c¢(P;) = c¢(F2) = ¢; then
R,(P)) = RI(P,) = RI(P,) = R,(P,). Hence, they provide the same objective function

value with respect to the mm-EPP.

Remark 6.

The algorithm allows us to eomputesoptimal solutions of the mm-EPP with different capaci-
ties, if they exist. Let usfassume that P, and P, solve the mm-EPP and ¢(P;) # ¢(FP2). Then,
Py and P (or alike paths with these capacities) will be obtained when solving the mm-PP;
for ¢; = ¢(P1) andyes =.e(P,), respectively.

Theorem 7. The time complezity of the Algorithm mm-EPA is O(r(m + nlog(n))).

PROOF. The algorithm consists of solving r times the maxmin path problem (11). This is
a maximum capacity path problem [25] considering b/ (u, v) as the capacity of the arc (u,v).
Therefore, it can be solved with a straightforward set of modifications to most shortest-path
algorithms. Thus, we apply r times an algorithm running in O(m + nlog(n)) time [10] and

the conclusion follows. O
13



4. The minsum-maxmin bi-objective energy-constrained quickest path problem

This section addresses simultaneously the goals of finding a quickest path and maximizing
the minimum residual energy. For this purpose we now assume that every arc (u,v) in G has
the three parameters associated to it: delay time I(u,v), capacity c¢(u,v) and energy rate
w(u,v). Also, we assume that each node u in G has a limited power b,. Using‘thewmotations
introduced in Sections 1 and 3, the minsum-maxmin bi-objective energy-constrained quickest
path problem which aims to find an s — t feasible path to transmit"the given data units
while minimizing the transmission time and maximizing the minimum,residual energy can

be formulated as:
msmm-EQPP: min  T,(P)
max R,(P)
s.t. (12)

bi.(o,P) > 0,ue N

Pisan s—t pathin G

For a nontrivial multi-objective optimization problem, there is no single solution that
simultaneously optimizes each objective. Multi-objective optimization problems have been
studied from different péints of view [8]. Here we focus on the construction of the Pareto
front, which is formed by the images in the objective space of the efficient solutions. A
feasible solution‘is saidsto be efficient if no other feasible solution is at least as good for
all the objectives and strictly better for at least one objective. The images in the objective
function/spaces of the efficient paths are the non-dominated points. The set of all non-
dominated points is the Pareto front. Formally, with respect to the msmm-EQPP, an s — ¢
path P which is a feasible solution of (12) is efficient if and only if there is no other feasible

solution s — ¢ path () so that
T,(Q) < T,(P) and  R,(Q) = R,(P)

with at least one strict inequality. Otherwise, P is dominated by . If P is an efficient
14



solution, it will be called an s —t efficient path and (7, (P), R,(P)) will be a non-dominated

point.

Two efficient solutions P and () are called equivalent when corresponding to a unique
non-dominated point. A complete set of efficient solutions is a set of efficient solutions P,
such that every feasible solution not in P, is either dominated or equivalent to’at least one
feasible solution in P.. The set of all efficient solutions is called the maximial complete set.
A set that contains a single solution from any set of equivalent solutions (corresponding to

a unique non-dominated point) is called a minimal complete set.

In order to solve the msmm-EQPP, we consider again the networks G; defined in (8)
and associated with each arc (u,v) € A; the delay time,[(u,v). We consider the delay
time of path P, {(P), and the minimum residual energy, R’(P), and define the following

minsum-maxmin bi-objective path problem in G;:

msmm-PP; : m}in p)
max, '\ BRI (P)
P (13)
S.t.

P is an s —t path in G;

The main conclusion in _this section is that the maximal complete set of efficient solutions

of the msmm-EQPP £an_be obtained by solving problem (13) for j =1,...,7.

Theorem 8. Let PWbé an s —t efficient path for the msmm-EQPP with capacity c(ﬁ) = ¢p.
Then, P s an's="t efficient path for the msmm-PP),.

PRrROOE. By construction of the network, the path Pisans—t path in G,. Let us consider
the msmm-PP; and assume that there is an s — ¢ path ) in G, which dominates P with

respect to the msmm-PP;. Then,



with at least one strict inequality. Let us assume for the time being that [(Q) < I(P). Then,

taking into account that ¢(Q) = ¢, = ¢(P)

and

Ry(Q) > Ri(Q) > RA(P) = R,(P)

which contradicts that P is an s — ¢ efficient path for the msmm-EQPR, The case R"(Q) >

RI'(P) is analogous. O

Corollary 9. Let Pbeans—t efficient path for the msmm=PP; so that c(ﬁ) = c¢j. Then,
considering the msmm-EQPP, there is no s — t feasible path in G with capacity c; that

dominates P.

PROOF. Let @) be an s — t feasible path in,G with capacity ¢(Q)) = ¢;. Then @) is an s — ¢
path in G;. If @) dominates P with respect to the msmm-EQPP:

~ ~

To(@) < Ta<P) and RU(Q) = RU<P)

with at least one strict inequality. If 7,,(Q)) < T,(P), then

Q) +& #T,(Q) < T.(P)=UP) + =  — Q) <IP)

and

RI(Q) = R,(Q) > R,(P) = R(P)

Thereforew? would not be an s — ¢ efficient path for the msmm-PP;, which contradicts the

hypothésis of the corollary. The proof in the case R,(Q) > R,(P) is analogous. O

As a consequence of both results, solving the msmm-EQPP amounts to solving the
msmm-PP; (13) for all networks G;, j = 1,...,r. The minsum-maxmin bi-objective path
problem has been addressed in the literature when each arc has associated to it a nonnegative
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parameter which refers to length and a positive parameter which refers to capacity. For this
problem, several polynomial algorithms have been developed with time complexity O(m? +
mnlog(n)) [12, 19, 24]. We use the ideas of the algorithm by Pelegrin and Ferndndez [24]
to develop a polynomial time algorithm which provides a minimal complete set of efficient

solutions for the msmm-EQPP.

The algorithm is based on considering in each iteration the network(G; with the pa-
rameters delay time [(u,v) and residual energy b’ (u,v) associated to.the,arcs. Then, the
candidates to be efficient solutions of the msmm-EQPP are obtained by solving shortest path
problems with respect to I(u,v) in subnetworks of G; with progressively fewer arcs. These
subnetworks are constructed by removing arcs taking into ‘aeéount the minimum residual
energy of the last path computed. Therefore, by embedding subnetworks in networks, even-

tually only shortest path problems are solved. The description of the algorithm is as follows:

The algorithm msmm-EQPA
Step 0.
Set j=1,E=10
Step 1.
Find P, an s — t shortest path with respect to I(u,v) in G;.
If there is no s — ¢ path i, G;, go to Step 2.
If ¢(P) = ¢;, compute’ (T,(P), R,(P)) and set £ = Merge(E, {P}).
Update G; by, removing from A; all arcs (u, v) such that b (u,v) < RIL(P).
Go to Step 1.
Step 2.
If j*<.r, set j = 7+ 1 and go to Step 1.
Step 3.
If £ = (), the msmm-EQPP is not feasible.
Otherwise, & solves the msmm-EQPP.
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The operation Merge is defined as follows:
Merge(E, {P}) = {Q € EU{P} : There is no Q € £ U {P} such that Q
dominates @) with respect to the bi-objective function (7,, R,)}

Set £ contains a minimal complete set of efficient paths for the msmm-EQPP. The Pareto

front is formed by the images of the set £.

Remark 10.

At the iteration j, the msmm-PP; problem is analyzed. In Step 1, after obtaining a shortest
path P with respect to [(u,v), the information about its minimwm'reSidual energy R’ (P) is
used to reduce the incumbent network so that feasible paths,whi¢h are dominated by P are
removed. Notice that removing from A; all arcs (u, v)'such.that b2 (u,v) < RZ(P), the paths
dominated by P with respect to the bi-objective function (I, R?) are eliminated. Therefore,
when the iteration j terminates, we have identified arset of s — t efficient paths with respect

to (I, RZ) which are candidates to be s — ¢ efficient paths for the msmm-EQPP.

Remark 11.

At the iteration j it is only necessary to keep an s — t shortest path if its capacity coincides
with ¢;, otherwise it is of noyinterest. Indeed, assume for the time being that the algorithm
provides @), a shortestypath in Step 1 with respect to the delay time ! with ¢(Q) > ¢;. Let
RI(Q) be its minimaim residual energy. Notice that @ is a shortest path in the network Gy,

with ¢, = ¢(Q) and so its potential interest will be analyzed in a posterior iteration.

On the other hand, assume that at this point in the algorithm we are skipping the shortest
path P with ¢(P) = ¢;. Let RJ(P) be its minimum residual energy. Since I(Q) = [(P)

g

m :TO'(P)

T,(Q) = Q) + <I(P)+

7
(Q)
Let us assume for the time being that RZ(P) < RZ(Q). Then

R.(Q) > Ry(Q) = RL(P) = Ro(P)
18



Hence, P is dominated by @ with respect to the objectives (I, RZ) and so it cannot be an
s — t efficient path for the msmm-EQPP.

Otherwise, i.e. if RZ(P) > RJ(Q), P will be a path in the updated network G; formed
after removing from A; all arcs (u, v) such that b’ (u,v) < RZ(Q). Thus, its potential interest

will then be analyzed.

Theorem 12. The time complexity of the Algorithm msmm-EQPA is O(mn(m+nlog(n))).

PROOF. The number of different residual energy values b’ (u,v)fin G; is*at most m. Hence,
the algorithm amounts to solving rm times a shortest path problem each running in O(m +
nlog(n)) time [10]. Moreover, computing the set of non-domiinated points in £ runs in

O(rmlog(m)) time. Hence the time complexity is O(rm(m= nlog(n))). O

5. The energy-constrained quickest path problem with at least a fixed residual
energy at the nodes

In this section, we are interested,in computing an s — ¢ path in ¢ which minimizes
the transmission time in the set of\paths which guarantee a certain residual energy at the
nodes. Let R be this residudl energy. The problem of getting a restricted energy-constrained

quickest path can be fermulated as:

REQPP : m}in T,(P)

s.t.
bu(o,P) > 0,u €N (14)

P is an s —t path in G

Notice that R > R} is required, where R refers to the optimal value of the mm-EPP.
Otherwise, the REQPP is not feasible. Moreover, if R = R, problem (14) provides a
quickest path in the set of maxmin paths and so an efficient solution of the msmm-EQPP.
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Lemma 13. Let P = (s = uy, ug,...,u =t) be an s —t path in the network G. Then, P
is an s — t feasible path for the REQPP if and only if b, (o, P) >0 for allu € N, where
o

R by —w(u,ujp1)—=—R  ifu=wu,i=1,...,k—1
bu(0, P) = c(P)

by, otherwise

PROOF. If b,(c, P) > 0 for all u € N, then b,(o, P) > 0 for all u € N and by, (0, P) > R,
t=1,...,k—1. Hence,

Therefore, b, (o, P) > 0 for all u € N. O

As a consequence, the REQPP can be reformulated as:

min_««71,(P)

P

S.t.

bu(o,P) > 0,u e N

Pisan s—t pathin G

This formulation cofresponds to an energy-constrained quickest path problem as intro-
duced in [4],‘where b, (o, P) plays the role of the residual energy at the nodes, and so it
can be solved in O(r(m + nlog(n))) time. Notice that this is the time complexity of the
algorithms developed in the literature for solving the QPP.

6. Computational experience
In order to analyze the performance of the algorithms mm-EPA and msmm-EQPA, we

have considered the sets of test problems used in [4] which are based on the benchmark
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Table 1: Parameters of test problems Set 1 and Set 2

n m r

Set 1 10,000, 20,000, 30,000, 40,000 10n, 20n, 30n, 40n, 50n 10, 100, 1000
Set 220,000, 40,000, 60,000, 80,000, 100,000  10n, 20n, 30n,40n, 50n 10,100, 1000

instances proposed in [28]. The following subsections describe the characteristiés,of the test
problems and the results obtained. The numerical experiments have been'performed on a
PC Intel® Core™ 17-3820 CPU at 3.6 GHz x 8 having 32 GB of RAM_under Ubuntu Linux
14.04 LTS. Although we had a multi-processor computer at hand, ‘enly 6ne processor was
used in our tests. The code has been written in C++4, GCC 4.8.2; Both algorithms consist of
solving shortest path problems and so involve Dijkstra’s algorithm whose implementation is
based on a min-priority queue implemented using a binary heap data structure. It is worth
mentioning that the performance of both algorithms depends very much on the performance

of the algorithm used for solving the shortest path problem.

6.1. Problem characteristics

We have considered three differentisets of test problems. Set 1 uses the network generator
NETGEN [15] to provide the skéleton of the network. Set 2 is based on the network generator
GRIDGEN, which is able t6 provide larger networks. This has been obtained from http://
dimacs.rutgers.edu/pub/netflow/generators/network/gridgen/gridgen.c. Table 1
displays the parameéters'n, m and r of the networks in Sets 1 and 2. There are 60 problem
groups defined.by the ntimber of nodes n, the number of arcs m and the number of distinct
capacities r_in Set 1, and 75 problems in Set 2. For each problem group, 10 instances have
been generated. Delay time and capacity coefficients have been generated from uniform dis-
tributions, in the range [10,10,000]. To obtain problems with a fixed number of capacities,
first the required number of capacities is generated from the corresponding uniform distribu-
tion. Then, each arc is assigned one of the capacities generated with a uniform probability.
The energy rate of the arc (u,v) is computed as w(u,v) = 10~°c(u, v){*(u,v). The power at

the nodes has been fixed at 3 x 10%, 6 x 10% and 15 x 10%.
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Table 2: Dimension and destination nodes of the network in Set 3

Road network n m Dest. 1 Dest. 2 Dest. 3 Dest. 4
NY 264,346 733,846 264,346 132,173 857 20
BAY 321,270 800,172 321,270 160,635 567 18
COL 435,666 1,057,066 435,666 217,833 660 19
FLA 1,070,376 2,712,798 1,070,376 535,188 1035 21
NE 1,524,453 3,897,636 1,542,453 762,227 1235 21
CAL 1,890,815 4,657,742 1,890,815 945,408 1375 21
LKS 2,758,119 6,885,658 2,758,119 1,379,060 1661 23

Set 3 [28] is based on seven USA road networks which have been‘ébtained from http:
//www.dis.uniromal.it/challenge9/download.shtml. Table 2 shows the characteristics
of the networks: name of the network, number of nodes and arcs,;and the destination node
t. In all cases, the node origin is s = 1. The energyurate of the arcs and the power of
the nodes is the same as in Sets 1 and 2. Based onthese networks, two different groups of
test problems have been generated. In the first*group; the delay is taken as the parameter
distance of the road network [28]. The capagity is computed from the parameter time of the
road network and problems with 100 distinet, capacities are constructed. For this purpose,
the range of the arc times is partitioned in 100 intervals of equal length. In order to have
integer capacities, the intervals are reunded off by applying the ceiling function to the upper
endpoint and properly adjusting the intervals. For instance, if (ay, as], (as, as] are the first
two intervals of the partition,the resulting intervals would be (ay, [az2]], ([a2], [as]]. Then,
if an arc time is i the interval (a,b], the arc capacity is b. The second group of instances
takes the arcgdelaynand capacity from the empirical distributions proposed in [7], which
are displayed in Tables 3 and 4. For this group, 10 instances have been generated for each

problem.

For’evaluating the effect of the number of items which are sent, in all the test instances

the data units to be transmitted is taken to be oy = 100, 09 = 10,000 and o3 = 1,000,000.
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Table 3: Arcs delay empirical distribution

l(u,v) 11 16 25 42 73128 227 410 744 1365 2520 4681 8700

% 23 54 85 100 120 110 100 110 85 70 50 50 43

Table 4: Arcs capacity empirical distribution

c(u,v) 1360 64 128 256 800 1680 2640 4000 8000

% 51.30 7.15 5.30 0.88 4.40 19.47 4.40 2.70%, 4.40

6.2. The mm-EPA performance evaluation

In this section the mm-EPA is evaluated. Tables 5 and 6 refer'to Sets 1 and 2, respectively.
Their format is similar. The first to third columns shew the value of the parameters r, n
and m. Then, there are three blocks of six columns, one for each value of the power. The
first three columns of each block display the mean in‘the 10 runs of the number of the s —¢
shortest paths computed by the algorithmewhich are candidates to be an optimal solution
of the mm-EPP, depending on the sizetof 0. The following three columns show the mean
CPU time in seconds of the 10 runs«depending on the value of o. Table 7 summarizes the

results.

The main characteristic to befemphasized is that, in general, the computing times are
small. As expected, GPU time increases with the number of capacities and the size of the
network, but looking at lable 7 we see that, on average, this time is almost negligible when
the number of different capacities is small and it is less than two minutes when the number
of different capacities is 1000. The networks in Set 2 are larger and so the CPU times are
longer. We can also appreciate that CPU times are very similar when the power is 3 x 108
and 6% 10%, but there is a perceptible decrease when the power equals 15 x 10%. Figures 1
and 2 display the boxplot of the CPU time for each number of capacities, each value of
o and each value of power, depending on the type of network generator. Every boxplot
summarizes the information of 200 problems when using Set 1 and 250 problems when using

Set 2. Note that in both groups the variability increases when the number of capacities
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increases. But, this variability is smaller when the power is 15 x 10%. Another aspect to
be emphasized is that the algorithm solves the shortest path problem in as many networks
as the number of different capacities r. Thus, we could expect the number of candidate
s — t shortest paths to be close to that number. Nevertheless, from Table 7 we see that
the number of candidate shortest paths is substantially lower than r, especially when the
number of distinct capacities increases. In addition, the number of candidate s, — #ishortest
paths is very similar when the power values are 3 x 10% and 6 x 10®, but«increéases when the

power equals 15 x 108.

Tables 8 and 9 show the results of the first group and the second group of Set 3, re-
spectively. Both have the same format. The first column displays the name of the network
and the second column shows the destination node. The other columns display, for the first
group, the number of candidate shortest paths and thesCPU time depending on the size o
and the power. For the second group, the columns which contain the number of candidate
shortest paths and CPU time provide an average of the 10 instances. A significant character-
istic of the USA road networks considered.is'that they are sparse. In fact, the average node
degree is 2.6. Hence, a poor number,of candidate s — ¢ shortest paths could be expected,
and this is indeed the case. Hencepalthough the networks are large, the CPU time involved

in solving the problems is motwerydong and is very similar regardless of the power value.
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Table 6: mm-EPA test results: Set 2. Mean of the number of candidate s — t shortest paths P; and mean of the computing time (CPU time

in seconds)

Power= 3 x 10%

Power= 6 x 10%

Power= 15 x 108

# Shortest paths CPU time # Shortest paths # Shortest paths CPU time

T n m o1 oo o3 o1 oo o1 oo o3 o1 o3 o1 oo o3 o1 oo o3
10 20,000 200,000 7.3 8.3 6.0 0.14 0.14 7.3 8.0 8.3 0.14 0.13 6.5 6.1 8.6 0.08 0.07 0.09
400,000 8.0 9.3 8.8 0.28 0.30 8.0 9.3 9.6 0.28 0.33 8.1 6.9 9.7 0.15 0.16 0.17
600,000 9.4 8.9 8.8 0.50 0.45 9.4 8.9 9.2 0.50 0.45 8.0 8.5 9.7 0.22 0.21 0.24
800,000 8.5 9.3 9.3 0.56 0.67 8.5 9.2 9.7 0.56 0.57 6.3 7.7 9.6 0.26 0.27 0.28
1,000,000 8.5 9.4 9.8 0.69 0.62 8.5 9.4 9.9 0.68 0.77 7.3 7.5 9.8 0.29 0.31 0.34
40,000 400,000 6.9 8.6 6.0 0.29 0.32 6.9 8.6 7.3 0.29 0.32 4.8 6.7 8.5 0.17 0.19 0.23
800,000 7.8 9.1 8.4 0.60 0.69 7.8 9.1 9.5 0.60 0.68 7.7 6.1 9.7 0.33 0.34 0.37
1,200,000 8.6 9.4 9.2 0.87 0.93 8.6 9.3 9.9 0.86 0.93 8.0 8.6 10.0 0.42 0.42 0.48
1,600,000 6.6 9.7 9.6 1.08 1.24 6.6 9.7 9.7 1.07 1.28 7.2 7.3 9.6 0.53 0.53 0.61
2,000,000 10.0 9.8 9.5 1.53 1.63 9.9 9.9 1.53 1.61 9.5 7.4 9.7 0.65 0.60 0.72
60,000 600,000 7.5 8.8 7.1 0.46 0.56 8.8 8.2 0.46 0.50 6.5 6.9 8.6 0.26 0.26 0.34
1,200,000 7.4 8.7 8.0 0.90 0.99 8.7 8.9 0.90 1.03 6.9 7.5 9.6 0.46 0.47 0.59
1,800,000 9.2 9.3 9.4 1.30, 1.68 9.3 9.6 1.30 1.41 8.4 8.0 9.7 0.64 0.73 0.77
2,400,000 8.0 9.7 R 1.72 2.01 9.7 10.0 1.71 1.92 7.0 7.3 9.9 0.77 0.77 0.85
3,000,000 9.4 9.8 9.9 2.14 2.32 9.8 9.9 2.14 2.42 8.4 7.4 9.7 0.96 0.93 1.02
80,000 800,000 7.7 8.4 6.3 0.88 0.75 8.4 7.6 0.83 0.72 7.0 6.3 8.6 0.39 0.38 0.48
1,600,000 9.0 8.9 8.3 1.44 1.21 8.9 9.0 1.44 1.37 7.9 6.9 9.5 0.66 0.62 0.80
2,400,000 9.0 9.9 9.1 1.90 2.04 9.9 9.6 1.88 1.80 7.6 8.4 9.7 0.91 0.83 0.90
3,200,000 7.9 9.1 9.7 2.32 2.16 9.0 9.9 2.32 2.42 7.3 8.4 10.0 1.05 1.05 1.19
4,000,000 8.1 9.6 9.8 2.43 3.69, 9.6 9.9 2.41 3.01 6.9 8.2 9.9 1.23 1 1.50
100,000 1,000,000 8.2 7.7 5.5 0.94 0.94 7.7 6.8 0.94 0.81 6.6 5.7 8.9 0.52 0.52 0.63
2,000,000 9.3 9.0 8.7 1.88 1.62 8.9 9.1 1.90 1.82 8.4 7.5 9.4 0.88 0.75 0.97
3,000,000 9.1 9.6 8.9 2.95 2.21 9.6 9.3 2.97 2.61 7.6 7.9 9.7 1.14 1.06 1.22
4,000,000 9.1 9.6 9.9 3.31 3.62 9.6 9.9 3.31 3.46 7.4 6.4 9.9 1.36 1.33 1.58
5,000,000 8.5 9.6 9.8 4.20 4.64 9.7 9.9 4.22 4.44 8.3 7.6 10.0 1.51 1.54 1.74
100 20,000 200,000 46.7 53.2 44.7 0.73 0.99 52.9 54.1 0.73 0.66 43.1 56.4 70.9 0.31 0.37 0.47
400,000 58.9 57.3 58.6 1.64 2.06 57.3 63.7 1.64 2.16 54.3 52.2 74.9 0.60 0.57 0.74
600,000 53.9 62.1 68.5 2.35 3.05 62.4 73.0 2.35 3.11 46.7 55.3 74.3 0.69 0.74 0.97
800,000 76.5 59.7 70.2 4.30 3.16 59.7 72.5 4.29 3.95 57.9 48.1 68.7 0.95 0.94 1.05
1,000,000 64.6 65.7 73.4 4.23 4.91 66.1 78.0 4.18 5.15 45.5 71.1 1.00 0.88 1.27
40,000 400,000 54.8 60.8 43.1 2.27 2.08 60.4 57.5 2.26 2.36 67.1 80.0 0.88 1.12 1.36
800,000 71.6 67.9 64.6 5.14 5.01 68.2 71.1 5.15 4.70 58.9 80.6 1.39 1.29 1.94
1,200,000 83.2 69.6 76.2 6.94 8.38 68.9 79.8 6.98 7.22 63.3 83.0 1.89 1.70 2.00
1,600,000 77.6 72.2 74.9 7.82 7.81 721 80.4 7.86 8.05 59.9 80.8 1.91 1.91 2.34
2,000,000 64.7 76.6 77.3 7.63 11.06 758 79.4 7.67 11.90 58.8 75.9 2.22 2.28 2.71
60,000 600,000 49.0 64.6 57.7 2.43 4.11 64.2 664 2.43 2.56 54.5 76.1 1.32 1.47 1.89
1,200,000 59.5 70.2 74.1 6.54 7.64 69.9 75.7 6.52 7.01 71.9 84.6 2.06 2.47 2.79
1,800,000 49.8 77.0 78.7 5.79 12.04 77.4 82.1 5.79 9.85 74.5 87.4 2.30 3.12 3.21
2,400,000 80.7 74.0 80.2 13.70 12.68 74.1 81.8 13.61 13.80 61.4 86.1 3.05 3.41 3.48
3,000,000 65.7 76.6 84.7 12.64 15.44 15.72 77.3 87.0 12.67 15.50 60.2 82.0 3.11 3.26 4.10
80,000 800,000 55.5 56.4 49.2 4.23 6.64 4.48 55.9 64.5 4.26 4.96 57.0 77.6 2.04 2.81 2.95
1,600,000 717 72.3 72.4 9.11 10.32 8.22 72.2 74.5 906 8.91 66.6 85.5 2.99 2.62 3.52
2,400,000 69.7 74.4 76.0 11.94 16.49 14.27 74.4 79.6 11.98 14.40 69.3 86.0 3.49 3.23 4.29
3,200,000 66.0 82.4 84.1 12.57 20.15 17.21 82.1 83.5 12.69 18.15 67.7 87.9 3.93 4.12 4.67
4,000,000 56.5 81.3 81.9 12.08 23.93 22.00 81.5 86.6 12.10. 21.97 56.4 87.3 4.16 4.12 5.44
100,000 1,000,000 71.3 63.6 40.0 7.55 7.17 4.47 71.3 63.2 57.3 7.52 5.98 58.3 78.0 3.21 3.76 4.39
2,000,000 58.1 73.3 72.1 9.26 13.66 11.43 58.1 73.9 81.3 9:27 12.07 68.8 87.3 4.30 4.23 4.63
3,000,000 78.4 78.7 82.0 19.81 17.81 15.36 78.4 78.7 84.1 19.87 14.69 73.3 87.8 4.85 5.38 5.47
4,000,000 65.8 82.7 85.2 18.44 24.07 21.73 65.8 82.6 85.1 18.41 22.13 66.2 86.7 5.83 4.97 6.25
5,000,000 69.5 80.2 85.0 28.13 20.68 26.76 69.5 80.0 86.7 28.34 28.27 55.7 87.2 5.39 5.11 7.24
1000 20,000 200,000 120.1 112.5 95.0 7.35 6.53 6.05 120.0 112.3 126.3 7.36 7.24 212.3 247.2 312.0 2.69 2.57 3.76
400,000 186.4 159.8 152.0 17.69 20.35 13.23 186.5 159.3 178.2 17.70 14.89 259.8 233.6 309.9 5.65 5.07 6.17
600,000 183.6 173.6 154.5 27.13 28.44 23.69 183.5 174.2 187.0 27.12 25.79 234.5 233.2 261.5 6.36 5.78 7.48
800,000 209.0 169.0 186.9 34.23 29.31 36.72 208.9 168.9 204.7 34.12 33.43 201.7 188.7 258.3 5.85 7.13 8.68
1,000,000 212.8 190.6 205.3 37.22 41.59 39.34 212.7 190.5 212.2 37.09 44.88 187.5 212.1 233.9 6.72 7.15 7.65
40,000 400,000 200.7 147.1 96.9 24.37 23.97 17.00 200.7 147.4 148.0 24.39 21.62 331.7 307.7 465.2 9.38 8.98 13.35
800,000 195.6 198.5 198.1 40.43 44.89 37.53 195.6 197.9 210.2 40.16 42.65 294.0 341.9 423.1 10.60 12.68 18.91
1,200,000 240.9 235.2 211.9 43.20 70.86 57.54 240.9 233.3 256.8 43.20 66.45 313.1 329.0 399.5 13.54 15.05 17.63
1,600,000 303.4 255.6 253.8 85.42 95.07 66.39 303.4 256.1 303.5 85.39 74.43 295.8 284.6 371.5 16.84 13.61 18.75
2,000,000 279.3 262.1 275.1 79.06 100.19 101.28 279.3 263.5 284.2 78.26 100.51 106.03 245.8 256.5 339.1 13.46 15.84 19.23
60,000 600,000 198.4 151.2 122.1 28.99 34.35 23.46 198.4 150.9 188.7 28.99 34.45 31.87 290.5 295.6 561.8 14.83 15.97 19.33
1,200,000 276.4 243.4 229.6 60.21 68.60 58.27 276.4 243.9 268.1 60.82 68.74 65.22 392.9 365.4 507.2 19.59 19.27 23.81
1,800,000 290.1 275.7 285.8 72.91 101.05 77.30 290.0 275.0 310.7 71.89 101.37 84.03 330.5 351.3 474.4 20.26 23.24 26.70
2,400,000 331.4 288.5 286.1 121.13 114.45 115.69 331.4 288.7 339.2 119.84 113.20 121.04 334.8 340.6 422.0 24.53 23.83 31.33
3,000,000 332.8 287.5 324.1 128.83 180.90 138.31 332.8 287.4 369.4 128.29 179.90 142.08 316.8 309.6 376.5 25.71 27.83 28.59
80,000 800,000 281.0 190.6 166.7 63.75 55.97 41.25 281.0 189.6 220.1 63.51 54.99 45.52 493.8 386.2 568.3 24.25 20.67 26.70
1,600,000 325.4 276.9 277.5 86.21 81.52 69.67 325.4 275.8 320.1 86.31 81.31 83.45 381.7 372.9 589.7 23.09 23.91 31.63
2,400,000 369.9 301.9 302.5 136.08 135.21 118.86 301.1 343.9 137.18 138.25 112.85 400.9 341.5 477.6 28.75 23.88 33.74
3,200,000 380.9 341.4 357.3 139.46 197.56 135.77 380.9 341.2 393.2 139.26 197.72 156.41 353.3 357.9 451.7. 28.18 31.17 39.33
4,000,000 292.3 355.3 377.4 140.68 230.85 213.38 292.2 355.8 373.8 144.19 229.62 225.14 344.1 348.9 463.6 34.81 35.34 45.36
100,000 1,000,000 262.9 214.9 153.2 64.11 64.92 41.30 262.9 215.6 232.3 64.36 65.01 55.61 427.1 429.3 588.2 35.41 28.97 38.71
2,000,000 326.8 293.1 259.6 105.39 119.10 112.24 326.8 291.6 296.4 104.67 118.75 126.68 456.0 412.4 629.6 37.99 31.82 47.14
3,000,000 402.8 318.6 332.0 201.47 167.09 158.85 402.8 319.4 377.7 199.55 165.70 172.05 423.5 407.7 565.9 37.62 38.72 48.43
4,000,000 394.9 358.1 407.8 200.32 257.36 204.34 394.9 359.1 401.8 195.82 257.77 229.24 393.2 394.8 524.6 45.28 44.50 56.56
5,000,000 437.9 363.2 379.3 302.46 242.13 223.96 437.9 363.1 405.7 300.31 242.00 224.15 352.4 374.2 479.7 38.44 51.40 48.95
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ACCEPTED MANUSCRIPT

Figure 1: Set 1: Boxplots of the mm-EPA computing time depending on the number of capacities, the value

of o and the power of the nodes

A
$
&
v

Figure 2: Set 2: Boxplots of the mm-EPA computing time depending on the number of capacities, the value
of o and the power of the nodes
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Table 9: mm-EPA test results: Set 3, second group. Mean of the number of candidate s — ¢ shortest paths P; and mean of the computing time
(CPU time in seconds)

Power= 3 x 108 Power= 6 x 108 Power= 15 x 108
# Shortest ‘paths CPU time # Shortest paths CPU time # Shortest paths CPU time

Dest 01 g9 g3 01 g9 g3 g1 09 g3 g1 g9 g3 g1 g9 03 g1 09 g3

NY 4 2.2 22 0.0 0.55 052 0.33 2.2 22 0.2 0.55 0.51 0.38 2.2 23 1.0 0.47 0.43 0.44
3 3.2 32 2.3 032 0.32:,0.33 3.2 32 3.0 0.32 031 0.33 3.5 3.5 3.9 0.32 0.33 0.36

2 3.2 3.7 0.1 0.46=0.45 0.33 3.2 3.7 0.5 0.46 0.44 0.34 3.2 37 2.0 0.47 0.47 0.39

1 2.2 27 0.0 0.52 0.537 0.33 2.2 27 0.0 0.52 0.52 0.37 2.2 27 0.8 0.47 0.49 0.45

BAY 4 1.7 1.6 0.0 0.45 041 037 1.7 1.7 0.2 0.45 0.42 0.37 1.8 1.7 0.5 0.43 0.42 0.39
3 1.9 1.6 0.0 0.43 0.44 “0.37 19 1.6 0.0 0.43 0.44 0.37 19 1.6 0.1 0.46 0.46 0.38

2 1.8 2.2 0.0 0.43 0.46 0.37 18 2.2 0.0 0.43 0.46 0.37 1.8 2.2 0.2 0.44 0.45 0.38

1 1.7 1.6 0.0 0.47 0.45 0.37 1.7 #1.7 0.0 0.47 0.44 0.37 1.7 1.7 0.3 0.47 0.47 0.39

COL 4 1.8 24 0.3 0.55 0.52 0.50 1.8 24 0.4 0.55 0.52 0.51 1.6 1.9 1.0 0.63 0.64 0.52
3 3.1 3.2 0.0 0.53 0.53 0.50 3.1 3.2 0.3 0.54 0.53 0.51 2.9 3.6 0.9 0.55 0.53 0.51

2 2.8 3.0 0.0 0.52 0.53 0.50 2.8 3.0 0.5 0.52 0.52 0.50 2.8 3.0 1.8 0.54 0.55 0.51

1 1.0 0.9 0.0 0.68 0.69 0.50 1.0 0.9 0.0 0.68 0.69 0.50 1.0 1.0 0.0 0.65 0.65 0.54

FLA 4 1.2 1.1 0.0 1.49 1.43 1.27 1.2 1.1 040 149 146 1.26 1.2 1.1 0.0 1.61 1.55 1.25
3 1.0 1.2 0.0 1.46 1.55 1.27 1.0 1.2 0.0 1465, 1.56  1.26 1.0 1.2 0.0 1.61 1.59 1.25

2 1.2 1.0 0.0 1.37 1.36 1.27 1.2 1.1 0.0 1.37 441 1.26 1.2 1.1 0.0 1.34 134 1.25

1 1.3 1.1 0.0 1.40 1.34 1.27 1.3 1.1 0.0 1410 1.33y 1.26 1.3 1.1 0.0 1.41 1.37 1.25

NE 4 3.8 4.1 0.3 2.52 2.51 2.09 3.8 4.1 1.0 2.52 25942.14 3.8 4.1 2.3 2.71 2.80 2.44
3 2.8 3.3 0.2 2.54 2.46 2.09 2.8 3.3 0.7 2.55 %2.49 2.22 3.1 34 2.1 3.056 299 2.50

2 1.6 1.4 0.0 3.39 3.35 2.09 1.6 1.5 0.0 3.39 3.36 2.22 1.6 1.5 0.1 3.16 3.20 2.59

1 1.1 0.9 0.0 3.38 3.42 2.09 1.1 1.0 0.0 3.40 3.42°2.29 1 1.0 0.0 3.17 3.22 2.70

CAL 4 2.3 2.1 0.0 242 243 2.53 2.3 22 0.2 243 243 251 2.1%2.1 0.6 2.99 299 248
3 1.0 1.0 0.0 2.96 2.86 2.53 1.0 1.0 0.0 2.97 2.82 2.51 10 1.0 0.0 2.50 2.53 2.49

2 1.0 1.0 0.0 2.90 2.97 2.53 1.0 1.0 0.0 2.91 297 2.50 1.00°1.0 0.0 2.78 2.78 2.49

1 1.0 1.0 0.0 3.00 2.90 2.53 1.0 1.0 0.0 3.00 2.86 2.51 1.041.0 0.0 2.79 2.75 2.49

LKS 4 2.3 2.0 0.9 3.95 3.82 3.86 2.3 19 1.1 3.97 3.81 3.91 2.5 24 1.6 4.55 4.63 4.16
3 3.5 29 0.0 4.23 3.99 3.86 3.5 29 0.2 4.23 3.90 3.87 3.5 29 1.4 526 5.05 4.21

2 2.7 26 0.0 5.13 5.03 3.86 2.7 26 0.0 5.13 5.17 3.92 2.7 26 08 4.94 490 4.37

1 2.6 24 0.0 4.87 4.88 3.86 2.6 24 0.2 4.89 4.82 3.87 2.6 24 0.8 5.000 5.12 4.19
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6.3. The msmm-EQPA performance evaluation

In this section we have used the same instances to evaluate the msmm-EQPA. However,
it is worth mentioning that the bi-objective energy-constrained quickest path problem is
more difficult to solve. Thus, longer CPU times can be expected. This is confirmed below.
In fact, solving the instances of Set 2 (GRIDGEN networks) with 1000 capacities involved, in
general, very long CPU times (more than two hours). So we have eliminated these instances

from the study.

The tables presented in this part of the computational study are very similar to those
presented in Section 6.2. Table 10 refers to Set 1. Besides the value.of the parameters r, n
and m shown in the first to third columns, the table displays thrée blocks of nine columns,
one for each value of the power. The first three columns'ef every block display the mean of
the number of candidate s — t paths computed bythe“algorithm, depending on the size of
0. The second three columns of each block show the.mean of the cardinality of the minimal
complete set of efficient paths of the msmm=EQPP computed by the algorithm in the 10
runs, depending on the size of . Finally, the last three columns of the block display the
mean CPU time in seconds of the 10 tuns for the different values of . Table 11 has the
same format, but refers to Set 2. Table 12 and Figures 3 and 4 summarize the results.
Notice that Figure 4 only displays the results when r» = 10 and r = 100, because the case
r = 1000 has not been considered. We can see that the number of candidate shortest paths
is small, although the algorithm can solve up to m X r shortest path problems. Also, the
cardinality offthe mimnimal complete set is very low, less than six efficient paths on average.
However gas weteotlld expect, msmm-EQPA computing times are much longer than mm-EPA
computingytimes. Although for the smallest problems the times are almost negligible, for
the larger instances in Set 1, CPU time is almost one hour. Another point to note is that
the power value does not seem to affect very much either the number of paths or the CPU

times involved.

Tables 13 and 14 show the results of the first group and the second group of Set 3,
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ACCEPTED MANUSCRIPT

Figure 3: Set 1: Boxplots of the msmm-EQPA computing time depending on the u:ber of capacities, the

value of ¢ and the power of the nodes

respectively. Their format is similar to that of the p@tables. However, it is worth
pointing out that, for the first group, the colum isplay the number of candidate s — ¢

paths, the cardinality of the minimal complet cient paths and CPU time, whereas

for the second group the columns show théiaverage values of the 10 instances. We can see
that the number of candidate paths an paths is very small. Moreover, as occurred
in Sets 1 and 2, the power value not seem to affect very much either these values or

the CPU times involved.
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Table 11: msmm-EQPA tést results: Set 2. Mean of the number of candidate s — ¢ paths P, mean of the cardinality of the minimal complete
set of efficient paths of#he msmm-EQPP and mean of the computing time (CPU time in seconds)

Power=43 % 10% Power= 6 x 10° Power= 15 x 10°
# Candidate paths P # Efficient paths CPU time # Candidate paths P # Efficient paths CPU time # Candidate paths P # Efficient paths CPU time
r n m a1 ) o3 o1 oy o3 a1 oy o3 a1 ) o3 o 0y a3 o1 ) o3 o1 a3 o3 o1 0y o3 o1 a3 a3
10 20,000 200,000 37.8 114.7 52.4 2.8 1.5 2.1 0.83 2.64 378 112.8 86.4 28 15 24 0.84 2.61 1.66 378 112.6 1185 28 15 2.1 2.61
400,000 46.3 155.5  100.5 40 22 1.7 1.96 7.95 46.3 1555  128.5 4.0 22 1.6 1.97 7.97 5.54 46.3 1555  138.1 4.0 22 1.6 7.98
600,000 424 1932 1293 44 15 1.9 2.98 193.2 1499 44 15 1.9 2.99 14.87 10.88 424 193.2  173.7 44 15 2.0 2.99 14.90
800,000 46.2 192.0 1505 46 29 2.5 3.84 192.0  168.0 46 29 2.5 3.84 20.18 X 462 192.0  196.9 46 29 3.84 20.24
1,000,000 45.7 2376 1829 49 1.9 2.7 4.60 237.7 2104 49 1.9 2.7 4.60 28.85 25.21 45.7 237.7 2310 49 19 4.59 28.89
40,000 400,000 36.6 135.4 50.4 29 15 1.8 1.93 135.5 91.7 29 15 2.0 1.93 7.73 4.51 36.6 1355 127.9 29 15 1.93 7.75
800,000 50.1 1828 118.1 43 14 1.6 4.49, 182.9 144.9 43 14 1.6 4.49 19.85 14.58 50.1 182.9 188.5 43 14 4.51 19.92
1,200,000 48.3 1955  146.2 3.7 15 2.2 6.76 1954 169.8 3.7 15 2.2 6.79 30.18 25.70 48.3 1954  219.7 3.7 15 6.77 30.28
1,600,000 47.6 2373  168.0 44 18 2.5 8.65 31.37 237.0  200.9 44 18 2.5 8.65 48.52 38.12 47.6 2369 2218 44 18 8.65 48.76
2,000,000 53.3 2358 171.4 32 18 2.2 11.48 60.76 42.12 235.6  213.3 32 18 2.3 11.48 61.00 50.79 53.3 2356 2448 32 18 60.94
60,000 600,000 57.8 128.1 56.8 19 1.5 1.6 4.00 11.52 4.39 128.0 84.0 19 1.5 2.0 4.01 11.52 6.47 578 128.0 118.1 19 1.5 11.55
1,200,000 53.7 176.1 101.9 3.7 13 2.5 7.98 32.08 15.02 176.0  140.9 3.7 1.3 2.5 7.99 32.41 21.48 53.7 176.0 172.1 3.7 13 32.41
1,800,000 55.7 2113 159.0 43 1.7 2.1 10.90 54.01 31.89 211.3  173.2 43 1.7 2.1 10.88 53.48 37.17 55.7 2113 194.0 43 1.7 53.76
2,400,000 55.8 230.1 156.0 40 1.3 2.4 14.96 75.73 4543 230.1 4, 210.3 40 13 24 15.01 76.29 60.12 55.8 230.1 2326 4.0 1.3 76.03
3,000,000 61.8 2721 194.9 38 18 3.0 19.06  100.53 67.99 2724 220.2 38 18 3.0 19.08  100.87 79.70 61.8 2721 2441 38 18 3.0 19.06  101.12
80,000 800,000 47.3 1277 55.3 27 15 2.0 5.67 127.7 82.6 27 15 2.0 5.67 15.23 8.60 473 127.7 1227 27 15 5.65 15.18
1,600,000 57.7 185.3 119.8 3.2 1.7 1.9 11.23 185.3 142.8 32 17 2.1 11.25 42.58 29.03 57.7 185.3 156.7 32 1.7 11.22 42.50

237.7 4.5 19 13.59 76.41
246.8 46 22 1.6 24.63  100.01
246.9 34 22 2.2 23.86  141.54

236.8 [ 208:3 45 1.9 18 13.60 76.65 58.35
241.7 / 221.6 46 22 1.6 24.59  100.32 81.79
265.1/ #236.5 34022 2.2 23.92  141.73  104.90

2,400,000 511 236.8  157.7 45 1.9 19 13.57
3,200,000 69.3 2420 1918 46 22 1.6
4,000,000 62.3 265.1  209.9 34 22 2.2

100,000 1,000,000 46.1 115.2 57.2 3.1 14 15 115.9 76.0 3.1 14 17 6.08 18.01 10.35 114.8 3.1 1.7 6.05 17.78
2,000,000 56.9 207.1  116.2 43 1.3 2.1 205.5  152.7 43013 2.0 13.13 56.37 38.23 194.4 4.3 2.0 13.10 56.55
3,000,000 53.4  236.6 44 1.7 1.9 236.0  166.4 44 1T 1.9 19.23 95.15 61.32 208.6 4.4 19 19.19
4,000,000 53.6  247.5 3.8 16 3.0 53.6 2475 2145 3.8 16 3.0 25.01 131.10  100.70 236.7 3.8 3.0 24.99
5,000,000 59.5  264.3 29 25 2.4 59.5 264.4 2182 2.9 /25 2.4 33.87  184.60  138.30 260.6 2.9 24 33.78

100 20,000 200,000 141.0 279.8 4.0 22 2.9 141.0 279.0 2395 4.0024 3.5 8.09 27.54 274.1 4.0 8.13

400,000 173.7  370.9 52 20 2.9 173.7 370.3  281.3 52 20 340 20.79 72.66 384.9 5.2 20.74 62.63

600,000 188.9 489.7 6.4 2.6 3.1 188.9 489.7  459.5 6.4 26 3.0 27.99 > 133.67 511.4 6.4 27.97 123.65

800,000 1872 572.8 6.6 3.2 3.9 187.2 5724 4147 6.6 3.2 4.0 3823 "200.00 536.1 6.6 38.31 183.40

1,000,000 197.8  613.2 6.8 22 5.0 197.8 611.9 6.8 22 49 4850  284.80 6.8 48.64 262.20

40,000 400,000 124.3  363.4 24 24 2.7 124.3 ¥ 249.9 24 24 3.3 20.30 75.29 2.4 20.31 52.43
800,000 175.7 4347 3.6 22 2.9 175.7 4343 443.1 3.6 22 2.9 42.94 183,90 531.2 3.6 42.93 173.60

1,200,000 224.8 568.2 6.4 24 3.7 66.39 224.8 567.5 501.2 6.4 24 3.9 66:51 31540 614.3 6.4 66.72 311.00
1,600,000 208.5 626.9 49 29 4.4 90.72 208.5 6254 5428 49 29 4.4 90.500, 4444.00 208.5 625.5  665.2 4.9 90.62 408.70
2,000,000 189.1 757.8 7.9 21 4.8 99.25 189.1 757.8  596.2 79 21 4.4 99.21 7 609.80 189.1 756.5  615.6 7.9 99.40 513.30

60,000 600,000 203.1 359.8 2.7 18 2.8 39.26 203.1 357.8 3074 2.7 18 3.1 39.25 10440, 203.1 356.8  383.1 2.7 39.42 86.37
1,200,000 200.5 486.1 5.6 29 4.7 70.64 200.5 4852 455.9 56 3.0 4.1 70.94  282.60 200.54, 484.5  523.1 56 3.0 70.97 240.80
1,800,000 215.6  599.5 5.8 29 4.1 97.46 215.6 600.1  616.4 58 29 42 97.32  511.20 2156 599.9  644.3 58 2.9 97.89 453.10
2,400,000 223.4  706.3 77 25 4.2 134.00 2234 706.0  580.4 77025 4.2 134.08  719.60 223.4 7055 6705 7.7 24 134.18 614.80
3,000,000 210.2 814.3 71 25 5.4 149.63 210.2 8139  662.0 71 25 5.4 149.54  1011.20 2102 813.50, 751.2 71 25 149.50 849.20

80,000 800,000 186.9 319.3 29 1.7 3.6 52.50 186.9 3174 2683 29 1.7 4.1 52.61  152.06 186.9°317.64  365.6 29 1.7 52.41 118.94
1,600,000 229.8 573.6 4.0 24 4.2 98.99 229.8 5734  482.6 4.0 24 4.3 98.60  430.00 229.8 5731 5340 4.0 24 98.83 346.90
2,400,000 265.5 611.3 59 26 4.0 154.07 265.5 6112 561.3 59 26 4.4 15471 655.50 265:5 611.0 7285 59 26 154.24 663.50
3,200,000 296.1 731.0 56 28 5.0 212.50 296.1 731.0  613.7 56 28 211.40  972.20 296.1° 7310 656.8 56 28 211.60 804.80
4,000,000 256.2 774.2 6.7 24 4.0 239.60 256.2 773.6  652.1 6.7 24 239.20  1264.90 256.2 7735 6.7 24 238.70 1115.20

100,000 1,000,000 157.9 4015 22 17 3.5 56.04 157.9 3985 2374 22 17 56.00  203.10 157.9 3985, 3223 2278 55.88 141.63
2,000,000 228.1 554.2 4.7 26 4.4 130.56 228.1 554.3 5238 4.7 26 12917 534.10 2281 554.0 1586.0 4.7 26 129.31 459.00
3,000,000 224.9 708.5 5.1 22 4.7 188.70 2249 7086  594.0 51 22 187.00  992.60 224.9 7086  583.5 51 22 188.20 738.30
4,000,000 238.2 8174 6.1 25 4.9 229.10 238.2 8181 6284 6.1 25 5.3 231.30  1291.70 238.2 8180  657.7 6.1 26 229.80 1019.40

5,000,000 247.3 880.3 7.6 3.1 4.5 310.70 1607.80 1118.50 247.3 8799  726.7 76 3.1 4.9 307.90 1620.90 247.3 880.1  801.4 76431 4.9 309.20  1632.20 1509.10
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a1

02

02

T

10
100
1000
10
100
1000
10
100
1000

10
100
1000
10
100
1000
10
100
1000

r

r
10
100
1000
10
100
1000
10
100
1000

Table 12: Summarized msmm-EQPA test results of Sets 1 and 2

Mean of the number of candidate s — ¢ shortest paths

Set 1 Set 2
Power= 3 x 10° Power= 6 x 10° Power= 15 x 10° Power= 3 x 10° Power= 6 x 10° Power= 15 x 10%
Mean StDev Mean StDev Mean  StDev Mean  StDev Mean  StDev Mean StDev
38.49  17.45 38.49 1745 38.49 17.45 51.85 18.50 51.85 18.50 51.85 18.50
140.85  72.64 140.85  72.64 140.85 72.64 207.79 90.67 207.79 90.67 207.79 90.67
215.38 120.02 215.38 120.02 215.38  120.02
162.90  59.22 162.92  59.10 162.99 59.09 201.00 59.92 200.84 60.08 200.79 60.14
430.34 179.06 430.28 178.85 430.09 178.88 576.59  205.53 576.07 1205.92 575.82 206.00
548.25 257.21 548.08 257.03 547.93  257.07
104.60  56.64 130.31  59.00 157.97 60.51 134.64 57.33 164.48 59.87 193.91 59.19
289.26 167.03 353.90 182.59 426.22  185.12 398.29  172.25 490.02  184.09 562.98 187.88
374.45 224.46 486.50 246.68 563.38  237.14
Mean of the number of efficientypaths
Set 1 Set 2
Power= 3 x 10% Power= 6 x 108 Power= 15 x 10% Power= 3 x 108 Power= 6 x 10% Power= 15 x 10%
Mean StDev Mean StDev Mean  StDew Mean, StDev Mean  StDev Mean StDev
Mean StDev Mean StDev Mean _ StDev Mean  StDev Mean  StDev Mean StDev
3.74 1.77 3.74 1.77 3.74 1.77 3.75 1.62 3.75 1.62 3.75 1.62
4.79 3.00 4.79 3.00 4.79 3.00 5.36 2.89 5.36 2.89 5.36 2.89
5.12 3.27 5.12 3.27 512 3.27
1.95 1.07 1.96 1.07 1.95 1.07 1.74 0.93 1.74 0.93 1.74 0.93
2.46 1.40 2.43 1.37 2.44 1.37 2.43 1.23 2.44 1.24 2.44 1.23
2.64 1.34 2.65 1.36 2.64 1.37
2.02 0.89 2.05 0.88 2.08 0.86 2.13 0.88 2.18 0.88 2.18 0.88
3.66 1.63 3.77 1.65 3.61 1.56 4.01 1.65 4.11 1.57 3.98 1.53
4.20 1.78 4.39 1.89 4.37 1.59
Mean of the CPU time in seconds
Set 1 Set 2
Power= 3 x 103 Power= 6 x 10° Power= 15 x 10% Power= 3 x 10® Power= 6 x 10° Power= 15 x 10%
Mean StDev Mean StDev Mean  StDev Mean  StDev Mean  StDev Mean StDev
Mean _«#StDev Mean StDev Mean  StDev Mean  StDev Mean  StDev Mean StDev
2.17 1.66 2.18 1.66 2.19 1.66 11.23 9.09 11.24 9.09 11.22 9.07
21.24. 18.03 21.33  18.01 21.49 18.09 105.07 84.42 104.88 83.92 104.96 84.14
214.69 168:33 214.64 167.92 213.46  165.52
11.38 9.99 11.40 9.97 11.48 10.01 54.94 47.83 55.12 48.18 55.09 48.14
116.917 101.98 117.64 102.11 118.26  102.20 523.64 441.44 523.72  442.83 524.48 443.33
1120.04 967.68 1125.61 968.41 1125.93  973.54
7.14 7.27 8.66 8.36 10.59 9.73 34.08 31.79 41.14 36.94 48.59 42.59
65.23  66.71 81.36  78.01 100.42 88.83 309.49  292.75 376.76  336.87 450.84 385.43
653.29 641.72 813.47 753.08 995.15  876.58
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Table 13: msmm-EQPA test resul
paths of the msmm-EQPP and co

NY

BAY

COL

FLA

NE

CAL

LKS

Power= 3 x 10°

# Candidate paths P

# Efficient paths

Dest. oy 0y o3 o, oy o3
4 13 30 0 1 1 0
3 11 16 6 2 1 1
2 16 65 0 1 1 0
1 27T 35 0 1 1 0
4 3 2 0 1 1 0
3 7 8 0 1 1 0
2 6 21 0 1 1 0
1 14 14 0 1 1 0
4 1 1 0 1 1 0
3 6 4 0 1 1 0
2 11 0 0 1 0 0
1 19 0 0 10 0
4 11 6 0 1 1 0
3 1 8 0 1 1 0
2 90 43 0 1 1 0
1 7343 0 1 1 0
4 15 9 0 1 1 0
3 2 4 0 1 1 0
2 60 54 0 1 1 0
1 47 31 0 1 1 0
4 7 1 0 1 1 0
3 14 0 0 1 0 0
2 62 0 0 10 0
1 20 0 0 1 0 0
4 2 1 0 1 1 0
3 52 T2 0 1 1 0
2 38 162 0 1 1 0
1 55 85 0 1 1 0

1.82
2.28
2.30
3.78
2.40
2.73
3.31
6.22
6.02
4.87
2717
19.51
15.52
12.34
52.79
41.98
13.52
16.27
58.60
23.44
18.52
46.81
61.77
50.06

2.24
3.93
3.67
2.39
2.60
2.34
2.34
5.34

15.38
13.10
13.96
12.32
50.02
31.89
11.79
11.60
11.56
11.65
17.99
55.76
193.00
71.22

st group.

Number of candidate s — ¢ paths P,
(CPU in seconds)

Power= 6 x 10°

cardinality of the minimal complete set of efficient

Power= 15 x 10®

Candidate paths P # Efficient paths CPU time # Candidate paths P # Efficient paths CPU time

I3 010y I3 a1 ) I3 o103 I3 [ 03 o1 ) 03
0 1 1 0 2.36 413 1.59 13 28 0 1 1 0 2.37 323 1.59
17 2 1 2 2.08 232 236 11 16 21 2 1 1 2.07 232 2.56
0 1 1 0 3.27 852 1.59 16 64 0 1 1 0 3.27 8.38 1.60
0 1 1 0 3.30 371 159 27 40 0 1 1 0 3.29 430 1.60
2 0, 1 1 0 1.83 1.86 1.69 3 7 0 1 1 0 1.81 213 1.67
8 C 1 1 0 2.30 230  1.68 7 8 0 1 1 0 2.28 233 1.69
7 1 1 0 2.31 233 1.67 6 7 0 1 1 0 2.32 236  1.66
24 1 0 3.79 513  1.66 14 18 0 1 1 0 3.76 433 1.67
1 0 0 241 239 234 1 1 0 1 1 0 2.40 238 234
7 0 0 2.71 279 234 6 5 0 1 1 0 2.71 2.66 233
19 0 0 3.34 4.03 234 11 23 0 1 1 0 3.33 448 234
0 0 6.22 242 234 19 23 0 1 1 0 6.20 6.65 2.35
7 0 1 6.03 580 4.51 11 7 0 1 1 0 6.01 580 4.50
9 0 1 1 9 0 1 1 0 4.88 6.06 4.48
117 0 1 90 108 0 1 1 0 27.25 3148 449
99 0 1 1 7383 0 1 1 0 19.50 2094  4.49
8 0 1 1 15 8 10 1 1 1 15.65 13.66 14.23
2 0 1 1 0 2 2 0 1 1 0 1239 11.84 11.27
45 0 1 1 0 60 46 0 1 1 0 52.61 45.08 11.34
54 0 1 1 0 47 55 0 1 1 0 42.00 46.86 11.23
1 0 1 1 0 7 4 0 1 1 0 13.56  12.73 11.57
0 0 1 0 0 7 0 1 1 0 16.30 1432 11.63
0 0 1 0 0 0 1 1 0 57.94 2255 11.61
0 0 1 0 0 0 1 1 0 23.37  28.01 11.57
1 0 1 1 0 0 1 1 0 18.49 18.53 17.43
98 0 1 1 0 0 1 1 0 46.90 68.30 17.51
375 0 1 1 0 0 1 1 0 61.89 392.00 17.50
185 0 1 1 0 148.00 0 1 1 0 50.13  145.00 17.56
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Figure 4: Set 2: Boxplots of the msmm-EQPA computing time depending on the number of capacities, the
value of ¢ and the power of the nodes

7. Conclusions

In this paper we have addressed several problems, relating to residual energy in energy-
constrained capacitated networks. First, we hawe analyzed the problem of maximizing the
residual energy at the nodes after tramsmitting ¢ data units. The polynomial algorithm
developed to solve this problem is based on computing maxmin problems with respect to
a defined residual energy at arestin subnetworks which are in a sense associated with the
different capacities. These subnetworks satisfy, by construction, that there is energy avail-
able at the nodes for transmitting the given data units. Second, the bi-objective problem is
analyzed in which transmission time is minimized and residual energy at the nodes is max-
imized. This problem isrsolved in polynomial time with an algorithm which is reminiscent
of the algorithms developed for solving the QPP, since eventually only SPPs with respect to
the delay timepare solved. However, it is worth mentioning that the algorithm proposed in
this aper is more sophisticated as it involves the consideration of subnetworks embedded
in networks. The results of the computational study carried out demonstrate the excellent

performance of both algorithms proposed.

Finally, taking into account the optimal solution of the mm-EPP, the problem is then

studied of obtaining an energy-constrained quickest path restricted to leave a certain residual
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energy at the nodes. This problem generalizes the energy-constrained quickest path problem

introduced in [4] and can be solved by slightly modifying the polynomial algorithm proposed

there to take into account a new definition of an s — ¢ feasible path.
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