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Highlights 

 A matrix method for an inverse conflict analysis is developed. 

 Conditions for required preference relations are derived.   

 Four solution concepts of human behaviour are considered.  

 This method is applicable for both transitive and intransitive preferences. 

 Two application approaches are described.  

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 
 

Matrix Representations of the Inverse Problem in the Graph Model 

for Conflict Resolution 
Junjie Wang

a, b
, Keith W. Hipel

b, c, d
, Liping Fang

e, b, *
, and Yaoguo Dang

a 

a
College of Economics and Management, Nanjing University of Aeronautics and Astronautics, 

Nanjing, Jiangsu 211100, China 

b
Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, N2L 

3G1, Canada 

c
Centre for International Governance Innovation, Waterloo, Ontario, N2L 6C2, Canada 

d
The Balsillie School of International Affairs, Waterloo, Ontario, N2L 6C2, Canada 

e
Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, 

Toronto, Ontario M5B 2K3, Canada 

 

Abstract— Given the final individual stability for each decision maker or an 

equilibrium of interest, a matrix-based method for an inverse analysis is developed in order 

to calculate all of the possible preferences for each decision maker creating the stability 

results based on the Nash, general metarationality, symmetric metarationality, or sequential 

stability definition of possible human interactions in a conflict. The matrix representations 

are furnished for the relative preferences, unilateral movements and improvements, as well 

as joint movements and joint improvements for a conflict having two or more decision 

makers. Theoretical conditions are derived for specifying required preference relationships 

in an inverse graph model. Under each of the four solution concepts, a matrix relationship is 

established to obtain all the available preferences for each decision maker causing the 

specific state to be an equilibrium. To explain how it can be employed in practice, this new 

approach to inverse analysis is applied to the Elsipogtog First Nation fracking dispute which 

took place in the Canadian Province of New Brunswick. 

 

Keywords—Group decision and negotiation, Inverse analysis, Matrix representations, 

Conflict resolution, Graph model 

 

1. Introduction  

Conflicts occur whenever two or more decision makers (DMs) having differences in value 

systems, objectives or preferences, interact in the real world. In fact, each DM in a dispute strives 

to change the course of the conflict and reach a state of interest such as a more preferred state 
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than the status quo. In order to better represent and analyze conflict, many available models to 

conflict resolution have been proposed within a broad field called game theory. The normal and 

extensive forms of the game, which are generally considered to be part of classical game theory, 

were developed by Von Neumann and Morgenstern (1944). Classical game theory is considered 

to be quantitative in nature because it uses cardinal preferences often expressed as utility values. 

However, sometimes it is difficult for a DM to determine how much he prefers one state to 

another. Thus, Howard (1971) designed a fresh approach called metagame analysis which only 

assumes the availability of relative preference information in which a given DM either prefers 

one state over another or they are equally preferred. A methodology called conflict analysis put 

forward by Fraser and Hipel (1979; 1984) was an enhancement and expansion of metagame 

analysis. The Graph Model for Conflict Resolution (GMCR), which is more comprehensive than 

existing methodologies, was proposed by Kilgour, Hipel, and Fang (1987) and Fang, Hipel, and 

Kilgour (1993). The above three methodologies are regarded as qualitative techniques because 

only relative preference information between any two states is assumed. Because of the foregoing 

and other reasons, GMCR is widely employed by practitioners and researchers for investigating 

real world conflict in a highly flexible yet simple way (Madani, 2013). 

According to the GMCR procedure, the elements used in this approach can be classified into 

three main parts which are input, analysis, and output (Fang, Hipel, Kilgour, & Peng, 2003; 

Kinsara, Petersons, Hipel, & Kilgour, 2015b). The primary items in the input part are the DMs, 

feasible states in the dispute and DMs’ relative preferences over the states. Either an individual or 

a group, such as a company, can be a DM. A DM can control one or more options, each of which 

can be selected or not by the DM who controls it. A feasible state is formed as a specific selection 

of options by the DMs. The analysis part is employed to determine whether a given state is stable 

for a specified DM or not. The state is said to be stable for a DM if the DM cannot reach a more 

preferred state in the midst of moves and counter movements by other DMs. An equilibrium of a 

graph model is a state that is individually stable for all DMs under the same stability definition. A 

series of stability definitions have been proposed including Nash stability (Nash, 1950, 1951), 

general metarationality (GMR) (Howard, 1971), symmetric metarationality (SMR) (Howard, 

1971), and sequential stability (SEQ) (Fraser & Hipel, 1979, 1984). 

The DMs in conflicts may have different purposes when investigating a dispute with 

different known information. In most situations, one wishes to ascertain the output of an ongoing 

or a historical dispute by using the analysis engine to calculate various types of individual 

stability and equilibria after identifying the input part. This is called the forward perspective as 

portrayed at the top of Fig. 1. In Fig. 1, a check sign (√) means the associated information is 
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known while a question mark (?) indicates an item to determine. Most of the extensions to enrich 

the theory and applicability of GMCR have been developed under the domain of the forward 

perspective (Basher, Kilgour, & Hipel, 2012; Bristow, Fang, & Hipel, 2014; He, Kilgour, & Hipel, 

2017; Xu, Hipel, & Kilgour, 2009; Xu, Kilgour, Hipel, & Kemkes, 2010). In some cases, the 

analyst may wish to determine the type of behavior needed to reach a state of interest. This is 

called the behavioral problem which is depicted as the middle diagram in Fig. 1 (Kinsara et al., 

2015b) and for which a mathematical solution was recently provided (Wang, Hipel, Fang, Xu, & 

Kilgour, 2018).  

In some conflict situations, one wishes to know the preferences required by DMs in order to 

reach an attractive resolution for all parties. In third party intervention, for example, a third party 

is invited to a negotiation in order to assist the disputants to reach a win/win resolution (see, for 

instance, Hipel, Sakamoto, and Hagihara (2015)). The third party facilitators may wish to 

ascertain which preferences are required by the parties in order to reach such an attractive 

outcome. In order to analyze the resolution of such conflicts in which the preferences for each 

DM are unknown or partially unknown, the inverse analysis in a graph model is proposed as 

displayed at the bottom of Fig. 1. As introduced by Kinsara, Kilgour, and Hipel (2015a), the main 

feature of the inverse analysis is that the preference information must be determined.  

In summary, GMCR can be categorized into three perspectives based on the different given 

information and goals. As can be appreciated, each perspective solves a different kind of conflict 

problem. The differences among these three perspectives in a graph model are encapsulated as 

follows: 

a) The forward perspective determines the possible equilibria by carrying out the stability 

analysis based on the preferences of each DM contained in the input. 

b) The behavioral perspective ascertains the types of behavior which can produce the outcome 

of that dispute with the known preferences. 

c) The inverse perspective determines the unknown or partially unknown preference 

relationships for each DM which are required to make a state of interest be an equilibrium 

under a specific type of behavior. 
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Fig. 1. Three perspectives of carrying out a GMCR study (based on Fig. 1 in the paper by Kinsara 

et al. (2015b)). 

 

Inverse analysis can provide all of the possible preferences for the DMs to reach a desired 

resolution. For instance, a third party in a conflict (Hipel et al., 2015), who may be a mediator or 

analyst, can use the results of the inverse approach to determine how to persuade each DM to 

select the options resulting in the desired equilibrium according to the needed preferences. In 

other words, a third-party intervenor can employ inverse analysis to design his mediation strategy 

based on the required preference relationships to reach a more desired outcome. On the other 

hand, a particular DM involved in the dispute can take advantage of inverse analysis to change his 

own preferences and attempt to influence a competitor such that an equilibrium of interest can be 

reached (Kinsara et al., 2015a). In fact, within engineering and science, inverse analysis is 

referred to as inverse engineering and constitutes a crucial field of study when addressing 

physical systems problems (Gladwell, 2005). The topic of this paper is inverse engineering within 

societal systems in the presence of conflict. 

In the field of conflict resolution, techniques for tackling the inverse problem possess some 

drawbacks. More specifically, the inverse model studied by Kinsara et al. (2015a) assumes the 

employment of ordinal preferences which mean the preferences are transitive and hence 

intransitive preferences cannot be handled. Moreover, Sakakibara, Okada, and Nakase (2002) and 
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Kinsara et al. (2015a) investigated the inverse problem using the logical representation of GMCR 

and an enumeration method which encounters the issue of computational complexity. In order to 

address the aforementioned two shortcomings, the preferences of each DM are defined by using 

pairwise comparisons of every pair of states in conflict as given later in this paper in Definition 1, 

which means the findings in this paper are valid for both transitive and intransitive preferences. 

Preference matrices are defined later in Definition 2 to mathematically represent the binary 

relation between each two states. Preference matrices are employed to derive the mathematical 

representations of an inverse problem in a graph model having two or more DMs in this research. 

The preferences for each DM required to make a state of interest be an equilibrium with the given 

solution concept can be obtained using the inequalities provided in Section 4. As shown in 

Section 5.4, the computational complexity of the inverse analysis in a graph model can be 

enormously reduced by using the matrix representations of the inverse GMCR approach proposed 

in this paper instead of the enumeration method given by Kinsara et al. (2015a). 

The remainder of this paper is organized as follows. In Section 2, two potential general 

applications of this inverse engineering approach to GMCR are described. Within Section 3, 

matrix representations of preferences, unilateral movements and improvements, and joint 

movements and improvements are given. Matrix formulations of the inverse analyses for Nash 

stability, GMR, SMR and SEQ are presented and proven in Section 4. Section 5 consists of a case 

study of a controversial fracking dispute among the Elsipogtog First Nation, New Brunswick 

Provincial Government and Southwestern Energy (SWN) Resources in Eastern Canada, which is 

used to demonstrate how the proposed matrix representations of the inverse problem can be 

conveniently employed in practice. Finally, some conclusions and ideas for future work are 

presented in Section 6. 

 

2. Application approaches 

In some real life conflicts, the output and part of the input preference information to a graph 

model are known, but the required preferences of one or more DMs to generate the output are 

unknown, as portrayed at the bottom of Fig. 1. More specifically, an analyst may wish to 

ascertain the possible preferences of DMs which satisfy the given final stability results in a 

historical conflict. For instance, in the past two DMs have reached an equilibrium in a conflict 

after tough negotiations. However, little information is provided about their preferences. A 

historian could employ the inverse method provided in this paper to determine the DMs’ 

preferences. Moreover, he could also utilize the inverse methodology to ascertain the preferences 

needed to attain an even more desirable resolution for both parties, in order to explain for instance 
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why a Pareto superior outcome did not occur. In addition, for an ongoing dispute, the DMs may 

want to determine what preferences can help them reach a specified preferred equilibrium or an 

equilibrium of interest. For example, a facilitator or third party (Hipel et al., 2015) may wish to 

influence the preferences of one or more participants involved in a conflict such that a better or 

win/win resolution can be achieved. These two potential problems are portrayed in Fig. 2. 

As just mentioned, two major ways in which the inverse GMCR approach can be used for 

addressing conflict are: 

a) For a historical conflict, ascertain all the possible preferences of each DM that produced the 

known equilibrium which is the final result of the dispute; 

b) For an ongoing conflict, determine each possible preference relationship of the DMs required 

to reach a particular desirable resolution or state of interest if it is possible to do so. 

These two situations that could occur in an inverse analysis study are depicted as the upper and 

lower diagrams in Fig. 2, respectively. In Fig. 2, a check sign (√) means the associated 

information is known while a question mark (?) indicates an item to calculate. 

 

Two Potential Applications of Inverse AnalysisTwo Potential Applications of Inverse Analysis
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Fig. 2. Two potential applications of inverse problems. 

 

 

As depicted in Fig. 2, the matrix representations for determining the preferences in an 

inverse GMCR problem can be used in both historical and ongoing conflicts. In a real conflict, 

partial preference relations of each DM may be given. With the known part of the preferences, the 

remaining preferences required to reach the final equilibrium in a historical conflict or produce an 

equilibrium of interest can be calculated using the matrix representations proposed in Section 4. 

In some particular situations, it is not possible to reach a state of interest under the known 

preferences. In addition, this approach can also be used when the preferences of each DM are 

completely unknown.  
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3. Modeling of a graph model with matrix representations 

GMCR was originally formulated using what is called the “logical” form since solution 

concepts defining possible human behavior are explained in terms of moves and counter moves. 

For instance, if all possible unilateral improvements from a given state by a particular DM can be 

blocked by counter moves by other DMs, the DM is better off not to move and the state under 

consideration is deemed to be stable. Xu et al. (2009, 2010) provided a clever matrix or algebraic 

formulation of GMCR including the range of solution concepts describing possible human 

behavior under conflict. Because the matrix form is especially well suited for performing stability 

calculations within a decision support system and for theoretically expanding the scope of GMCR, 

this formulation is employed in this paper for defining inverse GMCR. 

To analyze the needed preferences for DMs causing a state of interest to be an equilibrium, 

the basic concepts for constructing a graph model of the conflict using matrix representations are 

given in this section. In particular, the matrices used to keep track of preferences, unilateral 

moves and unilateral improvements for each DM in a conflict model are defined. The definitions 

of group movements and the joint movement and improvement matrices for the group in a dispute 

are furnished in this section. 

Definition 1 (Fang et al., 1993; Kilgour et al., 1987) (Graph Model): The four main 

components required to develop a graph model of a conflict with two or more DMs are provided 

as follows: 

1) a finite set of the DMs represented by N  where 2N n   (“  ” denotes the 

cardinality of a set); 

2) the set of all the feasible states is denoted as  1, 2, ,S m  in which m  is the 

number of feasible states;  

3) for each DM i N , let 
iA S S   be a set of arcs containing all the unilateral 

movements controlled by DM i  in one step; 

4) for each DM i N , the simple preference of DM i  which contains a pair of relations 

 , ~i i  on S , where ( , )is q s S q S   indicates that DM i  strictly prefers state 

s  to q  while ~is q  implies DM i  equally prefers s  and q . 

Three properties connected to the above preference relations of each DM i N  are given 

as follows: 

1) ~ i
 is reflexive and symmetric (i.e., , , ~is q S s s  , and if ~is q  , then ~iq s ); 

2) 
i
 is asymmetric (i.e., 

is q  and 
iq s  cannot happen simultaneously); 
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3)  , ~i i  is strongly complete which implies for any ,s q S , only one of the 

following preference relations of DM i  can hold: ~is q , 
is q  or 

iq s . 

Because of the third property, it is assumed any given two states can be compared using strict or 

equal preference. Roy (1996, Section 7.1.1.2) uses the terminology of indifference by a DM 

between two states when these two states are equally preferred. In practice, especially when the 

conflict has existed for a while, preferences are usually transitive whereby the states can be 

ranked from most to least preferred where ties are allowed. An example of transitivity among 

three states, , , ands q p S , for DM i  is 
is q , 

iq p , and 
is p . However, as discussed 

in the introduction, the preferences of some DMs may be intransitive in some situations, 

especially when the conflict is in its early stages. For instance, the preference relations of DM i  

for the three given states , ands q p  are 
is q , 

iq p , and or ~i ip s p s . The findings 

in this research can handle both transitive and intransitive preferences. 

Definition 2 (Xu et al., 2009) (Preference): In a graph model, let iP
, iP

, iP
 and 

,

iP 
 

be the four m m  preference matrices for DM i  whose entry ( , )s q  for which ,s q S  is 

defined as follows: 

1, if
( , )

0, otherwise,

i

i

q s
P s q 

 


 

1, if
( , )

0, otherwise,

i

i

s q
P s q 

 


 

1 if ~ and
( , )

0 otherwise,

i

i

q s q s
P s q


 


，

，
 

, 1 ( , ), if
( , )

0, otherwise.

i

i

P s q s q
P s q



 
  

 


 

For the above definition, it is assumed that
=( , ) ( , ) =0i iP s s P s s  ，

. 

Definition 3 (Xu et al., 2009) (Unilateral Movements and Improvements of a focal DM): In 

a graph model, let 
iJ  and iJ 

 denote two m m  0-1 matrices representing the unilateral 

moves and unilateral improvements of DM i  respectively, as follows:  

1, if ( , )
( , )

0, otherwise,

i

i

s q A
J s q


 


 

1, if ( , ) 1and
( , )

0, otherwise.

i i

i

J s q q s
J s q


 


 

Furthermore, the set of unilateral moves of DM i from an initial state s , denoted by ( )iR s , is defined 
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as  

 ( ) : if ( , ) 1 ,i iR s q J s q   

and the set of unilateral improvements of DM i from s , represented by ( )iR s
, is given as  

 ( ) : if ( , ) 1 .i iR s q J s q    

For Definition 3, it is assumed that ( , ) 0iJ s s  . 

Assume that H N  is any subset of the DMs, and let ( )HR s  and ( )
H

R s
 represent the set 

of all states that can be formed from any sequence of unilateral moves and unilateral 

improvements, by some or all of the DMs in H , beginning at state s , respectively. In the 

definitions, one DM can move more than once, but not twice consecutively. If 
1 ( )Hs R s , let 

1( )Hs s  stand for the set of all last DMs in legal sequences from s  to 
1s . Similarly, if

1 ( )
H

s R s , 1( )
Hs

s  is used to denote the set of all last DMs in legal sequences of unilateral 

improvements from s to
1s . 

Definition 4 (Fang et al., 1993) (Movements and Improvements by DMs in H ): Let s S  

and H N , H  . A unilateral move by H  is a member of ( )HR s S  and a unilateral 

improvement by H  is a member of ( )HR s S  , defined inductively by: 

Definition for ( )HR s :  

1) if j H  and 1 ( )js R s , then 
1 ( )Hs R s  and 

1( )Hsj s ,  

2) if 
1 ( )Hs R s , j H , and 2 1( )js R s , then 

a) if 1( ) 1Hs s   and 
1( )Hsj s , then 

2 ( )Hs R s  and 
2( )Hsj s .  

b) if 1( ) 1Hs s  , then 
2 ( )Hs R s  and 

2( )Hsj s . 

Definition for ( )HR s : 

1) if j H  and 1 ( )js R s , then 
1 ( )Hs R s  and 

1( )Hsj s ,  

2) if 
1 ( )Hs R s , j H , and 2 1( )js R s , then 

a) if 1( ) 1Hs s   and 
1( )Hsj s , then 

2 ( )Hs R s  and 
2( )Hsj s , 

b) if 1( ) 1Hs s  , then 2 ( )Hs R s  and 2( )Hsj s . 

Definition 5 (Xu et al., 2009) (Joint Movement and Joint Improvement Matrices): In a graph 

model, let 
HM  and 

HM   be two m m  matrices called the joint movement matrix and joint 

improvement matrix whose entry ( , )s q  is given as follows: 
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1, if ( )
( , )

0, otherwise,

H

H

q R s
M s q


 


 

1, if ( )
( , )

0, otherwise.

H

H

q R s
M s q




 

 


 

Note that when  H i , 
H iM J  and 

H iM J  . 

Definition 6 (Sign Function): Given an m m  matrix M . Let ( )sign M  denote the 

m m  matrix with ( , )s q  entry as follows: 

1, ( , ) 0

[ ( , )] 0, ( , ) 0

1, ( , ) 0.

M s q

sign M s q M s q

M s q




 
 

 

 

4. Inverse analysis using matrix representations 

In the inverse problematique of a graph model, one may wish to study the preferences of the 

DMs given the known behavior of the DMs and a specified equilibrium. The DMs in the conflict 

may want to ascertain what preferences are needed to cause a state of interest to be stable 

according to the specified behavior. Four definitions of stabilities consisting of Nash stability 

(Nash, 1950, 1951), general metarationality (GMR) (Howard, 1971), symmetric metarationality 

(SMR) (Howard, 1971), and sequential stability (SEQ) (Fraser & Hipel, 1979, 1984) are given in 

this section. According to the definitions, four theorems and their proofs corresponding to the four 

types of solution concepts are given to analyze the inverse problems using matrix representations 

in a graph model of the conflict. In this section, the four equivalent matrix definitions for stability 

were originally provided by Xu et al. (2009). 

As proved by Fang, Hipel, and Kilgour (1989) and Fang et al. (1993), the theoretical 

relationships among the aforementioned four solution concepts are as portrayed in Fig. 3. The 

relationships in the Venn diagram are valid for both individual stability and equilibria according 

to the solution concepts. Notice, for example, in Fig. 3 that if a state is Nash stable then it is also 

GMR, SMR and SEQ. Additionally, the stability findings for each of Nash, SMR and SEQ are 

always a subset of GMR results. These special theoretical relationships are used when proving 

Theorems 3, 6, and 7 in Section 4.  
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All StatesAll States

GMR GMR 

SEQ SEQ 

SMR SMR 
NASH 

Stable

NASH 
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Fig. 3.  Relationships among solution concepts for both individual stability and 

equilibria (based on Fang et al. (1989, 1993)). 

 

In the following definitions and theorems, recall that ( 2)N n n   and m  denote the 

numbers of DMs and feasible states, respectively. Let E  be an m m  matrix and e  denote an 

m-dimensional column vector in both of which each entry is 1. Let 
se  be an m-dimensional 

column vector where the ths  entry is 1 and all other entries are 0. Given two m g  matrices 

C  and Y , define the Hadamard product (Davis, 1962) Q C Y  as the m g  matrix with 

( , )s q  entry ( , ) ( , ) ( , )Q s q C s q Y s q  . Let  N i  denote the set of the other DMs except DM 

i . 

A definition for the relationships between matrices and a key theorem are given before the 

inverse analysis to ascertain what kind of preferences under conflict, referred to as the four 

solution concepts, are in consonance with known stabilities or states of interest to the DMs. 

Definition 7 (Matrix Relations): Let 
1 2andL L  be two 1m  matrices.  

1) Definition for the matrix relation denoted using  : The relation 
1 2L L  means that 

each entry 
1( ,1) ( 1, 2, , )L l l m  in matrix 

1L  is either larger or equal to the specified entry 

2 ( ,1) ( 1, 2, , )L l l m  in matrix 
2L .  

2) Definition for the matrix relation which uses  : The relation 1L  2L  denotes that 

there is at least one entry 
1( ,1)L l  in matrix 

1L  which is smaller than the specified entry 
2 ( ,1)L l  

in matrix 
2L . 

Theorem 1: Let K  denote a 0-1 1m  matrix and L  be an 1m  matrix whose entry 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13 
 

( ,1)L l  is a non-negative integer. Define the following function f  by  

( ( )).Tf K e sign L    (T denotes matrix and vector transpose.)          (1) 

Then, 0f   iff L K . 

Proof: 1) If 0f  , 
1

( ,1) (1 ( ( ,1))) 0
m

l

f K l sign L l


    . Since K  is a 0-1 1m  matrix, 

( ,1)K l  is equal to either 1 or 0.  

When ( ,1) 1K l  , ( ( ,1))sign L l  must be equal to 1 which means ( ,1) 1L l  . Then, 

( ,1) ( ,1)L l K l ; 

When ( ,1) 0K l  , ( ( ,1))sign L l  can be equal to either 0 or 1 which means ( ,1)L l  could be 

any non-negative integer according to the definiton of L . Then, ( ,1) ( ,1)L l K l . 

Hence, if 0f   then L K . 

2) If L K , 
1

( ,1) (1 ( ( ,1)))
m

l

f K l sign L l


   . 

When ( ,1) 1K l  , ( ,1) ( ,1) 1L l K l  . Then, ( ( ,1)) 1sign L l   which indicates 0f  . 

When ( ,1) 0K l  , it is obvious that 0f  . 

Hence, if L K , then 0f  .□ 

Definition 8 (Matrix Definition for Nash Stability): State s S  is Nash stable for DM i  

iff 0T

s ie J e   . 

Theorem 2 (Inverse Analysis for Nash Stability): If state s S  is Nash stable for DM 

i N , the preferences of DM i  satisfy the following conditions:  

(( ) ) 0.T T

s i i se J P e                             (2) 

Proof: Since state s S  is Nash stable for DM i , then  

1

1 1

1

( , ) ( , ) 0
m

T

s i i i

s

e J e J s s P s s 



      iff 1 1 1( , ) ( , ) 0,i iJ s s P s s s S    . 

Therefore, 
1

1 1

1

( , ) ( , ) (( ) ) 0
s

m
T T

i i i i s

s

J s s P s s e J P e 



      . Equation (2) indicates that for any 

1 ( )is R s , the preference relation of DM i  between states 
1s  and s  must be 1( , ) 0iP s s  .□ 

Definition 9 (Matrix Definition for GMR): Given the following m m  matrix 
GMR

iM , 

 
,[ ( ( ) )].GMR T

i i iN i
M J E sign M P  


                        (3) 

State s S  is GMR for DM i  iff , 0( )GMR

iM s s  . 
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Theorem 3 (Matrix Inequality for Inverse GMR): State s S  is GMR for DM i N iff 

the preferences of DM i  satisfy the following conditions:  

 
,( ( ) ) ( ) (( ) ).T T T

i s i s i sN i
M P e J e P e  


                  (4) 

Proof: Based on Definition 2, 
,

i iP E I P      where I  is the identity matrix. Since state 

s S  is GMR for DM i , then according to Definition 9, 

 
,( , ) [( ) (( ) ) ] [ ( (( ) ))] 0.GMR T T T T

i i s i s i sN i
M s s J e P e e sign M P e  


          (5) 

In Equation (5), ( ) (( ) )T T

i s i sJ e P e   is a 0-1 1m  matrix and  
,( ( ) )T

i sN i
M P e 


   is 

an 1m  matrix whose entries are all non-negative integers. According to Theorem 1, 

( , ) 0GMR

iM s s   which implies state s  is GMR for DM i  iff 

 
,( ( ) ) ( ) (( ) )T T T

i s i s i sN i
M P e J e P e  


     .□ 

Note that Inequality (4) is equivalent to the following inequality, 

 
2

,

1 2 2 1 1 1

1

( , ) ( ( , )) ( , ) ( , ) 0, .
m

i i iN i
s

M s s P s s J s s P s s s S  




              (6) 

The above proof used mathematical logic. Actually, Theorem 3 can also be explained by the 

theoretical relationships between Nash stability and GMR. Hence, if a state is stable according to 

Nash stability then it is also GMR as displayed in Fig. 4. 

 

 

GMR

Nash Stability

 

Fig. 4. Theoretical relationships between Nash stability and GMR (based on Fang et al. 

(1989, 1993)). 

 

In Inequality (6), 1 1 1( , ) ( , ) ( , )i i iJ s s P s s J s s   . Then, state s  is GMR, 

1) If 1 1, ( , ) 0is S J s s   , which means state s  is not only GMR stable but also 

Nash stable for DM i  corresponding to the white ellipse in Fig. 4, then 

 
2

,

1 2 2

1

( , ) ( ( , )) 0
m

iN i
s

M s s P s s 




   according to the definitions of 
 N i

M


 and 
,

iP 
. 
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2) If 1 1, ( , ) 1is S J s s   , which means state s  is not Nash stable but possesses 

GMR stability for DM i  corresponding to the dashed area in Fig. 4, then 

 
2

,

1 2 2

1

( , ) ( ( , )) 1
m

iN i
s

M s s P s s 




   based on Inequality (6) which implies that for any 

1 ( )is R s , there exists at least one 
 2 11

( )
N

s R s


  with 
,

2( , ) 1iP s s   . 

As indicated in the above situations within 1) and 2), Inequality (6) contains all the 

conditions of the preference relations for state s  to be GMR for DM i . 

Definition 10 (Matrix Definition for SMR): Let 
SMR

iM  denote an m m  matrix as 

follows:  

 
[ ( )],SMR

i i N i
M J E sign M W


                         (7) 

where 

,( ) [ ( ( ) )].T T

i i iW P E sign J P                          (8) 

State s S  is SMR for DM i  iff , 0( )SMR

iM s s  . 

Theorem 4 (Inverse Analysis for SMR): State s S  is SMR for DM i N  iff the 

preferences of DM i  satisfy the following conditions: 

 
( ) (( ) ).T T

s i s i sN i
M W e J e P e


                         (9) 

Proof: Since state s S  is SMR for DM i , then according to Definition 10,  

 
[( ) (( ) )] [ ( )( , ) ] 0.T T T

i s i s sN i

SMR

i J e P e e sig eM n M Ws s 


                (10) 

In Equation (10), ( ) (( ) )T T

i s i sJ e P e   is a 0-1 1m  matrix and 
  sN i

M W e


   is an 

1m  matrix whose entries are all non-negative integers. According to Theorem 1, 

( , ) 0SMR

iM s s   which implies state s  is SMR for DM i  iff 

 
( ) (( ) )T T

s i s i sN i
M W e J e P e


     .□ 

As noted in Inequality (6), Inequality (4) which is represented by matrix in Theorem 3 can 

be calculated while the outcome of Inequality (4) should be a set of inequalities whose number is 

less than m . However, in Theorem 4, a sign function is contained in Inequality (9). Therefore, 

one can only use the enumeration to solve the inequality with the sign function. A theorem is 

provided to handle this problem as follows: 

Theorem 5: Let K  and U  denote two 0-1 1m  matrices. Let L  be an 1m  matrix 

whose entry ( ,1)L l  is a non-negative integer. Then,  
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( ) ( ) .T T TK U L K U L                           (11) 

Proof: On the left side of Equation (11), 
1

( ) ( ,1) ( ( ,1) ( ,1))
m

T

l

K U L K l U l L l


     where 

( ,1)K l , ( ,1)U l  and ( ,1)L l  are the entries in the three 1m  matrices, respectively. On the right 

side of Equation (11), 
1

( ) ( ( ,1) ( ,1)) ( ,1)
m

T T

l

K U L K l U l L l


     which is equal to the left side. 

□ 

Theorem 6 (Matrix Inequality for Inverse SMR): Inequality (9), that is the matrix condition 

of preference relations for DM i  to generate his individual SMR stability of state s , is 

equivalent to Formula (12) which can be calculated as: 

 1 1( , ) ( , ) 0 ( )T

i i i i sJ s s P s s J P e      
  

1

,

1 1

1

( ) (( ) ) ( , ) ( , ) 1 ,

.

T T T

s i s i iN i
e M P e J s s P s s

s S

  


   

 
  

(12) 

Proof: From Inequality (9), the following inequality can be obtained, 

 
,[ (( ) ) ( ( ( ) ))] ( ) (( ) ).T T T T

i s i i s i s i sN i
M P e e sign J P e J e P e   


           (13) 

Inequality (13) means for each 1s S ,  

 1 1

,[ (( ) ) ( ( ( ) ))] ( ) (( ) ).T T T T

s i s i i s s i s i sN i
e M P e e sign J P e e J e P e   


              (14) 

Since 
1 1 1( ) (( ) ) ( , ) ( , )T T

s i s i s i ie J e P e J s s P s s      , then 
1

( ) (( ) )T T

s i s i se J e P e    must be 

equal to either 1 or 0.  

1) If 1 1( , ) ( , ) 0i iJ s s P s s  , it is obvious that Inequality (13) is true. 

2) If 1 1( , ) ( , ) 1i iJ s s P s s  , then  

 1

,

1[ (( ) ) ( ( ( ) ))] 1 .T T

s i s i i sN i
e M P e e sign J P e s S  


                 (15) 

Using Theorem 6 provided above, Inequality (15) can be converted to the following inequality: 

 1

,

1( ) [ (( ) ) ] ( ( ( ) )) 1 .T T T

s i s i i sN i
e M P e e sign J P e s S  


                (16) 

The left part of Inequality (16) is equal to a non-negative integer. Therefore, Inequality (16) 

is equivalent to the following function: 

 1

,

1( ) [ (( ) ) ] ( ( ( ) )) 0 .T T T

s i s i i sN i
e M P e e sign J P e s S  


               (17) 

Consequently, the conditions of preference relations satisfying Inequality (17) can be 

obtained by removing the outcomes of Equation (18). 
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 1

,

1( ) [ (( ) ) ] ( ( ( ) )) 0 .T T T

s i s i i sN i
e M P e e sign J P e s S  


               (18) 

Utilizing Theorem 1 put forward in this paper, Equation (18) is equivalent to Inequality (19) 

shown below: 

 1

,

1( ) ( ) (( ) ) .T T T

i i s s i sN i
J P e e M P e s S  


                  (19) 

Therefore, Inequality (15) could be presented by Inequality (20): 

( )T

i i sJ P e  
 1

,

1( ) (( ) ) ,T T

s i sN i
e M P e s S 


               (20) 

Combining the situations 1) and 2), Inequality (12) is equivalent to Inequality (9).□ 

Note that Inequality (20) means there exists at least one 2s S  such that 

 
3

,

2 3 3 1 2 2 1

1

( , ) ( , ) ( , ) ( ( , )) ,
m

i i iN i
s

J s s P s s M s s P s s s S  




               (21) 

where 1 1( , ) ( , ) 1i iJ s s P s s  . 

In Inequality (21),  
,

1 2 2( , ) ( ( , ))iN i
M s s P s s 


  must be equal to either 1 or 0. Then, 

3

2 3 3

1

( , ) ( , ) 0
m

i i

s

J s s P s s



   if Inequality (21) is true for state 2s S . 

Similar to the inverse problem for GMR, the above proof used mathematical logic. Actually, 

Theorem 6 can also be explained by the theoretical relationships between Nash stability and SMR 

such that if a state is stable according to Nash stability then it is also SMR as portrayed in Fig. 5. 

 

SMR

Nash Stability

 

Fig. 5. Theoretical relationships between Nash stability and SMR (based on Fang et al. 

(1989, 1993)). 

 

In Inequality (12), 1 1 1( , ) ( , ) ( , )i i iJ s s P s s J s s   . Hence, state s  is SMR, 

1) If 1 1, ( , ) 0is S J s s   , which means that state s  is not only SMR stable but also 

Nash stable for DM i  corresponding to the white ellipse in Fig. 5, then 

 
0sN i

M W e


    according to the definitions of 
 N i

M


 and 
,

iP 
. 
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2) If 1 1, ( , ) 1is S J s s   , which means state s  is not Nash stable but SMR stable for 

DM i  corresponding to the dashed area in Fig. 5, then as proven in situation 2) of 

Theorem 6, Inequality (21) is equivalent to the statement that, 1 ( )is R s  , there exists 

at least one 
2 { } 1( )N is R s  with 2( , ) 0iP s s   and 3( , ) 0iP s s   for all 3 2( )is R s . 

As mentioned in the above situations 1) and 2) of Theorem 6, Inequality (12) contains all of the 

conditions of the preference relations for state s  to be SMR for DM i . 

Definition 11 (Matrix Definition for SEQ): Given the following m m  matrix 
SEQ

iM , 

 

,[ ( ( ) )].
N i

SEQ T

i i iM J E sign M P


                         (22) 

State s S  is SEQ for DM i  iff , 0( )SEQ

iM s s  . 

Theorem 7 (Matrix Inequality for Inverse SEQ): State s S  is SEQ for DM i N  iff the 

preferences of DM i  satisfy the following conditions:  

 

,(( ) ) ( ) (( ) ).
N i

T T T

i s i s i sM P e J e P e


                        (23) 

Proof: Since state s S  is SEQ for DM i , then according to Definition 11, 

 

,( , ) [( ) (( ) ) ] [ ( (( ) ))] 0
N i

SEQ T T T T

i i s i s i sM s s J e P e e sign M P e


             (24) 

In Equation (24), ( ) (( ) )T T

i s i sJ e P e   is a 0-1 1m  matrix and 
 

,(( ) )
N i

T

i sM P e


     is 

an 1m  matrix whose entries are all non-negative integers. According to Theorem 1, 

( , ) 0SEQ

iM s s   which implies state s  is SEQ for DM i  iff 

 

,(( ) ) ( ) (( ) )
N i

T T T

i s i s i sM P e J e P e


        .□ 

Note that Equation (24) is equivalent to the following inequality, 

 

2

,

1 2 2 1 1 1

1

( , ) ( ( , )) ( , ) ( , ) 0, .
N i

m

i i i

s

M s s P s s J s s P s s s S


   



                 (25) 

The analysis of preference relationships in an inverse problem for SEQ is a refinement based 

on the inverse analysis of GMR. Actually, Theorem 7 can also be explained by the theoretical 

relationships between Nash stability and SEQ since if a state is stable according to Nash stability 

then it is also SEQ as displayed in Fig. 6. 
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SEQ

Nash Stability

 

Fig. 6. Theoretical relationships between Nash stability and SEQ (based on Fang et al. (1989, 

1993)). 

 

In Inequality (25), 1 1 1( , ) ( , ) ( , )i i iJ s s P s s J s s   . Then, state s  is SEQ, 

1) If 1 1, ( , ) 0is S J s s   , which means state s  is not only SEQ stable but also Nash 

stable for DM i  corresponding to the white ellipse in Fig. 6, then 

 

2

,

1 2 2

1

( , ) ( ( , )) 0
N i

m

i

s

M s s P s s


  



   according to the definitions for 
 N i

M



 and 

,

iP 
. 

2) If 1 1, ( , ) 1is S J s s   , which means state s  is not Nash stable but SEQ stable for DM 

i  corresponding to the dashed area in Fig. 6, then 
 

2

,

1 2 2

1

( , ) ( ( , )) 1
N i

m

i

s

M s s P s s


  



   

based on Inequality (25) which implies for any 1 ( )is R s , there exists at least one 

 2 1( )
N i

s R s


  with 2( , ) 0iP s s  . 

As mentioned in the above situations 1) and 2), Inequality (25) can contain all the conditions of 

the preference relationships for state s  to be SEQ for DM i . 

According to Theorems 2, 3, 6, and 7, an analyst can easily obtain the set of all possible 

preference relations for any type of solution concept while the enumeration method given by 

Kinsara et al. (2015a) needs to test the preference relations one-by-one. It means this novel 

inverse GMCR approach is much more efficient. 

 

5. Application of inverse analysis to the Elsipogtog First Nation fracking dispute 

A New Brunswick fracking dispute in Canada between the provincial Government of 

Premier Alward and Elsipogtog First Nation is employed to illustrate how the proposed approach 

for determining the required preferences of each DM for a given state of interest to be an 

equilibrium works in practice. Because this conflict was previously formulated and analyzed by 

O’Brien and Hipel (2016), the possible equilibria to this dispute under the preferences provided in 

their paper have already been calculated using GMCR. Assuming that the preferences of any DM 
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are not known, the new matrix representations for preference analysis presented in Section 4 in 

this paper are used to ascertain the preferences of each DM to make a state of interest be an 

equilibrium. Under the assumption that the conflict is current or ongoing, one state of interest for 

a DM called New Brunswick Provincial Government is selected to illustrate how the algorithms 

provided in Section 4 for calculating the required preferences of DMs can be used to reach an 

equilibrium of interest.  

In Section 5.1, the background of this dispute is introduced and the conflict is modeled using 

option form. The matrix form of this model is then presented in Section 5.2 followed by the 

preference analysis in Section 5.3. The novel approach for solving the inverse problem of GMCR 

is compared with the technique developed by Kinsara et al. (2015a) in Section 5.4. As shown in 

Section 5.3, each DM can obtain an inequality containing all of the possible preference 

relationships to cause the specific state to become an equilibrium under a particular solution 

concept by using the proposed inverse GMCR approach. This inequality provides a lower 

computational complexity for determining the preference relationships than the enumeration 

method as indicated in Table 3. 

One should keep in mind that the four solution concepts and connected theorems for 

establishing the conditions for the inverse problem depend upon pairwise preference information 

stored in matrices. Because preference comparisons occur only between two states, both transitive 

and intransitive preference situations can be taken into account and preference cycles cannot 

arise.  

 

5.1. Background and the option form of the dispute 

The Elsipogtog First Nation fracking dispute, which occurred in June of 2013, was first 

formally modeled and analyzed by O’Brien and Hipel (2016). The Frederick Brook shale deposit 

where the dispute took place is located in the southern part of the Province of New Brunswick in 

Canada. The New Brunswick Provincial Government (NBPG) preferred to develop the shale gas 

resource because of the benefits for its economy. Many residents were worried about potential 

environmental pollution when allowing shale gas exploration and extraction by fracking. The 

Elsipogtog First Nation was the most noteworthy party which opposed the shale gas development 

in New Brunswick. An American company called Southwestern Energy (SWN) Resources was 

contracted by NBPG to carry out the seismic testing for the shale gas exploration. The New 

Brunswickers who attempted to prevent the NBPG and SWN Resources from developing the 

shale gas resource blocked a key road on September 30
th
, 2013. Assuming that the conflict is 

current or ongoing, NBPG, who is one of the DMs, has a state or outcome of high interest while it 
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knows nothing about the preferences of each DM. Each DM’s preferences required for the state 

of interest to be an equilibrium is important to NBPG. With the required preferences of DMs, a 

specific strategy for the negotiation can be formulated to bring about a desirable result. The 

matrix representations used in preference analysis presented in Section 4 is employed to obtain 

the required preferences of DMs for the equilibrium of interest to occur. The DMs and options for 

the New Brunswick fracking dispute are summarized as follows. 

1) The Elsipogtog First Nation (called EFN) can continue to protest or not protest by 

allowing the seismic testing to resume unhindered. 

2) The New Brunswick Provincial Government (NBPG) cannot allow the shale gas 

exploration or fracking on Elsipogtog First Nation traditional land, or give a percentage of 

fracking royalties to the Elsipogtog First Nation. 

3) The Southwestern Energy (SWN) Resources can pursue legal action or not.  

As constructed by O’Brien and Hipel (2016), the DMs and their options as well as the twelve 

feasible states in the conflict are listed in Table 1. As can be seen, each of the three DMs is listed 

in the left column of this table followed by the option or options it controls. Each column of Ys 

and Ns in this table represents a specific feasible state. A “Y” opposite an option implies “yes” 

the option is chosen while an “N” means “no” the option is not taken by the DM. A state number 

is given below each column for convenience of reference. In Table 1, for example, state 
1s  

represents the situation in which Elsipogtog First Nation does not protest and allows the seismic 

testing to resume unhindered (as indicated by the “N” opposite option 1). NBGP selects to neither 

allow the fracking to take place on Elsipogtog First Nation traditional land nor to give a 

percentage of fracking royalties. SWN Resources is not taking legal action. 

 

 

Table 1 Feasible states in the Elsipogtog First Nation fracking dispute. 

DMs and Options Feasible States 

1. Elsipogtog First Nation 

(1) Protest N Y N Y N Y N Y N Y N Y 

2. New Brunswick Provincial Government 

(2) No fracking N N Y Y N N N N Y Y N N 

(3) Royalties N N N N Y Y N N N N Y Y 

3. SWN Resources 

(4) Legal action N N N N N N Y Y Y Y Y Y 

State Number s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

 

 

A unilateral move by a DM causes the conflict to move from one state to another. Notice, for 
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example, EFN can on its own cause the conflict to go from state 
1s  to 

2s  by changing its option 

selection from “N” to “Y”. This is a unilateral move because the other two DMs keep the same 

option selections. The arcs connecting states given as vertices in Fig. 7 graphically display all of 

the unilateral moves of each DM in this fracking dispute. 

In Fig. 7, a two-directional arc means that the movement between two states is reversible. In 

this conflict, all the movements are reversible. For example, as shown in Fig. 7(a), the move by 

Elsipogtog First Nation from 
1s  to 

2s  is reversible, since the arrows or the arc point in opposite 

directions. 

 

(a)  Graph for EFN (b)  Graph for NBPG

s1 s2

s2

s8

s3

s9

s4

s10

s5

s11

s6

s12

(c)  Graph for SWN Resources

s3 s4

s5 s6

s7 s8

s9 s10

s11 s12

s1

s7

s1

s3

s5

s2

s4

s6

s7

s9

s11

s8

s10

s12

 
Fig. 7. State transition graphs for the DMs in the Elsipogtog First Nation fracking dispute. 

 

 

5.2. Matrix form of the graph model 

According to the definitions presented in Section 3, the matrix form of the graph model for 

this conflict is provided for each DM in this subsection. In this dispute, the preferences of each 

DM are assumed to be unknown. The matrices for unilateral movements and joint movements are 

listed here. As indicated in Table 1, the DMs Elsipogtog First Nation, New Brunswick Provincial 

Government and SWN Resources are labeled using the numbers 1 to 3, respectively. The 

italicized “ N ” represents the set containing these DMs. 

The unilateral movement matrix J1 and joint movement matrix MN-{1} for Elsipogtog First 

Nation according to Definitions 3 and 5 and Fig. 7 are:  
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1

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0
=

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

J

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{1}

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1
=

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1

NM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Notice, for example, that 
1(1, 2) 1J   means that Elsipogtog First Nation can move from 

1s  to 
2s  

in one step (see Fig. 7(a)), as mentioned before. 

The unilateral movement matrix 
2J  and joint movement matrix 

 2N
M


 for NBPG 

following Definitions 3 and 5 and Fig. 7 are:  

2

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0
=

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0

J

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{2}

1 1 0 0 0 0 1 1 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 1 0 0 0 0 1 1
=

1 1 0 0 0 0 1 1 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 1 0 0 0 0 1 1

NM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The unilateral movement matrix 
3J  and joint movement matrix 

 3N
M


 for SWN Resources 

according to Definitions 3 and 5 and Fig. 7 are:  
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3

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1
=

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

J

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{3}

1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

NM 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

 

 

5.3. Preference analysis  

Under the assumption that the conflict is just starting, NBPG, who is the second DM in this 

dispute, does not know the preferences of the DMs. State 
1s  is of interest to it because this state 

can provide many benefits. Hence, NBPG may wish to determine the preferences required to 

make state 
1s  be an equilibrium. In order to ascertain how to negotiate with other DMs to reach 

an equilibrium of interest, the preferences of each DM required for the specified equilibrium are 

important to NBPG. 

State 
1s , which is a state of interest to NBPG, is selected for calculating the preferences of 

each DM required to cause the state to be an equilibrium. An equilibrium may be caused by Nash, 

GMR, SMR or SEQ behavior. The required preferences of each DM making state 
1s  an 

equilibrium under any of the four behaviors are now determined. In the following analyses, 

( , )iP s q
 is used to present the preference relation for DM i  between state s  and q . For 

example, 1 (1, 2) 0P   means Elsipogtog First Nation less or equally prefers 
2s  to 

1s . 

Nash stability: if state 
1s  is Nash stable for each DM, the conditions of the preferences for 

each DM can be obtained by using Equation (2). The required preferences for each DM are listed 

as follows, respectively:  

a) For DM 1: 1 (1, 2) 0P  . 

b) For DM 2: 2 (1, 3) 0P   and 2 (1, 5) 0P  . 

c) For DM 3: 3 (1, 7) 0P  . 

General metarationality: if state 
1s  is GMR for each DM, the required preferences for each 

DM which are listed as given below can be obtained by using Inequality (4).  
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a) For DM 1: 1 1 1 1 1 12 (1, 2) (1, 4) (1, 6) (1, 8) (1,10) (1,12) 6P P P P P P            

b) For DM 2: 

2 2 2 2 2 2 2 22 (1, 3) (1, 4) (1, 9) (1,10) 4 and 2 (1, 5) (1, 6) (1,11) (1,12) 4.P P P P P P P P                

c) For DM 3: 3 3 3 3 3 32 (1, 7) (1, 8) (1, 9) (1,10) (1,11) (1,12) 6P P P P P P           . 

Symmetric metarationality: if state 
1s  is SMR for each DM, the required preferences for 

each DM which are given as follows can be obtained by using Inequality (12). 

a) For DM 1: 1 1 1 1 1 1 1(1, 2) 0 or (1, 3) (1, 4) (1, 2) or (1, 5) (1, 6) (1, 2) orP P P P P P P          

1 1 1 1 1 1 1 1 1(1, 7) (1, 8) (1, 2) or (1, 9) (1,10) (1, 2) or (1,11) (1,12) (1, 2).P P P P P P P P P               

b) For DM 2: 

2 2 2 2 1 2 2 2

1 2 2 2 1

(1, 3) 0 or (1, 2) (1, 4) (1, 6) (1, 3) or (1, 7) (1, 9) (1,11)

(1, 3) or (1, 8) (1,10) (1,12) (1, 3)

P P P P P P P P

P P P P P

       

    

     

   
 

and  

2 2 2 2 1 2 2 2

1 2 2 2 1

(1, 5) 0 or (1, 2) (1, 4) (1, 6) (1, 5) or (1, 7) (1, 9) (1,11)

(1, 5) or (1, 8) (1,10) (1,12) (1, 5).

P P P P P P P P

P P P P P

       

    

     

   
 

c) For DM 3: 3 3 3 3 3 3 3(1, 7) 0 or (1, 2) (1, 8) (1, 7) or (1, 3) (1, 9) (1, 7) orP P P P P P P            

3 3 3 3 3 3 3 3 3(1, 4) (1,10) (1, 7) or (1, 5) (1,11) (1, 7) or (1, 6) (1,12) (1, 7).P P P P P P P P P               

Sequential stability: in order to calculate the required preferences for the specific DM when 

state 
1s  is SEQ for it, the other DMs’ preferences are needed to obtain its joint improvement 

matrix. In practice, partial preferences of each DM are often known. However, the complete 

pairwise comparisons of states to obtain preferences are not known by the DMs or the third party. 

If any of the preferences for each DM are unknown, the model proposed in this research can be 

used to obtain the required preferences causing the state under consideration to be a SEQ 

equilibrium. In this illustration, the known preferences of each DM are given in Table 2. 

 

Table 2 Known preferences for each DM in the Elsipogtog First Nation fracking dispute. 

DMs Known preferences 

Elsipogtog First Nation 3 4 11 12,s s s s  

New Brunswick Provincial Government 7 9 2 8 4 10 12,s s s s s s s  

SWN Resources 5 11 6 12 9 10, ,s s s s s s  

 

Then, the remaining preferences for each DM can be obtained by using Inequality (23), as 
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indicated below: 

a) For DM 1: 2 1 3 1 1(2, 6) [1 (1, 6)] (2, 8) [1 (1, 8)] (1, 2).P P P P P            

b) For DM 2: 

3 2 2 3 1 2 2

3 1 3 2 2 1 2 2

(3, 9) [1 (1, 9)] (1, 3) and (3, 9) (9,10) [1 (1,10)] (1, 3) and

(3, 9) (9,10) (10, 4) [1 (1, 4)] (1, 3) and (5, 6) [1 (1, 6)] (1, 5).

P P P P P P P

P P P P P P P P

      

       

      

       
 

c) For DM 3: 1 3 2 3 3(7, 8) [1 (1, 8)] (7,11) [1 (1,11)] (1, 7).P P P P P            

The required preference relationships for each DM in the fracking dispute are obtained using 

the proposed mathematical approach in this research to satisfy the four solution concepts 

consisting of Nash, GMR, SMR and SEQ, respectively. To make the state of interest, 
1s , for both 

NBPG and SWN Resources be an equilibrium (O’Brien & Hipel, 2016), an inequality 

representing the needed preference relationships for each DM is given according to each of the 

four solution concepts. For example, if DM 2 wishes to stay at state 
1s  and maintain it as a GMR 

equilibrium, the logical relationships of preferences for each DM based on the inequality for 

general metarationality can be described as follows: 

a) DM 1 prefers state
1s to at least one of the states

2s , 
4s , 

6s , 
8s , 

10s  and 
12s . 

b) DM 2 cannot prefer state 
3s  to 

1s , 
4s  to 

1s , 
9s  to 

1s , and 
10s  to 

1s  together while it 

cannot prefer 
5s  to 

1s , 
6s  to 

1s , 
11s  to 

1s , and 
12s  to 

1s  at the same time. 

c) DM 3 prefers state
1s to at least one of the states

7s , 
8s , 

9s , 
10s , 

11s  and 
12s . 

 

5.4. Comparison of computational complexity 

In this section, the computational complexity of the novel approach proposed in this paper 

for the inverse GMCR formulation is compared with that of the enumeration method given by 

Kinsara et al. (2015a). The number of the required preference relationships of DM 1 to make state 

1s  be Nash, GMR, SMR or SEQ individually stable in the Elsipogtog First Nation fracking 

dispute is taken as an example for the comparison. In Section 3, three possible preference 

relations for each DM between two states are defined in Definition 1. Hence, the number of 

preference matrices for DM 1 should be 
( 1)

23
m m 

 where m  is equal to 12 in the Elsipogtog First 

Nation fracking dispute. Each possible preference matrix needs to be tested according to the 

matrix representations of individual stability derived by Xu et al. (2009). However, the number of 

the required preference relationships is reduced by the constraints obtained in Section 5.3. The 

results of the comparison are listed in Table 3.  
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Table 3 Computational complexity of analyzing the preference relationships for DM 1.  

Approach 
Computational Complexity 

Nash GMR SMR SEQ 

This paper 1 63  113  53  

Kinsara et al. (2015a) 123  663  663  1833  

 

Actually, the sign function given in Definition 6 for calculating the individual stabilities is an 

essential component of the matrix representations of GMCR. However, it is really complicated 

for the inverse problem when the elements in the sign function are uncertain. Therefore, two key 

theorems - Theorems 1 and 5 - are put forward to convert the equations having sign functions into 

inequalities without sign functions. The number of needed preference relations is reduced which 

makes the calculations much easier. 

 

6. Conclusions 

In this paper, the matrix representations of the inverse problem for a graph model are 

formulated to ascertain the required preferences of each DM for reaching a given equilibrium or 

outcome of interest. Inverse analysis constitutes a powerful extension of the forward and 

behavioral GMCR methodologies for determining all of the possible preferences causing a state 

of interest to be an equilibrium as depicted at the bottom of Fig. 1. Four matrix expressions, 

which are Equation (2), Inequality (4), Inequality (12), and Inequality (23), are given to determine 

all the available preferences satisfying the four solution concepts consisting of Nash, GMR, SMR 

and SEQ, respectively. The calculations for executing the inverse analysis are based upon the 

matrix representation of a conflict and can be readily applied in practice as illustrated by the 

Elsipogtog First Nation fracking dispute case study in the previous section. In fact, the matrix 

formulation of the inverse GMCR viewpoint developed in this paper lays the foundations for 

developing detailed computational implementation algorithms and meaningful expansions of this 

perspective.  

Algebraic expressions for the inverse problem in a graph model are provided in this paper. 

This unique set of explicit algebraic expressions for ascertaining all possible preference 

relationships to make a state of interest become an equilibrium can only handle four basic graph 

model stabilities. It would be worthwhile to extend this inverse GMCR approach to more 

complex stability definitions such as limited-move stability (Zagare, 1984), non-myopic stability 

(Brams & Wittman, 1981), and Stackelberg equilibrium concept (Von Stackelberg, 1934). 
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Additionally, the inverse point view could be expanded for handling conflicts having different 

preference structures such as unknown (Li, Hipel, Kilgour, & Fang, 2004), fuzzy (Basher et al., 

2012), probabilistic (Rego & dos Santos, 2015) and grey (Kuang, Basher, Hipel, & Kilgour, 2015) 

preferences. 
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