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Abstract

This paper addresses the single-item single-stocking location non-stationary

stochastic lot sizing problem under the (s, S) control policy. We first present

a mixed integer non-linear programming (MINLP) formulation for determin-

ing near-optimal (s, S) policy parameters. To tackle larger instances, we then

combine the previously introduced MINLP model and a binary search approach.

These models can be reformulated as mixed integer linear programming (MILP)

models which can be easily implemented and solved by using off-the-shelf op-

timisation software. Computational experiments demonstrate that optimality

gaps of these models are less than 0.3% of the optimal policy cost and compu-

tational times are reasonable.

Keywords: inventory, (s, S) policy, stochastic lot-sizing, mixed integer

programming, binary search

1. Introduction

Stochastic lot sizing is an important research area in inventory theory. One

of the landmark studies is Scarf (1960), which proved the optimality of (s, S)

policies for a class of dynamic inventory models. The (s, S) policy features two
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control parameters: s and S. Under this policy, the decision maker checks the

opening inventory level at the beginning of each time period: if it drops to or

below the reorder point s, then a replenishment should be placed to reach the

order-up-to-level S. Unfortunately, computing optimal (s, S) policy parameters

remains a computationally intensive task.

Since Scarf’s landmark study, the (s, S) policy has been object of extensive

research. For instance, Johnson & Thompson (1975); Sethi & Cheng (1997);

Chen & Song (2001); Hu et al. (2016) investigated demand correlation; more re-

cently, (Qiu et al., 2017; Lim & Wang, 2017) investigated demand distributional

ambiguity.

In the literature, studies on (s, S) policy can be categorized into station-

ary and non-stationary. A number of studies investigated the computation of

stationary (s, S) policy parameters, e.g. (Iglehart, 1963; Veinott et al., 1965;

Archibald & Silver, 1978; Stidham, 1977; Sahin, 1982; Federgruen & Zipkin,

1984; Zheng & Federgruen, 1991; Feng & Xiao, 2000). However, there has been

an increasing recognition that lot-sizing studies need to be undertaken for non-

stationary environments (Graves, 1999).

In this work, we focus on the single-item single-stocking location stochastic

lot-sizing problem under non-stationary demand, fixed and unit ordering cost,

holding cost and penalty cost. Only two studies investigated computations of

(s, S) policy under non-stationary stochastic demand (Askin, 1981; Bollapra-

gada & Morton, 1999).

Askin (1981) adopted the “least cost per unit time” approach in selecting

order-up-to-levels and reorder points under a penalty cost scheme. Decision

makers first determine desired cycle lengths and order-up-to-levels. Then, re-

order points are decided by means of a trade-off analysis between expected costs

per period in cases of ordering and not ordering.

As Bollapragada & Morton (1999) pointed out, the approach discussed by

Askin (1981) is computationally expensive because of the need of convolving

demand distributions. In contrast, Bollapragada & Morton (1999) proposed

a stationary approximation heuristic for computing optimal (s, S) policy pa-

2



rameters. Firstly, decision makers precompute pairs of (s, S) values for various

demand parameters and tabulate results. Here, a large number of efficient al-

gorithms exist for generating the stationary table, e.g. (Federgruen & Zipkin,

1984; Zheng & Federgruen, 1991; Feng & Xiao, 2000). Secondly, order-up-to-

levels and reorder points can be read from stationary tables by averaging the

demand parameters over an estimate of the expected time between two orders.

However, this algorithm relies upon complex code, particularly for generating

stationary tables.

(Askin, 1981; Bollapragada & Morton, 1999) do not provide a satisfactory

solution to the problem of computing near-optimal (s, S) policy parameters:

they rely on ad-hoc computer coding and provide relatively large optimality

gaps. A recent computational study (Dural-Selcuk et al., 2016) estimated the

optimality gap of (Askin, 1981; Bollapragada & Morton, 1999) at 3.9% and

4.9%, respectively; these figures are in line with those reported in the original

works. These drawbacks motivate the investigation of simple and yet effective

heuristic methods for computing (s, S) policy parameters; methods that do not

need dedicated computer coding and that can provide better optimality gaps.

The aim of this paper is to introduce two new heuristics to compute near-

optimal (s, S) policy parameters. We build upon Rossi et al. (2015), which

discussed mixed-integer linear programming (MILP) heuristics for approximat-

ing optimal (R,S) policy parameters — under this policy, the replenishment

intervals R and order-up-to-levels S are determined at the beginning of the

planning horizon, while associated order quantities are decided only when or-

ders are issued. The (R,S) policy is effective in dealing with system nervousness

(Tunc et al., 2013), while the (s, S) policy is cost-optimal (Scarf, 1960). Our

two mixed-integer nonlinear programming (MINLP)-based heuristics leverage

two key building blocks: modeling techniques originally discussed in Rossi et al.

(2015), and K-convexity of the problem cost function, originally discussed in

Scarf (1960). In contrast to other approaches in the literature, our heuristics

can be easily implemented and solved by using off-the-shelf mathematical pro-

gramming packages such as IBM ILOG optimisation studio.
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Our contributions to literature on stochastic lot-sizing are the following.

• We introduce the first mixed integer non-linear programming (MINLP)

model to compute near-optimal (s, S) policy parameters.

• We show that this model can be approximated as a mixed integer linear

programming (MILP) model by piecewise linearising the cost function;

this approximation can be solved by using off-the-shelf software.

• To tackle larger instances, we combine the previously introduced MINLP

model and a binary search procedure; this latter approach requires dedi-

cated code, but scales better than the previous one.

• Computational experiments demonstrate that optimality gaps of our mod-

els are tighter than existing algorithms (Askin, 1981; Bollapragada & Mor-

ton, 1999) in the literature, and computational times of our models are

reasonable.

The rest of this paper is organised as follows. Section 2 describes the prob-

lem setting and a stochastic dynamic programming (SDP) formulation. Section

3 discusses the notion of K-convexity and introduces relevant K-convex cost

functions which are approximated by an MINLP model in Section 4. Section 5

presents an MINLP heuristic for approximating (s, S) policy parameters. Sec-

tion 6 introduces an alternative binary search approach for computing (s, S)

policy parameters. A detailed computational study is given in Section 7. Fi-

nally, we draw conclusions in Section 8.

2. Problem description

We consider a single-item single-stocking location inventory management system

over a T -period planning horizon. We assume that orders are placed at the

beginning of each time period, and delivered instantaneously. Ordering costs

c(·) comprise a fixed ordering cost K for placing an order, and a linear ordering

cost c proportional to order quantity Q. Demands dt in each period t = 1, . . . , T
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are independent random variables with known probability distributions. At the

end of period t, a linear holding cost h is charged on every unit carried from

one period to the next; and a linear penalty cost b is occurred for each unmet

demand at the end of each time period.

For a given period t = {1, . . . , T}, let It−1 denote the opening inventory level

and Qt represent the order quantity.

The immediate expected holding and penalty costs at period t can be ex-

pressed as

ft(y) = E[hmax(y − dt, 0) + bmax(dt − y, 0)], (1)

where E denotes the expectation taken with respect to the random demand dt.

The ordering cost c(Qt) is defined as:

c(Qt) =

K + c Qt, Qt > 0

0, Qt = 0

Let Ct(It−1) represent the expected total cost of an optimal policy over

periods t, . . . , T when the initial inventory level at the beginning of period t is

It−1. We model the problem as a stochastic dynamic program (Bellman, 1957)

via the following functional equation

Ct(It−1) = min
Qt
{c(Qt) + ft(It−1 +Qt) + E[Ct+1(It−1 +Qt − dt)]} (2)

where

CT (IT−1) = min
Qt
{c(QT ) + fT (IT−1 +QT )}

represents the boundary condition.

3. The optimality of (s, S) policies in stochastic lot sizing

Scarf (1960) proved that the optimal policy in the dynamic inventory problem

is always of the (s, S) type based on a study of the function Gt(y) + cy, where

Gt(y) = ft(y) + E[Ct+1(y − dt)], (3)
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and y is the stock level immediately after purchases are delivered (see Scarf,

1960, Eq. (4)).

Since we consider a non-stationary environment, values of the (s, S) policy

parameters will depend on the given period t. Let (st, St) denote the policy

parameters for period t. Function Gt(y) + cy can be used to identify optimal

policy parameters (st, St). In particular, the order-up-to-level St is defined as

the value minimising Gt(y) + cy; whereas the parameter st is given by the value

st < St such that Gt(st)+ cst = Gt(St)+ cSt+K (see Scarf, 1960, Eq. (5)). K-

convexity of the function Gt(y) + cy ensures the uniqueness of st and St (Scarf,

1960).

Example. We illustrate the concepts introduced on a 4-period exam-

ple. Demand dt is normally distributed in each period t with mean µt =

{20, 40, 60, 40}, for t = 1, . . . , 4 respectively. Standard deviation σt of demand

in period t is equal to 0.25µt. Other parameters are K = 100, h = 1, b = 10,

and c = 0. We plot G1(y) in Fig. 1 for initial inventory levels y ∈ (0, 200). The

order-up-to-level is S1 = 70, G1(S1) = 263, the reorder point is s1 = 14, and

G1(s1) = 363. Note that G1(s1) + cs1 = G1(S1) + cS1 +K. The optimal policy

is to order up to 70 if the initial inventory drops below 14.

Opening inventory level

0 25 50 75 100 125 150 175 200

Expected total cost

250

350

450

S1 = 70s1 = 14

G1(s1) = 363

G1(S1) = 263

K = 100

G1(y)

Figure 1: Plot of G1(y)
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4. MINLP approximation of Gt(y) function

In this section, we exploit an MINLP model to approximate the function Gt(y)

in Eq. (3). Our model follows the control policy known as “static-dynamic un-

certainty” strategy, known as (R,S) policy, originally introduced in Bookbinder

& Tan (1988). Under this strategy, the timing of orders and order-up-to-levels

are expected to be determined at the beginning of the planning horizon, while

associated order quantities are decided upon only when orders are issued. As

illustrated in Rossi et al. (2015), this strategy provides a cost performance which

is close to the optimal “dynamic uncertainty” strategy. However, optimal (s, S)

parameters cannot be immediately derived from existing mathematical program-

ming models operating under a static-dynamic uncertainty strategy, such as

(Tarim & Kingsman, 2006; Rossi et al., 2015). We next illustrate how a model

operating under a static-dynamic uncertainty strategy can be used to approxi-

mate the function Gt(y) in Eq. (3). In the rest of this section, without loss of

generality, we focus on the case G1(y).

Consider a random variable ω and a scalar variable x. The first order loss

function is defined as L(x, ω) = E[max(ω−x, 0)], where E denotes the expected

value with respect to the random variable ω. The complementary first order

loss function is defined as L̂(x, ω) = E[max(x− ω, 0)]. Like Rossi et al. (2015),

we will model non-linear holding and penalty costs by means of this function.

Let t = 1, . . . , T and consider three sets of decision variables: Ĩt, the expected

closing inventory level at the end of period t, with I0 denoting the initial inven-

tory level; δt, a binary variable which is set to one if an order is placed in period

t; Pjt, a binary variable which is set to one if the most recent replenishment up

to period t was issued in period j, where j ≤ t — if no replenishment occurs

before or at period t, then we let P1t = 1, this allows us to properly account

for demand variance from the beginning of the planning horizon in Constraints

(9) and (10). Let d̃jt denote the expected value of the demand over periods

j, . . . , t, i.e. d̃jt = d̃j + · · · + d̃t. Decision variables Ht ≥ 0 and Bt ≥ 0 rep-

resent end of period t expected excess inventory and back-orders, respectively.
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An MINLP formulation for the non-stationary stochastic lot-sizing problem un-

der the “static-dynamic” uncertainty strategy, obtained following the modelling

strategy in Rossi et al. (2015), is shown in Figure 2.

min
( T∑
t=1

(Kδt + hHt + bBt) + cĨT + c

T∑
t=1

d̃t − cI0
)

(4)

Subject to, t = 1, 2, . . . , T

δt = 0→ Ĩt + d̃t − Ĩt−1 = 0 (5)

Ĩt + d̃t − Ĩt−1 ≥ 0 (6)

t∑
j=1

Pjt = 1 (7)

Pjt ≥ δj −
t∑

k=j+1

δk, j = 1, 2, . . . , t (8)

Pjt = 1→ Ht = L̂(Ĩt + d̃jt, djt), j = 1, 2, . . . , t (9)

Pjt = 1→ Bt = L(Ĩt + d̃jt, djt), j = 1, 2, . . . , t (10)

Pjt ∈ {0, 1}, j = 1, 2, . . . , t (11)

δt ∈ {0, 1} (12)

Figure 2: The formulation of the non-stationary stochastic lot-sizing problem

The objective function (4) minimizes the expected total cost over the plan-

ning horizon. In the objective function, expected variable ordering costs are

reformulated via c
∑T
t=1Qt = cĨT + c

∑T
t=1 d̃t − cI0 by using the reformulation

strategy originally introduced in Tarim & Kingsman (2004) at p. 112 — note

that term c
∑T
t=1 d̃t − cI0 is a constant. Constraints (5) is an indicator con-

straint (Belotti et al., 2016) capturing the reorder condition. Constraints (6)

are the inventory balance equations. Constraints (7) indicate the most recent

replenishment before period t was issued in period j. Constraints (8) identify

uniquely the period in which the most recent replenishment prior to t took
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place. Constraints (9) and (10) are indicator constraints modelling end of pe-

riod t expected excess inventory and back-orders by means of the first order loss

function.

We now discuss how to adapt the model in Fig. 2 in order to compute, for

a given y, an approximate value of G1(y); see Eq. (3). We call this modified

model MINLP-s, and use superscript s to label decision variables in this model.

In addition to constraints in Fig. 2, MINLP-s features constraint

δs1 = 0, (13)

which forces the model not to issue an order in period 1. When δs1 = 0, the

objective function (4) becomes

Gs1(Is0) = hHs
1 + bBs1︸ ︷︷ ︸
f1(Is0 )

+

T∑
t=2

(Kδst + hHs
t + bBst )︸ ︷︷ ︸

fixed ordering, holding,

and penalty cost for

t = {2, . . . , T}

+ cĨsT + c

T∑
t=2

d̃t − cĨs1︸ ︷︷ ︸
proportional ordering

cost for t = {2, . . . , T}

︸ ︷︷ ︸
≈

E[C2(Is0 − d1)]

(14)

which denotes the expected total cost of controlling the system optimally over

the planning horizon 1, . . . , T when the initial inventory level is Is0 and no order

is issued in period 1; hence c(Ĩs1 + d̃1 − Is0) = 0.

MINLP-s can be reformulated into an MILP model by using the approach

discussed in Rossi et al. (2015) to piecewise linearise loss functions in constraints

(9) and (10). For further details please refer to Appendix A.

Example. In Fig. 3, we plot Gs1(y) obtained via the MILP-s for the same

4-period numerical example in Fig. 1 with initial inventory level Is0 ∈ (0, 200).

Since Gs1(y) approximates G1(y), we can now use Gs1(y) + cy to find approx-

imate values Ŝ1 and ŝ1 for S1 and s1.

5. An MINLP-based model to approximate (s, S) policy parameters

In this section we exploit the results presented in the previous section to intro-

duce an MINLP-based heuristic for approximating optimal (s, S) policies. To

9



Opening inventory level

0 25 50 75 100 125 150 175 200

Expected total cost

250

350

450

Ŝ1 = 70ŝ1 = 15

Gs1(ŝ1) = 366

Gs1(Ŝ1) = 266

K = 100

Gs1(y)

Figure 3: Plot of Gs
1(y)

the best of our knowledge, this is the first MINLP model in the literature for

computing near-optimal (s, S) policy parameters.

In a similar fashion to “MINLP-s”, we introduce “MINLP-S” to be the

approximation of Ct(It−1) in Eq. (2). Similarly to Eq. (14), let the objective

function CS1 (I0) of MINLP-S denote the expected total cost of controlling the

system optimally over the planning horizon 1, . . . , T given the initial inventory

level I0. We use the superscript S to represent decision variables in MINLP-S,

CS1 (I0) =

T∑
t=1

(KδSt + hHS
t + bBSt ) + cĨST + c

T∑
t=1

d̃t − cI0. (15)

MINLP-S imposes the constraint

δS1 = 1, (16)

which forces the model to place a replenishment in period 1.

In the MINLP-S model, Ŝ1 denotes an approximation of the optimal order-

up-to-level S1. Since Gs1(Is0) is an approximation of G1(Is0), by leveraging Scarf’s

result (see Scarf, 1960, Eq. (4)) on the study of G(y) + cy, we can identify ŝ1 =

Is0 such that Gs1(Is0) + cIs0 = Gs1(Ŝ1) + cŜ1 +K. Therefore, we can approximate
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s1 by imposing the constraint

Gs1(Is0) + cIs0 = CS1 (IS0 ) + cIS0 , (17)

in which IS0 represents an approximation Ŝ1 of the optimal order-up-to-level

S1
1. Note that CS1 (IS0 ) includes the fixed ordering cost K because of Constraint

(16); variable ordering cost in CS1 (IS0 ) is zero because IS0 is its global minimizer.

Therefore Eq. (17) is equivalent to Gs1(Is0) + cIs0 = Gs1(Ŝ1) + cŜ1 +K.

Finally, since s1 ≤ S1, we introduce an additional constraint to ensure that

the reorder point is not greater than the order-up-to-level,

Is0 ≤ IS0 . (18)

Note that, in contrast to the true value G1(y)+cy, there is no guarantee that

K-convexity holds for its approximation Gs1(y)+cy. For some instances we may

therefore have multiple values ŝ1 such that (17) holds. As we will demonstrate

in our computational study, leaving to the solver the freedom to choose one of

such values in a non-deterministic fashion leads to competitive results.

MINLP-S and MINLP-s are connected by Eq. (17), in such a way the order-

up-to-level S1 and the reorder point s1 are approximated simultaneously. For the

joint MINLP model, in addition to decision variables in MINLP-S and MINLP-

s, we consider IS0 , a dummy variable representing the approximate order-up-to-

level Ŝ1; and Is0 , which captures the approximate reorder point ŝ1.

Our holistic MINLP model objective features two parts: the first part,

CS1 (I0), comes from MINLP-S; the second part, Gs1(Is0)+cIs0−f1(Is0) ≈ E[C2(Is0−

d1)], from MINLP-s. Note that the term f1(Is0), which enhances computational

performance of the model, can be introduced because holding and penalty costs

in period 1 for model MINLP-s are already uniquely determined by equation

(17). After dropping the constant term c
∑T
t=1 d̃t− cI0 in the first part and the

constant term c
∑T
t=1 d̃t in the second part, we minimise the following holistic

1IS0 , which is a dummy variable, should not be confused with the actual initial inventory

level I0, which is needed to account for variable ordering costs.
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objective function

min
( T∑
t=1

(KδSt + hHS
t + bBSt ) + cĨST +

T∑
t=2

(Kδst + hHs
t + bBst ) + cĨsT

)
; (19)

Constraints of the joint MINLP model are those of both MINLP-S and

MINLP-s in addition to the linking constraints (13), (16), (17) and (18). After

solving the joint MINLP model over planning horizon k, . . . , T , the estimated

order-up-to-level Ŝk is equal to ISk−1, and the estimated reorder point ŝk is equal

to Isk−1. As previously discussed, the joint MINLP model can be linearised via

the piecewise-linear approximation proposed in Rossi et al. (2015). In our MILP

model, (9) and (10) are modelled via the piecewise OPL expression (IBM, 2011).

For a complete overview of the MILP model refer to Appendix B.

Example. We now use the same 4-period numerical example in Fig. 3 to

demonstrate the modelling strategy behind the joint MINLP heuristic (MP). We

observe that, for period 1, the approximated order-up-to-level is S1 = 70.3, the

reorder point is s1 = 15.0, and Gs1(s1) = 366 (363, after simulation) as shown

in Fig. 1. By solving the joint MINLP model repeatedly, st, St, and Gst (st), for

t = 1, . . . , 4, are estimated as shown in Table 1. We also compare our results

against the optimal solutions obtained via SDP in Table 1; note that although

different order-up-to-levels, e.g. S2, are obtained, the optimal expected total

costs are similar.

MP SDP

t 1 2 3 4 1 2 3 4

st 15.0 29.0 58.1 29.0 14.0 29.0 58.0 28.0

St 70.3 54.0 117 54.0 70.0 141 114 53.0

Gst (st) 366 311 193 118 363 303 190 118

Table 1: Optimal (s, S) policy parameters obtained via the joint MINLP heuristic and the

stochastic dynamic programming
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6. A binary search approach to approximate (s, S) policy parameters

The joint MINLP heuristic presented in the last section is valuable, since it

can be easily linearised into an MILP model that can be solved by off-the-shelf

solvers. However, according to our experience it can only effectively tackle small-

size instances. To preserve the advantage of relying on an MILP model, one

may investigate efficient reformulations, valid inequalities, or may explore cut

generation techniques that enhance computational performances; we however

choose to leave this investigation as future work.

In order to tackle larger-size problems, in this section we introduce an effi-

cient approach that combines the model MINLP-s discussed in Section 5 and

a binary search strategy. This approach relies on the MINLP models previ-

ously introduced, but it has the disadvantage of requiring dedicated code for

the search procedure.

Our binary search strategy (Algorithm 1) is structured as follows.

Computation of S (lines 2-l3). We first let Is0 to be a decision variable

in MINLP-s and minimise Gs1(Is0) + cIs0 to estimate the order-up-to-level Ŝ1.

Computation of s (line 5-17). Since Gs1(Is0) is an approximation of G1(y),

we can conduct a binary search to approximate the reorder point ŝ1 by Is0 ≤ Ŝ1

at which Gs1(Is0) + cIs0 = Gs1(Ŝ1) + cŜ1+K. When the binary search terminates,

the estimated reorder point ŝk is equal to Isk−1.

By repeating this procedure (line 1) over the planning horizon k, . . . , T , we

find pairs of Ŝk and ŝk, where k = 1, . . . , T .

Example. We illustrate the solution method discussed via the same 4-

period numerical example presented in Fig. 1. We assume the step size of the

binary search is 0.01. The order-up-to-level Ŝ1 = 70.3 and Gs1(70.3) = 266. We

then set low = −200, high = 70.3. While low < high, the mid is updated

via the comparison of Gs1(Is0) +K and Gs1(Ŝ1) +K. Eventually, we obtain the

reorder point ŝ1 = 15 at which Gs1(ŝ1) + cŝ1 = Gs1(Ŝ1) + cŜ1+K. By repeating

this procedure we obtain Ŝt, ŝt, and Gst (st), for each period t = 1, . . . , 4 as

displayed in Table 2. After simulation, we obtain the expected total cost 363.
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Data: costs (ordering cost, holding cost, penalty cost), mean demand

and standard deviation of each period, stepsize

Result: pairs of s and S for each time period

1 for k = 1 to T do

2 Minimize MINLP-s in Section 5 in OPL;

3 Obtain Gsk(Ŝk) and Ŝk;

4 low = a large negative integer; high = Ŝk;

5 while low < high do

6 mid = low + round((high− low)/2);

7 Run the MINLP-s with Isk−1 = mid in OPL;

8 Obtain current cost Gsk(Isk−1);

9 if Gsk(Isk−1)−Gsk(Ŝk)−K − c(Ŝk − Isk−1) < 0 then

10 high = mid− stepsize;

11 else if Gsk(Isk−1)−Gsk(Ŝk)−K − c(Ŝk − Isk−1) > 0 then

12 low = mid+ stepsize;

13 else

14 ŝk = Isk−1;

15 low = high;

16 end

17 end

18 end

Algorithm 1: The binary search algorithm

t 1 2 3 4

st 15 29.0 58.1 29.0

St 70.3 54.0 116 54.0

Gst (st) 366 311 193 118

Table 2: Near-optimal (s, S) policy parameters obtained via the binary search approach
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7. Computational experiments

In this section we present an extensive analysis of the heuristics discussed in Sec-

tions 5 (MP) and 6 (BS). We first design a test bed featuring instances defined

over an 8-period planning horizon (Section 7.1). On this test bed, we assess the

behaviour of the optimality gap and the computational efficiency of both the

MP and BS heuristics. Then we assess the computational performance of the

BS heuristics on a test bed featuring larger instances on a 25-period planning

horizon (Section 7.2). For all cases, MINLP models are solved by employing

the piecewise linearisation strategy discussed in Rossi et al. (2015), which can

be easily implemented in OPL by means of the piecewise syntax. Numerical

experiments are conducted by using IBM ILOG CPLEX Optimization Studio

12.7 and MATLAB R2014a on a 3.2GHz Intel(R) Core(TM) with 8GB of RAM.

7.1. An 8-period test bed

We consider a test bed which includes 540 instances. Specifically, we incorpo-

rate ten demand patterns displayed in Fig. 4. These patterns comprising two

life cycle patterns (LCY1 and LCY2), two sinusoidal patterns (SIN1 and SIN2),

a stationary pattern (STA), a random pattern (RAND), and four empirical pat-

terns (EMP1, ..., EMP4). Full details on the experimental set-up are given

in Appendix C. Fixed ordering cost K ranges in {200, 300, 400}, proportional

ordering cost c ranges in {0, 1}, and the penalty cost b takes values {5, 10, 20}.

We assume that demand dt in each period t is independent and normally dis-

tributed with mean d̃t and coefficient of variation cv ∈ {0.1, 0.2, 0.3}; note that

σt = cvd̃t. Since we operate under the assumption of normality, our models

can be readily linearised by using the piecewise linearisation parameters avail-

able in Rossi et al. (2014). However, the reader should note that our proposed

modelling strategy is distribution independent, see Rossi et al. (2015).

We set the SDP model discussed in Section 2 as a benchmark. We compare

against this benchmark in terms of optimality gap and computational time.

First of all, we obtain optimal parameters for each test instance by implementing
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Figure 4: Demand patterns in our computational analysis
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an SDP algorithm in MATLAB. Then, we solve each instance by adopting both

modelling heuristics presented in Section 5 and 6. Specifically, for the MP

heuristic we employ seven segments in the piecewise-linear approximations of

Bt and Ht (for t = 1, . . . , T ) in order to guarantee reasonable computational

performances; for the BS heuristic, whose computational performance is only

marginally affected by an increased number of segments in the linearisation, we

employ eleven segments and a step size 0.1. To estimate the cost of the policies

obtained via our heuristics, we simulate all policies via Monte Carlo Simulation

(10,000 replications).

Table 3 gives an overview of optimality gaps (%) of methods discussed in

this study for different pivoting parameters. It is difficult to make a general

remark with respect to demand pattern, and fixed ordering cost; while the

proportional ordering cost has a negative correlation with the optimality gap.

An increase in proportional ordering cost slightly reduces the optimality gap.

While an increase in penalty cost increases the optimality gap. Specifically,

when penalty cost increases from 10 to 20, the optimal gap rises from 0.25% to

0.42% and from 0.27% to 0.35%, respectively. Similarly, an increase in coefficient

of variation increases the optimality gap. For example, the optimality gap of

the BS heuristic increases significantly from 0.16% to 0.40% as the coefficient of

variation increases from 0.1 to 0.3. Overall, the average optimality gap of the

MP heuristic is 0.29%, and that of the BS heuristic is 0.26%. This discrepancy

ought to be expected, since in the case of the BS method a higher number of

segments has been employed.

Existing heuristics Askin (1981) and Bollapragada & Morton (1999) were

reimplemented by Dural-Selcuk et al. (2016) and assessed on a test bed that

neatly resembles the one adopted in this work. As shown in Dural-Selcuk et al.

(2016), Askin’s optimality gap is 3.9%, and Bollapragada and Morton’s is 4.9%.

The optimality gap of our heuristic is 0.29% when seven segments are employed

in the piecewise linearisation, and it drops to 0.26% when eleven segments are

employed. Our models outperform both Askin (1981) and Bollapragada & Mor-

ton (1999) in terms of optimality gap on the test bed here considered.
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Modelling methods MP BS

Demand pattern

LCY1 0.25 0.33

LCY2 0.11 0.18

SIN1 0.13 0.20

SIN2 0.10 0.19

STA 0.50 0.14

RAND 0.16 0.22

EMP1 0.41 0.35

EMP2 0.86 0.52

EMP3 0.15 0.19

EMP4 0.28 0.28

Fixed ordering cost

200 0.31 0.29

300 0.24 0.22

400 0.34 0.27

Proportional ordering cost

0 0.33 0.29

1 0.26 0.23

Penalty cost

5 0.21 0.16

10 0.25 0.27

20 0.42 0.35

Coefficient of variation

0.1 0.22 0.16

0.2 0.26 0.22

0.3 0.40 0.40

Average 0.29 0.26

Table 3: Average optimality gaps % of the 8-period numerical experiment for different pivoting

parameters
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We also assess the accuracy of our models by comparing the costs predicted

by our models against the costs obtained via simulation. We note that both MP

and BS heuristics have high accuracy for the 8-period numerical experiments.

For further details please refer to Table D.8 in Appendix D.

Table 4 shows computational times of our models for different pivoting pa-

rameters. Note ”STDEV” in Table 4 represents the standard deviation. Over-

all, the computational time of BS method remains stable for different set-up

parameters; while that of MP and SDP algorithms fluctuate. We observe that

the fixed ordering cost, proportional ordering cost, penalty cost, and coefficient

of variation do not have significant effect on the computational efficiency of BS

and SDP algorithms. However, the computational time of MP heuristic drops

significantly with the increase of fixed ordering cost, and proportional order-

ing cost; while grows greatly with the increase of the coefficient of variation.

On average, the computational time of MP, BS, and SDP are 7.89s, 7.01s, and

53.03s.

7.2. A 25-period test bed

As shown in Section 7.1 for the 8-period test bed, both the MP and the BS meth-

ods provide tight optimality gaps and acceptable computational efficiency. We

now extend the 8-period test bed to 25 periods with larger instances. Demands

of LCY1, LCY2, SIN1, SIN2, STA, and RAND are generated with expressions

(20), (21), (22), (23), (24), and (25) in Fig. 5. Demands of EMP1, EMP2, EMP3

and EMP4 are derived from Strijbosch et al. (2011). Full details are given in

Appendix C. Assume that fixed ordering cost ranges in {500, 1000, 1500}, pro-

portional ordering cost ranges in {0, 1}, penalty cost takes values {5, 10, 20},

and the coefficients of standard deviations are {0.1, 0.2, 0.3}.

We obtain optimal (s, S) parameters and record computational times ob-

tained via the BS method. For the first 15 periods we perform binary search

with step size 1 in order to ensure fast convergence; for the last 10 periods, we

adopt a step size 0.1 to enhance accuracy. The number of segments used in the

piecewise linearisation is eleven. To estimate the cost of the policy obtained via
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Settings
MP BS SDP

Mean STDEV Mean STDEV Mean STDEV

Demand pattern

LCY1 3.54 0.98 7.17 1.21 13.58 0.86

LCY2 6.26 4.52 7.29 1.06 13.61 0.81

SIN1 4.67 3.20 6.48 0.69 13.31 1.11

SIN2 4.15 1.89 6.41 0.63 13.60 0.82

STA 5.52 3.68 6.48 0.72 9.95 2.29

RAND 3.60 0.87 7.11 1.32 710.12 2.95

EMP1 7.65 6.21 7.32 0.96 121.81 28.60

EMP2 14.03 13.60 7.28 1.19 107.20 7.37

EMP3 14.32 11.81 7.02 0.83 104.41 10.17

EMP4 15.12 15.35 7.52 1.20 122.71 27.79

Fixed ordering cost

200 10.29 11.18 7.11 1.00 53.03 51.94

300 7.17 6.94 6.99 1.00 53.07 51.98

400 6.19 5.40 6.93 1.08 52.99 51.91

Proportional ordering cost

0 8.49 9.06 7.64 0.99 60.21 60.12

1 7.28 7.57 6.38 0.59 45.85 40.85

Penalty cost

5 8.05 7.92 6.96 0.90 53.08 52.03

10 8.72 10.60 6.86 1.02 52.74 51.94

20 6.84 8.84 7.17 1.14 52.97 51.85

Coefficient of variation

0.1 6.42 6.16 7.00 1.08 53.06 51.96

0.2 7.98 8.92 7.02 0.99 53.01 51.92

0.3 9.26 9.43 7.01 1.03 53.02 51.95

Average 7.89 8.39 7.01 1.03 53.03 51.85

Table 4: Average computational times (seconds) of the 8-period numerical for different piv-

oting parameters
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dt = round(
190× e−(t−13)2

2× 52
), t = 1, 2, . . . , T (20)

dt = round(
170× e−(t−13)2

2× 62
), t = 1, 2, . . . , T (21)

dt = round
(

70× sin(0.8t) + 80
)
, t = 1, 2, . . . , T (22)

dt = round
(

30× sin(0.8t) + 100
)
, t = 1, 2, . . . , T (23)

dt = 100, t = 1, 2, . . . , T (24)

dt = round(random(0, 250)), t = 1, 2, . . . , T (25)

Figure 5: Expressions for generating demand data

our approximation, we simulate each instance ten thousand times in MATLAB.

We observe that the BS model has high accuracy even for the large-size

numerical experiments. We report detailed model accuracy in Table D.9 in

Appendix D.

In Table 5, we summarise computational times of the BS model for different

pivoting parameters. It is difficult to make a general remark with respect to

demand patterns. An increase in fixed ordering cost significantly decreases the

computational time. For instance, the computational time drops from 934.92s

to 546.75s as the fixed ordering cost increases from 500 to 1500. An increase

in proportional ordering cost decreases the computational time. In contrast,

an increase in coefficient of variation increases the computational time. For in-

stance, when the coefficient of variation rises from 0.1 to 0.2, the computational

time increases from 679.34s to 809.34s. On average, the computational time is

748.20s and the standard deviation is 616.43s.

8. Conclusion

In this paper we discussed two MINLP-based heuristics for tackling non-stationary

stochastic lot-sizing problems under (s, S) policy.
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Settings Mean standard deviation

Demand pattern

LCY1 531.66 204.45

LCY2 740.73 322.92

SIN1 500.44 177.17

SIN2 1622.92 624.58

STA 1709.00 706.67

RAND 407.08 131.11

EMP1 633.09 126.63

EMP2 188.19 37.45

EMP3 974.93 305.16

EMP4 173.95 44.87

Fixed ordering cost

500 934.92 811.90

1000 762.96 540.73

1500 546.75 341.41

Proportional ordering cost

0 827.15 680.28

1 669.25 534.88

Penalty cost

5 713.45 564.80

10 782.53 669.09

20 744.28 612.21

Coefficient of variation

0.1 679.34 567.29

0.2 755.92 619.07

0.3 809.34 656.18

Average 748.20 616.43

Table 5: BS heuristics on a 25-period test bed, average computational times (seconds) with

different setting parameters
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Our first heuristic — the first MINLP heuristic for computing near-optimal

non-stationary (s, S) policy parameters — is based on mathematical program-

ming models that can be solved by using off-the-shelf optimization packages.

These MINLP models can be linearised via the approach discussed in Rossi

et al. (2015) and can be implemented in OPL by adopting the piecewise ex-

pression.

Our second heuristic is a binary search strategy that leverages the aforemen-

tioned MINLP models and can tackle larger-size problems. However, this latter

heuristic requires dedicated code.

We conducted an extensive computational study comprising 540 instances.

We considered ten demand patterns, three fixed ordering costs, two proportional

ordering cost, three penalty costs and three coefficients of variation.

We first conducted a numerical study on small instances (8-period). We

investigated the performance of both models by contrasting costs of the policy

obtained with our models against costs of the optimal policy obtained via the

stochastic dynamic programming. Optimality gaps observed are generally below

0.3%. Our sensitivity analysis showed that the optimality gap is tighter when

the demand keeps stable, and performance deteriorate with the increase of the

penalty cost and the coefficient of variation; both heuristics provide tighter gaps

than those reported in the literature (Askin, 1981; Bollapragada & Morton,

1999).

The computational study carried out on larger instances (25-period) showed

that the computational efficiency of the binary search approach is reasonable:

around 748.20s on average.
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Appendix A. The piecewise OPL constraint

Rossi et al. (2015) piecewise linearised loss functions in constraints (9) and (10)

by employing piecewise linear approximations based on Jesen’s and Edmundson-

Madanski inequalities. An alternative strategy is to model these non-linear

functions by exploring the piecewise syntax in OPL. By using this syntax, a

piecewise function is specified by giving a set of slopes which represent the linear

variation for each linear segment; a set of breakpoints at which slopes change;

and the function value at a known point.

piecewise(i in 1..W){

slope[i] -> breakpoint[i];

slope[W+1]

}(<knownpoint>,<valuepoint>)<value>;

Figure A.6: The syntax of the piecewise command in OPL

The piecewise syntax in OPL is given in Figure A.6. W is the num-

ber of breakpoints of the piecewise function. slope[i] and breakpoint[i]

denote slope and breakpoint of segment i. Segment i goes from breakpoint

(i− 1) to breakpoint (i). <valuepoint> is the function value at a known point

<knownpoint>. Finally, <value> represents the value at which we evaluate the

function.

For the OPL piecewise syntax, there are three key components: slope,

breakpoint, and function value at a known point. The following lemmas will

demonstrate how to deduce their values. Let Ω be the support of ω. Let

(Ωi)i=1,...,W+1 be a partition of Ω in W + 1 segments.
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Lemma 1. The slope of ith segment is written as

li =

i−1∑
k=1

pk, i ∈ {1, 2, . . . ,W + 1},

where pi = Pr{ω ∈ Ωi} =
∫

Ωi
gω(t)dt, gω(·) denotes the probability density

function of ω.

Proof 1. Observation from Rossi et al. (2014), Lemma 11.

Lemma 2. The ith breakpoint can be written as

Xi = E[ω|Ωi], i ∈ {1, 2, . . . ,W}.

Proof 2. Observation from Rossi et al. (2014), Lemma 11.

Note that when ω follows a normal distribution with mean µ and standard

deviation σ, then L̂up(x, ω) = σL̂up(x−µσ , Z), where Z follows a standard normal

distribution, see Lemma 7 in Rossi et al. (2014).

Lemma 3. Assume that the partition of Ω is symmetric with respect to 0, then

the function value L̂up(x, ω) at point 0 can be written as follows.

L̂up(0, ω) =

−
∑W+1

2

k=1 pkE[ω|Ωk] + eW , W is odd

− 1
2 (
∑W

2

k=1 pkE[ω|Ωk] +
∑W

2 +1

k=1 pkE[ω|Ωk]) + eW , W is even

where eW represents the approximation error.

Proof 3. Since the partition of Ω is symmetric when W is odd, x = 0 is the

central breakpoint. Hence, the function value at this breakpoint can be calculated

directly. However, when W is even, the function value at point x = 0 is the

average of nearest two symmetric breakpoints XW
2

and XW
2 +1.

Following Lemma 1, 2 and 3, constraint (9) and (10) in Fig. 2 can be

expressed as Eq. (A.1) and (A.2) in Fig. A.7, for t = 1, . . . , T .
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Pjt = 1→ Ht = piecewise{li → Xi; 1}(0, L̂up(0, djt))Ĩt,

i = 1, . . . ,W ; j = 1, . . . , t. (A.1)

Pjt = 1→ Bt = piecewise{−1 + li → Xi; 0}(0, L̂up(0, djt))Ĩt,

i = 1, . . . ,W ; j = 1, . . . , t. (A.2)

Figure A.7: Rewriting holding and penalty costs by adopting piecewise syntax

Appendix B. The MILP model

The joint MILP model to calculate near-optimal (s, S) policy parameters for

the non-stationary stochastic lot-sizing problem is presented below. 2 In the

joint MP model, constraints (B.3) represent the costs of controlling the system

optimally when the initial inventory level is Is0 ; constraints (B.14) denote the

costs of controlling the system optimally when the initial inventory level is Is0 ,

and no order is placed in period 1. These two constraints are connected via

constraints (B.27) such that the order-up-to-level S1 and reorder point s1 are

approximated by IS0 and Is0 respectively.

2The loss function is piecewise linearized via constraints (B.10), (B.11), (B.22), and (B.23).
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min
( T∑
t=1

(Kδ
S
t + hH

S
t + bB

S
t ) + cĨ

S
T +

T∑
t=2

(Kδ
s
t + hH

s
t + bB

s
t ) + cĨ

s
T

)
(B.1)

Subject to, t = 1, . . . , T (B.2)

C
S
1 (I

S
0 ) =

T∑
t=1

(Kδ
S
t + hH

S
t + bB

S
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S
t + d̃t − Ĩ
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Appendix C. Test bed

Periodic demands with different demand patterns under the eight period com-

putational study are displayed in Table C.6. The demand of each period under

the twenty-five periods numerical example is shown in Table C.7. The first col-

umn represents period indexes; the rest columns denote various demands.

Period LCY1 LCY2 SIN1 SIN2 STA RAND EMP1 EMP2 EMP3 EMP4

1 15 3 15 12 10 2 5 4 11 18

2 16 6 4 7 10 4 15 23 14 6

3 15 7 4 7 10 7 26 28 7 22

4 14 11 10 10 10 3 44 50 11 22

5 11 14 18 13 10 10 24 39 16 51

6 7 15 4 7 10 10 15 26 31 54

7 6 16 4 7 10 3 22 19 11 22

8 3 15 10 12 10 3 10 32 48 21

Table C.6: Demand data of the 8-period computational analysis

Appendix D. Model accuracy

We employ the index of model accuracy (= |model result−simulation result|
simulation result ×

100%) to evaluate the cost measure. We report the model accuracy of the

8-period numerical experiment in Table. D.8, and the 25-period numerical ex-

periment in Table. D.9.
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Period LCY1 LCY2 SIN1 SIN2 STA RAND EMP1 EMP2 EMP3 EMP4

1 11 23 130 122 100 178 2 47 44 49

2 17 32 150 130 100 178 51 81 116 188

3 26 42 127 120 100 136 152 236 264 64

4 38 55 76 98 100 211 467 394 144 279

5 53 70 27 77 100 119 268 164 146 453

6 71 86 10 70 100 165 489 287 198 224

7 92 103 36 81 100 47 446 508 74 223

8 115 120 88 103 100 100 248 391 183 517

9 138 136 136 124 100 62 281 754 204 291

10 159 150 149 130 100 31 363 694 114 547

11 175 161 121 118 100 43 155 261 165 646

12 186 168 68 95 100 199 293 195 318 224

13 190 170 22 75 100 172 220 320 119 215

14 186 168 11 71 100 96 93 111 482 440

15 175 161 42 84 100 69 107 191 534 116

16 159 150 96 107 100 8 234 160 136 185

17 138 136 140 126 100 29 124 55 260 211

18 115 120 148 129 100 135 184 84 299 26

19 92 103 114 115 100 97 223 58 76 55

20 71 86 60 91 100 70 101 0 218 0

21 53 70 18 73 100 248 123 0 323 0

22 38 55 14 72 100 57 99 0 102 0

23 26 42 50 87 100 11 31 0 174 0

24 17 32 104 110 100 94 82 0 284 0

25 11 23 144 127 100 13 0 0 0 0

Table C.7: Demand data of the 25-period computational analysis
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Modelling methods MP BS

Demand pattern

LCY1 1.52 0.66

LCY2 7.47 3.42

SIN1 0.99 0.37

SIN2 0.84 0.30

STA 1.25 0.66

RAND 4.57 2.10

EMP1 8.75 4.50

EMP2 6.82 3.05

EMP3 1.83 0.81

EMP4 2.59 0.73

Fixed ordering cost

200 3.14 1.36

300 3.71 1.66

400 4.15 1.96

Proportional ordering cost

0 4.00 0.58

1 3.33 4.72

Penalty cost

5 5.29 2.47

10 3.27 1.33

20 2.42 1.18

Coefficient of variation

0.1 2.94 1.33

0.2 3.74 1.60

0.3 4.31 2.05

Average gap 3.66 1.66

Table D.8: Model accuracy of the 8-period numerical experiments
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Modelling method BS

Demand pattern

LCY1 2.32

LCY2 2.97

SIN1 2.65

SIN2 2.50

STA 1.90

RAND 2.81

EMP1 4.15

EMP2 5.19

EMP3 3.79

EMP4 5.55

Fixed ordering cost

500 3.27

1000 3.46

1500 3.42

Proportional ordering cost

0 3.52

1 3.24

Penalty cost

5 2.56

10 3.23

20 4.34

Coefficient of variation

0.1 1.68

0.2 3.13

0.3 5.34

Average gap 3.38

Table D.9: Accuracy of the 25-period numerical experiments
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