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Abstract

In disaster operations management, a challenging task for rescue organiza-

tions occurs when they have to assign and schedule their rescue units to

emerging incidents under time pressure in order to reduce the overall re-

sulting harm. Of particular importance in practical scenarios is the need to

consider collaboration of rescue units. This task has hardly been addressed

in the literature. We contribute to both modeling and solving this prob-

lem by (1) conceptualizing the situation as a type of scheduling problem,

(2) modeling it as a binary linear minimization problem, (3) suggesting a

branch-and-price algorithm, which can serve as both an exact and heuristic

solution procedure, and (4) conducting computational experiments – includ-

ing a sensitivity analysis of the effects of exogenous model parameters on

execution times and objective value improvements over a heuristic suggested

in the literature – for different practical disaster scenarios. The results of our

computational experiments show that most problem instances of practically

feasible size can be solved to optimality within ten minutes. Furthermore,

even when our algorithm is terminated once the first feasible solution has

been found, this solution is in almost all cases competitive to the optimal so-

lution and substantially better than the solution obtained by the best known

algorithm from the literature. This performance of our branch-and-price al-

gorithm enables rescue organizations to apply our procedure in practice,

even when the time for decision making is limited to a few minutes. By

addressing a very general type of scheduling problem, our approach applies

to various scheduling situations.
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1. Introduction

Managing natural and man-made disasters, such as earthquakes, floods,

droughts, or industrial accidents, has become an important issue in today’s

world. According to the International Federation of Red Cross and Red

Crescent Societies (IFRC), there have been 6,699 reported disasters in the

decade between 2003 and 2012 with more than 1.1 million people killed and

financial losses of more than US$ 1.5 trillion (IFRC, 2013). One of the most

severe natural disaster ever is the 2011 Tohoku-oki earthquake, tsunami,

and nuclear accident in Japan with an estimated US$ 211 billion of direct

damage in addition to 19,000 fatalities (Kajitani et al., 2013). Although the

list could be continued, these statistics suffice to show the importance of

constantly refining disaster operations management to reduce the impact of

disasters on humankind.

Disaster operations management (DOM) has received considerable at-

tention in the OR and MS literature, see Green & Kolesar (2004), Altay &

Green (2006), and Galindo & Batta (2013) for an overview. Tasks in DOM

can be classified into four main phases: mitigation, preparedness, response,

and recovery. One of the most critical tasks in DOM is decision support for

disaster operations centers during disaster response and in particular the

scheduling of rescue units to process disaster incidents (Wex et al., 2014).

We study this problem taking into account several real-world properties:

(i) Each rescue unit may have multiple capabilities, such as medical care,

fire extinguishing, and search-and-rescue, while each incident may require

several of these capabilities. When not all of the required capabilities of an

incident can be provided by a single rescue unit, the collaboration of several

rescue units is necessary. Collaboration can occur in different forms, includ-

ing what we call tight and loose collaboration. While the former requires

that all rescue units are available before they can start their operation, the

latter allows rescue units to work independently. For example, when an inci-

dent requires the capabilities of both firemen and medical staff, firemen can

and should start rescuing buried people although medical staff is still not
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available. In our manuscript, we consider loose collaboration as also done in

previous work (e.g., Schryen et al. (2015) and Wex et al. (2013)). (ii) The

processing of incidents is non-preemptive, (iii) processing times and travel

times are incident- and unit-dependent, and (iv) each incident has a spe-

cific severity level. Since disaster incidents are time-critical, especially when

human lives are in danger, Rolland et al. (2010) suggest to use completion

times of incidents as a proxy for overall harm. Building on this approach

and accounting for the nature of loose collaboration (when rescue units re-

quired by an incident can start processing this incident independently), we

minimize the weighted sum of completion times, where weights are incident-

specific and where each completion time refers to a particular pair of rescue

unit k and incident j and denotes the time at which unit k has finished

its processing of incident j. We refer to this problem as Disaster Response

Scheduling Problem (DRSP).

Even though this type of problem is highly relevant in practical contexts,

it has rarely been investigated in the OR literature. For example, Wex et al.

(2014) present heuristics for a specialization of DRSP in which incidents have

only a single requirement, making collaboration of rescue units obsolete.

Another special case of DRSP was investigated by Rolland et al. (2010),

who introduced meta-heuristics for settings in which incidents do not have

specific severity levels. Wex et al. (2013) and Schryen et al. (2015) show

that DRSP itself is NP-hard in the strong sense. They introduce heuristics

and evaluate the quality of their solutions using lower bounds obtained by

an integer quadratic program relaxation. Bodaghi & Ekambaram (2016)

present a mixed-integer linear program, using a commercial solver to find

the optimal solution for one small DRSP instance with four rescue units as

a case study. However, their case study instance does not involve multi-

capability rescue units, although this could be accounted for by their model.

To the best of our knowledge, no further algorithms for solving the DRSP

have been suggested in the literature.

We close this research gap by (1) formulating DRSP as a binary linear

program, (2) developing a novel branch-and-price (b&p) algorithm to solve

the proposed mathematical program optimally, and (3) conducting compu-

tational experiments to assess the performance of the proposed algorithm.

We evaluate execution times of the algorithm and compare the solutions ob-

tained by our b&p algorithm to solutions returned by the SCHED heuristic
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suggested by Schryen et al. (2015), which is currently the best performing

algorithm for DRSP in the literature. We show that our b&p algorithm en-

ables decision makers in disaster operation centers to improve the quality of

their scheduling decisions substantially. Consequently, this helps decreasing

both casualties and economic losses.

The DRSP represents a very general form of scheduling problems. It

subsumes non-preemptive scheduling on identical/uniform/unrelated paral-

lel machines with the objective function being the (weighted) sum of com-

pletion times. In addition, it accounts for sequence-dependent setup times

(Allahverdi, 2015). As a consequence, our b&p algorithm can be used for

solving many types of scheduling problems.

The remainder of the paper is structured as follows: Section 2 presents

and discusses relevant literature. In Section 3, we formulate DRSP as a

binary linear optimization model. In Section 4, we present our b&p algo-

rithm to solve the proposed model exactly. We evaluate the b&p algorithm

in computational experiments in Section 5. The results of the experiments

are discussed in Section 6 before we finally conclude in Section 7.

2. Related Work

The four phases of disaster operations management are widely considered

as mitigation, preparedness, response, and recovery (Altay & Green, 2006;

Galindo & Batta, 2013) and are often arranged as a life cycle. Mitigation

tasks include activities for reducing the long-term risk of a disaster (Paul &

Hariharan, 2012; Tamura et al., 2000). The preparedness phase includes all

activities performed before a disaster that aim at providing a more efficient

processing of tasks once the disaster strikes (Albores & Shaw, 2008; Salmerón

& Apte, 2010). While mitigation and preparedness refer to the time before

a disaster, response phase activities take place in the immediate aftermath

of a disaster. The main objective here is the deployment of vital resources

to affected people (Fiedrich et al., 2000; Lodree & Taskin, 2009). Finally,

the recovery stage includes tasks that restore the normal functioning of the

community (Liberatore et al., 2014; Sahebjamnia et al., 2015).

During the response phase, in which our investigated problem is situated,

researchers offer a variety of methods to support decisions. These include

mathematical programming, probability theory and statistics, simulation,

and decision theory to name only a few (Simpson & Hancock, 2009). As
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outlined in the introduction, the decision problem DRSP under investigation

deals with scheduling rescue units to process a set of disaster incidents.

These incidents in particular may have multiple requirements, thus enabling

rescue unit collaboration. Rolland et al. (2010) have published a paper which

investigates the scheduling of (loosely) collaborative rescue units. They

model the situation as a resource-constrained project scheduling problem

and present two meta-heuristics for its solution. However, their setting does

not account for different severity levels of incidents.

Wex et al. (2013) model DRSP as a quadratic binary program and

present a heuristic for its solution. However, their approach is a crude

probabilistic exploration of the feasible solution space. Schryen et al. (2015)

present a more sophisticated heuristic for DRSP based on scheduling the-

ory. The authors evaluate their approach against a heuristic modeling best-

practice behavior and against lower bounds of a quadratic programming

relaxation. Bodaghi & Ekambaram (2016) present a mixed-integer linear

program for DRSP and calculate the optimal solution for a small case study

instance with four rescue units using a commercial solver. Although their

model could account for it, their case study instance does not involve multi-

capability rescue units. To the best of our knowledge, no further algorithms

for solving DRSP have been suggested in the literature.

To develop an exact algorithm for DRSP, we draw upon connections to

the closely related field of machine scheduling, see Brucker (2007), Pinedo

(2016), and Rabadi (2016) for an overview. DRSP is a generalization of

the Rescue Unit Assignment and Scheduling Problem (RUASP) in which

each incident has only a single requirement, which makes collaboration ob-

solete. Wex et al. (2014) show that RUASP is a scheduling problem on

unrelated parallel machines with sequence- and machine-dependent setup

times and a weighted sum of completion times as objective function. Using

the three-field notation by Graham et al. (1979), RUASP can be classi-

fied as R/sijk/
∑
wjCj , which in turn is a generalization of the machine

scheduling problem R/sij/
∑
wjCj in which setup times are not machine-

dependent. According to the extensive literature reviews by Allahverdi et al.

(1999, 2008) and Allahverdi (2015), all research articles on these two ma-

chine scheduling problems focus on heuristics due to a lack of efficiency in

solving proposed mathematical programming formulations exactly (Arnaout

et al., 2006; Chen, 2015; Rauchecker & Schryen, 2015; Tsai & Tseng, 2007;
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Weng et al., 2001; Wex et al., 2014).

Regarding a generalization of the R/sij/
∑
wjCj problem, Lopes et al.

(2014) and Lopes & de Carvalho (2007) present a branch-and-price (b&p)

algorithm for the R/sij/
∑
wjTj problem in which jobs have due dates and

the objective is to minimize the sum of weighted tardiness penalties. This

scheduling problem is a generalization of R/sij/
∑
wjCj (the problems coin-

cide when all due dates are 0) but not a generalization of RUASP or DRSP

in which setup-times are machine-dependent. Consequently, their b&p al-

gorithm for R/sij/
∑
wjTj cannot be applied to DRSP. However, we extend

their approach to develop a novel b&p algorithm for DRSP in this paper.

3. Optimization Model

In this section, we suggest a mathematical formulation as an optimiza-

tion model for DRSP. A set {1, . . . , n} of n disaster incidents has to be

processed by a set {1, . . . ,m} of m rescue units. Each rescue unit may offer

different capabilities and each incident may require multiple capabilities. A

sample scenario for DRSP is given in Figure 1. The set of possible require-

ments/capabilities is represented by {1, . . . , r}. Set capkq = 1 when unit

k offers capability q (0 otherwise) and reqjq = 1 when incident j requires

capability q (0 otherwise). A rescue unit is only eligible for processing one

or more of an incident’s requirements if it offers the respective capabilities.

For an incident j, let Mj denote the set of rescue units that are capable of

processing at least one requirement of j.

Let pkj be the processing time of a unit k for an incident j and let skij be

the travel time of a unit k between the locations of incidents i and j. The

time required by unit k to reach the location of incident j from its current

position (e.g., a depot) is represented by sk0j .
1 Furthermore, we denote by

wj the weight of an incident j, which corresponds to its severity level. The

processing of an incident by a rescue unit is non-preemptive. Using this

notation, a sample schedule for DRSP is shown in Figure 2. In order to

determine the overall harm, we calculate the weighted sum of completion

times, where completion time refers to a particular pair of rescue unit and

1Consequently, we can view i = 0 as an artificial incident modeling the current position
of the rescue unit. Using the term incident, however, we refer to a regular disaster incident
j ∈ {1, . . . , n} throughout the paper unless otherwise stated.

6



Figure 1: Sample scenario for the disaster response scheduling problem (DRSP) with
n = 21 incidents, m = 12 rescue units, and r = 3 capabilities

Figure 2: Sample schedule with n = 5 incidents and m = 3 rescue units

incident. Whenever a rescue unit finishes its processing of an incident j,

the current time (weighted with wj) is added to the objective function and

the unit can move on to the next incident. In the example in Figure 2,

unit 1 contributes (3 + 6) · 3 + (9 + 2 + 3) · 2 + (14 + 2 + 4) · 2 = 95 to the

objective function while the contributions of unit 2 and unit 3 are 55 and

41, respectively. This leads to a weighted sum of completion times (i.e., the

objective function value) of 191.

The essence and motivation of our objective function lies in our approach

to consider loose collaboration. In this setting, different rescue units do not

have to process the requirements of an incident at the same time. For each

rescue unit that processes an incident i, it holds that the harm resulting from

a delayed processing increases with the extent of this delay. These character-
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istics provide the rationale to add, for each incident i, the completion times

of all rescue units that process incident i to the objective function, rather

than considering the maximum of completion times among all rescue units

that process incident i, for example. In particular, in scenarios where a cer-

tain capability required by several incidents can be found at only one rescue

unit k∗, some of these incidents may need to wait for rescue unit k∗ much

longer than for other rescue units, which can process parts of the incident

much earlier. Considering the maximum of completion times of all rescue

units that process a particular incident would ignore the harm-reducing ef-

fects of all rescue units that process parts of the incident earlier than rescue

unit k∗. This issue does not occur when using the sum of completion times,

since there is an incentive that each requirement is processed as soon as

possible. Further discussion on our objective function and its comparison

with the max completion time objective function is provided in Appendix

A. In summary, we argue that the max completion time objective function

might be more suitable for tight collaboration (where units have to jointly

process different requirements at the same time) but the sum of completion

times objective function is suitable for the loose collaboration setting that

we consider in DRSP.

In the literature, DRSP has been modeled by binary programs which

use decision variables Xk
ij , indicating whether an incident i is processed

directly before incident j on unit k (Bodaghi & Ekambaram, 2016; Schryen

et al., 2015; Wex et al., 2013). However, algorithms based on this modeling

approach are practically inefficient and corresponding papers do not report

optimal solutions even for medium-sized instances. Therefore, we present a

novel formulation in which the decision variables indicate whether an entire

schedule is used for a rescue unit or not.

A schedule ω = (j1, . . . , jh), with 1 ≤ h (or h = 0 if ω is the empty

schedule), is defined as a tuple of pairwise different incidents j1, . . . , jh. A

schedule ω = (j1, . . . , jh) is feasible on a unit k if and only if k ∈ Mjl for

all l = 1, . . . , h. The tuple represents the order in which the incidents are

processed by rescue unit k. The set of all feasible schedules on unit k is

denoted by Ωk. The weighted sum of completion times ckω of a schedule
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Notation Description

j = 1, . . . , n Disaster incidents
k = 1, . . . ,m Rescue units
q = 1, . . . , r Requirements / capabilities
capkq Binary capability indicator (k offers q or not)
reqjq Binary requirement indicator (j requires q or not)
Mj Set of units capable of processing j
wj Weight of j
pkj Time required by k to process j

skij Time required by k to travel from i to j

ω ∈ Ωk Feasible schedules on k
ckω Weighted sum of completion times of ω on k
ajω Binary occurrence indicator (ω contains j or not)
xkω Binary decision variable (ω used on k or not)

Table 1: Notation for the mathematical formulation

ω = (j1, . . . , jh) on a unit k is be defined as

ckω :=
h∑
l=1

wjl ·

 l∑
g=1

skjg−1jg + pkjg

 . (1)

Let ajω ∈ Z be the binary parameter which indicates how often incident

j is contained in schedule ω. For each unit k and each schedule ω ∈ Ωk, we

introduce a binary decision variable xkω being 1 if ω is used for k and 0 oth-

erwise. This allows for the following binary linear programming formulation

for DRSP (cf. Table 1 for an overview on the notation):

min
m∑
k=1

∑
ω∈Ωk

ckω · xkω (BinLP)

s.t.

m∑
k=1

∑
ω∈Ωk

capkq · ajω · xkω ≥ reqjq ∀j = 1, . . . , n; q = 1, . . . , r (2)

∑
ω∈Ωk

xkω = 1 ∀k = 1, . . . ,m (3)

xkω ∈ {0, 1} ∀k = 1, . . . ,m;ω ∈ Ωk (4)

The objective function of the minimization model (BinLP) is the weighted

sum of completion times of all schedules that are used on the rescue units.
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Constraint set (2) ensures that each requirement of each incident is pro-

cessed by a suitable rescue unit. Constraint set (3) assures that exactly

one (possibly empty) schedule is used for each rescue unit. The binary con-

straints (4) guarantee that each schedule is either fully used or not used (no

fractional usage of schedules).

4. Branch-and-Price Algorithm for DRSP

In this section, we develop an exact branch-and-price (b&p) algorithm

for solving DRSP instances. A b&p algorithm, which has originally been

conceptualized by Barnhart et al. (1998), is a specific form of a branch-

and-bound (b&b) algorithm in which all linear relaxations are solved using

column generation. This, in turn, was originally introduced by Dantzig &

Wolfe (1960) in the context of Dantzig-Wolfe decomposition. The macro

structure of our b&p algorithm is presented in Algorithm 1. Lines 2, 3, 7,

and 8 occur in every b&b algorithm and do not require further explanation.

All other lines are clarified in detail in the remainder of this section.

Algorithm 1 Branch-and-price algorithm for DRSP

1: solve linear relaxation of root node (BinLP) using column generation
2: initialize set of active nodes
3: repeat
4: select an active node for branching
5: branch on selected node by constructing two child nodes
6: solve child nodes’ linear relaxations using column generation
7: update set of active nodes based on new information
8: until set of active nodes is empty

4.1. Solving the Linear Relaxation of the Root Node

First, we present a method to solve the linear relaxation of the root node

(line 1 in Algorithm 1). When solving a DRSP instance, the root node of

the b&b tree is given by model (BinLP). Consequently, when we relax the

binary constraints (4) to 0 ≤ xkω ≤ 1 for all units k and schedules ω ∈ Ωk,

the root node’s linear relaxation is given as follows:
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min
m∑
k=1

∑
ω∈Ωk

ckω · xkω (BinLP-LR)

s.t.

m∑
k=1

∑
ω∈Ωk

capkq · ajω · xkω ≥ reqjq ∀j = 1, . . . , n; q = 1, . . . , r (5)

∑
ω∈Ωk

xkω = 1 ∀k = 1, . . . ,m (6)

xkω ≥ 0 ∀k = 1, . . . ,m;ω ∈ Ωk (7)

The restriction xkω ≤ 1 is already implied by the combination of (6) and

(7). For solving (BinLP-LR), we use column generation, which is applied

in general to solve continuous LPs with a large number of variables and a

small number of constraints. The idea behind column generation is to solve

a series of restricted LPs instead of the large original LP. First, an initial

restricted LP is solved in which only a small feasible subset of variables

(also called columns) is considered. Based on this solution, columns with

negative reduced costs are added to the restricted LP before it is solved

again. This is repeated until no more columns with negative reduced costs

exist, which implies that the optimal solution of the current restricted LP

is also optimal for the original LP with all remaining variables set to zero

(Lübbecke & Desrosiers, 2005). In the following, we apply column generation

to solve (BinLP-LR) by specifying (i) the set of variables considered in the

initial restricted LP and (ii) a method on how to find variables with negative

reduced costs.

The set of variables for the initial restricted LP is obtained by a solution

heuristic for DRSP. We use the SCHED algorithm suggested by Schryen

et al. (2015). Further, let (π, σ) denote the optimal dual solution of a re-

stricted LP, i.e., πjq is the dual variable corresponding to the pair (j, q) in

constraint (5) and σk is the dual variable corresponding to unit k in con-

straint (6). The reduced cost of a variable xkω with respect to the optimal

dual solution of the restricted LP is defined as follows:

rkω := ckω −
n∑
j=1

r∑
q=1

capkq · ajω · πjq − σk. (8)

Finding variables with least reduced costs is equivalent to solving the so
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called pricing problem

r∗ := min
k=1,...,m

min
ω∈Ωk

ckω −
n∑
j=1

r∑
q=1

capkq · ajω · πjq − σk. (PP)

We adapt a dynamic programming algorithm - originally formulated by

Lopes & de Carvalho (2007) in a machine scheduling context - in order

to obtain a solution for the pricing problem. A detailed description is pro-

vided in Appendix B. The algorithm requires two assumptions: (i) travel

times must fulfill the triangle inequality, i.e., ski1i2 ≤ ski1i3 + ski3i2 for all in-

cidents i1, i2, i3 and rescue units k and (ii) schedules must be allowed to

contain incidents multiple times. The triangle inequality for travel times

can be guaranteed by viewing travel times skij as the time which unit k re-

quires for traveling along its shortest time path between the locations of i

and j. To allow schedules to contain incidents multiple times, we enlarge

the sets Ωk in both (BinLP) and (BinLP-LR) accordingly. Consequently,

ajω is not binary anymore. In order to keep the sets Ωk finite, we restrict

the maximum makespan of a schedule to n ·
(

maxi,j,k s
k
ij + maxj,k p

k
j

)
which

guarantees that the optimal solution of (BinLP) is still contained in the sets

Ωk. These modifications are only required for the dynamic programming

algorithm to work and they do not affect the optimal solution of (BinLP).

The reason is that the triangle inequality for travel times assures that in an

optimal solution for (BinLP), each incident is processed at most once by the

same unit since a schedule ω ∈ Ωk that processes an incident multiple times

has always a higher weighted sum of completion times ckω than the schedule

resulting when all duplicates are removed.

4.2. Node Selection and Branching Strategy

In the following, we explain our strategy for selecting an active node to

branch on (line 4 of Algorithm 1). We use a hybrid strategy whose two

elements are last-in-first-out (LIFO) and best-lower-bound-first (BLBF). A

LIFO strategy selects the active node for branching that has been created

most recently. A BLBF strategy selects the active node with the lowest

optimal solution of its linear relaxation for branching.

At the beginning, we use the LIFO search strategy, which is suitable

for finding a good feasible solution for the current problem instance early.

This corresponds to a b&b node having an integer optimal solution for its
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linear relaxation. After having found such a feasible solution for the current

problem instance, we switch to the BLBF search strategy, which is most

suitable for finding an optimal solution and for finally proving its optimality.

For branching on a selected node (line 5 of Algorithm 1), we use so

called flow variables Xk
ij , as this is common for b&p algorithms in unrelated

parallel machine scheduling (Lopes & de Carvalho, 2007; Lopes et al., 2014).

These variables are defined as

Xk
ij =

∑
ω∈Ωk

δijω · xkω (9)

for every pair of incidents i = 0, . . . , n and j = 1, . . . , n and every unit

k = 1, . . . ,m, where {xkω|k = 1, . . . ,m;ω ∈ Ωk} is an optimal solution of the

selected node’s linear relaxation. The integer parameter δijω indicates how

often the sequence i → j is contained in schedule ω (the sequence 0 → j

translates to j is the first incident in ω). If xkω is binary for all units k

and schedules ω ∈ Ωk, then Xk
ij indicates how often incident i is processed

directly before incident j by unit k.2 We branch along the edge (i∗, j∗, k∗)

where (i) Xk∗
i∗j∗ is closest to 0.5, i.e.,

(i∗, j∗, k∗) = arg min
i,j,k
|Xk

ij − 0.5|, (10)

and (ii) (i∗, j∗, k∗) has not been used for any branching leading to the current

node.

For branching along the edge (i∗, j∗, k∗), we introduce node-specific sets

P kj of possible predecessors for all incidents j and units k. At the root node,

we initialize P kj = ∅ if k does not have any capabilities required by j (i.e.,

k /∈Mj). Otherwise, we set P kj as the set of all incidents that require one of

the capabilities of unit k and add the artificial incident 0. Constructing two

child nodes from the currently selected node is then conducted by modifying

the predecessor sets P kj of the currently selected node for all incidents j and

units k, resulting in node-specific predecessor sets P kj for the two child nodes.

For the first child node, i∗ is simply removed from the possible predeces-

sors of j∗ on k∗, i.e., P k
∗

j∗ − = {i∗}. This implies that i∗ cannot be processed

2Processing incident 0 directly before incident j on unit k means that incident j is
processed first on unit k.
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directly before j∗ on k∗ anymore. For the second child node, i∗ is set to

be the only possible predecessor of j∗ on k∗ and is removed from all other

predecessor sets on k∗, i.e., we set P k
∗

j∗ = {i∗} and P k
∗

j − = {i∗} for all

j 6= j∗. In addition, we set P kj − = {j∗} for all units k 6= k∗ which cannot

serve any requirement of j∗ that k∗ cannot already serve. The latter applies

analogously to i∗ if i∗ 6= 0.

Setting Ωk = {ω = (j1, . . . , jh)|jl−1 ∈ P kjl for all 1 < l ≤ h} for each

child node, however, is not sufficient to force i∗ to be processed directly

before j∗ on k∗ in all schedules of the second child node, since the presence

of multiple capabilities per rescue unit may still enable the processing of all

requirements of j∗ by units k 6= k∗. To circumvent this issue, we introduce

for all k = 1, . . . ,m the sets Ek of all edges (i, j) with the property that the

current node-to-construct (either first or second child node) emanates from

constructing the second child node along the edge (i, j, k) at some point of

its branching history. Then we define

Ωk = {ω = (j1, . . . , jh) | jl−1 ∈ P kjl for all 1 < l ≤ h and (11)

i→ j is included in ω for all (i, j) ∈ Ek}.

for all k = 1, . . . ,m. In particular, the sequence i∗ → j∗ is forced to be

contained in every feasible schedule on k∗ in the second child node. Con-

clusively, this guarantees Xk∗
i∗j∗ = 0 on the first child node and Xk∗

i∗j∗ ≥ 1 on

the second child node.

4.3. Solving Child Nodes’ Linear Relaxations

As we have seen in the previous subsection, all nodes of the b&b tree are

of the form (BinLP) - only differing in node-specific sets Ωk. Consequently,

all linear relaxations are of the form (BinLP-LR). Therefore, the column

generation procedure to solve an arbitrary node’s linear relaxation (line 6 of

Algorithm 1) is similar to the procedure presented in Section 4.1, hence we

only outline the differences.

The initial set of variables for the restricted LP is obtained by taking

all variables from the final restricted LP of the parent node and penalizing

those columns that are not feasible anymore due to branching (i.e., setting

ckω =∞ if ω /∈ Ωk).

We also need to take incomplete schedules into consideration. These

incomplete schedules cannot be filtered out during column generation since
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the dynamic programming algorithm (see Appendix B for details) cannot

be detained from constructing them. However, we can ignore them by not

adding them to the current restricted LP. Consequently, an optimal solution

of model (BinLP-LR) is found when all columns with negative reduced costs

are incomplete. This completes the description of Algorithm 1. We prove

the following result about its exactness in Appendix C.

Theorem 1. The presented branch-and-price algorithm is an exact proce-

dure for solving DRSP instances.

5. Computational Experiments for the B&P Algorithm

In this section, we evaluate the execution times of the suggested b&p

algorithm and determine the improvement of the b&p solutions over the

solutions generated by the SCHED heuristic suggested by Schryen et al.

(2015). Our hardware setup is an Intel Westmere X5675 CPU with a clock

frequency of 3.07GHz and 96GiB RAM. We coded the algorithm in C++

on Linux CentOS 7.3. For the solution of the restricted LPs during column

generation, we used Gurobi 7.

5.1. Data Generation

To reflect the diversity of real-world disasters, we generate instances for

four different scenarios. First, we discriminate between situations in which

rescue units are either specialized, i.e., they have a low number of capabil-

ities, or in which they are non-specialized, i.e., the number of capabilities

per rescue unit is high. We distinguish between eight different capabilities

(based on interviews with practitioners) that are listed in Table 2. Second,

we differentiate between situations in which travel times are low compared

to processing times (low travel intensity) or high compared to processing

times (high travel intensity). There are several factors that influence travel

intensity, which can vary substantially between different disasters. These

factors include distances between locations of incidents, traffic density and

congestions, or the difficulty of (and thereby time required for) processing

incidents. For example, disasters in urban and rural areas may differ sub-

stantially in these regards. Combining the two dimensions described above,

we yield four different scenarios, which account for diversity regarding both

external factors (e.g., traffic conditions) and internal factors (e.g., special-

ization of rescue units).
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Input parameter Value, range, distribution

Number of incidents n ∈ {10, 20, 30, 40}
Number of rescue units m ∈ {10, 20, 30, 40}, m ≤ n
Number of capabilities / requirements 8 (policemen, fire brigades, paramedics,

search and rescue, debris removal,
infrastructure preservation, logistics teams,
special casualty access teams)

Probability of having a particular requirement preq ∈ {10%, 15%, 20%, 25%, 30%}
Number of instances per preq and instance size 10
Severity levels wj ∼ U(1, 5, 1)
Processing times pkj ∼ N(100, 50)

Grid size for incident positioning 100× 100
Speed of rescue units speedk ∼ U(8, 16, 1)

Scenario specialized / low intensity
Probability of having a particular capability pcap = 20%
Travel intensity factor TIF = 1.0

Scenario specialized / high intensity
Probability of having a particular capability pcap = 20%
Travel intensity factor TIF = 4.25

Scenario non-specialized / low intensity
Probability of having a particular capability pcap = 40%
Travel intensity factor TIF = 1.0

Scenario non-specialized / high intensity
Probability of having a particular capability pcap = 40%
Travel intensity factor TIF = 4.25

Table 2: Details of data generation

For each of the four scenarios, we investigate different instance sizes in

which the number of incidents n and rescue units m varies between 10 and

40 (with m ≤ n since resources are scarce in disaster situations). This range

is realistic in real world disasters for two reasons (Schryen et al., 2015).

First, there are multiple disaster operations centers (DOCs) in a large-scale

disaster and this decentralized structure implies moderate numbers of rescue

units that have to be scheduled by each DOC. Second, real-world disasters

are highly dynamic situations. New (requirements of) incidents can occur,

some (requirements of) incidents may already have been processed success-

fully, and available rescue units and their capabilities are likely to change

over time. These dynamics can be considered by solving a sequence of dif-

ferent small- or medium-sized problem instances instead of one single large

problem instance. A more detailed discussion is provided in Appendix D.
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For each of the four scenarios, we also vary the probability preq with

which a particular incident requires a specific capability between 10% and

30%. We distinguish between the eight capabilities presented in Table 2.

Applying these probability values leads to probabilities between 32.8% and

79.0% that a specific incident has at least two requirements, which makes

(loose) collaboration necessary. Details are presented in Appendix E.

For each instance size and each requirement probability in each of the

four scenarios, we randomly generate ten different instances. The details

of our data generation process are presented in Table 2; while scenario-

independent parameters are listed in the upper part, scenario-specific pa-

rameters are contained in the lower part of the table. The severity level

of an incident is a uniformly drawn integer between 1 and 5 according to

the five-step scale low, guarded, elevated, high, and severe of the former

U.S. Homeland Security Advisory System (Behunin, 2004). The process-

ing times are drawn from a normal distribution with mean value 100 and

a standard deviation of 50. The high coefficient of variation (0.5) accounts

for processing times that vary substantially in chaotic disaster situations.

The processing times are rounded to integers for algorithmic reasons (cf.

dynamic programming algorithm in Appendix B). This integer requirement

does not affect the applicability of our approach, since times are prone to

estimations and therefore not precise in disaster response.3 To this point,

all parameters are scenario-independent.

For each unit, the probability pcap of having a specific capability is

scenario-specific: We use pcap = 20% when we investigate specialized rescue

units, which leads to slightly less than two capabilities per rescue unit on

average (the theoretical mean is approximately 1.92 based on the formu-

las in Appendix E). To model non-specialized rescue units, we doubled the

probability to pcap = 40%, which rises the average number of capabilities per

rescue unit to more than three (the theoretical mean is approximately 3.25

based on the formulas in Appendix E). This substantial increase enables us

to gain insights into the effect of unit specialization on the performance of

our b&p algorithm.

3The mean value of the processing times (and therefore implicitly their precision)
cannot be increased arbitrarily since the execution time of the dynamic programming
algorithm depends on upper bounds for the makespan of feasible solutions for DRSP. This
makespan increases with increasing processing times.
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Finally, we explain the scenario-specific generation of travel times, the

intention of which is to cover both low and high travel intensities. To ac-

complish realistic travel times, their generation is based on a coordinate

grid which represents a fictitious discretized version of real maps in disaster

applications. For each pair of incidents (i, j) on the grid, the travel time

of each unit k between the positions of incidents i and j can be calculated

as the distance between i and j divided by the speed of unit k. In our

data generation, each incident is placed on a 100 × 100 grid by uniformly

drawing its x and y coordinates. After that, the euclidean distance between

all pairs of incidents is calculated and then divided by the speed of unit k

(which is a uniformly drawn integer between 8 and 16). This time is further

scaled with a travel intensity factor of TIF = 1.0 for low travel intensity

and TIF = 4.25 for high travel intensity and finally rounded up to obtain

integer values for skij . The grid size, speed distributions, and travel intensity

factors are selected in a way that this results in expected travel times of 5.1

for low travel intensity and 19.9 for high travel intensity.4 Since the process-

ing time distribution has a fixed mean of 100, this leads to a high ratio of

mean processing times to mean travel times for low travel intensity (approx.

20) and a low corresponding ratio for high travel intensity (approx. 5).

In total, we generate and solve 2,000 instances (four scenarios, ten in-

stance sizes and five requirement probabilities per scenario, and ten instances

per instance size and requirement probability).

5.2. Results

The results for our computational experiments are presented in this sec-

tion. Figure 3 displays the average execution times of our b&p algorithm

for preq = 20%. 5 The corresponding average execution times before a first

integer solution is found show a similar pattern and can be obtained from

Tables F.13-F.16 in Appendix F. These execution times are important for

practitioners when due to time pressure the b&p algorithm cannot be exe-

cuted completely but is terminated once a feasible solution for the current

4The expected travel times are calculated via enumerating all combinations of incidents
pairs (i, j) with i 6= j and unit speeds speedk ∈ {8, 9, . . . , 16}. All of these combinations
are equally likely to be generated.

5Due to space limitation, we present results only for preq = 20%. Results for values
other than 20% are shown in Appendix F.
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(a) specialized, low intensity (b) non-specialized, low intensity

(c) specialized, high intensity (d) non-specialized, high intensity

Figure 3: Average execution times of the b&p algorithm

DRSP instance (referred to as first integer (FI) solution) is found. 6 In

this case, the b&p algorithm serves as a heuristic. The execution times for

both the exact and heuristic version of our b&p algorithm are also reflected

in the number of nodes that are explored during the algorithm (see Tables

F.13-F.16 in Appendix F).

Further, we compare the objective values of the SCHED heuristic (sug-

gested by Schryen et al. (2015)) to the objective values of both the optimal

solution and the FI solution found by the b&p algorithm. This comparison

allows us to identify the levels of improvements over the SCHED heuristic

achieved when the b&p algorithm is executed as an exact or as a heuristic

solution procedure. Figure 4 displays the average ratios of objective val-

ues of the SCHED solution to objective values of the optimal solution for

6It needs to be noted that the SCHED heuristic is used to find a set of feasible columns
for the initial restricted LP during column generation at the root node (cf. Section 4.1).
Although this SCHED solution is feasible for DRSP, we do not refer to it as FI solution.
Using the term FI solution, we rather refer to the first feasible solution that is obtained
by further exploring the b&b tree. Such a feasible solution is found whenever the linear
relaxation of a b&b node has an integer optimal solution.
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(a) specialized, low intensity (b) non-specialized, low intensity

(c) specialized, high intensity (d) non-specialized, high intensity

Figure 4: Average ratio of SCHED objective value to optimal objective value

preq = 20%. 7 For example, a ratio of 1.309 indicates that the objective value

of the SCHED solution exceeds the objective value of the optimal solution

by 30.9% on average. The respective ratios for the excess of SCHED solu-

tions over the FI solutions show a similar pattern and can be obtained from

Tables F.13-F.16 in Appendix F. Detailed statistics on all results presented

in the figures can also be retrieved from these tables.

Table 3: Results for regression on execution time

Effect Estimate (Std. Error) t value (Significance)

Number of incidents (n) 0.13 (0.00) 35.38 ***
Ratio of incidents to units (n/m) 0.88 (0.04) 21.82 ***

Requirement probability (preq) 15.08 (0.49) 30.99 ***
Capability probability (pcap) 2.80 (0.34) 8.21 ***

Travel intensity factor (TIF ) 0.17 (0.02) 8.25 ***
N 1875

R squared 0.64

Notes. Model includes an intercept. ***significant at 0.1%.

7Due to space limitation, we present results only for preq = 20%. Results for values
other than 20% are shown in Appendix F.
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In order to measure the effect sizes of exogenous parameter values (in-

cluding requirement probability) on the execution time of the branch-and-

price algorithm, we conducted a sensitivity analysis, using the following

regression model with a logarithmically transformed dependent execution

time variable:

ln(EXEC TIME) = β0+β1·n+β2·
n

m
+β3·preq+β4·pcap+β5·TIF+ε (12)

Table 3 shows the results of the regression, which are based on data provided

in Tables F.5-F.24 in Appendix F. From the original 2,000 instances, we

excluded those 26 instances where no optimal solution has been calculated

after 48 hours. Furthermore, we removed outliers (upper 5%) in order to

avoid skewed regression coefficients.

The same type of regression was conducted with the time to find an FI

solution as the dependent variable. The results are very similar and can be

obtained from Table G.25 in Appendix G.

Table 4: Results for regression on ratio SCHED/OPT (values of objective function)

Effect Estimate (Std. Error) t value (Significance)

Number of incidents (n) 0.00 (0.00) 10.71 ***
Ratio of incidents to units (n/m) 0.02 (0.00) 6.35 ***

Requirement probability (preq) 1.11 (0.04) 30.60 ***
Capability probability (pcap) 0.67 (0.03) 26.57 ***

Travel intensity factor (TIF ) 0.01 (0.00) 6.92 ***
N 1875

R squared 0.49

Notes. Model includes an intercept. ***significant at 0.1%.

We also conducted a sensitivity analysis with the ratio SCHED/OPT

of the objective value of the SCHED solution to the objective value of the

optimal solution. Here, we used the following linear regression model:

SCHED/OPT = β0 +β1 ·n+β2 ·
n

m
+β3 ·preq+β4 ·pcap+β5 ·TIF +ε (13)

Table 4 presents the results of the regression. We again removed outliers as

described above.

The results for the same type of regression on the ratio SCHED/FI of

the objective values of the SCHED solutions to the objective values of the

FI solutions are again very similar and can be obtained from Table G.26 in
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Appendix G.

6. Discussion

We discuss the results of our computational experiments in this section.

We analyze the efficiency of the b&p algorithm before we interpret its ef-

fectiveness. Both subsections begin with a detailed discussion of the results

for preq = 20% before we interpret the results of our sensitivity analysis in

terms of effect sizes of exogenous variables, including requirement probabil-

ities, and make predictions on the performance of our b&p algorithm for

variations in input data. Finally, we discuss managerial implications of our

experiments in a separate subsection.

6.1. Efficiency of the B&P Algorithm

Discussion of results. Figure 3 shows that the average execution time

of our b&p algorithm varies between zero seconds and approximately 40

minutes. When a scenario and an instance size is fixed, execution times for

the ten randomly generated instances can be volatile with some coefficients

of variation being close to 3.0, see Tables F.13-F.16. Within each scenario,

the execution times mainly depend on two factors. First, when the number

of incidents or rescue units is fixed, the execution time tends to rise with

an increasing ratio n
m of incidents to rescue units. Using a logarithmic scale

on the y-axis of Figure 3, we can see that even small changes in this ratio

can cause an exponential increase in execution times. For example, in the

scenario with n = 40 non-specialized rescue units in low travel intensity

situations, there is an average execution time of approximately two seconds

when m ∈ {30, 40}, which increases to 56s when m = 20 and to even 988s

when m is reduced to 10. This increase of execution times is rooted in the

expanded workloads of the rescue units as well as in the resulting challenges

to not only assign incidents to rescue units but also to schedule the incidents

that are assigned to a particular rescue unit.

Second, when the ratio n
m is fixed, the execution times tend to increase

with an ascending number of incidents. For example, when rising the in-

stance size from n = 20 and m = 10 to n = 40 and m = 20, the logarithmic

scale shows that the increase in execution time is up to almost three mag-

nitudes (·103); for example, it increases from 0.5s to 356s in the scenario
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with non-specialized rescue units and high travel intensity. This effect in

not surprising as the solution space expands with increasing values of n.

Comparing the four scenarios, execution times for scenarios with special-

ized rescue units tend to be smaller than for scenarios with non-specialized

rescue units (when low/high travel intensity is fixed). This difference can

be more than two magnitudes. For example, for n = 30 incidents and

m = 10 rescue units in a low travel intensity situation, the execution times

rise from 1.2s for specialized rescue units to 407s for non-specialized res-

cue units. Facing high travel intensity, the respective execution times rise

from 7.4s to 848s. This is a result of having more feasible allocations and

therefore a larger feasible solution space when rescue units have more capa-

bilities. Furthermore, execution times for high travel intensity scenarios tend

to be higher than for low travel intensity scenarios (when specialized/non-

specialized unit setting is fixed). This increment can be more than one

magnitude. In the situation with n = 40 incidents and m = 10 specialized

rescue units, for example, we have execution times of 38s when there is low

travel intensity and 828s when there is high travel intensity. The execution

times for m = 40 non-specialized rescue units and n = 40 incidents rise

from 1.9s when there is low travel intensity to 74s when there is high travel

intensity. This is caused by a less effective bounding since the number of

nodes that are explored during the b&p algorithm increases correspondingly

(see Tables F.13-F.16).

The execution times until an FI solution is found are substantially lower

than the execution times of the entire b&p algorithm (see Tables F.13-

F.16). These times are especially important for practitioners when the time

for decision making is scarce. Over all scenarios and instance sizes, the

highest execution time (averaged over ten instances) fo find an FI solution

is 34.2 seconds. Although being substantially lower, the execution times

to find an FI solution follow the same patterns regarding the influence of

the instance size as described above for the execution times for finding an

optimal solution. However, execution times for finding an FI solution are

independent of the specific scenario.

Sensitivity analysis. To analyze the sensitivity of execution times on

changes in exogenous parameters and to make predictions for variations

in input data, we use the results presented in Table 3. The regression model

has a good fit of R2 = 0.64, which means that 64% of the variance in ex-
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ecution times can be explained by the five exogenous parameters that we

include as independent variables in our regression model (12). Furthermore,

the effect sizes of all independent variables are highly significant.

When interpreting effect sizes of parameters on execution times, the

logarithmic scale of execution times in the regression needs to be considered.

For example, when the size of n is increased by 30 (e.g., by moving from

the setting n = m = 10 to the setting n = m = 40), then the natural

logarithm of the execution time increases by 30 · 0.13; i.e., the execution

time increases with the factor of e30·0.13 ≈ 49.4. When the ratio of incidents

to units is increased by 3 (e.g., by moving from the setting n = m = 40

to the setting n = 40, m = 10), then the execution time increases with the

factor of e3·0.88 ≈ 14.0. It should be noticed that, when moving from the

setting n = m = 10 to the setting n = 40, m = 10, the two effects discussed

above occur contemporaneously; i.e., the execution time is approximately

increased by the products of both factors (≈ 692).

Regarding the probability of having a particular requirement (preq), we

used values that differ by five percent points (10%, 15%, 20%, 25%, 30%).

The regression results indicate that an increase by 5 percent points leads to

an increase of execution time by the factor e0.05·15.08 ≈ 2.1; i.e., the execution

time is approximately doubled.

The regression results also allow to compare the effects sizes of the level of

specialization of rescue units and the travel intensity of the overall situation,

both of which determine the type of scenario. The level of specialization is

operationalized by the probability with which a specific rescue unit has a

particular capability. We used two values (pcap = 20% and pcap = 40%), and

the impact on execution times from increasing pcap is the factor e0.2·2.8 ≈ 1.8;

i.e., execution times almost double when rescue units change their charac-

teristics from specialized to non-specialized. Regarding travel intensity, the

impact of changing travel intensity from low to high is given by the factor

e(4.25−1)·0.17 ≈ 1.7; i.e., the execution time is again almost doubled. How-

ever, it should be noted that we used, for both the level of specialization

of rescue units and the travel intensity, only two values each so that the

regression coefficients should be interpreted with caution.

For those variables where we have investigated more than two different

values in our computational experiments (i.e., number of incidents n, ratio

of incidents to units n
m , and requirement probability preq), the results of
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the regression can be used to make predictions of execution times which

are outside our computational scope. We give an example for the variable

preq. When we increase the requirement probability from preq = 30% to

preq = 40%, which is an increase by 0.1, we can expect the average execution

times (ceteris paribus) to be increased by the factor e0.1·15.08 ≈ 4.5. When

we fix the scenario to specialized rescue units and low travel intensity and

the instance size to n = 40 and m = 20, for example, then we can expect

the average execution time to rise from 98.1s for preq = 30% (this value can

be obtained from Table F.21) to 4.5 · 98.1s ≈ 441s for preq = 40%.

We also conducted a regression on the time to find an FI solution, the

results for which are presented in Table G.25. It shows that the times to

find an FI solution depend on changes in exogenous model parameters in a

similar way than the execution times of the entire b&p algorithm – with the

exception that the specialization of rescue units has no significant influence.

6.2. Effectiveness of the B&P Algorithm

In this subsection, we discuss the improvements of our exact b&p algo-

rithm over the heuristic SCHED suggested by Schryen et al. (2015). We

also discuss the quality of solutions when our b&p algorithm is executed as

a heuristic by terminating upon finding an FI solution.

Discussion of results. From Figure 4, we can see that the SCHED ob-

jective values exceed the optimal objective values obtained by our b&p al-

gorithm by between 16.7% and 55.6% on average with low coefficients of

variation; i.e., for fixed instance sizes and scenarios the levels of improve-

ments are robust over instances. This shows that the solutions returned

by our b&p algorithm substantially improve the solutions returned by the

SCHED heuristic in all tested scenarios. When rescue units are specialized,

the average excess of the SCHED objective values over the optimal objec-

tive values is almost constant, especially when n > 20. In scenarios with

non-specialized rescue units, the average excess is higher and more volatile,

i.e., it depends on instance sizes. The reason for both the higher excess

and volatility is the fact that an increasing number of feasible allocations

in non-specialized scenarios makes the solution space larger. Therefore, the

heuristic approach of SCHED becomes less effective. It is also notable that

the average SCHED excess is almost the same for high travel intensity and

for low travel intensity.
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The average ratios SCHED/FI of the objective value of the SCHED

solution to the objective value of the FI solution show the same patterns

regarding the influence of the instance size and the specific scenario on

SCHED/FI as described above for the ratios SCHED/OPT , see Tables

F.13-F.16 for details. Furthermore, the average ratios SCHED/FI and

SCHED/OPT almost coincide when a particular scenario, instance size,

and requirement probability are fixed. This implies that the FI solution is

highly effective. Indeed, the average ratio FI/OPT of the objective value of

the FI solution to the optimal objective value is between 0.0% and 6.5% with

low coefficients of variation over instances of the same size and scenario, see

Tables F.13-F.16 for details. Furthermore, the ratio FI/OPT was less than

5% in all but 20 instances (out of 400). In the most difficult single instance

with an execution time of almost four hours, the FI solution exceeds the

objective value of the optimal solution by only 1.6% and was found after

17.8 seconds, which is a small fraction of the full execution time.

Sensitivity analysis. The results of the sensitivity analysis regarding the

effect sizes of our parameters on the extent with which our algorithm im-

proves the objective values obtained from applying the heuristic suggested

by Schryen et al. (2015) (i.e., the ratio SCHED/OPT ) can be interpreted

analogously to our analysis of execution times. As Table 4 reveals, consid-

erable effects only occur regarding the requirement probability preq and the

capability probability pcap; i.e., relative improvements of objective values

achieved through our algorithm considerably increase only when the proba-

bility of having a specific requirement increases or when rescue units become

more/less specialized. The regression on the average ratios SCHED/FI

shows very similar results (for details see Table G.26) and are therefore not

further discussed.

6.3. Managerial Implications

Our computational experiments are of high relevance to the disaster

operations management of rescue organizations when they need to assign

and schedule their collaborating rescue units to emerging incidents under

time pressure in order to reduce the overall resulting harm. According to

our interviews with managers of rescue organizations, they need to make

their decisions during ten minutes.
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Our results show that for almost 94% of the 2,000 tested problem in-

stances, our b&p algorithm provides optimal solutions during the requested

time window of ten minutes and substantially outperforms a heuristic sug-

gested in the literature in terms of the resulting harm in almost all instances.

Furthermore, first feasible solutions are found by the b&p algorithm in even

considerably less time, with only five out of 2,000 instances remaining with-

out a first feasible solution during ten minutes. In almost all instances these

first feasible solutions are competitive to the optimum. These computational

results make our b&p algorithm highly appealing for use in decision support

systems for command & control units.

Extensive sensitivity analysis of execution times reveal statistically sig-

nificant effect sizes of exogenous model parameters. Most influencing is the

extent of parameters which determine the intensity of required collaboration

of rescue units. The identification of effect sizes allows reliable predictions

on execution times of the proposed b&p algorithm when all model param-

eters are set (explained variance of execution times is about 64%). Such

predictions are useful for decision makers in the command & control board

when – due to time pressure – they need to decide on whether and when the

b&p algorithm should be aborted, accepting the best found solution so far.

7. Conclusion

In this paper, we address a challenge that occurs during the response

phase of disaster operations management. In this phase, rescue organizations

have to assign and schedule their rescue units to emerging incidents under

time pressure in order to reduce the overall resulting harm. We refer to this

problem as the Disaster Response Scheduling Problem (DRSP). We account

for the practical need that the processing of incidents requires different capa-

bilities, thereby making (loose) collaboration of rescue units necessary. We

contribute to both modeling and solving this problem by (1) conceptualizing

the situation as a generalization of a parallel machine scheduling problem,

(2) modeling DRSP as a binary linear minimization problem, (3) suggesting

a branch-and-price algorithm, which can serve as both an exact and heuristic

solution procedure, and (4) conducting computational experiments – includ-

ing a sensitivity analysis of the effects of exogenous model parameters on

execution times and objective value improvements over a heuristic suggested

in the literature – for different practical disaster scenarios.
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The results of our computational experiments show that most problem

instances of practically feasible size (number of incidents and number of

rescue units are not larger than 40) can be solved to optimality in less

than ten minutes. The optimal solutions substantially improve solutions

found by the SCHED heuristic by Schryen et al. (2015), which is the best

DRSP heuristic that we could find in the literature, in terms of weighted

sum of completion times, which can be seen as a proxy for the overall harm

in disaster situations. When time is scarce and decision makers have to

coordinate rescue units before the algorithm terminates, they can abort

the execution and rely on the best found integer solution, which is always

feasible for DRSP. Even the first found integer solution is competitive to the

optimal solution in terms of objective value and substantially better than the

SCHED solution in almost all instances. A first integer solution was found

within ten minutes in all but five instances. This makes our algorithm not

only applicable in practice but also superior to existing algorithms in terms

of harm reduction.

Since DRSP is a very general scheduling problem, our b&p algorithm

can also be applied to a variety of more specialized scheduling problems,

including non-preemptive scheduling on unrelated parallel machines with

sequence-dependent setup times and a weighted sum of completion times as

objective function (R/sij/
∑
wjCj) and the Rescue Unit Assignment and

Scheduling Problem (R/sijk/
∑
wjCj). For both scheduling problems, only

heuristic procedures have been proposed in the literature.

We envision further avenues for research. From a model perspective, pre-

emption can be considered when rescue units may interrupt the processing

of incidents. Also, time windows may be integrated in the model. Fur-

thermore, uncertainty of data may be modeled by developing, e.g., stochas-

tic versions of the model. From a validation perspective, our algorithm

should be evaluated based on real data, which have not been available to

us. From a computational perspective, our branch-and-price algorithm can

be parallelized and executed in parallel computing environments, such as

high-performance clusters.
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Appendix A. Further Discussion of Objective Function

We consider the weighted sum of completion times as the objective func-

tion for DRSP in our manuscript. We add the times at which requirements

of an incident have been processed only once when they are processed by

a single (multi-capable) rescue unit and multiple times when they are pro-

cessed by multiple rescue units. Although this seems to be counter-intuitive,

it intends to solve two issues that are discussed in the following. In addition

to the argument discussed in the main text, this makes our sum of comple-

tion times objective function superior to the max completion time objective

function when loose collaboration is considered.

First, consider a DRSP instance where we have a single incident j that

requires two capabilities q = 1 and q = 2. There are three rescue units

k = 1, 2, 3 where unit k = 1 has capability q = 1, unit k = 2 has capability

q = 2, and unit k = 3 has both capabilities q = 1, 2. Now we compare

the following assignments: (1) incident j is processed by units k = 1 and

k = 2 simultaneously, which require 1 hour each for processing the respective

requirement of j and (2) incident j is processed by unit 3 which requires 1.5

hours to simultaneously process the requirements. Our objective function

prefers solution (2) since the sum of completion times is 1 + 1 = 2 in the

first solution and 1.5 in the second solution. The intention behind this

is that although the time at which all individual requirements have been

processed – and in particular the max completion time – is slightly higher

(1.5 hours vs. 1 hour) in solution (2), all requirements are processed by a

single rescue unit. The processing by a single rescue unit is preferred since

there is less collaboration and coordination effort, which is an uncertainty

factor in practice, compared to a processing by multiple rescue units and

therefore, the latter is implicitly penalized by our objective function.

Second, we consider a DRSP instance which again consists of a single

incident j that requires two capabilities q = 1 and q = 2. Again, there are

three rescue units k = 1, 2, 3 where unit k = 1 has capability q = 1, unit

k = 2 has capability q = 2, and unit k = 3 has both capabilities q = 1, 2.

This time we compare the following assignments: (1) incident j is processed

by units k = 1 and k = 2. Unit k = 1 immediately begins processing and

requires 1 hour. The second unit k = 2 can (due to traveling) begin after

one hour and also needs 1 hour for processing. (2) incident j is processed

by unit k = 3 which begins processing immediately and requires 2.5 hours
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for simultaneously processing both requirements. Our objective function

again prefers solution (2) since the sum of completion times is 1 + 2 = 3 in

the first solution and 2.5 in the second solution. The intention behind this

is that although the time at which all individual requirements have been

processed – and in particular the max completion time – is again slightly

higher (2.5 hours vs. 2 hours) in solution (2), the second capability q = 2

remains unprocessed for the entire first hour in solution (1) and therefore

potentially life-saving operations are delayed for an entire hour. This is

implicitly penalized by our objective function.

Appendix B. Dynamic Programming Algorithm

In this section, we introduce a dynamic programming approach to solve

the pricing problem (PP). The pricing problem is part of the column gen-

eration procedure, which is used to solve the linear relaxations of the b&b

tree nodes (cf. Sections 4.1 and 4.3). We need to decide whether there

are variables with negative a reduced costs (i.e., r∗ < 0) or not (r∗ ≥ 0).

The algorithm was originally proposed by Lopes & de Carvalho (2007) in a

machine scheduling context. We can use their algorithm with minor modi-

fications and present it in Algorithm 2. The algorithm requires travel and

processing times to be integers. This is not a limitation in practice and we

address it in the data generation process for our computational evaluation

in Section 5. The sets P kj for all units k and incidents j represent the set of

all feasible predecessors of incident j on unit k. These sets may contain the

artificial incident 0 (when incident j is allowed to be processed first on unit

k) and depend on the current node in the b&b tree (cf. Section 4.2).

For a unit k, a time t ∈ Z, and an incident j, we define fk(t, j) as

the minimum reduced costs of all variables xkω where ω finishes processing

exactly at time t and processes j last. We set a time limit T ≥ 1 and use

a recursive procedure to calculate those minimum reduced costs fk(t, j) for

all incidents j, units k, and t ≤ T . A schedule corresponding to a variable

with minimum reduced cost r∗T under the value of T can be determined by

reversing the recursion path.

Lopes & de Carvalho (2007) argue that it is possible to start with a low

value of T (for example the makespan of a heuristic solution) and, if r∗T ≥ 0,
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Algorithm 2 Solving the Pricing Problem

1: Initialize fk(t, j) =∞ for each unit k, time t ≤ 0, and incident j.
2: For each unit k, initialize fk(0, 0) := −σk and fk(t, 0) = ∞ for each

time 0 6= t ≤ T .
3: For each unit k, time 1 ≤ t ≤ T , and incident j, set

fk(t, j) = min
i∈Pk

j

fk(t− skij − pkj , i) + wjt−
r∑
q=1

capkqπjq. (B.1)

4: The minimum reduced cost under the value T is defined as

r∗T = min
k=1,...,m

min
t=0,...,T

min
j=0,...,n

fk(t, j). (B.2)

to iteratively adjust T by adding

T̃ := max
i=0,...,n

max
j=1,...,n

max
k=1,...,m

skij + pkj . (B.3)

If there are neither variables with negative reduced costs under a value of T

nor under the value of T + T̃ , then there are no more variables with negative

reduced costs under any value of T . This allows for a relatively low T that

guarantees r∗ ≥ 0 in (PP), which terminates column generation.

Lopes & de Carvalho (2007) point out that it is sufficient to consider

only decreasing reduced cost variables during the pricing problem (with

minor modifications after branching), which substantially reduces execution

time. The definition of a decreasing reduced cost variable is as follows:

Definition 2. Let k be a rescue unit and ω = (j1, . . . , jH) ∈ Ωk be a sched-

ule. For an incident j, we define j ∈ ω if and only if j = jh for some

h = 1, . . . ,H. For all incidents j ∈ ω, we define ckjω as the time when k

finishes processing j when ω is operated on k. Finally, we define the variable

xkω to be a decreasing reduced cost variable if and only if ckjω <
∑r

q=1
capkqπjq

wj

for all incidents j ∈ ω.

Appendix C. Proof of Theorem 1

Proof. Regarding the branching strategy presented in Section 4.2, there are

only finitely many edges (i, j, k) that can be used for branching, namely

n · (n + 1) ·m according to equation (10). This results in a finite tree size
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of at most 2n·(n+1)·m b&b nodes. Now we show that the algorithm indeed

finds an optimal solution to any DRSP instance. To achieve this, we show

that an optimal solution for DRSP is always the optimal solution of one of

the tree node’s linear relaxation.

Let S = {ωk = (jk1 , j
k
2 , . . . , j

k
αk

) ∈ Ωk}k=1,...,m be an optimal solution to

a given DRSP instance. We consider the b&b node that emanates from the

root node by subsequently branching along all edges (i, j, k). We construct

the first child node whenever i is not processed directly before j on k in the

optimal solution S and the second child node whenever i is processed directly

before j on k in the optimal solution S. According to equation (11), this

leads to Ωk = {ωk} for all units k which implies that S is the only feasible

solution of the current node relaxation (BinLP-LR) and consequently its

optimal solution.

Appendix D. Consecutive Solving of DRSP Instances

We suggest that, at time zero, the decision maker instantiates and solves

the static optimization model (BinLP) with status-quo information in order

to base the initial scheduling decision on it. Whenever s/he decides that

the situation has changed substantially and that a re-scheduling of rescue

units might be necessary, s/he can instantiate and solve model (BinLP) again

based on new information. It needs to be noted that some or all rescue units

may already have started processing an incident at the time of information

changing. The non-preemption assumption in DRSP prohibits assigning

those busy rescue units until they have finished their current operation. This

can be accounted for by resetting the time parameters sk0j , which represent

the time that a unit k requires to reach the location of an incident j from

its current position. When a unit k is currently not processing any incident,

then sk0j is the pure travel time from its current position to the location of

incident j. In case unit k is currently processing an incident i, the parameter

sk0j is the sum of the time required by k to finish processing incident i and

the pure travel time of k between the locations of incidents i and j.

Appendix E. Expected Values During Data Generation

We generate the actual requirements (w.l.o.g, analogously for capabil-

ities) according to a uniform [0, 1] distribution. Let there be s different
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requirements and let the probability of an incident for having a specific re-

quirement be p = preq ∈ (0, 1]. Since an incident cannot have a total of

zero requirements (this would imply that it does not exist), we omit this

case during data generation and simply draw the requirements of such an

incident again. Thus, we can calculate the expected number of requirements

#Req per incident by a modified binomial formula:

#Req =

∞∑
α=0

(1− p)α·s ·
s∑

k=1

k ·
( s
k

)
· pk · (1− p)s−k

=

∞∑
α=0

(1− p)α·s · s · p =
s · p

1− (1− p)s

In addition, the probability p≥2 of an incident to have more than one re-

quirement is

p≥2 = 1−

( ∞∑
α=0

(1− p)α·s ·
(s

1

)
· p · (1− p)s−1

)

= 1− s · p · (1− p)s−1

1− (1− p)s
.

In our computational experiments, we have s = 8 and

preq ∈ {10%, 15%, 20%, 25%, 30%}

which leads to an expected number #Req of requirements per incident of

1.40, 1.65, 1.92, 2.22, and 2.55, respectively. The probability p≥2 that an

incident requires more than one capability (and therefore potentially requires

collaboration of rescue units) is approximately 32.8%, 47.1%, 59.7%, 70.3%,

and 79.0%, respectively.

Appendix F. Detailed Results of Computational Experiments

The results for each of the five requirement probabilities and for each

of the four scenarios per requirement probability are reported in a separate

table – resulting in 5 · 4 = 20 tables.

Results for the requirement probability preq = 10% are reported in Tables

F.5-F.8. Here, Tables F.5 and F.6 represent the scenarios with specialized

rescue units facing low and high travel intensity, respectively. Furthermore,
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Tables F.7 and F.8 show the scenarios with non-specialized rescue units

facing low and high travel intensity, respectively. Results for p = 15%, p =

20%, p = 25%, and p = 30% are structured accordingly and are presented in

Tables F.9-F.12, Tables F.13-F.16, Tables F.17-F.20, and Tables F.21-F.24,

respectively.

The leftmost column of each table shows the instance sizes. An attached

subscript number represents the number of instances that were not solved to

optimality after 48 hours and therefore are not included in the results. The

upper half of each table contains information about the optimal solutions

obtained by our b&p algorithm. Columns 2, 3, 4, and 5 show the mean,

coefficient of variation (CV), median, and maximum execution time of the

b&p algorithm, respectively. The rest of the tables is structured according

to these statistical measures. Columns 6, 7, 8, and 9 show information about

the number of nodes that are explored in the b&b tree. Columns 10, 11,

12, and 13 contain information about the ratio ZSCHED
ZOPT

where ZSCHED and

ZOPT denote the SCHED and optimal objective value, respectively. For

example, a ratio of 1.345 indicates that the SCHED objective exceeds the

optimal objective by 34.5%.

The lower half of each table contains information about the first integer

solution found by our b&p algorithm, which corresponds to a feasible solu-

tion for DRSP. Using the same statistical measures, columns 2, 3, 4, and 5

report the times until a first integer solution is found, while columns 6, 7, 8,

and 9 show the number of nodes that are explored in the b&b tree until a

first integer solution is found. Similarly, columns 10, 11, 12, and 13 provide

statistics on the ratios ZSCHED
ZFI

of objective values of the SCHED solution

and the first integer solution. For example, a ratio of 1.335 indicates that

the SCHED objective exceeds the first integer objective by 33.5%. Finally,

columns 14, 15, 16, and 17 present statistics an the ratios ZFI
ZOPT

of objective

values of the first integer solution to the optimal solution. For example, a

ratio of 1.003 indicates that the first integer solution exceeds the optimal

solution by 0.3%.
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.7 0.0 0.1 1.2 0.5 1.0 3.0 1.132 0.126 1.075 1.455
(20,10) 0.1 1.0 0.0 0.3 1.6 1.1 1.0 7.0 1.143 0.072 1.164 1.272
(20,20) 0.1 0.6 0.0 0.1 1.2 0.5 1.0 3.0 1.143 0.083 1.102 1.338
(30,10) 0.4 0.4 0.4 0.7 1.0 0.0 1.0 1.0 1.122 0.039 1.111 1.236
(30,20) 0.1 0.4 0.1 0.2 1.2 0.5 1.0 3.0 1.210 0.053 1.222 1.316
(30,30) 0.1 0.5 0.1 0.2 1.4 0.9 1.0 5.0 1.146 0.069 1.124 1.313
(40,10) 2.9 0.7 2.3 8.1 7.6 1.1 5.0 31.0 1.164 0.051 1.177 1.265
(40,20) 0.4 0.5 0.4 0.9 2.6 0.8 2.0 7.0 1.189 0.040 1.188 1.270
(40,30) 1.0 2.5 0.2 8.0 17.8 2.8 1.0 165.0 1.157 0.050 1.172 1.245
(40,40) 0.3 1.5 0.1 1.7 4.0 1.8 1.0 25.0 1.162 0.068 1.144 1.317

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.5 0.0 0.1 1.1 0.3 1.0 2.0 1.130 0.127 1.064 1.455 1.002 0.006 1.000 1.021
(20,10) 0.1 0.7 0.0 0.2 1.3 0.7 1.0 4.0 1.143 0.071 1.164 1.269 1.000 0.001 1.000 1.002
(20,20) 0.1 0.6 0.0 0.1 1.2 0.5 1.0 3.0 1.143 0.083 1.102 1.338 1.000 0.000 1.000 1.000
(30,10) 0.4 0.4 0.4 0.7 1.0 0.0 1.0 1.0 1.122 0.039 1.111 1.236 1.000 0.000 1.000 1.000
(30,20) 0.1 0.4 0.1 0.2 1.1 0.3 1.0 2.0 1.209 0.053 1.222 1.316 1.000 0.001 1.000 1.003
(30,30) 0.1 0.2 0.1 0.1 1.1 0.3 1.0 2.0 1.146 0.070 1.124 1.313 1.000 0.000 1.000 1.001
(40,10) 1.8 0.3 1.7 2.8 3.0 0.6 2.0 6.0 1.163 0.051 1.177 1.265 1.001 0.001 1.000 1.004
(40,20) 0.4 0.5 0.3 0.9 1.6 0.4 1.5 3.0 1.187 0.039 1.182 1.265 1.002 0.003 1.000 1.011
(40,30) 0.2 0.5 0.2 0.5 1.6 0.9 1.0 6.0 1.156 0.050 1.172 1.245 1.001 0.002 1.000 1.005
(40,40) 0.2 1.0 0.1 0.9 2.5 1.4 1.0 13.0 1.160 0.070 1.144 1.317 1.002 0.006 1.000 1.021

Table F.5: Results for preq = 10%, specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.6 0.0 0.1 1.2 0.5 1.0 3.0 1.160 0.113 1.160 1.423
(20,10) 0.1 1.0 0.1 0.3 1.8 1.3 1.0 9.0 1.171 0.060 1.174 1.289
(20,20) 0.1 0.5 0.0 0.1 1.4 0.9 1.0 5.0 1.172 0.078 1.168 1.357
(30,10) 0.9 1.2 0.5 4.2 7.6 1.4 3.0 39.0 1.127 0.048 1.111 1.284
(30,20) 0.2 0.4 0.2 0.3 2.4 0.8 1.0 7.0 1.204 0.071 1.206 1.366
(30,30) 0.1 0.4 0.1 0.1 1.2 0.5 1.0 3.0 1.176 0.071 1.161 1.355
(40,10) 403.1 2.9 7.8 3918.8 808.6 2.8 25.0 7715.0 1.193 0.054 1.194 1.299
(40,20) 0.5 0.4 0.4 0.9 3.2 0.7 3.0 7.0 1.195 0.053 1.185 1.304
(40,30) 9.7 2.9 0.2 95.6 178.0 3.0 1.0 1763.0 1.154 0.053 1.164 1.236
(40,40) 0.3 1.1 0.2 1.2 3.8 1.7 1.0 23.0 1.180 0.068 1.148 1.333

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.4 0.0 0.1 1.1 0.3 1.0 2.0 1.157 0.114 1.159 1.423 1.003 0.008 1.000 1.027
(20,10) 0.1 0.8 0.1 0.3 1.5 1.0 1.0 6.0 1.171 0.060 1.174 1.289 1.000 0.000 1.000 1.000
(20,20) 0.0 0.4 0.0 0.1 1.1 0.3 1.0 2.0 1.172 0.078 1.168 1.357 1.000 0.000 1.000 1.000
(30,10) 0.5 0.6 0.4 1.3 3.1 0.9 2.0 10.0 1.124 0.047 1.110 1.274 1.003 0.005 1.000 1.014
(30,20) 0.2 0.4 0.2 0.3 1.7 0.6 1.0 4.0 1.200 0.069 1.206 1.366 1.004 0.010 1.000 1.035
(30,30) 0.1 0.3 0.1 0.1 1.1 0.3 1.0 2.0 1.176 0.072 1.161 1.355 1.000 0.001 1.000 1.004
(40,10) 4.3 0.9 3.4 15.8 11.6 0.7 11.0 34.0 1.168 0.049 1.185 1.261 1.021 0.025 1.014 1.088
(40,20) 0.5 0.5 0.3 0.9 2.1 0.5 2.0 4.0 1.193 0.054 1.185 1.304 1.002 0.003 1.000 1.008
(40,30) 0.3 1.2 0.2 1.4 3.6 1.8 1.0 23.0 1.152 0.053 1.164 1.236 1.002 0.005 1.000 1.017
(40,40) 0.2 0.3 0.2 0.3 1.6 0.6 1.0 4.0 1.180 0.068 1.148 1.333 1.001 0.002 1.000 1.008

Table F.6: Results for preq = 10%, specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.1 0.0 0.2 2.4 1.2 1.0 9.0 1.147 0.121 1.100 1.529
(20,10) 0.1 0.4 0.1 0.1 1.0 0.0 1.0 1.0 1.247 0.084 1.239 1.413
(20,20) 0.0 0.7 0.0 0.1 1.6 0.8 1.0 5.0 1.222 0.094 1.195 1.412
(30,10) 1.2 1.5 0.5 6.7 12.2 2.0 1.0 83.0 1.239 0.093 1.202 1.437
(30,20) 0.1 0.5 0.1 0.3 2.2 0.9 1.0 7.0 1.287 0.061 1.284 1.445
(30,30) 1.9 2.7 0.1 17.3 41.4 2.8 1.0 389.0 1.194 0.051 1.185 1.282
(40,10) 54.2 2.2 2.0 385.7 222.0 2.1 8.0 1471.0 1.257 0.076 1.275 1.393
(40,20) 1.1 1.6 0.3 6.4 17.0 1.9 1.0 111.0 1.283 0.069 1.252 1.429
(40,30) 0.2 1.1 0.2 1.0 3.0 1.6 1.0 17.0 1.225 0.046 1.219 1.322
(40,40) 0.2 0.4 0.1 0.3 1.4 0.6 1.0 3.0 1.216 0.053 1.219 1.320

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.7 0.0 0.1 1.6 0.8 1.0 4.0 1.147 0.121 1.100 1.529 1.000 0.001 1.000 1.002
(20,10) 0.1 0.4 0.1 0.1 1.0 0.0 1.0 1.0 1.247 0.084 1.239 1.413 1.000 0.000 1.000 1.000
(20,20) 0.0 0.7 0.0 0.1 1.5 0.8 1.0 5.0 1.222 0.094 1.195 1.412 1.000 0.000 1.000 1.000
(30,10) 0.4 0.4 0.4 0.9 2.2 0.8 1.0 6.0 1.239 0.093 1.202 1.437 1.000 0.001 1.000 1.002
(30,20) 0.1 0.3 0.1 0.2 1.6 0.6 1.0 4.0 1.286 0.061 1.284 1.445 1.000 0.001 1.000 1.003
(30,30) 0.1 1.2 0.1 0.5 2.7 1.7 1.0 16.0 1.190 0.048 1.185 1.282 1.003 0.009 1.000 1.029
(40,10) 1.6 0.5 1.1 3.2 4.9 0.9 2.0 14.0 1.254 0.078 1.274 1.388 1.002 0.004 1.001 1.015
(40,20) 0.4 0.7 0.3 1.1 3.3 1.2 1.0 14.0 1.281 0.070 1.245 1.429 1.001 0.004 1.000 1.012
(40,30) 0.2 0.5 0.2 0.4 1.6 0.8 1.0 5.0 1.224 0.047 1.219 1.322 1.001 0.002 1.000 1.007
(40,40) 0.1 0.2 0.1 0.2 1.2 0.3 1.0 2.0 1.214 0.053 1.213 1.320 1.001 0.003 1.000 1.011

Table F.7: Results for preq = 10%, non-specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.0 0.0 0.1 1.8 1.0 1.0 7.0 1.126 0.079 1.090 1.281
(20,10) 0.1 0.4 0.1 0.1 1.4 0.6 1.0 3.0 1.254 0.062 1.253 1.409
(20,20) 0.0 0.4 0.0 0.1 1.4 0.6 1.0 3.0 1.246 0.085 1.257 1.410
(30,10) 4.7 2.1 0.7 34.0 53.2 2.3 3.0 413.0 1.284 0.099 1.232 1.553
(30,20) 0.2 0.4 0.2 0.3 2.6 0.8 2.0 7.0 1.312 0.062 1.317 1.418
(30,30) 1.2 2.7 0.1 10.8 37.4 2.8 1.0 353.0 1.270 0.081 1.239 1.484
(40,10) 124.7 2.2 31.9 955.4 725.6 2.3 181.0 5735.0 1.282 0.066 1.327 1.371
(40,20) 1.3 1.2 0.6 5.4 16.0 1.4 5.0 77.0 1.289 0.061 1.291 1.402
(40,30) 0.3 0.8 0.2 1.0 4.0 1.3 1.0 17.0 1.273 0.070 1.268 1.457
(40,40) 5.7 2.9 0.1 56.1 105.6 3.0 1.0 1043.0 1.234 0.032 1.235 1.292

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.7 0.0 0.1 1.4 0.7 1.0 4.0 1.122 0.083 1.090 1.281 1.004 0.011 1.000 1.037
(20,10) 0.1 0.4 0.1 0.1 1.2 0.3 1.0 2.0 1.254 0.062 1.253 1.409 1.000 0.000 1.000 1.000
(20,20) 0.0 0.3 0.0 0.1 1.2 0.3 1.0 2.0 1.246 0.085 1.257 1.410 1.000 0.000 1.000 1.000
(30,10) 0.7 0.6 0.6 1.9 4.1 1.3 2.0 19.0 1.283 0.100 1.232 1.553 1.001 0.003 1.000 1.009
(30,20) 0.2 0.3 0.2 0.3 2.1 0.7 1.5 5.0 1.312 0.062 1.316 1.418 1.000 0.000 1.000 1.001
(30,30) 0.1 1.1 0.1 0.4 2.4 1.3 1.0 12.0 1.266 0.077 1.239 1.462 1.003 0.007 1.000 1.018
(40,10) 2.9 0.5 2.8 6.1 10.8 0.6 12.0 23.0 1.271 0.064 1.303 1.363 1.009 0.011 1.006 1.041
(40,20) 0.5 0.6 0.5 1.2 4.7 0.9 3.0 14.0 1.286 0.061 1.291 1.402 1.002 0.003 1.000 1.009
(40,30) 0.2 0.2 0.2 0.3 1.4 0.5 1.0 3.0 1.273 0.070 1.268 1.457 1.001 0.001 1.000 1.005
(40,40) 0.2 0.8 0.1 0.6 2.3 1.4 1.0 12.0 1.232 0.033 1.234 1.292 1.002 0.004 1.000 1.013

Table F.8: Results for preq = 10%, non-specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.6 0.0 0.1 1.2 0.5 1.0 3.0 1.187 0.099 1.161 1.446
(20,10) 0.2 0.7 0.1 0.4 1.6 0.8 1.0 5.0 1.195 0.075 1.220 1.387
(20,20) 0.5 2.2 0.0 3.5 17.6 2.4 1.0 143.0 1.106 0.041 1.110 1.178
(30,10) 0.7 0.5 0.5 1.5 1.8 1.3 1.0 9.0 1.187 0.090 1.160 1.424
(30,20) 0.3 0.4 0.2 0.4 1.2 0.5 1.0 3.0 1.258 0.087 1.264 1.502
(30,30) 0.2 0.8 0.1 0.6 3.0 1.3 1.0 13.0 1.175 0.040 1.179 1.251
(40,10)1 11.8 1.5 3.6 59.0 25.7 1.9 7.0 165.0 1.241 0.071 1.235 1.373
(40,20) 1.1 0.8 1.0 3.2 5.0 1.4 2.0 25.0 1.169 0.058 1.168 1.304
(40,30) 0.5 0.6 0.4 1.1 4.8 0.9 2.0 11.0 1.221 0.043 1.219 1.302
(40,40) 0.3 0.7 0.2 0.8 2.4 1.5 1.0 13.0 1.189 0.066 1.217 1.287

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.6 0.0 0.1 1.1 0.3 1.0 2.0 1.187 0.099 1.161 1.446 1.000 0.000 1.000 1.000
(20,10) 0.2 0.7 0.1 0.4 1.2 0.3 1.0 2.0 1.195 0.075 1.220 1.387 1.000 0.000 1.000 1.000
(20,20) 0.1 0.8 0.0 0.3 2.5 1.0 1.0 8.0 1.105 0.041 1.110 1.178 1.001 0.002 1.000 1.008
(30,10) 0.6 0.4 0.5 1.0 1.3 0.7 1.0 4.0 1.187 0.090 1.160 1.424 1.000 0.001 1.000 1.002
(30,20) 0.2 0.4 0.2 0.4 1.1 0.3 1.0 2.0 1.258 0.087 1.264 1.502 1.000 0.000 1.000 1.000
(30,30) 0.2 0.5 0.1 0.4 1.4 0.5 1.0 3.0 1.175 0.040 1.179 1.251 1.000 0.001 1.000 1.002
(40,10)1 4.5 0.7 2.8 10.4 6.6 1.1 5.0 24.0 1.234 0.065 1.235 1.337 1.005 0.011 1.000 1.037
(40,20) 1.0 0.9 0.7 3.2 3.2 1.4 1.5 16.0 1.166 0.056 1.166 1.304 1.003 0.006 1.000 1.020
(40,30) 0.4 0.4 0.4 0.7 3.0 0.7 2.0 6.0 1.220 0.044 1.218 1.302 1.001 0.001 1.000 1.003
(40,40) 0.2 0.4 0.2 0.5 1.6 0.9 1.0 6.0 1.188 0.067 1.217 1.287 1.001 0.003 1.000 1.011

Table F.9: Results for preq = 15%, specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.3 0.0 0.0 1.0 0.0 1.0 1.0 1.190 0.090 1.173 1.405
(20,10) 0.2 0.6 0.2 0.5 2.6 1.0 1.0 9.0 1.224 0.102 1.210 1.511
(20,20) 0.3 1.2 0.2 1.3 10.2 1.6 4.0 57.0 1.146 0.047 1.140 1.221
(30,10) 5.2 1.5 1.4 22.0 19.6 1.2 8.0 79.0 1.206 0.100 1.168 1.490
(30,20) 0.6 0.5 0.5 1.3 4.4 0.8 4.0 11.0 1.270 0.094 1.248 1.550
(30,30) 1.0 2.5 0.2 8.8 16.6 2.7 1.0 151.0 1.237 0.057 1.235 1.339
(40,10)1 6345.8 2.8 29.8 56833.1 3468.3 2.8 69.0 30717.0 1.319 0.092 1.297 1.569
(40,20) 17.6 2.5 1.8 146.9 54.2 1.7 12.0 311.0 1.193 0.063 1.182 1.358
(40,30) 1.2 0.9 0.7 3.6 10.4 1.3 4.0 37.0 1.255 0.054 1.245 1.373
(40,40) 0.4 0.7 0.3 1.1 3.0 1.5 1.0 15.0 1.228 0.057 1.239 1.323

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.3 0.0 0.0 1.0 0.0 1.0 1.0 1.190 0.090 1.173 1.405 1.000 0.000 1.000 1.000
(20,10) 0.2 0.6 0.1 0.4 1.6 0.6 1.0 4.0 1.224 0.102 1.209 1.511 1.000 0.001 1.000 1.002
(20,20) 0.1 0.6 0.2 0.3 4.1 0.8 3.0 11.0 1.135 0.048 1.113 1.221 1.010 0.020 1.000 1.069
(30,10) 1.5 0.7 1.0 3.3 5.6 0.7 5.5 14.0 1.205 0.100 1.164 1.490 1.001 0.002 1.000 1.007
(30,20) 0.4 0.5 0.4 1.0 2.1 0.6 2.0 5.0 1.264 0.097 1.246 1.550 1.005 0.009 1.001 1.030
(30,30) 0.2 0.7 0.2 0.6 1.8 0.9 1.0 6.0 1.236 0.057 1.234 1.339 1.001 0.002 1.000 1.006
(40,10)1 18.9 1.3 8.3 81.2 16.8 0.7 14.0 41.0 1.280 0.095 1.279 1.537 1.031 0.025 1.021 1.073
(40,20) 2.6 1.8 1.2 16.5 6.5 1.0 5.0 22.0 1.182 0.060 1.166 1.344 1.009 0.016 1.003 1.054
(40,30) 0.6 0.3 0.6 0.9 3.3 0.6 3.0 6.0 1.253 0.052 1.245 1.370 1.001 0.002 1.000 1.008
(40,40) 0.3 0.3 0.3 0.5 1.7 0.8 1.0 5.0 1.228 0.058 1.239 1.323 1.000 0.001 1.000 1.003

Table F.10: Results for preq = 15%, specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.5 0.0 0.0 1.2 0.5 1.0 3.0 1.265 0.137 1.229 1.704
(20,10) 1.8 2.7 0.1 16.8 61.2 2.8 1.0 577.0 1.315 0.104 1.315 1.575
(20,20) 0.2 1.5 0.1 0.8 7.0 1.6 1.0 35.0 1.266 0.081 1.265 1.466
(30,10) 404.2 3.0 1.4 3995.4 3376.4 2.9 14.0 33107.0 1.412 0.082 1.401 1.676
(30,20) 0.7 1.8 0.3 4.5 14.0 2.1 3.0 101.0 1.427 0.049 1.395 1.539
(30,30) 0.8 1.7 0.2 4.6 17.0 2.0 3.0 117.0 1.286 0.054 1.306 1.375
(40,10)1 13.3 1.3 3.2 55.2 39.4 1.1 17.0 123.0 1.454 0.060 1.448 1.580
(40,20) 2.5 1.8 0.6 16.1 24.4 2.0 2.0 169.0 1.366 0.089 1.351 1.549
(40,30) 39.5 2.8 2.0 370.3 620.2 2.8 32.0 5851.0 1.300 0.084 1.301 1.484
(40,40) 4.5 2.6 0.2 39.9 64.8 2.7 3.0 593.0 1.320 0.057 1.333 1.445

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.3 0.0 0.0 1.1 0.3 1.0 2.0 1.265 0.137 1.229 1.704 1.000 0.000 1.000 1.000
(20,10) 0.1 0.6 0.1 0.3 2.8 1.0 1.0 10.0 1.311 0.105 1.303 1.575 1.003 0.005 1.000 1.010
(20,20) 0.1 0.9 0.0 0.2 2.3 1.0 1.0 9.0 1.259 0.081 1.265 1.456 1.005 0.013 1.000 1.045
(30,10) 0.9 0.4 0.8 1.4 6.7 0.8 5.5 18.0 1.398 0.089 1.380 1.676 1.010 0.019 1.002 1.060
(30,20) 0.2 0.5 0.2 0.5 2.3 0.8 1.5 7.0 1.425 0.050 1.395 1.539 1.001 0.002 1.000 1.004
(30,30) 0.3 1.0 0.1 1.0 5.0 1.4 2.0 26.0 1.283 0.054 1.306 1.375 1.003 0.004 1.000 1.012
(40,10)1 4.7 1.5 2.1 24.8 7.3 0.9 4.0 22.0 1.424 0.079 1.437 1.580 1.023 0.039 1.000 1.129
(40,20) 0.9 0.9 0.6 3.4 7.0 1.5 2.0 36.0 1.356 0.093 1.320 1.549 1.008 0.013 1.000 1.042
(40,30) 0.7 0.8 0.4 1.9 7.4 1.0 4.0 24.0 1.285 0.079 1.301 1.432 1.012 0.016 1.001 1.039
(40,40) 0.3 0.8 0.2 0.9 3.4 0.8 2.0 10.0 1.319 0.057 1.329 1.445 1.001 0.002 1.000 1.006

Table F.11: Results for preq = 15%, non-specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.3 0.0 0.0 1.0 0.0 1.0 1.0 1.313 0.156 1.281 1.864
(20,10) 0.9 2.1 0.1 6.7 30.6 2.3 1.0 243.0 1.384 0.118 1.353 1.784
(20,20) 0.8 2.3 0.1 6.6 39.8 2.5 1.0 337.0 1.308 0.075 1.299 1.481
(30,10) 9.3 1.3 2.8 36.9 118.6 1.3 39.0 455.0 1.441 0.072 1.445 1.587
(30,20) 0.8 1.2 0.4 3.0 11.8 1.3 3.0 45.0 1.478 0.077 1.483 1.633
(30,30) 9.5 2.7 0.4 87.3 241.0 2.7 7.0 2223.0 1.322 0.059 1.328 1.435
(40,10) 1761.7 2.9 6.0 17243.5 4394.6 2.9 25.0 42639.0 1.466 0.081 1.449 1.732
(40,20) 7.2 2.0 0.9 49.6 88.2 2.1 6.0 607.0 1.410 0.099 1.386 1.681
(40,30) 64.2 2.6 6.4 572.7 1009.2 2.7 91.0 9127.0 1.381 0.078 1.397 1.591
(40,40) 2.8 1.8 0.6 17.7 37.0 1.8 6.0 221.0 1.390 0.082 1.406 1.640

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.3 0.0 0.0 1.0 0.0 1.0 1.0 1.313 0.156 1.281 1.864 1.000 0.000 1.000 1.000
(20,10) 0.2 0.8 0.1 0.4 4.4 1.1 1.0 14.0 1.373 0.119 1.349 1.784 1.008 0.015 1.000 1.044
(20,20) 0.1 0.7 0.1 0.2 2.8 0.9 1.0 8.0 1.300 0.073 1.291 1.450 1.006 0.008 1.000 1.022
(30,10) 1.1 0.4 1.2 1.8 9.5 0.6 9.5 20.0 1.426 0.075 1.424 1.587 1.011 0.009 1.008 1.030
(30,20) 0.4 0.6 0.3 0.9 3.8 0.9 2.5 12.0 1.469 0.079 1.443 1.633 1.006 0.012 1.000 1.030
(30,30) 0.4 1.0 0.3 1.1 7.2 1.1 4.5 22.0 1.312 0.058 1.316 1.433 1.007 0.010 1.001 1.027
(40,10) 5.5 1.4 2.5 28.3 8.6 0.9 8.0 30.0 1.423 0.100 1.399 1.711 1.034 0.068 1.007 1.239
(40,20) 0.9 0.7 0.7 2.4 7.0 1.3 3.0 28.0 1.396 0.104 1.347 1.679 1.011 0.017 1.001 1.055
(40,30) 0.9 0.7 0.8 2.2 11.1 0.9 8.0 28.0 1.364 0.073 1.396 1.533 1.012 0.018 1.001 1.047
(40,40) 0.6 0.7 0.4 1.6 6.7 0.9 3.5 20.0 1.380 0.082 1.382 1.640 1.007 0.009 1.002 1.027

Table F.12: Results for preq = 15%, non-specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.6 0.0 0.2 2.0 1.5 1.0 11.0 1.176 0.088 1.165 1.380
(20,10) 0.1 0.6 0.1 0.3 1.2 0.5 1.0 3.0 1.221 0.109 1.169 1.533
(20,20) 0.1 1.4 0.1 0.7 3.0 1.3 1.0 13.0 1.203 0.085 1.188 1.436
(30,10) 1.2 0.6 1.1 3.1 2.4 1.0 1.0 9.0 1.259 0.091 1.242 1.456
(30,20) 0.5 0.7 0.3 1.4 6.6 1.2 2.0 27.0 1.241 0.054 1.237 1.336
(30,30) 0.2 0.6 0.2 0.4 2.0 1.2 1.0 9.0 1.272 0.064 1.259 1.450
(40,10) 37.6 2.3 7.2 292.4 37.0 1.5 9.0 181.0 1.253 0.094 1.223 1.460
(40,20) 1.7 1.1 1.1 7.0 8.2 1.5 3.0 39.0 1.249 0.093 1.195 1.418
(40,30) 1.0 1.0 0.6 3.9 10.4 1.5 4.0 53.0 1.229 0.045 1.235 1.335
(40,40) 0.4 0.7 0.4 1.2 3.8 0.9 3.0 13.0 1.229 0.061 1.226 1.349

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.9 0.0 0.1 1.1 0.3 1.0 2.0 1.174 0.085 1.165 1.360 1.001 0.004 1.000 1.015
(20,10) 0.1 0.6 0.1 0.3 1.1 0.3 1.0 2.0 1.221 0.109 1.169 1.533 1.000 0.001 1.000 1.002
(20,20) 0.1 1.3 0.1 0.6 2.3 1.2 1.0 10.0 1.201 0.087 1.184 1.436 1.002 0.005 1.000 1.016
(30,10) 1.0 0.3 1.1 1.4 1.7 0.6 1.0 4.0 1.258 0.092 1.240 1.456 1.001 0.002 1.000 1.005
(30,20) 0.4 0.4 0.3 0.6 3.3 0.9 1.5 10.0 1.235 0.050 1.237 1.336 1.004 0.010 1.000 1.034
(30,30) 0.2 0.4 0.2 0.3 1.4 0.7 1.0 4.0 1.272 0.063 1.259 1.448 1.000 0.001 1.000 1.002
(40,10) 16.6 2.0 5.3 113.5 11.7 1.3 5.5 53.0 1.224 0.122 1.223 1.458 1.028 0.047 1.001 1.132
(40,20) 1.3 1.0 1.0 4.8 3.9 1.4 2.0 20.0 1.246 0.090 1.195 1.418 1.003 0.005 1.000 1.015
(40,30) 0.5 0.5 0.5 0.9 3.2 0.9 2.0 8.0 1.226 0.045 1.235 1.335 1.002 0.005 1.000 1.018
(40,40) 0.3 0.4 0.4 0.6 2.3 0.6 2.0 4.0 1.229 0.061 1.226 1.349 1.001 0.001 1.000 1.004

Table F.13: Results for preq = 20%, specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.1 1.8 0.0 0.4 2.8 1.7 1.0 17.0 1.167 0.093 1.163 1.387
(20,10) 0.2 0.9 0.1 0.8 3.0 1.0 1.0 9.0 1.228 0.144 1.184 1.725
(20,20) 3.0 2.9 0.1 28.7 28.2 2.7 3.0 255.0 1.232 0.090 1.252 1.459
(30,10) 7.4 1.1 2.6 24.2 33.6 1.5 13.0 171.0 1.315 0.103 1.293 1.617
(30,20) 1.1 1.2 0.5 4.6 16.6 1.7 3.0 95.0 1.294 0.075 1.286 1.508
(30,30) 0.6 1.4 0.2 2.5 7.8 1.6 1.0 33.0 1.309 0.074 1.294 1.454
(40,10) 827.6 1.7 76.0 3819.8 742.0 1.4 125.0 3117.0 1.283 0.092 1.251 1.490
(40,20) 5.3 1.7 1.7 31.5 48.6 2.3 6.0 385.0 1.284 0.068 1.274 1.477
(40,30) 1.6 0.7 1.2 3.5 13.8 0.9 7.0 35.0 1.308 0.056 1.313 1.430
(40,40) 2.1 1.5 1.0 11.1 19.0 1.5 8.0 95.0 1.260 0.071 1.265 1.443

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.4 0.0 0.2 1.6 0.9 1.0 6.0 1.164 0.087 1.163 1.351 1.003 0.008 1.000 1.027
(20,10) 0.2 0.7 0.1 0.5 1.9 0.6 1.0 4.0 1.228 0.144 1.184 1.725 1.000 0.001 1.000 1.004
(20,20) 0.1 1.3 0.1 0.7 2.4 0.9 2.0 8.0 1.228 0.092 1.251 1.459 1.004 0.006 1.000 1.020
(30,10) 2.3 0.8 1.8 6.9 6.1 0.8 5.0 16.0 1.302 0.110 1.267 1.617 1.011 0.016 1.003 1.054
(30,20) 0.5 0.5 0.5 0.9 4.9 1.0 2.0 14.0 1.290 0.071 1.284 1.486 1.004 0.005 1.000 1.015
(30,30) 0.3 1.0 0.1 1.0 2.8 1.2 1.0 10.0 1.303 0.070 1.291 1.442 1.004 0.007 1.000 1.024
(40,10) 34.2 1.8 10.9 208.9 23.7 0.9 19.0 70.0 1.211 0.122 1.190 1.490 1.065 0.069 1.035 1.233
(40,20) 1.5 0.5 1.3 2.9 5.9 0.8 4.5 16.0 1.282 0.069 1.273 1.477 1.002 0.003 1.000 1.007
(40,30) 1.0 0.6 0.7 2.5 6.0 0.8 4.0 16.0 1.305 0.056 1.305 1.430 1.002 0.003 1.000 1.009
(40,40) 0.6 0.6 0.5 1.4 3.7 0.9 2.5 12.0 1.256 0.067 1.264 1.430 1.003 0.004 1.000 1.009

Table F.14: Results for preq = 20%, specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.6 0.0 0.0 1.0 0.0 1.0 1.0 1.299 0.174 1.251 1.913
(20,10) 0.3 0.9 0.1 0.8 7.8 1.3 1.0 33.0 1.468 0.120 1.405 1.911
(20,20) 0.2 1.7 0.0 1.0 7.4 2.1 1.0 53.0 1.306 0.070 1.295 1.451
(30,10) 407.4 2.3 15.8 3179.4 3413.6 2.3 139.0 26681.0 1.498 0.075 1.479 1.703
(30,20) 339.5 2.9 0.4 3301.5 8591.4 2.9 8.0 83627.0 1.469 0.063 1.490 1.582
(30,30) 1.6 1.5 0.4 7.1 45.4 1.6 11.0 203.0 1.345 0.067 1.353 1.486
(40,10) 988.3 2.6 5.4 8813.3 3134.4 2.8 12.0 29047.0 1.545 0.075 1.537 1.713
(40,20) 56.4 1.8 2.9 317.3 730.6 1.8 39.0 4241.0 1.421 0.063 1.444 1.587
(40,30) 2.1 0.7 1.9 5.2 32.2 0.8 28.0 77.0 1.409 0.103 1.391 1.696
(40,40) 1.9 1.2 1.1 7.3 30.2 1.2 18.0 123.0 1.302 0.092 1.280 1.618

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.6 0.0 0.0 1.0 0.0 1.0 1.0 1.299 0.174 1.251 1.913 1.000 0.000 1.000 1.000
(20,10) 0.1 0.7 0.1 0.4 2.4 0.8 1.0 6.0 1.464 0.118 1.405 1.899 1.002 0.003 1.000 1.009
(20,20) 0.1 0.6 0.0 0.2 1.7 0.9 1.0 6.0 1.305 0.070 1.295 1.451 1.001 0.002 1.000 1.007
(30,10) 1.9 0.4 1.6 3.6 12.7 0.7 10.0 36.0 1.463 0.061 1.451 1.681 1.024 0.037 1.008 1.131
(30,20) 0.4 0.7 0.3 1.0 7.4 1.0 4.0 24.0 1.451 0.060 1.456 1.582 1.012 0.014 1.002 1.036
(30,30) 0.3 0.6 0.3 0.5 6.0 0.8 5.0 14.0 1.335 0.067 1.341 1.486 1.008 0.013 1.000 1.040
(40,10) 9.1 1.7 4.1 56.5 9.0 1.0 6.5 27.0 1.517 0.094 1.527 1.713 1.021 0.033 1.000 1.101
(40,20) 1.3 0.8 0.9 2.8 11.7 1.0 5.0 32.0 1.402 0.066 1.411 1.585 1.014 0.021 1.002 1.064
(40,30) 0.7 0.4 0.7 1.3 7.8 0.6 8.0 18.0 1.398 0.109 1.384 1.695 1.008 0.012 1.003 1.041
(40,40) 0.5 0.5 0.3 0.9 6.1 0.7 5.0 14.0 1.297 0.094 1.271 1.618 1.004 0.006 1.001 1.015

Table F.15: Results for preq = 20%, non-specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.0 0.0 0.1 1.0 0.0 1.0 1.0 1.361 0.205 1.280 2.042
(20,10) 0.5 1.0 0.2 1.5 12.2 1.4 5.0 59.0 1.463 0.109 1.432 1.795
(20,20) 0.1 1.1 0.1 0.6 5.4 1.5 1.0 27.0 1.364 0.084 1.426 1.497
(30,10) 847.8 2.0 58.7 5654.7 3071.2 1.3 458.0 12915.0 1.504 0.073 1.491 1.755
(30,20) 42.9 2.2 1.2 317.1 1027.0 2.3 24.0 7687.0 1.483 0.071 1.450 1.691
(30,30) 3.2 1.8 0.5 19.6 93.0 2.0 9.0 639.0 1.440 0.071 1.422 1.598
(40,10) 2299.7 2.0 82.3 14398.4 3472.2 1.9 67.0 21461.0 1.556 0.078 1.533 1.768
(40,20) 356.0 2.1 6.3 2394.2 3489.4 2.1 69.0 21693.0 1.462 0.074 1.457 1.672
(40,30) 21.6 2.1 2.7 151.7 296.0 2.0 37.0 1985.0 1.460 0.064 1.459 1.649
(40,40) 74.3 2.5 5.8 628.0 1010.6 2.4 83.0 8285.0 1.391 0.080 1.372 1.591

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.0 0.0 0.1 1.0 0.0 1.0 1.0 1.361 0.205 1.280 2.042 1.000 0.000 1.000 1.000
(20,10) 0.2 0.6 0.2 0.5 3.8 0.6 3.0 8.0 1.446 0.099 1.426 1.785 1.010 0.021 1.000 1.072
(20,20) 0.1 0.6 0.1 0.2 2.0 0.8 1.0 6.0 1.361 0.083 1.419 1.497 1.002 0.006 1.000 1.019
(30,10) 3.4 0.8 2.4 8.9 18.5 0.6 18.0 34.0 1.451 0.061 1.450 1.590 1.036 0.033 1.028 1.113
(30,20) 0.7 0.7 0.5 1.4 12.9 0.8 9.0 30.0 1.452 0.068 1.436 1.687 1.021 0.025 1.007 1.070
(30,30) 0.3 0.7 0.3 0.8 6.8 1.0 5.0 20.0 1.422 0.075 1.417 1.598 1.013 0.024 1.000 1.080
(40,10) 12.6 0.8 10.3 40.4 20.6 0.6 21.0 44.0 1.504 0.084 1.471 1.768 1.036 0.043 1.018 1.141
(40,20) 1.5 0.5 1.6 2.8 12.7 0.7 11.0 27.0 1.444 0.082 1.454 1.664 1.014 0.014 1.006 1.039
(40,30) 0.9 0.6 0.8 1.6 9.6 0.8 10.5 20.0 1.439 0.054 1.433 1.573 1.014 0.016 1.007 1.048
(40,40) 1.0 0.9 0.7 3.0 11.3 0.9 9.0 32.0 1.375 0.076 1.353 1.561 1.011 0.014 1.006 1.048

Table F.16: Results for preq = 20%, non-specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.5 0.0 0.1 1.0 0.0 1.0 1.0 1.205 0.108 1.213 1.388
(20,10) 0.4 0.7 0.3 1.0 3.6 0.7 3.0 9.0 1.279 0.097 1.276 1.514
(20,20) 0.9 1.4 0.1 3.6 25.4 1.6 2.0 133.0 1.226 0.079 1.212 1.431
(30,10) 66.4 2.9 2.1 643.8 174.4 2.9 3.0 1715.0 1.319 0.140 1.266 1.744
(30,20) 0.9 0.9 0.6 3.1 5.8 1.9 1.0 39.0 1.337 0.035 1.339 1.438
(30,30) 20.0 2.9 0.4 192.8 433.6 2.9 1.0 4221.0 1.284 0.068 1.277 1.477
(40,10) 414.6 2.5 45.2 3570.6 337.4 2.3 37.0 2597.0 1.274 0.098 1.246 1.576
(40,20) 60.9 2.4 5.5 506.3 342.2 2.4 24.0 2817.0 1.326 0.073 1.331 1.445
(40,30) 11.2 1.6 1.3 47.2 103.4 1.7 3.0 489.0 1.305 0.057 1.316 1.410
(40,40) 15.5 2.7 0.7 139.6 201.6 2.8 6.0 1871.0 1.291 0.061 1.287 1.483

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.5 0.0 0.1 1.0 0.0 1.0 1.0 1.205 0.108 1.213 1.388 1.000 0.000 1.000 1.000
(20,10) 0.3 0.8 0.2 1.0 2.3 0.6 2.0 5.0 1.278 0.096 1.276 1.506 1.001 0.002 1.000 1.005
(20,20) 0.2 1.1 0.1 0.8 3.5 1.3 1.5 16.0 1.223 0.081 1.212 1.431 1.003 0.004 1.000 1.011
(30,10) 2.1 0.4 1.9 4.0 2.5 0.7 2.0 6.0 1.316 0.136 1.266 1.718 1.002 0.005 1.000 1.015
(30,20) 0.7 0.6 0.6 1.9 3.9 1.7 1.0 24.0 1.329 0.037 1.331 1.438 1.006 0.019 1.000 1.064
(30,30) 0.4 0.9 0.4 1.6 6.2 1.7 1.0 36.0 1.271 0.076 1.265 1.477 1.011 0.025 1.000 1.083
(40,10) 14.5 0.9 9.4 48.0 9.5 0.9 9.0 33.0 1.247 0.118 1.236 1.576 1.024 0.032 1.007 1.091
(40,20) 2.5 0.5 2.5 4.1 7.2 0.9 3.5 20.0 1.323 0.071 1.325 1.444 1.002 0.004 1.000 1.011
(40,30) 1.7 1.0 1.1 5.2 9.4 1.3 1.5 38.0 1.291 0.052 1.285 1.398 1.011 0.013 1.000 1.029
(40,40) 0.9 0.9 0.5 3.0 7.0 1.6 2.0 38.0 1.282 0.067 1.280 1.478 1.007 0.017 1.000 1.059

Table F.17: Results for preq = 25%, specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.6 0.0 0.1 1.0 0.0 1.0 1.0 1.230 0.124 1.239 1.500
(20,10) 9.8 2.5 0.4 81.5 114.0 2.7 3.0 1043.0 1.339 0.107 1.342 1.566
(20,20) 5.0 2.6 0.2 43.5 90.6 2.2 4.0 673.0 1.255 0.074 1.272 1.390
(30,10) 599.9 2.4 5.0 4872.7 878.8 2.1 14.0 6049.0 1.376 0.148 1.315 1.772
(30,20) 0.7 0.5 0.7 1.6 4.0 0.9 2.0 11.0 1.406 0.059 1.400 1.605
(30,30) 1.9 1.5 0.5 8.8 28.8 1.7 4.0 153.0 1.311 0.058 1.307 1.475
(40,10)2 14858.7 2.0 1359.1 91245.2 6368.8 1.6 1174.0 32491.0 1.366 0.123 1.324 1.641
(40,20) 61.5 2.3 10.3 478.9 312.6 2.3 37.0 2463.0 1.352 0.055 1.347 1.462
(40,30) 23.8 2.1 5.7 173.4 188.0 2.3 52.0 1451.0 1.356 0.053 1.342 1.516
(40,40) 5.2 1.8 1.2 33.1 49.8 2.0 6.0 343.0 1.335 0.063 1.339 1.469

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.6 0.0 0.1 1.0 0.0 1.0 1.0 1.230 0.124 1.239 1.500 1.000 0.000 1.000 1.000
(20,10) 0.8 1.5 0.3 4.3 5.8 1.2 2.0 20.0 1.334 0.107 1.337 1.566 1.004 0.006 1.000 1.016
(20,20) 0.3 1.4 0.2 1.4 4.4 1.1 2.5 16.0 1.251 0.075 1.263 1.390 1.003 0.007 1.000 1.018
(30,10) 5.1 1.0 3.1 19.0 10.2 0.9 7.0 32.0 1.366 0.147 1.309 1.748 1.007 0.006 1.006 1.016
(30,20) 0.6 0.3 0.6 1.0 2.4 0.7 1.5 6.0 1.403 0.060 1.398 1.605 1.002 0.006 1.000 1.020
(30,30) 0.5 0.5 0.4 0.9 4.2 1.0 1.5 12.0 1.307 0.059 1.294 1.475 1.003 0.007 1.000 1.023
(40,10)2 148.4 1.7 32.1 811.6 43.9 0.7 34.0 114.0 1.322 0.141 1.287 1.584 1.037 0.030 1.035 1.105
(40,20) 3.5 0.4 3.4 6.0 9.9 0.7 8.5 27.0 1.341 0.051 1.344 1.452 1.008 0.010 1.004 1.037
(40,30) 2.1 0.4 2.2 3.4 9.1 0.9 8.0 28.0 1.349 0.053 1.331 1.516 1.005 0.012 1.001 1.040
(40,40) 1.1 0.7 0.7 2.6 7.0 1.1 3.0 26.0 1.326 0.067 1.328 1.461 1.007 0.011 1.001 1.029

Table F.18: Results for preq = 25%, specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.1 1.6 0.0 0.4 3.4 1.8 1.0 21.0 1.304 0.123 1.251 1.660
(20,10) 1.8 1.8 0.7 11.5 50.6 2.0 6.0 347.0 1.467 0.123 1.515 1.667
(20,20) 0.4 1.1 0.2 1.3 14.2 1.2 5.0 57.0 1.461 0.075 1.500 1.609
(30,10) 4368.1 1.5 1020.8 18737.3 18971.6 1.4 5119.0 70683.0 1.599 0.098 1.609 1.816
(30,20) 50.0 1.5 3.0 230.9 911.2 1.5 66.0 3979.0 1.476 0.085 1.443 1.688
(30,30) 65.6 2.1 2.8 465.7 1370.4 2.2 49.0 9727.0 1.425 0.056 1.425 1.598
(40,10)1 1430.9 1.6 179.3 7563.8 718.6 1.2 187.0 2333.0 1.678 0.088 1.693 1.966
(40,20) 539.0 1.4 110.3 2125.5 5103.0 1.5 778.0 20259.0 1.525 0.097 1.520 1.838
(40,30) 6.9 1.2 4.1 28.9 87.2 1.3 49.0 387.0 1.457 0.093 1.411 1.763
(40,40) 204.3 2.9 2.5 1981.6 2329.4 2.9 37.0 22407.0 1.365 0.063 1.357 1.505

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.1 0.0 0.2 2.0 1.3 1.0 10.0 1.298 0.127 1.248 1.660 1.005 0.014 1.000 1.048
(20,10) 0.3 0.5 0.4 0.6 6.2 0.8 4.0 14.0 1.452 0.132 1.500 1.667 1.012 0.018 1.000 1.053
(20,20) 0.1 0.7 0.1 0.3 4.0 0.8 2.5 10.0 1.454 0.076 1.481 1.609 1.005 0.008 1.000 1.025
(30,10) 3.2 1.0 1.7 11.3 15.2 0.9 8.0 40.0 1.554 0.107 1.577 1.816 1.031 0.052 1.007 1.177
(30,20) 0.6 0.5 0.5 1.0 6.7 0.8 5.5 16.0 1.460 0.085 1.428 1.668 1.011 0.014 1.004 1.041
(30,30) 0.7 0.4 0.7 1.3 13.5 0.5 12.0 32.0 1.391 0.073 1.389 1.597 1.026 0.029 1.020 1.108
(40,10)1 183.1 2.3 19.1 1389.9 92.8 2.2 25.0 672.0 1.557 0.149 1.607 1.958 1.094 0.128 1.033 1.436
(40,20) 2.3 0.5 1.9 5.3 15.5 0.7 12.0 34.0 1.500 0.109 1.509 1.838 1.018 0.019 1.014 1.067
(40,30) 1.1 0.4 1.2 1.7 10.3 0.6 10.0 20.0 1.432 0.092 1.402 1.705 1.018 0.015 1.014 1.045
(40,40) 0.9 0.8 0.9 2.8 10.2 1.0 6.0 38.0 1.347 0.073 1.352 1.505 1.014 0.020 1.003 1.065

Table F.19: Results for preq = 25%, non-specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.2 2.0 0.0 1.0 8.0 2.1 1.0 57.0 1.388 0.166 1.327 1.759
(20,10) 1.8 1.1 0.8 6.2 49.0 1.3 20.0 181.0 1.514 0.127 1.544 1.819
(20,20) 1.1 1.6 0.6 6.4 38.6 1.7 20.0 229.0 1.464 0.068 1.479 1.652
(30,10) 4767.5 2.5 610.6 40630.1 17310.2 2.2 1803.0 128941.0 1.646 0.081 1.625 1.889
(30,20) 30.6 1.7 1.9 161.9 535.8 1.7 33.0 2761.0 1.534 0.064 1.553 1.663
(30,30) 548.5 2.6 8.7 4836.0 9315.4 2.6 173.0 80805.0 1.455 0.052 1.488 1.571
(40,10)2 20435.2 2.4 1390.5 148172.0 9811.5 2.2 1862.0 67999.0 1.717 0.119 1.684 2.084
(40,20) 727.1 1.7 161.0 4141.5 6239.0 1.7 1143.0 35389.0 1.592 0.094 1.586 1.847
(40,30) 81.4 2.3 13.9 638.9 878.2 2.3 160.0 6895.0 1.528 0.065 1.497 1.765
(40,40) 85.9 1.4 19.3 377.1 974.6 1.5 213.0 4273.0 1.475 0.064 1.507 1.575

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.1 1.1 0.0 0.2 2.4 1.2 1.0 8.0 1.385 0.168 1.327 1.759 1.003 0.006 1.000 1.019
(20,10) 0.4 0.3 0.4 0.6 7.4 0.8 7.0 18.0 1.480 0.130 1.486 1.819 1.024 0.037 1.013 1.130
(20,20) 0.2 0.5 0.2 0.4 6.3 0.6 6.0 14.0 1.451 0.064 1.461 1.623 1.009 0.009 1.006 1.024
(30,10) 3.1 0.4 2.8 5.6 16.5 0.6 14.0 38.0 1.599 0.085 1.561 1.872 1.030 0.028 1.024 1.094
(30,20) 0.7 0.6 0.6 1.8 8.7 0.9 7.0 30.0 1.507 0.069 1.531 1.659 1.019 0.026 1.010 1.090
(30,30) 0.8 0.3 0.8 1.4 13.5 0.3 13.0 24.0 1.431 0.065 1.458 1.564 1.018 0.019 1.014 1.066
(40,10)2 106.7 2.0 21.2 669.1 40.0 1.0 22.0 148.0 1.566 0.114 1.483 1.905 1.098 0.069 1.066 1.199
(40,20) 3.6 0.5 3.2 7.5 22.6 0.6 24.5 46.0 1.549 0.097 1.549 1.847 1.028 0.018 1.031 1.055
(40,30) 2.0 0.5 1.7 4.5 17.3 0.5 14.5 31.0 1.491 0.050 1.463 1.652 1.025 0.023 1.016 1.068
(40,40) 1.6 0.6 1.5 3.8 14.1 0.6 12.0 30.0 1.452 0.059 1.488 1.537 1.016 0.013 1.015 1.039

Table F.20: Results for preq = 25%, non-specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.8 0.0 0.1 1.6 0.8 1.0 5.0 1.253 0.082 1.282 1.376
(20,10) 0.8 0.7 0.6 2.2 3.2 0.9 1.0 9.0 1.304 0.086 1.319 1.503
(20,20) 2.8 2.7 0.2 25.3 34.0 2.5 3.0 291.0 1.268 0.099 1.217 1.581
(30,10) 3.9 0.6 3.1 10.1 9.4 2.0 3.0 65.0 1.449 0.108 1.419 1.703
(30,20) 5.3 1.0 3.2 15.1 58.2 1.0 27.0 151.0 1.393 0.049 1.401 1.476
(30,30) 2.7 1.4 1.1 13.4 37.4 1.6 8.0 201.0 1.322 0.074 1.321 1.503
(40,10) 370.3 1.6 58.4 1587.1 129.4 1.4 40.0 517.0 1.421 0.088 1.403 1.695
(40,20) 98.1 1.9 5.8 626.3 211.2 1.7 7.0 1131.0 1.376 0.057 1.378 1.505
(40,30) 158.3 2.8 3.4 1500.1 1173.8 2.9 11.0 11227.0 1.380 0.057 1.376 1.529
(40,40) 7.5 1.3 3.7 34.7 52.2 1.5 25.0 273.0 1.321 0.059 1.330 1.462

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.7 0.0 0.1 1.3 0.5 1.0 3.0 1.253 0.082 1.282 1.376 1.000 0.000 1.000 1.000
(20,10) 0.6 0.6 0.5 1.6 2.1 0.8 1.0 6.0 1.286 0.086 1.310 1.503 1.015 0.042 1.000 1.144
(20,20) 0.4 1.6 0.2 2.1 3.7 1.3 2.0 18.0 1.262 0.092 1.217 1.550 1.004 0.007 1.000 1.019
(30,10) 2.8 0.3 2.6 4.7 2.6 0.8 2.0 8.0 1.449 0.108 1.419 1.703 1.000 0.000 1.000 1.001
(30,20) 1.1 0.5 1.0 2.3 5.8 0.7 5.5 14.0 1.389 0.048 1.400 1.476 1.003 0.007 1.000 1.023
(30,30) 0.8 0.7 0.7 1.7 7.8 1.1 4.5 28.0 1.307 0.077 1.310 1.503 1.012 0.019 1.002 1.065
(40,10) 88.2 1.8 24.6 554.6 20.7 1.2 13.0 89.0 1.377 0.096 1.356 1.693 1.033 0.046 1.005 1.154
(40,20) 5.6 0.4 5.5 8.7 7.8 1.0 3.5 22.0 1.370 0.055 1.371 1.505 1.004 0.005 1.001 1.017
(40,30) 2.1 0.5 2.0 3.6 8.0 1.0 4.5 24.0 1.373 0.054 1.367 1.504 1.005 0.008 1.000 1.025
(40,40) 1.7 0.7 1.1 3.8 8.1 1.2 3.0 26.0 1.312 0.061 1.327 1.462 1.007 0.010 1.001 1.025

Table F.21: Results for preq = 30%, specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.1 1.2 0.0 0.2 2.2 1.4 1.0 11.0 1.245 0.086 1.281 1.363
(20,10) 5.2 2.2 0.8 39.4 16.0 1.7 5.0 97.0 1.328 0.087 1.350 1.492
(20,20) 59.2 3.0 0.2 587.3 433.4 2.9 4.0 4241.0 1.322 0.094 1.284 1.579
(30,10) 16.9 0.7 16.3 31.2 52.4 1.1 37.0 185.0 1.469 0.117 1.439 1.828
(30,20) 46.3 2.7 3.6 422.6 485.4 2.7 23.0 4445.0 1.412 0.045 1.386 1.546
(30,30) 14.0 1.8 2.8 85.8 194.0 1.9 35.0 1239.0 1.402 0.065 1.422 1.515
(40,10)3 5573.0 1.2 1340.6 17340.4 1660.1 1.0 585.0 4511.0 1.492 0.068 1.490 1.642
(40,20) 963.5 2.0 27.4 5364.3 1970.4 1.9 103.0 10303.0 1.407 0.076 1.410 1.583
(40,30) 132.9 2.3 5.5 994.3 801.4 2.5 35.0 6679.0 1.412 0.070 1.398 1.656
(40,40) 90.7 1.2 26.8 277.4 540.6 1.1 182.0 1487.0 1.381 0.056 1.372 1.498

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.8 0.0 0.1 1.4 0.7 1.0 4.0 1.243 0.085 1.281 1.363 1.001 0.003 1.000 1.010
(20,10) 1.5 1.2 0.7 5.4 5.0 1.1 3.0 18.0 1.313 0.099 1.324 1.486 1.013 0.024 1.000 1.073
(20,20) 0.6 2.1 0.2 4.6 5.1 1.3 3.0 25.0 1.305 0.089 1.265 1.528 1.013 0.025 1.000 1.080
(30,10) 6.6 1.0 4.0 24.8 9.9 0.7 8.0 23.0 1.446 0.112 1.395 1.783 1.015 0.031 1.003 1.109
(30,20) 1.5 0.6 1.3 4.2 8.8 1.1 5.0 34.0 1.402 0.052 1.386 1.546 1.007 0.013 1.000 1.040
(30,30) 0.9 0.6 0.8 1.8 7.6 0.8 6.0 20.0 1.389 0.062 1.401 1.515 1.009 0.011 1.003 1.033
(40,10)3 108.6 1.0 48.7 296.7 28.3 0.5 29.0 48.0 1.392 0.117 1.441 1.606 1.082 0.089 1.020 1.281
(40,20) 5.9 0.5 5.3 14.1 13.9 0.6 13.0 30.0 1.393 0.072 1.403 1.569 1.010 0.016 1.005 1.058
(40,30) 3.1 0.6 2.6 6.6 12.3 1.0 10.0 48.0 1.398 0.070 1.388 1.638 1.010 0.013 1.006 1.046
(40,40) 3.0 0.4 3.1 5.0 14.2 0.5 13.5 24.0 1.362 0.050 1.357 1.467 1.014 0.012 1.009 1.039

Table F.22: Results for preq = 30%, specialized rescue units and high travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 1.1 0.0 0.2 2.4 1.3 1.0 11.0 1.369 0.148 1.404 1.692
(20,10) 5.6 1.2 1.3 20.6 101.8 1.3 18.0 419.0 1.578 0.112 1.607 1.906
(20,20) 1.9 1.5 0.8 10.0 53.2 1.5 22.0 275.0 1.475 0.109 1.472 1.700
(30,10)1 447.2 1.7 149.5 2531.9 2567.9 1.6 975.0 13913.0 1.645 0.121 1.650 1.918
(30,20) 316.3 3.0 1.0 3133.8 4768.4 3.0 8.0 47255.0 1.514 0.084 1.504 1.793
(30,30) 357.7 2.4 6.9 2854.6 6802.4 2.3 150.0 52679.0 1.488 0.079 1.492 1.705
(40,10)4 10686.9 1.9 31.4 56886.5 12672.0 1.9 46.0 66707.0 1.811 0.069 1.868 1.918
(40,20)2 6648.9 2.3 291.7 46026.9 32466.5 2.2 2306.0 222847.0 1.652 0.066 1.638 1.845
(40,30) 1356.9 2.7 8.5 12177.4 10408.6 2.6 100.0 92517.0 1.507 0.065 1.491 1.675
(40,40) 307.7 2.0 36.5 2028.3 2886.6 2.0 412.0 19597.0 1.512 0.066 1.488 1.762

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.0 0.7 0.0 0.1 1.7 0.9 1.0 6.0 1.367 0.148 1.404 1.692 1.001 0.003 1.000 1.009
(20,10) 0.7 0.3 0.7 0.9 7.2 0.8 6.5 19.0 1.550 0.110 1.538 1.856 1.018 0.031 1.002 1.106
(20,20) 0.3 0.7 0.2 0.7 7.0 0.8 5.0 16.0 1.463 0.110 1.446 1.692 1.008 0.012 1.002 1.035
(30,10)1 3.1 0.4 3.0 5.2 13.1 0.6 14.0 24.0 1.614 0.113 1.612 1.842 1.018 0.016 1.012 1.044
(30,20) 0.8 0.7 0.7 2.1 8.0 1.1 5.0 32.0 1.501 0.088 1.490 1.793 1.009 0.011 1.001 1.027
(30,30) 0.7 0.4 0.7 1.4 12.8 0.6 13.0 28.0 1.461 0.091 1.469 1.704 1.020 0.023 1.010 1.065
(40,10)4 11.6 0.6 12.2 19.2 15.3 0.8 16.5 36.0 1.773 0.061 1.814 1.898 1.021 0.024 1.009 1.055
(40,20)2 3.1 0.3 3.1 4.8 18.8 0.6 18.0 36.0 1.601 0.081 1.587 1.762 1.034 0.034 1.020 1.113
(40,30) 2.1 0.6 1.6 4.2 17.5 0.6 14.0 38.0 1.476 0.070 1.458 1.675 1.022 0.017 1.019 1.060
(40,40) 2.1 0.3 2.0 3.5 16.9 0.4 18.0 28.0 1.478 0.072 1.433 1.750 1.023 0.014 1.025 1.048

Table F.23: Results for preq = 30%, non-specialized rescue units and low travel intensity
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Execution Time (in seconds) B&B Nodes Ratio ZSCHED
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.2 1.8 0.0 1.3 14.0 1.9 1.0 87.0 1.429 0.161 1.416 1.896
(20,10) 31.4 1.8 4.4 186.6 487.2 1.8 38.0 2413.0 1.620 0.152 1.570 2.153
(20,20) 2.3 1.5 1.0 11.2 71.4 1.4 28.0 347.0 1.503 0.106 1.472 1.777
(30,10)1 230.6 1.1 101.5 821.9 1032.6 0.9 687.0 2801.0 1.748 0.095 1.795 1.955
(30,20) 972.7 2.9 4.8 9557.6 11460.6 2.9 70.0 112627.0 1.613 0.073 1.609 1.824
(30,30) 473.0 2.1 12.0 3363.1 7992.4 2.1 229.0 56309.0 1.588 0.077 1.575 1.842
(40,10)6 3007.6 1.6 222.5 11581.3 3219.5 1.6 510.0 11857.0 1.772 0.062 1.741 1.941
(40,20)1 23437.5 2.1 322.9 159928.0 67764.3 1.7 2009.0 375213.0 1.737 0.061 1.701 1.917
(40,30) 817.6 1.9 66.8 4049.4 6513.6 1.9 642.0 33449.0 1.591 0.077 1.610 1.811
(40,40) 1288.3 1.5 306.8 6576.0 10348.4 1.5 2775.0 52283.0 1.590 0.072 1.589 1.825

Time for finding FI (in seconds) B&B Nodes for finding FI Ratio ZSCHED
ZFI

Ratio ZFI
ZOPT

(n,m) Mean CV Median Max Mean CV Median Max Mean CV Median Max Mean CV Median Max

(10,10) 0.1 1.6 0.0 0.4 4.1 1.7 1.0 24.0 1.407 0.186 1.416 1.896 1.023 0.063 1.000 1.217
(20,10) 1.0 0.5 0.9 2.2 9.7 0.9 6.5 34.0 1.580 0.139 1.525 2.012 1.024 0.033 1.008 1.107
(20,20) 0.3 0.6 0.2 0.7 7.9 0.6 7.0 16.0 1.485 0.105 1.441 1.771 1.012 0.018 1.000 1.044
(30,10)1 7.2 1.4 3.5 36.4 16.6 0.6 12.0 31.0 1.687 0.120 1.739 1.953 1.041 0.051 1.026 1.175
(30,20) 1.1 0.5 1.0 2.3 10.4 0.8 10.5 30.0 1.599 0.073 1.603 1.769 1.009 0.010 1.007 1.031
(30,30) 1.1 0.4 1.0 2.0 16.4 0.5 18.5 28.0 1.561 0.086 1.550 1.842 1.018 0.015 1.015 1.060
(40,10)6 13.0 0.8 9.2 29.5 14.0 0.9 10.5 34.0 1.732 0.047 1.730 1.839 1.023 0.020 1.017 1.056
(40,20)1 4.3 0.2 4.0 6.1 22.8 0.3 26.0 30.0 1.697 0.066 1.684 1.907 1.024 0.015 1.021 1.051
(40,30) 2.9 0.3 2.7 5.3 22.0 0.2 23.0 30.0 1.553 0.080 1.573 1.782 1.025 0.012 1.025 1.045
(40,40) 3.6 0.4 3.0 6.5 26.3 0.4 22.5 48.0 1.523 0.083 1.527 1.774 1.045 0.030 1.033 1.111

Table F.24: Results for preq = 30%, non-specialized rescue units and high travel intensity
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Appendix G. Sensitivity Analysis for Heuristic Version of B&P

Algorithm

To conduct a sensitivity analysis on the time to find a first integer (FI)

solution, we use the following regression model with a logarithmically trans-

formed dependent time variable:

ln(TIME FI) = β0 + β1 · n+ β2 ·
n

m
+ β3 · preq + β4 · pcap + β5 · TIF + ε

Table G.25 presents the results for the regression. We removed outliers as

described in the main text.

Table G.25: Results for regression on time to find an FI solution

Effect Estimate (Std. Error) t value (Significance)

Number of incidents (n) 0.10 (0.00) 61.32 ***
Ratio of incidents to units (n/m) 0.78 (0.02) 39.96 ***

Requirement probability (preq) 10.03 (0.22) 45.35 ***
Capability probability (pcap) 0.08 (0.16) 0.53

Travel intensity factor (TIF ) 0.09 (0.01) 9.04 ***
N 1875

R squared 0.82

Notes. Model includes an intercept. ***significant at 0.1%.

To conduct a sensitivity analysis on the ratio SCHED/FI of the objec-

tive value of the SCHED solution to the objective value of the FI solution,

we used the following linear regression model:

SCHED/FI = β0 + β1 · n+ β2 ·
n

m
+ β3 · preq + β4 · pcap + β5 · TIF + ε

Table G.26 presents the results for the regression. We again removed outliers

as described in the main text.
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Table G.26: Results for regression on ratio SCHED/FI (values of objective function)

Effect Estimate (Std. Error) t value (Significance)

Number of incidents (n) 0.00 (0.00) 9.65 ***
Ratio of incidents to units (n/m) 0.01 (0.00) 3.98 ***

Requirement probability (preq) 0.99 (0.04) 27.23 ***
Capability probability (pcap) 0.61 (0.03) 24.14 ***

Travel intensity factor (TIF ) 0.01 (0.00) 5.97 ***
N 1875

R squared 0.43

Notes. Model includes an intercept. ***significant at 0.1%.
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