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Highlights
e A new Dantzig-Wolfe Decomposition and Column Generation algorithm is proposed.
e Novel preprocessing and inequality generation is applied to the pricing problem.
e Local Branching is applied when searching for columns with a negative reduced cost.

e The algorithm improves the best-known lower bounds for benchmark instances.
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Abstract

In this paper, we considered the problem of Curriculum-Based Coursé Timetabling, i.e., assigning
weekly lectures to a time schedule and rooms. We developed a Column\Gengration algorithm based
on a pattern formulation of the time scheduling part of the problem™by Bagger et al. (2016). The
pattern formulation is an enumeration of all schedules by which each eourse can be assigned on each
day; it is a lower bounding model. Pattern enumeration‘has also’been considered in Burke et al.
(2008), where the authors enumerated all schedules t6:which.each curriculum can be assigned on
each day. We applied the Dantzig-Wolfe reformulation, soveach column corresponded to a schedule
for an entire day.

We solved the reformulation with the ColumnyGeneration algorithm, where each pricing prob-
lem generated a full schedule for a single day.“We provided a pre-processing technique that, on
average, removed approximately 45%<6fithe pattern variables in the pricing problems. We then
extended the pre-processing technique into inequalities that we added to the model. Lastly, we
describe how we applied LocaldBranching to the pricing problem by using the columns generated
in previous iterations.

We compare the lower bounds we obtained, with other methods from literature, on 20 data
instances of real-world ‘applications. For 16 instances the optimal solutions are known, but the
remaining four aré still epen. Our approach improved the best-known lower bound for all four

open instances; and deereased the average gap from 24% to 11%.
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1. Introduction

In this paper we focus on the Curriculum-Based Course Timetabling problem (CCT) as de-
scribed by Di Gaspero et al. (2007). The problem has received much attention as it was used for
the Second International Timetabling Competition in 2007 (ITC2007) (Di Gaspero et al., 2007;
McCollum et al., 2010). Following the competition, a website (Bonutti et al., 2017) was created
where researchers can upload data instances, solutions and bounds. Most of the work conducted on
CCT is dominated by heuristic approaches (Asin Aschd and Nieuwenhuis, 2014; Liibbeeke, 2015).
Heuristic methods have provided most of the best-known solutions according“to Bonutti et al.
(2017). For ITC2007, 21 data instances were provided arising from real-world applieations. Four
of these instances are still open, meaning that the best-known upper béund does not equal the
best-known lower bound. The lower bounds are necessary, as the heuristics themselves do not pro-
vide a quality measurement. Our goal, in this work, is to strengthen the best-known lower bounds.
We have done this by applying a Dantzig-Wolfe reformulation ‘efsamprevious formulation, which
is solved by Column Generation. We assume that the reader is, familiar with the Dantzig-Wolfe
reformulation, the Column Generation algorithm, and the terms used in it: (restricted) master
problem, pricing problem, and reduced costs. Interestedsreaders can refer to Martin (1999, chapter
11) and Desrosiers and Liibbecke (2010) for thorough andgeneral descriptions. Column generation
approaches have been considered before by Cacchiani et al. (2013), but it is still worthwhile to
investigate such methods further (Liibbecke, 2015).

We have described the problem in detailin, Section 1.1, and provided an overview of other
methods in literature that have considered CCT in Section 1.2. We have described the pattern
formulation suggested by Bagger et al. (2016) in Section 2, as this is the model which we have used
in our Dantzig-Wolfe reformulation.. In"the pattern formulation, each column corresponds to an
assignment of lectures for aourseion’ a single day. In our reformulation, each column corresponds
to the full assignment of the patterns on a single day of all the courses. We have described
this reformulation in “Section 3. We describe the pre-processing techniques we have applied in
Section 4, as well ds some inequalities we have derived followed by the framework we have used in
the solution process: Local Branching (Fischetti and Lodi, 2003). We have reported the results of

our computational experiments in Section 5. Lastly, we have provided the conclusion in Section 6.

1.1. Curriculum-Based Course Timetabling

The"GCT problem consists of the following entities: courses, days, time slots, lecturers, rooms
and curricula. Each course is taught by exactly one lecturer and contains lectures that must all be
scheduled in a weekly timetable and assigned to rooms. The week is divided into days and each
day is divided into time slots of equal duration. A day and time slot pair is referred to as a period,
so the total number of periods is the number of days multiplied by the number of time slots. The
length of one lecture corresponds to one period. A curriculum is a set of courses, where for every
pair of courses, there are students attending both courses.

3



The hard constraints are as follows: all lectures of a course must be scheduled, and they must
be scheduled in distinct periods. If a lecture is not scheduled, then the Lectures (L) constraint
is violated, and two lectures of the same course scheduled in the same period is also considered
as a violation. A course can have specific periods defined as unavailable periods. Every lecture
scheduled in such a period is a violation of the Availability (A) constraint. We can say that two
courses are conflicting if they are taught by the same lecturer, or belong to the same curriculum, as
scheduling two courses in the same periods would create a conflict. If there exists a’period where
two conflicting courses have a lecture scheduled, then the constraint Conflicts (€)is violated. A
room can accommodate only one lecture in any given period. If more than onellecture is scheduled
in the same room and the same period, then the constraint Room Occupanéy (RO) is violated.

The problem contains four soft constraints: Room Capacity (RC)aRoem Stability (RStab),
Minimum Working Days (MWD), and Isolated Lectures (IL). We are allowed to schedule any
course in any room. However, a room is desired to be capable of accommedating as many students
as possible when scheduling the courses into rooms. Every roem has a/capacity, and if the number
of students attending a lecture is larger than the capacityyof the room to which the lecture is
assigned, the constraint Room Capacity (RC) is violated\by the number of students minus the
capacity. Furthermore, as the courses contain multiple‘ectures, it can also be an advantage that
the lectures are all scheduled in the same room duringsthe week. For every course, the constraint
Room Stability (RStab) is violated by one for every distinct room to which the course is assigned
minus one. For every course, it is preferredato spread the lectures across a predetermined number
of days. This number is called minimum working days. If the lectures are scheduled in fewer days
than the minimum working days, thén the constraint Minimum Working Days (MWD) is violated
by one for each day below the minimum’ working days. The last soft constraint is the Isolated
Lectures (IL) constraint. If two peériods belong to the same day and are in consecutive time slots,
then we say that the periodsiare adjacent. Consider a curriculum and a course belonging to the
curriculum. If the course has a lecture scheduled in a period, and no lecture from any of the courses
belonging to the curticulum has been scheduled in an adjacent period, then we say that the lecture
is isolated. For everyicurriculum, the constraint Isolated Lectures (IL) is violated by one for every
isolated lecture.

The IE constraint is usually referred to as the curriculum compactness constraint in literature.
We use the name isolated lectures as Bonutti et al. (2012) mentions different ways of defining
curriculum._compactness, and they use the name isolated lectures for the formulation used here and
in ITC2007.

Any feasible timetable must fulfill all the hard constraints, i.e., a timetable is considered feasible
if, and only if, no hard constraints are violated. The objective is to find a feasible timetable while
minimizing the soft constraints. Each soft constraint has a weight associated with it, so that a

single objective is defined by a weighted sum of all the soft constraints.



1.2. Related Work

In this section, we describe the approaches from literature that consider CCT. As our method
is a lower bounding method, we focus on other lower bounding methods for CCT in literature. We
refer to Bettinelli et al. (2015) for a comprehensive overview.

Burke et al. (2010a) introduced an exact mixed integer programming (MIP) model of CCT.
They formulated the IL constraint by using a variable for each curriculum and each period. Burke
et al. (2008) removed these variables and instead they used just one variable for eachieurriculum
and each day. The value of this variable was then calculated by adding an exponential number
of constraints. The constraints are generated by enumerating patterns for each curriculum and
each day. In their study, Burke et al. (2012) kept a subset of the constraintsifromithe enumerated
patterns in Burke et al. (2008), and then added the remaining ones dynamically, whenever they
were violated. Burke et al. (2010b) took the model from Burke et al! (2010a) and split it into two
stages; first, the courses were scheduled into periods and then they were"assigned to rooms. This
approach was executed iteratively.

Splitting the problem into two stages was also considered, by Liach and Liibbecke (2008, 2012):
the first stage schedules the courses to periods and assigns them as per capacities, and the second
stage then assigns the rooms with respect to the assigned capacities.

Hao and Benlic (2011) considered the first stage preblem of Lach and Liibbecke (2012). They
relaxed some of the constraints, so that the problem could be divided into sub-problems. Then,
they computed a lower bound for each sub=problem and summed them up to get a lower bound
for the overall problem.

Cacchiani et al. (2013) also comiputed lower bounds. They did this by splitting the problem
into two parts: one part considered theytime related constraints and the other part considered the
room related constraints. A lewer‘bound was then calculated by summing up the lower bounds for
both parts. As some of the data instances were computationally time consuming to solve for the
time related part, theydapplied a Dantzig-Wolfe reformulation, so that there was a pricing problem
for each day and solved the model by column generation.

Asin Ascha and Nieuwenhuis (2014) proposed multiple reformulations of the decision variant as
a propositional satisfiability test (SAT). They started by treating the soft constraints as hard con-
straints and solved'the problem as a pure satisfiability problem. Then, they relazed the constraints
one by one, to move toward a weighted partial maximum satisfiability encoding.

In\ their study, Bagger et al. (2017) considered decomposition of the problem similar to Lach
and Litbbecke (2012) and Burke et al. (2010b) where the problem was split into a time scheduling
model and a room allocation model. The two models were then reconnected by an underlying flow
problem to get an exact formulation.

In Bagger et al. (2016)’s research, the time scheduling part of the problem was considered,
i.e., the room assignment was disregarded. Here a pattern formulation was suggested where each

variable corresponds to a time schedule for one course on one day. The main difference between
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the formulation by Burke et al. (2008) and Bagger et al. (2016), was that Burke et al. (2008) added
the patterns as constraints, whereas Bagger et al. (2016) added the patterns as variables. In the
time schedule, it is possible to ensure that all the hard constraints, L, A, C, and RO, are fulfilled,
which has also also been noted by Lach and Liibbecke (2012). For the soft constraints, Bagger
et al. (2016) only accommodated the constraints MWD and IL, meaning that the model was a
lower bounding model for the overall problem.

In this paper, we have applied the Dantzig-Wolfe decomposition to the formulation presented by
Bagger et al. (2016). We have then solved the reformulation by a column generation algorithm. We
have decomposed the model, so that there is one pricing problem per day. Note that, this is similar
to the work by Cacchiani et al. (2013). One of the main differences is thattwe have included the
RO constraints, which means that we can guarantee that there exists_ a.feasible’room assignment
for any integer solution we obtain. Another difference is the pricing problems. In each pricing
problem, we have a binary variable for each course and each feasible pattern that the course can be
assigned for an entire day, whereas Cacchiani et al. (2013) considered a/formulation where they had
a binary variable for each course and each period. The benefit of)the pattern formulation is that
when we apply the pre-processing by Bagger et al. (2016)y, we Temove patterns from the pricing
problems, which will never be included in any columns. In a formulation similar to Cacchiani
et al. (2013), the patterns that are removed in our fermulation can potentially be generated by
the pricing problems. This makes the pattern-based formulation stronger, in the sense that the
objective value of the Linear Programmings(LP) relaxation of our master problem will be at least

as large as the LP relaxation of the master preblem by Cacchiani et al. (2013).

2. Pattern Formulation

In this section, we have‘provided an overview of the pattern formulation provided by Bagger
et al. (2016). A pattern-Tepresents a schedule of lectures of a course to periods for an entire day.
Burke et al. (2008, 2012)reported that there are an exponential number of patterns. However, as
most of the data“instances, used in the literature, have five or six time slots for each day, then
the number of/patterns’for each course and each day is only 32 or 64. For each course and each
day, we have.a binary variable for each feasible schedule (pattern) of lectures of the given course
on the given day. Before we describe the pattern formulation, we start by providing the notation
used throughout this paper. The set of courses, days and time slots are denoted as C, D and T
respectively. The combination of a day d € D and time slot ¢ € T is known as a period. For a
time slot t € T, the time slot that is right before ¢ is denoted by t — 1 and the time slot right after
t is denoted by ¢ + 1. The set of curricula is denoted by O, and for each curriculum g € 9, the set
Cq C C is the set of courses that belongs to the curriculum g.

For each course ¢ € C, the number of lectures to schedule is given by the parameter L., and the

requested minimum number of working days is given by the parameter D™, For each curricula
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q € Q, we define the parameter L, as the total number of lectures that must be scheduled for the
courses Cy, ie., Ly = ) ceCy L.. The total number of rooms available is denoted by R. Lastly,
for each course ¢ € C, day d € D and time slot ¢ € T the parameter F 4, is one if the course is
available in the corresponding period; otherwise, it is zero. If time slot ¢ € T is the first time slot,
then the parameter F, 4; 1 is defined as zero and likewise if ¢ is the last time slot, the parameter
F, q4+1 is zero for each course ¢ € C and day d € D.

As all periods are uniform, it is only necessary to generate different patterns that are possible
for the set of time slots 7 once and then apply them to each course and day. An example of all
the patterns is illustrated in Table 1 when |T| = 4.

Table 1: Illustration of all the patterns for |7| = 4. Each column corresponds to a patternyand‘éach row corresponds
to a time slot. The symbol ”x” indicates whether or not a pattern schedules adecture inythe corresponding time
slot.

0123456 7 89 1011 12,13 14,15

0 X X X X X AxX X X
1 X X X X X X X X
2 X X X x4 X X X X
3 X X XX X X X X

The set of all the patterns is denoted by K. Foreach’pattern k € K and time slot ¢ € T, the
parameter af is set to one if k contains a lecture in\t. If ¢ € T is the first time slot, then af ; is
defined as zero and likewise if ¢ is the lasttime'slot; then af, ; is defined to be zero. The number
of lectures contained in pattern k € K is denoted as Ly, i.e., Ly = >, af. For each course ¢ € C
and day d € D, the set K.q C K denotes the set of patterns that ¢ can be assigned on day d. A
pattern k € K is feasible for a coutse e,&/C and day d € D if assigning course ¢ to the pattern on
day d does not schedule ¢ infanyunavailable periods, i.e., if afg < Feat, YVt € T, and if L < L.
Bagger et al. (2016) explain pre-processing techniques used to decrease the sizes of the sets K. 4.
See Section 2.2.

Let x’g 4 be a binary variable taking value one if course ¢ € C is assigned pattern k € K. 4 for
day d € D. The following constraints ensure that every course selects exactly one pattern for each
day, that all lecturesjare scheduled and that no more than one lecture is scheduled in one room in

one period:

Z x’éd:l, VeeC,deD (1)
kG/CC’d
> Liab,=L. Veec (2)
dGD,kG’Ccyd
> afazf <R, VdeDteT (3)
CEC,]{:E}CC’CZ



The constraints (1) — (3) ensure that the constraints A, L and RO are not violated. To model
constraint C, a pattern conflict graph G = (V, ) is constructed. For every course ¢ € C, day d € D
and pattern k € K4 there is a node vi“ 4 € V corresponding to the variable :EIC“ g 1f course ¢; € C

chooses pattern k1 € K., 4, for day di € D and course c € C chooses pattern ky € K, 4, for day
k
611 ,d1

and vfj dp- Since each course ¢ € C must choose exactly one pattern for each day d €.D, we also

dy € D and this results in a conflict, then there is an edge e € £ between the two nodes v

consider vf’ld and vffd to be conflicting for every pair of patterns k; € K. 4 and ka/&lC. g\ {1}
Furthermore, as each course ¢ € C must be assigned to L. periods, we also consider vffdl and vffdl
to be conflicting if Ly, + Lk, > L., for day di € D, day do € D\ {d:1}, pattern ky € K.q,, and
pattern ko € K. 4,. Bagger et al. (2016) identify more conflicts by extending the pre-processing
techniques to add more edges to the graph. We have described these extensions'in Section 2.2.
Let © be a set of cliques that covers all edges, i.e., for each edge there is at least one clique in
© where both endpoints of the edge are included. For each clique 8 € Ouin' the graph let Vy be the
set of nodes in the clique. Adding the following constraints enSures that the C constraints are not

violated:

Y oab,<1, Veeo (4)

k
UC’dGVQ

To generate the clique edge cover, Bagger ethal. (2016) ran the heuristic by Kou et al. (1978),
that is trying to minimize the cardinality of the'set O.
Let w, be an integer variable calculating how much the soft constraint MWD is violated. The

value of these variables can be calctilated by the following constraints:

>/ aby+w.>DMt veecd (5)
deD keK, g:Li>1
To calculate the violation of the soft constraint IL the parameter El’f is defined for each pattern
k € K and time slot t & 7

1, ifaf=1Aak | =ak,, =0
ay =< -1, if af =0 (af,l =1Vaf, =1) (©)
0, otherwise

The, variable s, 44 is introduced for each curriculum ¢ € Q, day d € D and time slot ¢ € 7.
The variable s, 4 is a binary variable that takes value one if ¢ has an isolated lecture in time slot
t for day d:

Z Efa:f’d <Sgdt, Vqe Q,deD,teT (7)
cGCq,kEICcyd



Due to the constraints (4), the left-hand-side of (7) is less than or equal to one.
Let WMWD and W be the non-negative weights of the soft constraints MWD and IL

respectively. Then the objective function to minimize can be formulated as follows:

> W+ Y WMVPy, 8)
q€Q,deDeT ceC

Bagger et al. (2016) show that when D™ = [, or D™ = 2 for a course c<€ Gy then the

following substitutions can be made:

We = Z (Lk — 1) x];d, VeeC: DM =L, 9)

deD,
k:EICc’d:Lk >2

We = Z xlc“’d, Ve € C: DRN< 2 (10)
deD,
kEKc’dZLk:LC
We replace the variable w, in the objective function4vithythe right-hand side of either (9) or
(10) and remove the associated constraints (5) from thesmedel.
Consider a curriculum ¢ € Q, a day d € D and_time slot ¢t € 7. Let the set of courses C, 4 be

defined as follows:

Cpas =14 ceCy > Faar>1 (11)
te{t—1,t,t+1}
Bagger et al. (2016) make the/following substitution when the number of courses in C, 4+ equals

one:

Sq.di = > aky, Vg€ QdeD,eT :|Cpayl =1 (12)
c€Cq,kEK . giaf=1
We replace the variable s, q; with the right-hand side of (12) in the objective function and
remove the associated constraints (7) from the model.
Bagger et al'(2016) also described valid inequalities that are added to the model. We have

provided amn overview of these inequalities in Section 2.1.

2.1. Valid inequalities

In this section, we have provided an overview of the valid inequalities described by Bagger
et al. (2016). We have defined a working day of a course to be a day where at least one lecture

is scheduled. We can calculate the minimum and maximum number of working days that course



¢ € C can have, which leads to the following valid inequalities:

{deD DY Fear> 1}‘} (13)

. k .
117]%111) \D/| : Z Feat>Lep < Z Te g gmm{Lc,

deD’, deD, teT
teT ke,cc,d:
Lip>1

For the next inequalities, we have introduced the course cliques. Construct @& graph, that
contains a node for each course. For two conflicting courses, connect the correspending nodes with
an edge. The maximal cliques are enumerated in the graph, using the algérithm, by Bron and
Kerbosch (1973). We denote this set of course cliques T'. For each clique/ € T', we have denoted
the set of courses C,. Let L, be the total number of lectures to be seheduled for all the courses
Cy: L, = Zcecw L.. For course clique v € T', and for ¢ € {2,3,..., L%J + 1}, the following

inequalities are valid:
L
> ek |o (14)
' )

ceC,deD,
keICc,d:Lk >1

For each course ¢ € C, day d € D, and pattern k € ¢4, let flz’d = maxyex, , {Lr} — Li. For

each course clique y € T, let L, = Zcec%dep MaxXpeK, {Lk}—zcecW L.. Fori e {2, 3,y L%J },
the following inequalities are valid:

L
k v
Z Teq < {l (15)
ceCy,deD,
REK ja:Th o>

The inequalities (14) and (15)are valid for any set of courses. However, as there are 2/C|
potential sets of coursessuwe only add the inequalities for the maximal course cliques, as the
number of maximal course cliques is at most 3/°//3 (Moon and Moser, 1965).

The last validdnequalities by Bagger et al. (2016) are to consider the pattern variables that
are within the/supporty6f the constraints (7). We say that a variable is within the support of a
constraint, if the coéfficient of the variable is non-zero in the constraint. The variables are split
into two sets:

Vi = {v’;d €V :celykeKoga = 1} (16)

Vodr= {vf,d €V :ce€Cyk€Kegyay = —1} (17)

Let Hy 4t C V be a clique, where every node in H, 4, is a neighbour of every node in V A ie.,

(fd’ C’d’) Eg VUCdEV At C’d' Equt and < Cd’ /d/) 65 \V/'Ucd, C’d’ EH%dt Cd#vcl,d"

10



Then the following is a valid inequality:

Sooaby+ > aky—sa < (18)

k + k
Ue,a€Vq a1 Vo €Ha,dt

For each day d € D, we let V; C V denote the nodes that correspond to day d. Bagger
et al. (2016) consider cliques H, 4+, that are a subset of V, which means that thére may be
nodes vf,: o € Hgas where vf,: o & Va. We restrict the cliques H, 4 to be a subsét ofW); in our
implementation. The reason we do this is to make it possible to include theseAnequalities in our

pricing problems, as we consider a pricing problem for each day d € D.

2.2. Pre-processing and Conflict Detection

In this section, we have provided an overview of the pre-processing techniques, and the detection
of conflicts in the pattern graph by Bagger et al. (2016). The presprocessing techniques remove
nodes from the pattern graph G = (V, £). Since each node vﬁ 4 €V cerresponds to a variable :L"g 4 in
the pattern formulation, we remove the variable also if the node is removed. All these variables are
put into the pricing problems in our Dantzig-Wolfe deeomposition, thus, removing variables in the
pattern formulation corresponds to removing variables from the pricing problems. The detection
of conflicts is an extension of the pre-processing techniques, so we go through the conflict detection
as we go through the pre-processing.

Consider a course ¢ € C, day d € D, and pattern k € K. 4. The course ¢ can only be assigned
to pattern k on day d if the following helds:

d,g\:{d} L Y < Lo — L < d/g\:{d} g {Le) (19)

If (19) is not fulfilled-then pattern k is removed from the set K. 4, along with the corresponding
node vad € V and variable m’é 4+ Note that when we remove patterns from the sets K. 4, then the
sums in condition(19)'are changed for other days and patterns. So, whenever a pattern is removed
from a set K.g, condition (19) is checked again for the other patterns. The condition (19) can
be extendedutoyidentify a conflict, by considering a course ¢ € C, day dy € D, day dy € D\ {d1},
pattern by € K.y, , and pattern ky € K. 4,. The course c can only be assigned to pattern ki on day
di and to pattern ko on day ds, at the same time, if the following holds:

i < — — <
> in {lid<Sle—Dy—Lp< >, max {L} (20)
deD\{dy,da} deD\{d1,ds}

If (20) does not hold, then we add an edge to £ between the nodes, vfldl and vé”dl.
Consider the periods that the lectures are scheduled for when assigning the courses to the

patterns. We introduce the notation of all feasible periods P, for course ¢ € C, and all the periods
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775 that have lectures scheduled if a course is assigned to the pattern k € IC, on day d € D:

Pe ={(d,t) eDxT : Fpqs =1} (21)
Ph={d} x {te T : af =1} (22)

A course ¢ € C cannot be assigned to pattern k € K. 4 on day d € D, if there exists a course

d € C\{c}, that is conflicting with ¢, where the following is not satisfied:

Lc’ S

P\P| (23)

Condition (23) implies that the number of feasible periods for ¢/, that,is not _overlapping with
the periods in the selected pattern, must be able to accommodate all/the lectures of ¢'.

Consider a clique v € I', and a course ¢ € Cy. We cannot assign.c te a pattern k € K. 4, on day
d € D, if the periods that are not occupied by ¢, are not enough terschedule all the lectures of the

remaining courses in the clique, i.e., if the following is not satisfied:

YooLe<| PP (24)

c'eCy\{c} ' €Cx\{c}

The period coverage conditions (23) and (24) can be extended to identify pattern conflicts.
Consider a course ¢ € C, and a course ¢s € C\{c1}, which is conflicting with ¢;. Assume that ¢;
is assigned to pattern k1 € K., 4, on.day di €D, and that cp is assigned to pattern ky € K., 4,
on day dg € K, 4,- The remaininglectures of c; must be scheduled in periods that do not belong
to dy as only one pattern can be assigned per day. Thus, the pair of assignments is infeasible if
the remaining lectures of co/cannot be covered by the periods, not belonging to da, that are not

occupied by ¢y, i.e., an edge istadded between Ufll 4, and vi‘f d if the following does not hold:

LCQ - Lkg S

P\ (Pa N PL)| (25)

Consider two courses again, ¢; € C and co € C, but this time the courses do not need to be
conflicting, nor de*they need to be distinct. Let c3 € C\{c1, c2} be a course that is conflicting with
both ¢; and cp./ Assume that ¢ is assigned to k1 € K¢, 4, on day di € D, and that ¢y is assigned
to ka2 '€ Keyd, on day da € D. If ¢; = c2, then we only consider d; # da. As c3 is conflicting with
both c1yand co, then all the lectures of ¢3 must be scheduled in periods that are not occupied by

c1 or co. If the following is not valid, then the pair of assignments are conflicting, and we add and

ko

k1 .
edge between Ve, dy and Ve) dy

Ley <

P\ (PhruPl))| (26)
The condition (26) can be extended by considering another course ¢4 € C\{c1, ¢2, 3}, which is
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conflicting with all three courses, c1, c2, and cs:
Loy + Ley < |(Pey UPe)\ (P UPE)) (27)

The condition (27) can be extended even further, by using the course cliques I'. Consider a
clique v € I', where the courses c¢; and ¢z, may or may not be part of C,, but where every node

k1 ko .
s and Ve iy if the

in CV\{cl, co} is conflicting with both ¢; and c2. We add an edge between v o

following does not hold:

> oL<| U PA(PhuPk) (28)

ceCy\{c1,c2} ceCy\{c1,c2}

Next, Bagger et al. (2016) used a directed graph and solved a series.of Mazimum Flow Problems
(MFP), as a pre-processing technique and for conflict detection. Thesgraph contains a source node
(s), a sink node (t), and a dummy source node (s"). For each peried p € P, there is a node (p),
and for each course ¢ € C, there is a node (c¢). From the$ouree node (s), there is an outgoing arc
to the dummy source node (s), and to the node (p) forseach-period p € P. For each courses ¢ € C,
there is an outgoing arc from (c¢) to the sink (t), and an ingoing arc from (p) for each period p € P.

The graph is illustrated in Figure 1.

Figure 1: Illustration of the maximum flow graph, that is used for removing patterns, and detecting cliques.

Consider course clique v € I'. For each course ¢ € C, set the capacity of the arc (c,t) to L, if
c € Cy;'otherwise, set it to zero. Consider now course ¢ € Cy, day d € D, and pattern k € K. 4. Set
the capacity of the arc (s,s’) to Ly — L. For each period p € P, if p € 73(’; then set the capacity of
the arc (s, p) to one and the capacity of (s', p) to zero, and if p ¢ 775 then set the capacity of (s, p)
to zero and the capacity of (s',p) to one. For each period p € P and course ¢’ € C, set the capacity
of the arc (p,c) to one if ¢ = cAp € Pu\ (P4\P}) or if ¢ # ¢ Ap € Po\P¥; otherwise, set it to
zero. Now, solve the MFP, and if the value of the flow is less than L., then assigning c to k € K. 4
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on day d € D is infeasible, and we remove the node vﬁ 4 from V and the corresponding variable.

The graph can also be used for identifying a conflict. Consider course clique v € I'. For each
course ¢ € C, set the capacity of the arc (c,t) to L. if ¢ € Cy; otherwise, set it to zero. Consider
now course ¢y € Cy, day di € D, pattern ki € K, 4,, course c3 € C,, day d2 € D, and pattern
ky € K¢y, If ¢4 = co then we only consider di # dp. Set the capacity of the arc (s,s') to
L, — Ly, — Ly,. For each period p € P, if p € 73511 U 73522 then set the capacity of the arc (s,p) to
one and the capacity of (s',p) to zero, and if p ¢ 77511 U 73522 then set the capacity of (8,p) to zero
and the capacity of (s',p) to one. For each period p € P and course ¢’ € C, set the capacity of the
arc (p,c’) to one if p € Py\ (Pg, UPg,) orif ¢ =c1 Ap € Py ﬁpgll or if d =.éNpEg Py 077522 or
if & ¢ {c1,c2} Ap € Pu\ (73511 U 77522); otherwise, set it to zero. Solve the MEP ompthe graph, and
if the value of the flow is less than L., then there is a conflict and we‘addian edge to £ between
i and oM

c1,d1 c2,da”
We applied all the pre-processing techniques that we have(described in this section to the

v

model first, and then we detected the conflicts afterwards, as conflict/detection is affected by the
pre-processed model. In this paper, we have applied an additienal pre-processing technique that has
not been described by Bagger et al. (2016). We considered the model after the pre-processing and
conflict detection, including all the valid inequalities presented in Section 2.1, with the exception
of the w and s variables and their associated constraintsyi.e., we only consider the feasibility part
of the model. We then iterated through each variable :cf 4 and set the lower bound to one. Then
we solved the LP relaxation; if the model‘was.infeasible, we removed the variable. Otherwise, we

reset the lower bound of J:I(f 4 to zero.

3. Dantzig-Wolfe Decomposition

Martin (1999, chapter A1) states that the Dantzig-Wolfe decomposition should be chosen, so
that the pricing problemcontainga vast majority of the constraints, and so that the pricing problem
has a special structure. The model we have reformulated is the model from Section 2 with the
additional pre-processing) based on solving a series of LP-relaxations, as we have mentioned in the
end of Section2.2. However, we have not included all the valid inequalities described by Bagger
et al. (2016) We have only included the ones where all the variables that are within the support
can be associatéd with a single day. We have reformulated the model, so that we have a pricing
problem. for each day d € D. We want to keep the master problem simple. Hence, we only keep
the comstraints that ensure integer feasibility, or where the variables that are within the support
correspond to the same day.

For each day d € D, let Hy4 be the set of columns associated with d. In our reformulation, a
column h € H, represents a full pattern assignment for day d. Let )\? be a binary variable that
takes value one if column h € H, is selected for day d € D and let ag be the associated cost. For

each day d € D and column h € H; the parameter fﬁg is one if the column assigns course ¢ € C
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to pattern k£ € K. 4. Furthermore, we have defined the set Cryin C C as the set of courses where
substitutions (9) and (10) do not apply. Lastly, we have defined the set ©>5 C ©, which is the
set of the pattern cliques in © that contains variables from at least two different days. We have

formulated the LP-relaxation of our master problem (MP) as follows:

min Z WMWDy, 4 Z al\h (29)
c€Cmin deD,heHy
st Y LyghgMNi=Le, VeeC (30)
deD,heHy,
k?EICc’d
—k,hyh min
Z Toy Af +we > DI Ve € Cysin (31)
deD,heM 4,
k‘E/CC,d:Lkzl
> af TN < R, VdeDteT (32)
heH 4,c€CkEK 4
Z T]Z’g)\g <1, VOe @22 (33)
vidEVe,hEHd
Y Nj<1, VdeD (34)
heHq
we >0, Ve € Cunin (35)
Xj >0, VdeD,heHq (36)

Constraints (30) ensure that all leetures are assigned for each course. Constraints (31) calculate
the violations of the MWD constraints; for the courses where the substitutions (9) and (10) do not
apply. Constraints (32) enstire thatmo more lectures are scheduled in each period than the number
of rooms available. Constraints|(33) ensure that all the conflicts that spread over multiple pricing
problems are not vielated. Constraints (34) ensure that at most one column is chosen for each
day. We could make the)constraints as equalities. The reason that we have kept the constraints
as inequalities{ is that if we consider a column for a day where no lecture is scheduled, then this
column has“a cost of zero and it will not be within the support of any other constraints. We have
solved the model with a Column Generation algorithm where we have only considered a restricted
set ofteelumns in the master problem, i.e., the restricted master problem (RMP). The first columns
we addéd to RMP were found by solving the model described in Section 2 excluding the variables
w and s and all the associated constraints to these variables, i.e., we have considered only the
feasibility part. The solution of the model was then the first set of columns.

Let the dual variables of the constraints (30), (31), (32), (33) and (34) be denoted S, ¢c, fid ¢,
Cp and 7T2 respectively. Consider an optimal dual solution (B, o, 11, C, ﬁo) of the restricted master

. . . . . —k
problem in some iteration of the column generation algorithm. We define the parameter ¢, to be
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equal to ¢, if ¢ € Coin and Ly, > 1; otherwise, we set it to zero. For each course ¢ € C, day d € D
and pattern k € K. 4 we define ﬁf’ £

_ — =k _ -
T = LB+ b + Z a;Tig, + Z Co (37)

teT 96@22:11’;(16\/@

For a day d € D we describe the associated pricing problem in the following manner:-Let z¥ be
a binary variable taking value one if course ¢ € C is assigned to pattern k € K. 4 and Zero'etherwise.
Let 54+ be a binary variable taking value one if curriculum ¢ € Q has an isolatedlecture scheduled
in time slot t € T. For each day d € D, let ©4 be a set of cliques found in the same way as the
cliques O in Section 2. However, here we restricted the cliques to be in theSub-graph of the pattern
clique graph induced by considering only the nodes belonging to day,d. Note that, as we applied
the substitutions mentioned in Section 2, the variable s, is only, defined for |C; 4] > 1. Lastly,
let afid be the cost of pattern k € K. 4 for course ¢ € C and day 'd &P after the substitutions (9),
(10) and (12). We can then formulate the pricing problem for day d.€ D:

min >0 Whs+ 3 (ab, - 7)ok -7 (38)
qEQtET: ceC,kelca
|Cq,d,t|>1
s.t. Z ¥ =1, ¥eel (39)
kEKc,d
> ah TR Vo€, (40)
v’;dEVQ
SN <500, Vg€ QtET :|Cpasl > 1 (41)
CeCy ke
ab € B, VeeCkeKeg (42)
sqt €B, Vge Q,teT (43)

Consider & solution (Z,s) of the pricing problem (38) — (43) for day d € D. If the solution has
a negative’objective’ value then we can add it to the master problem as a new column h € Hy by
setting fl;’g =z} for every course ¢ € C and pattern k € Ked-

Weralso included the valid inequalities (18) from Bagger et al. (2016) that can be associated
with the specific day. The constraints (32) could be included in the pricing problem instead of
the master problem as each of them can be associated with a specific day. However, keeping these
constraints in the MP ensures that the pricing problem has a special structure. We have described

how we can exploit this special structure in Section 4.
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4. Pre-processing, Inequalities and Solution Method for the Pricing Problem

The pricing problems described in Section 3 can be difficult to solve for a generic MIP solver. In
this section, we describe the techniques we used to speed up the solution process. We describe how
we removed some of the variables of the pricing problem in an iteration of the column generation
algorithm in Section 4.1. Next, we describe how we used the pre-solving technique to derive
inequalities in Section 4.2. Lastly, we describe how we used Local Branching as described by
Fischetti and Lodi (2003) to solve the pricing problem in Section 4.3.

4.1. Pre-processing

In this section, we describe a pre-processing technique to eliminate seime/of the variables from
the pricing problems. The technique is based on the objective function coefficients of the x variables.
Since the coefficients change in each iteration of the column generation algorithm, the variables we
removed in one iteration must be reinserted for the next iterations

Consider some course ¢ € C in the pricing problem for the day<d € D in any iteration of the
column generation algorithm. Consider the patterns ki ks € K q where ki # ko. In the pre-
processing technique, we consider a feasible solution“wherenc is assigned to ko. Then we check
if the solution is still feasible if we reassign ¢ to patternsk;. If the solution is still feasible, then
we check whether the objective value increased aftér the reassignment. Here, we exploit that
the room occupancy constraints are part of the master problem, so we only have to consider the
constraints (39) and (40) in the pricing problem for feasibility. When ¢ is assigned to ko, then the
value of the variable 2¥2 is one. Assigning c to'k; instead of ks corresponds to setting the value of
xk2 to zero, and the value of %! toone. Both x¥! and z*2 are in the constraint (39) associated with
¢, which implies that since the.solution was feasible before, then this constraint cannot be violated
in the new solution. Let G4= (Vg,€4) C G be the sub-graph, where V; C V is the set of nodes
associated with day d ands&y; CE is the set of edges where both end points are in V;. Every edge in
&, is contained in at least.one of the constraints (40). To check if the constraints (40) are fulfilled,

we need to considet. thesneighbourhoods in G; of the nodes vfld, vfz € V,. Let the neighbourhood of

vf’ 4 In Vg, excluding every node that corresponds to ¢, be denoted by N, C’fd C Vg for every k € K. 4.
Note that vfﬁi and Uf?d must be connected by an edge since ¢ cannot be assigned to more than one
pattern. Assume that every node in N/ Ckzl is also a neighbour of vffd, so, N f LCWN; Ckil This case is
illustrated in=Figure 2.

For any solution where ¢ is assigned to ko, the values of all the variables that correspond to
the neighbours of vffd must be zero. Since N Ckil is contained in the neighbourhood of vffd, then all
the variables in N C’f;l must also be zero. When we reassign ¢ from ko to ki it means that we are
changing the value for %2 from one to zero, and the value for z¥! from zero to one. As all of the
variables in N Ck;l are zero, and we have now changed x*2 to zero, then in all the constraints (40)

where mlgl is within the support, all other variables must be zero, which means that the solution
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Figure 2: Illustration of the nodes in the pattern conflict graph, G4, corresponding to the patterns, k1 and ko for
course ¢, and the neighbourhood N f LC V.

must be feasible. We did not account for the nodes UZ g for ke ke q\{k1, k2}, but as c is assigned
to exactly one pattern, then all these variables must be zerojas well. Now, we need to check if we
can guarantee that the objective value does not increase.

Consider the objective function (38), which consistswof a sum of the s variables followed by a
sum of the x variables and a constant. The change of'the sum of the x variables is the difference
between the coefficients of x¥1 and z¥2. The change\in the sum of the s variables is unknown, as
it depends on the assigned patterns of th€wether courses. However, if we assume that we know

ko

an upper bound 5fld’ on how much the value,ean increase, then the total objective value cannot

increase under the following condition:

ok, ) — (ol —7k) = ol™ (44)

The upper bound 52161”“2 is determined by the maximum number of isolated lectures that are
introduced when wesmake the reassignment. Consider the difference in the time slots that are
contained in the twe patterns. As an example, let |7| = 6 and let pattern ky contain lectures in
time slots to and t3, and let pattern k; contain lectures in time slots ts, t3, and t5. This example
is illustrated~inya matrix in Figure 3. Each row in the matrix corresponds to a pattern and the

columns correspond to the time slots. The symbol ” x” denotes that the pattern contains a lecture

in theseorresponding time slot.

t oty t3 ty ts tg

ko
ky

Figure 3: Illustration of the example of changing out pattern k2 with ki. Here a lecture is added.
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As we are reassigning ¢ from ko to ki, then this means that c is assigned an extra lecture in
time slot ¢5. Since the pattern ki does not contain a lecture in either time slot ¢4 nor in time slot
tg, then the lecture in ¢5 is potentially a new isolated lecture for every curriculum that ¢ belongs to.
So for every lecture that is added in the reassignment, if k1 does not have a lecture in an adjacent
time slot, then there is a potentially isolated lecture.

The next step is to consider the case where lectures are removed. Consider an example where ks
contains lectures in time slots t3 and 5, and kj contains a lecture in t3. This example isillustrated

in Figure 4.

t ty t3 ty ts tg

ko
k1

Figure 4: Illustration of the example of changing out pattern ke withuki. Here a lecture is removed.

When we reassign ¢ from ko to ki, time slot t5 is removedyand the time slots that are adjacent,
t4 and tg can become potentially isolated lectures. Since ki contains a lecture in time slot t3, which
is adjacent to t4, then only tg is counted as a potentialisolated lecture. So, when a lecture gets
removed from the reassignment, we consider the adjacent,time slots as potentially isolated lectures,
unless there are lectures adjacent to those time slots\in the new pattern.

After we have found all the potentiallyiiselated lectures, we iterate through every curriculum
that ¢ belongs to, i.e., Q.. For each ¢ € Qr we consider all the potentially isolated lectures
previously found. We then removedevery time slot ¢ where af = 0 for every k € Ke.q and every
d € Cy, i.e., if no course can be stheduled/in ¢, this means that there cannot be an isolated lecture.
As an example let the potentialiisolated lectures for ¢ be in time slots t9, t3, and t5 after the

reassignment. This example isjillustrated in Figure 5.

t1 to t3 tyg t5 tg

Figure 5: Illustration of the potential isolated lectures.

Let a'sequence of these potentially isolated lectures be a set of consecutive time slots where
there is“anlecture in each of them but no lecture after the last and before the first lecture. In the
example in Figure 5 there are two sequences; the first sequence consists of time slots to and t3,
and the second sequence consists of time slot ¢5. It is not possible to have two isolated lectures in
adjacent time slots, so the maximum number of isolated lectures in each sequence is the number
of time slots in the sequence divided by two and rounded up to the nearest integer.

We calculate the value of 6fyld’k2 iteratively, and we initially set it at zero. Then we iterate over
all the curricula Q.. For each curriculum we iterate over every sequence {t;,ti11,...,t;}, after we
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removed some of the time slots as mentioned before, and then we add the cost of the maximum

. . . k1 ,k
number of isolated lectures in this sequence to 4, %"

o
R R P” ] (45)

2

Now we have calculated an upper bound on the increase in the cost of the isolated lectures.
For a course ¢ € C and pattern kq, ks € K 4, we say that k1 dominates ko, if ./\/fil C Nc’fz and (44)
is fulfilled. If one pattern dominates another, then it implies that we can removesthe dominated
pattern from the solution and the node from the graph. Note that every time we remove a node
from the graph, the graph is changed. The change of the graph can affect the deminance of some
pairs of nodes. As an example, consider course ¢ € C, day d € D, and patterns ki, k2 € K4 where
(44) applies and Nfil\/\/'ckz = {vf/7d}, i.e., there exists a node vf,’d € chil where v?d ¢ /\/'C’fz, so ky
does not dominate ko. Assume that during the pre-process, we removed. the node U?,’ 4 from the
graph. Then N ckil - ./\fckz is valid after the removal, and k1 now(dominates ko. Therefore, whenever
a node is removed, we can potentially create more dominatéd nodes that can be removed. Instead
of checking the entire graph over, whenever we remove a riode, wesiterate through the nodes one at a
time and check if it can be removed, while we take thepreviously removed nodes into consideration.
The order in which we processed the nodes was based onya lexicographical decreasing order. For
the lexicographical ordering we defined an indicatorwvariable I f g for each node Uf} 4~ The indicator
variable is set to one, if there exists any patternyk” € K. 4, where the neighbourhood of fugd is

contained in the neighbourhood of vf’,d:

Ik/' . 1, Elk/EICQdNCIngchjd
c,d T .
0, otherwise

We then say that for_two nedes vf & ’Uf,/ a4 € Va, vf 4 18 lexicographically larger than or equal to
vf,/ 4» denoted by vf 2 lea vf,/ 40 if the following holds:

k K k K k
Iea> 1o gV (Ic,d =1l g N )Nc,d

/
> ‘Ng,d

) (46)

Instead of actually removing the nodes from the graph, we kept track of which nodes that were
in the graph by the parameter U B¥ for each course ¢ € C and pattern k € Keq. First, we initialized
U B¥o.be one for every ¢ € C and every k € Kec,q- Then, when a node v(’i 4 Was removed from the
graph, e changed the corresponding value to zero: UB¥ < 0. The values U B* were then used as
upper bounds for the corresponding variables in the pricing-problem. The process is summarized
in Algorithm 1.

We applied the pre-processing technique in Algorithm 1 before we solved the pricing problem
in every iteration of the column generation algorithm. When we solved the pricing problem, we

then unfized the variables again, i.e., we changed the upper bounds of the variables back to one,
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Algorithm 1: PreProcessPricingProblem

input: The nodes Vjo” in lexicographical decreasing order according to (46), the value
5fl(1’k2 for each course ¢ € C and patterns ki, ko € K. q where k1 # ko

Initialise the upper bounds UB¥ < 1 for all the variables

// Iterate over all the nodes in the sorted order

for v 2 e V5ot do

// Iterate over all the other feasible patterns for the course
for £ € ’Cc,d\ {]{2} do

if UB¥ =1 and condition (44) is met then

// If \73\ is empty or all the upper bounds for #£h¢ co¥responding
variables are set to zero, then the upper bound§g¢T™the variable
associated with lfb can be set to zero

if MLV =gy <UBC, — 1,k € N’“\’”) then
UB§2 0
break

so they were ready for the next iteration.

4.2. Optimality Inequalities

In this section, we describe an extension te_the pre-processing technique from Section 4.1. Like
in the pre-processing phase, the inequalities we derive here are only applicable in a single iteration
of the column generation algorithm. ‘Consider some course ¢ € C in the pricing-problem for day
d € D in any iteration of the/columnigeneration algorithm. Consider the patterns kq,ke € K. g4,
where k1 # ko. We only conisidered the patterns k1 and ko, in Section 4.1, where we could guarantee
that if we had a feasiblé solution when ¢ was assigned to ko, then we could create a new feasible
solution by reassignifig cto k1. In this section we do not keep this restriction, but consider every
pair of patterns &; aud kp where the condition (44) is fulfilled.

Let the neighbourhood of the node vffd in Gy, except for the nodes corresponding to ¢, be
denoted M Ck 1 CVgEvery node in N f;l was a neighbour of vffd in Section 4.1. As we have removed
this restrietion in this section, then there might be some nodes in N C’fél which are not neighbours
of v “We_ denote these nodes by Nkl\kz 1\ ?

a nelghbour of vc Y

i.e., every node in N is a neighbour of vfld, but not

Given any feasible solution where c is assigned to ko then reassigning c to k; is a feasible solution
k1\k2

only if the values of the variables corresponding to the nodes in N are all zero. This means
that if none of the variables in A 07(11\ * are selected (have a value of one), then we can reassign c to
k1 without increasing the objective value. So it cannot be beneficial to assign ¢ to ko, if none of
the variables in N kl\ ? are selected, which leads us to the following inequality:
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k k1\ka
Uc’,dENc,d

Note that if N Ck é\kQ = (), then the right-hand side of the inequality is zero, and we have the
case from the pre-processing in Section 4.1. Hence, we only consider k; and ks where N f é\ka £ .
We do not add the inequalities (47) to the pricing-problem as the number of these censtraints is
O (\ICC,d|2>. Instead, we do an aggregation. Consider again the course ¢ and pattermik; € K¢ q. Let
V' C K. q be the set of patterns where J\/C]fil\l€2 # () and where (44) is fulfilled for every ko € V'. We
let Nc]f(li\vl C chil denote the union of all the sets Nj;\]@ for ko € V', i.e., (f(li\w Uk, evr Nclfil\b.
We illustrate this in Figure 6.

k1\V’
c,d

Figure 6: Illustration of the nodes in the pattern.conflict graph G, corresponding to the course ¢, the pattern k1, the
set of patterns V', and the set of nodes ij\v =Uyevr Nj}i\k?

. . N . E1\V/ .
Consider any feasiblesolution where none of the nodes in N il\v are selected, i.e., the corre-

sponding variables are all set to zero. In this solution it is not beneficial to assign ¢ to any of
the patterns in V{ias/wejcan create a new solution by reassigning ¢ to ki without increasing the

objective valug. So wejcan add the following inequality:

Z ¥ < Z ¥ (48)

K/ ’ ’ R \V/
vy eV k 1
c,d vc/,de'/\/‘cyd

We'\have to be careful when we add these constraints as they can cut away the optimal
solution. As an example, consider the pricing problem for day d € D, and a course ¢; €
C where K. 4 = {ki,k2}. Assume that both (alzid—ﬁffd) - (o/;l,d —ﬁ’jll’d) > 55117’52 and
(a’; d —ﬁflly d) - (0/;27 d —ﬁlzi d) > 65127’51 holds. Let vfs 4 be the only neighbour of vfll 4> Which

is not a neighbour of vff 4 and likewise, let vf; 4 be the only neighbour of vff g Which is not a
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neighbour of vfll 4+ The example is illustrated in Figure 7.

k3 k4
ca,d U03 ,d

k1
c1,d

ko

v c1,d

v

Figure 7: Illustration of the example for the pricing problem for d € D, and course ¢1 € C, where K., a = {k1,k2}.

ks o . k1 . t . ko ka ce . ko .
.o 4 is the only neighbour of v ;, which is not a neighbour of v.? ;, and v, ; is the only neighbour of v.? ;, which

. . k1
is not a neighbour of v | ;.

In the example in Figure 7 the constraints (48) are: v La S Uk4 and va 2= vk5 Assume that
ffg’ = :L’k“ = 0 in any optimal solution. Due to constraints (39), we must assign c¢; to either ky or
ko as these are the only feasible patterns, however, the constraints=«(48) implies that a:kl = x’” =
in the optimal solution, which is infeasible.

The way we avoid this issue is to create a list L of all‘the patterns that we allow to be included
in the left-hand side of the inequality (48). Initially“this=list contains all the patterns of ¢, i.e.,
L < K.q4. We then iterate through every patternk; € K¢ g4, and construct the set V. We then
remove the patterns from V' that are not incthe'sét L. If V' is non-empty, then we add the
inequality (48), and remove k; from L. We continue this procedure until all courses and patterns
have been processed. If we use the example from Figure 7, then we initialize the list L < {k1, ka2}.
We then process k:l € L, and construétuthe set V' < {ko} N L = {ka}. As V' # 0, we add the
constraint 272 < ;1: > 4 and remove kiyfrom L, ie., L <= L\ {k1} = {ka2}. Next, we process ky € L,
and construct the set V' < {ki} VE =4. As V' = (), then the constraint a:kl < 2% is not added,

and the optimal solution ismot cutiaway. The process is summarised in Algor1thm 2.

4.8. Local Branching

In this sectiongwe praovide a brief introduction to Local Branching introduced by Fischetti and
Lodi (2003), and howswe applied it to the pricing problem. Local Branching is a framework for
general MIPs, that explores solution neighbourhoods by adding invalid inequalities. The neighbour-
hoods are searched by a general MIP solver. In our description of the local branching framework
we focus omwetr implementation and do not cover every aspect of the techniques described by
Fischetti and Lodi (2003). We refer to Fischetti and Lodi (2003) for details, and a more general
description.

Given a feasible solution 7 let A (z,%) be the distance between the solution Z and any other
solution x. The idea of the local branching framework is then to explore the neighbourhood of the
solution T by applying the constraint A (z,7) < & to the MIP model for some value x and then

solve the model with a generic MIP solver. Hopefully this model is much easier to solve than the
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Algorithm 2: AddOptimalityInequalities
input : The pricing-problem d € D, an upper bound U B for each course ¢ € C and
pattern k € K. 4, and the value 6fld’k2 and the set of nodes N il\ ? for each course
c € C, pattern k1 € K. 4, and pattern kg € K¢ g\ {k1}

// Iterate over all the courses

for c € C do
// Initialise the list L to contain all the patterns of c

L+ ICc,d

// Iterate over all the patterns that are feasible for the £ou®ge c
for k1 € K. 4 do

// Initialise the sets ) and Nfb\ to be empty

Vi1

NI g

// Iterate over all the patterns that have aowBeen removed from L
for ko € L\ {kl} do

if UB* =1 and condition (44) is met then

// hdd v*2 to V'

Vieviu o)
// Add every node in N,
AV

c,d

Nlﬂ\v Nk’l\V {Uf//d =N kl\k2 | UB }

\AZ, whefe the upper bound is one, to

if V' ;é () then
Add the constraint” (48)to,the pricing-problem
// Remove k; frew the’ set L to avoid cutting away optimal solutions

L I\ {k)

original model, andWopefully, there is a better solution inside the neighbourhood of Z. Since the

variables x ar¢ binary,then a distance measurement can be the Hamming Distance:
Az =Y o+ % (1 - x'g)
ceC,ke:TE=0 c€C,keKTk=1

and x can be any non-negative integer value. This distance measurement counts the number of
variables in x that change value compared to the solution Z. Due to the constraints (39), we know
that if one variable changes value from one to zero, then another variable must change value from

zero to one. Therefore, we redefine the distance measurement to only count the number of binary
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variables that change value from zero to one (Fischetti and Lodi, 2003):

Al(x,T) = Z zk

c€C,ke:Th=0

This distance measurement is referred to as the Asymmetric Hamming Distance. When a neigh-
bourhood of a solution has been explored we can then replace the constraint by A (x4%) > k + 1
which leads to a branching framework, i.e., given a solution T we can branch the preblem into two

sub-problems:

A(z,7) <k A(z,7) > Kk+1
(left branch) (right branch)

In the basic local branching framework the left branch is solved by a generic MIP solver to opti-
mality. If the optimal solution is an improvement of T, then it is‘usedias the branching solution in
the right branch to create two new sub-problems.

When the basic local branching framework cannot find improving solutions, then Fischetti and
Lodi (2003) described methods to diversify. In its esseneepthe goal of the diversification is to find
a new solution outside of the explored neighbourhoods. I such a solution can be found, then the
local branching framework can be reapplied onthat solution.

The question that remains is how to select the.solutions on which to apply the local branching
framework. The goal of the pricing problemtis to.find solutions with a negative objective value. So
if we consider some solutions which almost have a negative objective value, then we can use them
in the local branching framework,

Assume that we are in some iteration of the column generation algorithm, where we have
added columns to the RMPZin previous iterations. As we are considering an optimal solution of
the RMP, none of thesescolumns has a negative reduced cost, but some of them might have a
reduced cost of zero, e.g./ the columns that are basic. The reduced costs of these columns are
equal to the objective'values of the corresponding solutions in the pricing-problem. Hence, the
previously generated eolumns with a reduced cost of zero, can be used as the branching solutions
for the localbranching framework.

In our implementation, we took all the previously generated columns that are basic in the RMP,
as we know that the reduced costs of these columns are zero. For each of these columns we let Z be
the number of variables that are set to one in the column and fixed to zero in the pre-processing
from Section 4.1. When we add the local branching constraint on that column, then if Z > x4+ 1,
the model becomes infeasible. Therefore, we only consider columns where Z < k. We then put the
columns where Z < k in a ordered list, so that the first column in the list is the last column that was
generated in a previous iteration, and the last column in the list is the first column to be generated

in a previous iteration. We use the first column in the list as the initial solution for the basic
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local branching framework, and the remaining columns are used for diversification. To illustrate
this, consider an example of four previously generated feasible columns with a reduced cost of
zero; T, T2, > and T*. We denote these columns as O-columns. In Figure 8a a two-dimensional

representation of the solution space of the pricing problem is represented with the four O-columns.

(a) The beginning of the search (b) During the search (c) The end of the search
n 7> 7 LN L]
—1 / Y72,
T m | ] %) ]
\ / 3y A
\ A e ] o o
. 7 7
\- /. /
o
S n n
u - "

") Removed neighbourhood

Previously generated 0-column 5

Current solution -~ .
{.:::) Current neighbourhood
¢ Next solution =

/]
\

e Negative reduced cost column 7) Next neighbourhood

Figure 8: Illustration of,the'solution space of the example.

We first add A (x,fl) < k to thie model and solve it to optimality. Assume that the optimal
solution 7} has a lower objectivevalue than F'. We then replace A (;U, fl) <kbyA (:U, fl) >k+1
and add A (at,ﬂ) < k to theimodeél. Again, we solve the model to optimality and find the solution
75. In Figure 8b the currént'state of the search is illustrated. The solution Z1 is illustrated as a
triangle and denoted agthe current solution. The solution 73 is illustrated as a small diamond and
denoted as the nezt’'solution.

After the neighbeurhood of 73 is explored, then no further improving solutions are found. The

2

solution 7?2 is/skipped’as it is inside the searched neighbourhoods. Next, the solution 2, which

is outsidesthe neighbourhoods, is provided. The local branching framework is applied once again,

leading tosthe improved solution 2. No improved solutions are found in the neighbourhood of

72, and"so,the neighbourhood of the last solution * is searched. Here no improving solutions are
found, and the local branching is stopped. In Figure 8c the solution space after running the local
branching framework on all the O-columns is illustrated. The squares mark the 0-columns, and the
dots mark the columns found with a negative reduced cost.

If any columns with a negative reduced cost were found during the local branching search,
then we added these to the RMP and stopped. We did not search for solutions in the remaining
solution space in that iteration of the column generation algorithm. If no columns with a negative
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reduced cost were generated, then we solved the model to optimality, with all the added right local
branching constraints A (z,Z) > k + 1, and any columns found here with a negative reduced cost
was added to the RMP. Our implementation of the Local Branching heuristic is summarized in

Algorithm 3.

Algorithm 3: LocalBranching
input : The pricing problem d € D, the basic columns basicColumnsg from RMP for d,
and the upper bound U B for each course ¢ € C and for each pattern k € Ke.d

output: The columns columnsyg with a negative reduced cost

columnsg + 0

// We initialise the set considered to be empty, as we havéugtmprocessed any
basic columns yet

considered + ()

// best =0

// We iterate over all the basic columns

for col € basicColumnsy do

// Let T by the solution corresponding totheWgodumn col

// Calculate the Z value to check if themmedghbourhood is infeasible

Z ¢ Yeecher,, (1= UBE) T

// Iterate over the previously considegre@basic columns

for col’ € considered do

// Let T by the solution cemgespodding to the column col’

// Update the Z value to che®dk 1If col’ is inside a previously explored
neighbourhood

if Z < k then
considered < considered'U {col }
Solve the priging problem with the added local branching constraint A (%, z) < k
// Let locubglumns be all the columns found by the MIP solver, in
decréasging§erder of the reduced costs
for col’ ElocalColumns do
Y/ Let JR., be the reduced cost of the generated column col’
if R .4 < best then
columnsg < columnsg U {col’}
L best = R.op

5. Computational Results

In this section, we describe our computational experiments and compare our results with other
approaches from literature. We have conducted all tests on an Intel® Core " i7-6700K CPU
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@ 4.00GHz processor with four cores, each with two threads, and 32GB memory, and running
Windows 10. We used Gurobi version 7.5.1 provided by Gurobi Optimization, Inc. (2016) both
for the RMP and for the pricing problems. We set the pre-solver to the most aggressive setting
(Presolve=2), the number of threads that can be run in parallel to be equal to the number of
threads of the computer (Threads = 8), and the MIP gap to zero (MIPGap = 0.0). The cut-off
value was set to —107° (CUTOFF = -le-5) in the pricing problems, so the solver will.not return
solutions with objective values, which are greater than —1075. We set the limit on/the solutions
to be returned to be the maximum possible (PoolSolutions = int.MaxValue), s6 we can extract
all the columns that Gurobi generates with a negative reduced cost. The remaining parameters
were set to their default values. We implemented our code in C# and usedithe Parallel. ForEach
method from the System.Threading.Tasks library to solve the pricing probléms in parallel as they
are independent.

We followed Cacchiani et al. (2013) and tested our algorithm on 20»0f the 21 data instances
from I'TC2007 named compO1 through comp21. The instance“that we /did not include in the tests
was compll, as the best-known upper bound is zero, thusywe cannot improve the trivial lower
bound of zero.

We built the models for the pricing problems in Gurobi once, and then changed the objective
function accordingly in each iteration, because the, pricing problems are the same, except for the
objective function, in each iteration. We solved the RMP in every iteration, and retrieved the dual
information. For each pricing problem, wesstarted by running the pre-processing from Section 4.1.
After the pre-processing, the inequalities from~Section 4.2 were added and then the local branching
was applied to the resulting modell As the values 5f7ld’k2 and the sets N Ck il\kg from Section 4.1
and 4.2 are static, i.e., they do/not change between iterations, we calculated all of these values
and sets, before we started the column generation algorithm. We extracted all columns found by
Gurobi, that had a negative reduced cost, and added them to the RMP. Afterwards, we removed
all the constraints that. we may have added in the pricing problems, and reset the upper bounds
to one. We stopped’the algorithm if no columns were generated, or if the lower bound of the MP
was greater tham.oriéqual to the upper bound of the LP-relaxation of the MP. In each iteration
of the column generation algorithm, the objective value of the RMP is an upper bound to the
LP-relaxation of'the MP. The lower bound of the MP is equal to the objective value of the RMP,
plus the sum of/the lower bounds of all the pricing problems (Desrosiers and Liibbecke, 2010). We
know \that,the objective value for any integer solution is an integer, so we rounded up the lower

bound to the nearest integer. The process is summarized in Algorithm 4 and 5. In both of the
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algorithms, we use the following notations:

(5 — {5k17k2} 49
c,d c€C,k1€EKc,a,k2€Kc,a\{k1} 1)
k1 \k
N o= {Nc,cll\ 2} (50)
ceCk1€Kc a,ka€kc g\ {k1}
In Algorithm 5 we use the notation:
UB = {UB?} (51)
CGC,kGICC,d

Algorithm 4: ColumnGeneration

// The following nested loops pre-calculate all the ()(]‘tjkz and ‘the sets N*\F2

"c,d
for d € D do '
for every node vffd €V, do
for ko € K g\ {k1} do
L Calculate 62151”“2 from (45)
k1 \ ko

Compute the set of nodes N

Let Vjo’"t be the nodes Vg, sorted in the lexicographical decreasing order (46) for each d € D
// Initialise the variable columnsG&regatéd to be one
columnsGenerated < 1
// Initialise the upper and lower byund
UBMP < 00, LBMP — —0Q
while columnsGenerated > 0N\ EByp < UBpp do
columnsGenerated < 0
Solve RMP and let UB);p be’the objective value
Retrieve the dual solution (B, @, 11, Z,ﬁo) and compute the values ﬁ’é 4 according to (37)
// Iterate over Al1 the pricing problems in parallel
for de D do
// LB;%fid golumnsg is the lower bound and the columns returned by the

pricingyproblem d € D
(LBg, columnsg) < SolvePricingProblem (d, Vj"”,ﬁ,fo, N )
/M The following loop may not be possible to run in parallel

for deD do
L Add all the columns in columns, to the RMP

¥/ Recalculate the lower bound

LBMP < Imax {LBMP, [UBMP + ZdeD LBd—| }

// Calculate the total number of columns generated in this iteration
columnsGenerated < ) ;. |columnsg|

In Table 2 we have reported the timings of the algorithm with three different settings: BASIC,
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Algorithm 5: SolvePricingProblem

input : The day d € D associated with the pricing problem, the nodes Vj"” in sorted
order, the dual values (ﬁ, ﬁo), and the value 5f7ld’k2 and the set of nodes N/ Ck é\l@ for
each course c € C, pattern ky € KC¢ 4, and pattern ko € K. 4\ {k1}

output: A lower bound LBy of the pricing problem, and the generated columns columnsg

for vfld €V do
//7Initia1ise the upper bound to one
UBF + 1
if pre-processing is activated then
// Run Algorithm 1
| UB <« PreProcessPricingProblem (d,UB,7,0,N)

f optimality inequalities are activated then
// Run Algorithm 2
| AddOptimalityInequalities(d, U B, T, J, N)

columnsg < 0

if local branching is activated then

Extract the basic columns basicColumns,y from=RMP.for d
// Run Algorithm 3

columnsg = Local Branching (d, basicColumnsgsU B)

e

if columnsy = () then

Solve the pricing problem to optimality

Extract all solutions where the objective value is negative and add them to columnsy
if columnsy # () then

‘ Set LB, to the most negative objective value of the solutions in columnsg

else

L// Set the lowe#bofind/to zero, as no columns were generated

LB; +0

else
// Calculap®" a Power bound, by using the information that every course
must gehelt pxactly one pattern, that has an upper bound of one

—0 : k =k k _
LB 7Ty + Y ec mingex, 4 {O‘c,d —Ted |UBy = 1}

Remoye all optimality inequalities and local branching constraints, if any were added
Reset all the upper bounds UB* to one

PREPRO, and PREINEQ. In BASIC, we solved the pricing problems without the pre-processing,
inequalities or local branching. In PREPRO, we solved the pricing problems with the pre-processing
activated, and without the inequalities and the local branching. In PREINEQ), we solved the pricing
problems with the pre-processing and the optimality inequalities, and without the local branching.

The timings have been reported in the format hh:mm:ss where hh is the amount of hours, mm is
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the amount of minutes, and ss is the seconds.

Table 2: The total time spent in the column generation algorithm for the basic implementation (BASIC), with
pre-processing in the pricing problem (PREPRO), and with pre-processing and inequalities in the pricing problem
(PREINEQ).

Instance BASIC PREPRO PREINEQ

comp01 1:43 2:41 3:37
comp(02 21:42 13:37 20:17
comp03 21:14 14:57 22:45
comp04 2:23 2:31 3:51
comp05 3:08:19 1:53:53 2:14:56
comp(6 19:29 20:05 27:43
comp07 11:53 11:31 14:55
comp08 2:33 2:51 3:46
comp(9 3:33 3:50 5:16
compl0 9:23 8:26 11:50
compl2 49:33:18 31:31:44 49:59:54
compl3 3:36 3:58 5:47
compl4 5:19 4:57 6:41
complb 20:10 15:06 21:06
compl6 24:56 21:08 27:06
compl? 36:58 28:44 49:34
compl8 38:53 34:11 44:12
compl9 3:37 3:36 59:33
comp20 13:26 14:38 19:51
comp21 50:59 36:07 1:05:16
Total 57:33:23 37:28:32 58:13:57
Best 7 13 0

In Table 2, we see thatdthe,pre-processing improves the running time for 13 of the 20 instances.
The additional time fot the 7 instances where the running time is not improved is within a few
minutes. This is due to the time spent on calculating the ¢ values and the sets A. Overall, we
observe that thespre<processing reduces the total running time of all the instances, by nearly 20
hours. We also see that adding the optimality inequalities does not help the algorithm, in fact it
makes the’running”time longer. The reason for this is that these constraints are generated and
added in every iteration. In any given iteration, we create thousands of these constraints, so most
of the time is spent on altering the pricing problems. Another thing we can see in Table 2 is
that instance compl2 has a significantly longer running time. The reason for this is related to the
curricula and the IL constraints.

In Table 3 we have reported the results of the column generation algorithm when the IL
constraints have been removed. For each instance, we have reported the total number of variables in
the pricing problems (s) used to model the IL constraints. In the next two columns (CG w/o IL), we

have reported the lower bound obtained (LB), and the total running time of the column generation
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algorithm (Time), when all the IL constraints have been removed from the pricing problems. In the
last three columns (Pricing problem components), we have reported the statistics of the connected
components of the graphs G = (Vy,&y) for the pricing problems. We have reported the statistics
of the connected components, as the nodes are related to variables in the pricing problems, and
the edges are related to the C constraints. So, if the graph G; has many connected components,
then we can expect the associated pricing problem to be highly decomposable. Gurobi is able
to automatically detect, and exploit when the models can be decomposed. For eachl instance, we
report the total number of connected components for all the pricing problems (Total), the average
number of nodes in each connected component (Avg. nodes), and the average.number of edges in

each connected component (Avg. edges).

Table 3: Statistics of the pricing problems (Pricing problems), and the column generation algorithm when the IL
constraints are removed (CG w/o IL). For each instance the number of variables to model the IL constraints is
reported (s).

CG w/o IL Pricing problem components
Instance S LB Time | Total Awvg. nodes Avg. edges
comp01 390 0 1:35 10 792.7 116750.1
comp02 1579 0 2:16 15 492.5 38794.9
comp03 1463 0 1:29 34 192.3 14074.2
comp04 1118 0 1:17 50 156.7 9461.3
comp05 3357 | 15 2:26 14 410.6 49266.2
comp06 1593 0 2:29 44 225.9 16193.5
comp07 1810 0 3:52 19 654.5 46654.7
comp08 1219 0 1:14 41 199.5 9707.2
comp09 1412 0 1:13 22 338.8 21074.2
compl0 1570 0 2:45 15 675.3 47143.9
compl2 3934 0 3:30 7 1163.3 141774.7
compl3 1265 0 1:11 50 157.4 8655.6
compld 1312 0 1:41 28 266.9 21217.6
complb 1463 0 1:31 34 192.3 14074.2
compl6 1651 0 2:36 25 419.6 29989.2
compl7? 1546 0 2:16 35 267.5 18819.3
compl8 1355 0 1:08 12 489.0 50973.7
compl9 1287 0 1:23 39 168.9 10818.8
comp20 1863 0 3:13 12 915.6 66151.5
comp2l 1639 0 3:07 36 261.9 19704.5

In Table 3, we see that when we removed the IL constraints, the column generation algorithm
was significantly faster for all the instances. We also see that the number of variables to model the
IL constraints, is largest for instance compl2, which was also the most time consuming instance.
We see that the number of variables to model the IL constraints, is not much larger in compl2
than in comp05. However, when we consider the connected components in the pricing problems,
we see that compl2 has the lowest number of connected components in total, and the average size
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of the connected components is largest for comp12 both in terms of nodes and edges, which makes
the pricing problems intractable.

Next, we activated the local branching heuristic in the pricing problems. We need to decide the
value for « in the local branching framework. Fischetti and Lodi (2003) suggest to set it between 10
and 20, which in our case is between 5 and 10, as we are using the Asymmetric Hamming Distance.
So we have tested the algorithm for kK = 5 and k = 10. Furthermore, we have also tested for k = 2
to mimic a 2-exchange heuristic (Wolsey, 1998). The total running time, including the time for
building the model, the pre-processing and the enumeration of cliques, is reportéd in Table 4 for
k € {2,5,10}, and for the algorithm without local branching (PREPRO). Inhe line (Total), the
total amount of time spent is reported for each value of k, and (Best) counts the mumber of times

each value of k has the lowest running time.

Table 4: The total time spent in the column generation algorithm without local branching (PREPRO) compared to
local branching for different values of «.

Instance PREPRO k=2 K =8 k=10
comp01 2:41 3:37 2:57 2:54
comp(2 13:37 42:16 43:19 29:44
comp03 14:57 20:22 28:08 23:25
comp04 2:31 18:06 8:34 6:41
comp05 1:53:53 1:31:38  2:31:57  4:29:03
comp06 20:05 50:14 51:33 54:43
comp(7 11:31 1:20:48 41:14 35:51
comp08 2:51 18:59 9:06 9:28
comp(9 3:50 25:51 14:32 14:13
complO 8:26 1:26:17 40:31 30:58
comp12 31:31:44 18:43:19 22:56:24 52:43:50
compl3 3:58 26:59 17:20 16:04
compl4 4:57 22:05 17:11 15:05
complb 15:06 17:50 21:56 18:56
compl6 21:08 1:22:25  1:09:42 40:06
compl? 28:44 49:57  1:04:27  1:10:50
compl§ 34:11 57:12 39:53  3:37:03
comp19 3:36 15:37 12:23 10:10
comp20 14:38 2:26:58  1:41:10  1:12:05
comp?21 36:07 51:27  1:15:31  1:26:43
Total 37:28:32  33:51:54 36:27:48 69:47:49
Best 18 2 0 0

In Table 4 we see that for most of the instances, our implementation of the local branching
framework did not help to reduce the computational time. The reason is that the time it took for
Gurobi to solve the pricing problems for these instances was very close to the time it took to solve

a single neighbourhood (A(x,7) < k), and since we solved multiple neighbourhoods in the local
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branching framework, the algorithm was slowed down. If we look at the total running time for all
the instances it can be seen that the algorithm was fastest for k = 2. Most of that improvement
of the running time was due to instance compl2, where the running time was improved by almost
13 hours.

In Table 5 we report the statistics of the fastest version of the column generation algorithm
for each instance. For all of the instances, we report the statistics when the pre-progessing was
activated, and the optimality inequalities were deactivated. For the instances, comp05 and comp12,
we also activated the local branching framework for x = 2. For each instance we report the
number of iterations (Iter.). Then in the two following columns (Columns), wé report the number
of columns that were generated in total (Total), and, for comp05 and compl2, how many of them
that were generated by local branching (LocBra.). In the next four eolumns™(Time) we report
the timings of the algorithm. The total time spent by the algorithm is reported in the column
(Total). The time spent on building the models, enumerating the cliques; and pre-processing the
pattern formulation is reported in the column (Build). The“next two columns, report the total
time spent on solving the RMP (Master), and the total timeispent)on solving the pricing problems
(Pricing). In the time spent on the pricing problems, the pre-processing, constraint generation and
local branching is included. The timings are given in‘the format hh:mm:ss as in Table 2. The
last two columns (Patterns), report the total numberjof pattern variables in the pricing problems
(Total), and the average number of pattern variables that were removed by the pre-processing in
the pricing problems. The last line reportssthe ‘average time spent in each part, compared to the
total time, and the average number of pattern variables removed, compared to the total number
of pattern variables in the pricing problems.

In Table 5 we see that for comp05 and compl2, the local branching framework was responsible
for almost all of the columns.generated. We also see that more than 96% of the total running
time was spent on solvingdthe,pricing problems. Thus, more research on solution methods for the
pricing problems are needed before the column generation algorithm can effectively be extended to
a Branch & Price algorithm. Furthermore, we see that 0.4% of the time, on average, was spent on
solving the RMPyand lastly, 2.2% of the time, on average, was spent on building all the models, and
making the pre-calculations. We also see that almost half of the pattern variables were removed,
on average, in each’iteration of the algorithm. Next, we compared the lower bounds obtained for
the four open instances with the best-known bounds found, reported on the website Bonutti et al.
(2017)."“We_ report the results in Table 6, where we have updated the best-known lower bounds
with the bounds by Bagger et al. (2016). The last line in the table reports the average gap from
the best-known upper bound.

In Table 6 we see that our approach obtained a lower bound, which is an improvement of the
best-known lower bound for all four of the open instances. These improvements reduce the average
gap from the best-known upper bounds on these four instances from 24% to 11%.

In Table 7 we compare the lower bounds we obtained with the existing literature on the instances
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Table 5: Statistics of the column generation algorithm, where the pre-processing is activated, the optimality inequal-
ities are deactivated, and the local branching is only activated for comp05 and compl2, with x = 2.

Columns Time Patterns
Instance Iter. Total LocBra. Total Build Master Pricing Total Removed
comp01 45 578 2:41  2:23 0 14 7927 3722.3
comp02 176 6303 13:37  1:51 7 11:23 7387 3004.8
comp03 165 5632 14:57  1:17 5 13:21 6539 2652.5
comp04 246 5446 2:31 54 8 1:08 7835 4003.7
comp05 170 5819 5320 1:31:38  2:33 4 1:28:37 5495 1589.9
comp06 254 11062 20:05  1:33 30 17:34 9941 4791.9
comp07 221 9876 11:31  2:10 39 8:11 12436 5893.0
comp08 315 6906 2:51 48 12 1:24 8180 4276.4
comp09 224 4682 3:50 54 5 2:33 7453 3438.5
compl0 225 9150 8:26  1:36 28 5:56 10129 4682.3
compl2 287 14553 13381 18:43:19  3:20 40 18:38:09 8143 2278.0
compld 280 6660 3:58 51 11 2:33 7870 3776.0
compl4 162 5640 4:57  1:09 6 3:27 7472 3474.4
complH 164 5345 15:06  1:17 4 13:30 6539 2684.7
compl6é 244 10178 21:08 1:34 28 18:36 10491 5189.0
compl7 250 10998 28:44  1:29 27 26:21 9362 4526.9
compl8 185 4411 34:11 1:19 3 32:22 5868 2654.7
compl9 220 5446 3:36 1:06 6 2:07 6588 3003.0
comp20 263 11432 14:38  1:55 44 11:24 10987 5023.6
comp21 276 11175 36:07  2:24 24 32:51 9429 4137.0
Avg. 2.2% 0.4% 96.8% 45.0%

Table 6: Comparison with the best-known bounds for the four open instances. *Updated value from Bagger et al.
(2016).

Best DW

Instance | UB LB Gap | LB Gap

comp03 | 64 54" 16% | 58 9%

comp05 | 284 211  26% | 247 13%

compl2 | 294 175 40% | 248 16%

complb 62 54 13% | 58 6%

Avg. 24% 11%

comp@l-compl0 and compl2—compl4, as these were the only instances, out of the 20 instances
we testéd, that were available for all the methods in literature. We compare the lower bounds
obtained by our approach (DW) with BMPRI10 (Burke et al., 2010b), BMPR12 (Burke et al.,
2012), LL12 (Lach and Liibbecke, 2012), HB11 (Hao and Benlic, 2011), CCRT13 (Cacchiani et al.,
2013), BKSS17 (Bagger et al., 2017) and BDD16 (Bagger et al., 2016). If a paper reported multiple
lower bounds, then we took the highest lower bound obtained for each instance. We mark the lower

bound obtained in bold font, if the bound is at least as good as the other published approaches,
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for each approach and each instance. If an approach obtained a lower bound which is better than
all the other approaches in the same table then we have marked it with an underline. In the table,
we also report the average gap from the best-known upper bounds (Avg.). In the second last line
(Best), we report the number of times each approach obtained a lower bound which is at least
as good as the other approaches. In the last line we report the number of times each approach
obtained a lower bound which is better than the other approaches. We have used the same notation

throughout all the remaining tables.

Table 7: Comparison of the lower bounds for the different approachest

& O N NP A o
o:,\?& % &@ $@ \,q, @x\ C)Q;Q $\}9 @%\ QQ\ &
& &R Q R SERS D & 3
compO01 5 5 5 4 4 5 0 5 0 0
comp02 24 1 6 11 12 16 16 8 24 20
comp03 64 33 43 25 38 52 28 38 54 58
comp04 35 35 2 28 35 35 35 35 35 35
comp05 284 119 183 108 183 166 48 186 210 247
comp06 27 16 6 10 22 11 27 16 26 23
comp07 6 6 0 6 6 6 6 6 6 6
comp08 37 37 2 37 37 37 37 37 37 37
comp09 96 68 0 46 72 92 35 74 96 92
compl0 4 4 0 4 4 2 4 4 4 4
compl2 294 101 7 53 109 100 99 142 175 248
compl3d 59 54 0 41 59 57 59 59 59 59
compld 51 42 0 46 51 48 51 44 51 49
Avg. 28.0% 77.5% 35.0% 19.4%  21.7% 31.0% 20.8% 14.3% 13.7%
Best 5 1 3 6 4 7 6 8 8
1 2 3

In Table 7, we se€ that our approach obtained a lower bound which is at least as good as the
lower bounds [of the other approaches on eight of the instances. On three of these instances the
lower bound wetebtained is better than for the other approaches. Furthermore, we see that our
approach‘has the lowest average gap (13.7%) to the best-known upper bounds.

In Table 8, we compare our results for all 20 instances to HB11, CCRT13, AN14, BKSS17, and
BDD16, since they reported results for all these instances.

In Table 8, we see that our approach obtained a lower bound which is at least as good as the
lower bound obtained by the other approaches, for 11 of the instances. On four of these instances,
our approach obtained a higher lower bound than the other approaches. These four instances
are the open instances. Lastly, we see that our approach obtained the second lowest average gap

(12.2%) to the best-known upper bounds, where the original pattern formulation has the lowest
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Table 8: Comparison of the lower bounds for the different approaches for all 20 instances.

Instance UB HB11 CCRT13 AN14 BKSS17 BDDI16 DW

comp01 5 4 5 0 5 0 0
comp(2 24 12 16 16 8 24 20
comp03 64 38 52 28 38 54 58
comp04 35 35 35 35 35 35 35
comp05 284 183 166 48 186 210 247
comp06 27 22 11 27 16 26 23
comp07 6 6 6 6 6 6 6
comp08 37 37 37 37 37 37 37
comp09 96 72 92 35 74 96 92
complO 4 4 2 4 4 4 4
compl2 294 109 100 99 142 175 248
compl3 59 59 57 59 59 59 59
compl4 51 51 48 51 44 51 49
compld 62 38 52 28 38 54 58
compl6 18 16 13 18 13 18 17
compl7 56 48 48 56 44 53 56
comp18 61 24 52 27 36 52 52
comp19 57 56 48 46 56 57 51
comp20 4 2 4 4 0 4 3
comp21 74 61 68 42 57 74 71
Avg. 22.3% 19.0% 28.8% 26.2% 10.9% 12.2%
Best 6 6 10 6 13 11

1 4 4

average gap (10.9%).

We realize that even better)tesults might be achieved by extending the Column Generation
algorithm into a fullBranch & Price algorithm. This, combined with cutting plane techniques in
the column generation algorithm, could potentially increase the lower bounds. Local branching is
a generic method, that can be used in pricing problems for other column generation algorithms. To
the best of‘our knowledge, this work is the first implementation of local branching in the pricing
problem for a column generation algorithm. We think that many pricing problems, in general,
work ‘well with local branching since every iteration of the column generation algorithm provides

new solutions to be used in the framework.

6. Conclusion

In this paper, we applied the Dantzig-Wolfe decomposition to a pattern formulation for the

Curriculum-based Course Timetabling (CCT) problem. The pattern formulation is based on enu-
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merating all the time schedules to which the courses can be assigned each day. The pattern
formulation only considers the time schedule of the problem, while ensuring that a feasible room
assignment can be found, but does not calculate the violations of the room related soft constraints.
Thus, the pattern formulation provides feasible time schedules and a lower bound, i.e., solutions
where there exists feasible room assignments, and a guarantee that feasible solutions for CCT of
costs better than a certain value does not exist. The decomposition resulted in a pricing problem
for each day, where each pricing problem generated a schedule for an entire day. Weé showed that
the pricing problem contained a special structure, which we utilized in a pre-procéssing phase. We
then showed how the pre-processing technique could be used to derive ineqgualities for the pric-
ing problem. Lastly, we described how we applied Local Branching to solveythe pricing problem.
To the best of our knowledge, this is the first time Local Branching is.implemented in a pricing
problem, but it is general enough to be applied in other column generation algorithms. We tested
our algorithm on 20 data instances used in the Second International“Fitnetabling Competition.
On these instances, the pre-processing technique we applied“removed approximately 45% of the
pattern variables from the pricing problem on average. We,compared the lower bounds that we
obtained with other approaches from literature. Our algorithm obtained a lower bound, in 11 of
the instances, which was at least as good as the other approaches. Four of these instances are
still open, meaning that the best-known upper boundidees not equal the best-known lower bound.
In all of these four instances, our algorithm improved the lower bound, so, the average gap was
decreased from 24% to 11%. We showed that.more than 96% of the total time of the algorithm was
spent on solving the pricing problem, and concluded that more research is needed in the pricing

problems before the algorithm can be extended into a full Branch & Price algorithm.
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