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Abstract—Traditional stochastic inventory models assume to have complete knowledge about the demand probability distribution. However, in reality it is often difficult to characterize demand precisely, especially with limited historical data or through subjective forecasting. In this paper, we aim to develop a consistent framework of formulating demand uncertainties in single-period (newsvendor) problems, where a set of discrete assessment grades and/or grade intervals are used to represent complex uncertainties in both quantitative and qualitative evaluations. In this uncertainty formulation framework, we use random set theory to study optimal ordering policies for the newsvendor problem under optimistic, pessimistic, minimum regret and maximum entropy criteria respectively. Numerical studies are conducted to illustrate the effectiveness of the proposed approach.
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I. INTRODUCTIOn and Literature Review

This paper is concerned with the problem of controlling the inventory of a single item with uncertain demand over a single period, referred to as ‘the single-period problem’ (SPP, thereinafter) or ‘newsvendor’ problem (Khouja, 1999). Generally speaking, the standard SPP has the following characteristics. Early each morning (i.e., at the beginning of a selling season), a newsvendor (i.e., retailer) must decide how many newspapers (i.e., a kind of perishable product which only keeps fresh in a time period) to purchase. The procurement lead-time tends to be quite long compared to the selling season, so the newsvendor cannot observe demand prior to placing the order. In addition, there is no opportunity to replenish inventory once the season has begun. Due to uncertainty, the newsvendor can face the outcome of having either newspapers unsold or demand unmet. The unsold newspapers will incur a loss because their recycle value is lower than the purchase price. The unmet demand will also generate a cost from lost sales, such as a penalty for the lost customer goodwill to the newsvendor. The classical SPP is one of the fundamental models in inventory management, and it has a wide range of application areas, such as revenue management, supply chain management, and accounting management.

Traditional stochastic SPP models in which demand uncertainty is formulated by stochastic variables have been studied extensively under various assumptions (Khouja, 1999; Qin et al., 2011). These stochastic SPP models often assume to have full knowledge about the demand probability distribution. However, in reality it is often difficult to characterize demand precisely, since historical data are not always available or reliable. This is especially true in the circumstances where market turbulence or technological innovation takes place commonly (Dalrymple, 1987), and the forecasting of demand depends on not only quantitative data but also experts’ subjective judgments, which can be in the format of linguistic evaluation with uncertainties. Unfortunately, these uncertain and linguistic judgments are very complex in general. For example, one expert may claim that the demand is ‘high’ or ‘very low’ or ‘very likely to be low’, where the term ‘very likely’ possibly means 70% confidence; It is also common that experts’ evaluation may contain incompleteness (or ignorance) due to their inability of providing complete judgments or the lack of information. The incompleteness can vary from totally unknown to locally unknown. For example, if the actual demand varies from 10 to 90 units, and an expert claims ‘I believe the demand is likely to be in the range of 50 to 60 units’. This means that he cannot give a single forecast but an approximated interval due to his incomplete knowledge to the future, which can be called as ‘local unknown’. But if he gives an interval as [10, 90], this actually means that the expert has no idea at all about the future demand, then it is called as ‘global unknown’. According to Knight (1921), these kinds of uncertainty can be termed as ‘Knight uncertainty’, ‘complex uncertainty’, or ‘ambiguity’, as opposed to ‘risk’ associated with decision problems where no objective probability distribution is given over system states. How to formulate these kinds of complex uncertainties and make better decision becomes a challenging problem in both SPP and other relevant inventory management areas.

In the literature, much effort has been devoted to the SPP where the demand does not satisfy the classical assumption of having a specific probability distribution. We can categorize these research into two main directions according to their uncertainty formulation methods.

1) Traditional probability theory

In the past decades, a large number of researchers put lots of efforts to apply the traditional probability theory to the SPP where the demand does not satisfy the classical assumption of having a specific probability distribution with known parameters. There are essentially two different research streams in terms of the availability of the information about the demand distribution and its parameters: (i) The form of the demand distribution function is known, but its parameters are unspecified, and (ii) Partial information (e.g., mean, variance, mode, range) about the demand distribution is available, but the form of the distribution is unknown. Within the first research stream, the Bayesian method has been widely used for estimating the unknown parameters(Scarf, 1959; Iglehart, 1964; Azoury, 1985). The Bayesian method leads to the sequential update of the demand parameter estimates by means of a pair of prior and posterior density functions as soon as an additional demand data become available. Some other researchers employed the classical statistical theory for demand estimation (Hayes, 1969; Ritchken and Sankar, 1984; Silver & Rahmana, 1986; Weerahandi, 1987; Liyanage & Shanthikumar, 2005; Chu et al., 2008; Akcay et al., 2011; Rossi et al., 2014). It is apparent that in these research, sufficient historical or revealed demand data should be available in order to estimate the unknown parameters accurately. 
In the second stream of research, Scarf (1958) made one of the most important advances to the situation where only the mean and variance of demand are assumed to be known, or the demand was assumed to follow a family of distributions having the same mean and variance. In this case, the expected total profit or cost is not a single value as in the traditional stochastic SPP models. Thus some exogenous decision criteria must be applied to ensure a unique optimal solution. Scarf (1958) also derived the closed-form optimal order quantity which maximizes the total profit against the worst possible distribution of demand, i.e. the conservative maximin criteria. Since the solution obtained in Scarf’s approach is rather pessimistic, alternative decision criteria were discussed later, including the less conservative minimax regret ordering rule (Savage, 1951; Yue et al., 2006; Perakis & Roels, 2008; Zhu et al., 2013; Wang et al., 2014) and the maximum entropy rule (Jaynes, 1957, 2003; Eren & Maglaras, 2006; Perakis & Roels, 2008; Andersson, 2011). 
Following Scarf’s work, a number of researchers have also examined other families of demand distributions with given parameters. For instance, Reyniers (1991) developed a high-low search algorithm for SPP under uncertainty rather than risk, and the actual demand was assumed to be a constant with only lower and upper bounds known. Similar demand assumptions can be found in the literature such as Lin and Ng (2011) for a multi-market SPP and Vairaktarakis (2000) for multi-item and budget constraint settings. Kumaran & Achary (1996) solved the SPP for demand with a generalized λ-type four-parameter class of distributions. Perakis & Roels (2008) considered the maximin and the minimax regret decision criteria for the capacity allocation problem in revenue management under general polyhedral uncertainty sets. Specifically, the demand probability distribution was chosen from a set with the given mean and range (or support) of the random demand. Ben-Tal et al. (2013) proposed a robust-optimization approach (Bertsimas & Thiele, 2006) to both single and multiple product SPP over a set of demand distributions which are defined within the so-called ‘
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-divergences’ distance measure from a given single distribution. Similar approach can be also found in Carrizosa et al.(2016).
In this research stream, how to obtain the required information remains a question. Sometimes, estimating these parameters is to some extent more of an art than a science, especially when the forecasting is done subjectively.
2) Fuzzy Theory
Another research stream of managing demand uncertainties is to use fuzzy models. Petrovic et al. (1996) was firstly proposed to deal with fuzzy uncertainty in SPP. Their models address two cases: (i) uncertain demand is represented by a discrete fuzzy set on a finite discrete support set, and (ii) both demand and inventory costs are estimated as fuzzy numbers. The concept of 2-level fuzzy set and the method of arithmetic defuzzification were employed to generate an optimal order quantity. Ishill & Konno (1998) introduced a fuzzy SPP model where the shortage cost is given by an L-shape fuzzy number. As a result the total expected profit function becomes a fuzzy number and an optimal order quantity is obtained in the sense of a fuzzy min/max order based on a kind of partial order preference of fuzzy numbers. This approach was further extended by Li et al. (2002) and Kao & Hsu (2002) by taking into consideration both the left and right-shape membership functions. In the recent fuzzy SPP literature, Ryu & Yücesan (2010) considered the optimal order quantity and the coordination policies in a single-period supply chain network case where several fuzzy parameters, e.g. the demand, the wholesale price, and the market sales price, were considered in the model. Chen & Ho (2011) also proposed an analysis method for the SPP with fuzzy demands and incremental quantity discounts. Zhang et al. (2014) considered the newsvendor-type supply chain coordination model with the ‘fuzzy random demand’, i.e. the demand is defined as a random variable that is valued as fuzzy numbers.
The basic premise of the Fuzzy SPP literature is that the membership function of each fuzzy variable must be given in advance. However, it is often a problem when information is limited to assessing an exact membership function. It has the same drawbacks as the classical stochastic SPP with the assumption of a specific distribution with known parameters. 

In recent years, the Evidential Reasoning (ER) approach (Yang & Sen, 1994; Yang, 2001), which is the advance of the Dempster-Shaffer (D-S) theory (Shafer, 1967; Dempster, 1976), sheds new light on modelling complex uncertainty problems. The ER approach uses a distributed expression framework, in which each uncertainty factor is accessed using a set of collectively exhaustive and mutually exclusive assessment grades. Probabilistic uncertainty is characterized by a belief structure, which can model both precise data and various types of uncertainties, such as probabilities, vagueness, local and global ignorance in subjective judgments. For example, in order to estimate the demand, experts usually give their assessments by means of a set of evaluation grades, e.g., {Very low, Low, Average, High, Very high}, where each grade can be associated with a particular reference demand value. For example, the ‘Very low’ demand can be equivalent to 50 units, similarly the demand values of 100, 200, 300, 500 may be related to  the ‘Low’, ‘Average’, ‘High’, and ‘Very high’ demand respectively. Thus according to the ER expression framework, some evaluations of demand given by experts can be expressed as follows.
Statement 1: The demand is evaluated to be 100 units of product with a chance of 80% and 200 units with a chance of 20%.

The above is a typically probabilistic expression and can be formulated exactly by the ER expression framework as {(Low, 0.8); (Average, 0.2)}.

Statement 2: The demand is between 100 and 200 units. 

It gives the bounds of the demand and can be expressed in the ER expression framework as {(Low-Average, 1.0)}, which means that the total belief degree of 100% can be assigned to either single value in the grade interval ‘Low-Average’, or arbitrarily distributed in the same grade interval.
Statement 3: It is certain with a confidence of 80% that the demand is between 100 and 200 units, and certain with 20% that it is 300 units.

In Statement 3, the belief degree of 80% is given to a grade interval, which can be regarded as local ignorance, thus by the ER expression, statement 3 can be denoted as {(Low-Average, 0.8); (High, 0.2)}.

Statement 4: We are approximately sure with a confidence of 80% that the demand is between 100 and 200 units, otherwise we have no idea.

In Statement 4, the global unknown of 20% means the actual demand can take an arbitrary value between the ‘Very low’ and the ‘Very high’ demand. Thus Statement 4 can be expressed as {(Low-Average, 0.8); (Very low-Very high, 0.2)}.

It can be shown that the above distributed interval grade belief assessment framework of ER has the following advantages in representing uncertainty. (i) It can represent the quantitative probability estimation, where each evaluation grade and its reference value can measure the exact demand value. (ii) It can represent the subjective and judgmental expressions from experts, especially when the evaluations must be given to qualitative attributes. (iii) It has the ability to capture the whole continuum of information availability from local unknown to global unknown. 

In this paper, we aim to analyze SPP by applying the ER framework to represent the complex uncertainties of demand assessment. The ER framework advances from the D-S theory and more broadly from the random set theory (Kendall, 1974; Matheron, 1975), which can be regarded as a generalization of the traditional probability theory. Thus according to the relationship between the random set theory and the traditional probability theory, we demonstrate that the demand assessment in term of the ER uncertainty expression framework, can be equivalently transformed to a family of traditional probability distributions and then the system performances can be derived and the optimal order quantities can be discussed under different decision criteria, including the pessimistic, optimistic, Arrow and Hurwicz 
[image: image2.wmf]a

-maxmin criteria, minimum regret and maximum entropy criteria. It is very interesting to note that the proposed uncertainty expression framework and the derived optimization methodology are closely related to the second research stream of the traditional probability theory in the literature discussed above. We prove that the models under study in the paper are the general forms of the existing approaches and can be applied to represent and analyze more types of uncertainties.

The rest of the paper is organized as follows. In Section 2 the basic concepts of the random set theory and the ER uncertainty expression framework are introduced. In Section 3 the SPP models are presented under the uncertainty expression framework, and the optimal order policies under various decision criteria are discussed. Then in Section 4, some numerical examples are demonstrated. Finally, the paper is concluded with further research directions in Section 5.

II.  Basic Notions of Random Set Theory and ER Uncertainty Expression Framework

2.1 Random Set Theory
In recent years, the advantages of random set theory have attracted lots of researchers in uncertainty analyses. Random set theory was originally studied independently by Kendall (1974) and Matheron (1975) in connection with stochastic geometry, generalizing the notion of a random variable to a random set. Random set theory provides a general mechanism for handling interval-based measurements and discrete probability distributions (Dubois & Prade, 1991; Hall & Lawry, 2004). If fuzzy sets are regarded as nested families of sets, they can also be handled in random set theory, providing a convenient link between probability theory, possibility theory and fuzzy sets (Goodman, 1982; Mahler, 1996; Florea et al., 2008). Random set theory can also be linked to Dempster-Shafer theory of evidence (Shafer, 1967; Dempster, 1976). In this section, we give a brief introduction to random set theory.
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Because of the presence of imprecision, it is hardly possible to calculate the probability of a generic 
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where 
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The above mentioned procedures are to answer the question of ‘How to model the uncertainty affecting the information available on a system state variable’. However, what we care about more in real problems is ‘How to propagate uncertainty to the system response, given complex uncertain system state variables as system inputs’. By using random set theory, this challenging problem can be solved in the following way (Tonon et al., 2004).
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where 
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2.2 The ER Uncertainty Expression Framework

The Evidential Reasoning approach is originally developed for aggregating multiple attributes based on a belief decision matrix and the revised evidence combination rule of D-S theory in the multiple attribute decision analysis (MADA) problems under uncertainty. Here we only introduce the interval grade ER expression framework which is an extension of the original ER (Xu et al., 2006).
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According to Xu et al. (2006), because 
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and it is assumed 
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Based on the above assumption, the assessment of 
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Note that the above ER expression framework is a special case of the general discrete random set since the evaluation grade matrix 
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III.  The ER and Random Set Based SPP Model

3.1 Basic Notations

Consider a newsvendor who sells newspapers to local customers. Early each morning, he needs to determine an ‘optimal’ ordering quantity 
[image: image128.wmf]Q

 from his supplier in order to satisfy customers’ demand denoted as 
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The actual end of period profit for the newsvendor is


[image: image139.wmf](,)min{,}()()()()()()

CQDcQrQDsQDlDQrsQDlDQrcQ

++++

=-++---=-----+-

,
(
12)

where 
[image: image140.wmf]()max{,0}

xx

+

=

.

If the demand is given by a random variable 
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In this paper, in order to handle various types of uncertainties from different sources, demand is represented by the ER expression framework. In order to evaluate demand, we first define a set of 
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According to section 2.2, in order to assess the uncertainty of the demand, we define 
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Given the above mentioned assessment scheme of demand belief distribution, we can derive an equivalent probability distribution family using the random set theory. Firstly let the interval 
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It is easy to verify that for a singleton probability distribution 
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3.2 The Pessimistic, Optimistic and Arrow and Hurwicz 
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The most conventional decision criteria is to maximize the expected profit, i.e. 
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where in Eq. (15), the pessimistic expected profit of RS-SPP is defined as the lowest expected profit for 
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. While in Eq. (16), the optimistic expected profit of RS-SPP is defined as the highest expected profit.

We can show that Eqs. (15-16) can be simplified as the following equivalent expressions, whose proofs are given in Appendix A:
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In Eqs. (17-18), both the pessimistic and optimistic expected profit functions are equivalently expressed by the belief degrees 
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Proposition 1: Both the pessimistic and optimistic expected profit functions in Eqs. (17-18) are convex in 
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Proof. See Appendix B.
Based on the pessimistic and optimistic expected profits, the Arrow and Hurwicz 
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where the coefficient 
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 lying between 0 and 1 is interpreted as a measure of the decision maker’s pessimism. When 
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s.t. For all 
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where subsidiary variables 
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are introduced in the model in order to transfer the non-linear objective function in expression (19) to a set of linear constraints and an objective function.
It is evident that our proposed models defined by expression (19) and expressions (20-30) are the generalizations of the traditional stochastic SPP model in which the demand is assumed to follow a given singleton discrete probability distribution. To demonstrate this statement, we can let 
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which is consistent with the expected profit function of the traditional SPP model in which the demand follows a discrete probability distribution, and more specifically the demand is 
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The proposed model defined by expression (19) with 
[image: image245.wmf]1

a

=

 is the generalization of robust optimization approach (Vairaktarakis, 2000), in which demand is estimated within an interval, say 
[image: image246.wmf][,]

LH

DD

, where 
[image: image247.wmf]L

D

, 
[image: image248.wmf]H

D

 denote the lower and upper bounds of the demand respectively. Illustratively, we can set the reference demand values as 
[image: image249.wmf]1

L

DD

=

, and 
[image: image250.wmf]NH

DD

=

, and let 
[image: image251.wmf]1

1

N

m

=

, 
[image: image252.wmf]0

ij

m

=

 for all 
[image: image253.wmf],

ij

 except for 
[image: image254.wmf]1,

ijN

==

. In this setting, maximizing Eq. (17) becomes


[image: image255.wmf]1

()

 or 

max(Q)maxmin(,)

N

pe

xDD

QQ

ECCQx

=

=×

,
(
31)

which is consistent with the following robust optimization model (Vairaktarakis, 2000) according to the proof in Appendix B, 
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where 
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 denotes the expected profit function given Q under the robust optimization criterion.
It is easy to verify that both models defined by expression (31) and (32) will yield the ‘optimal robust solution’ (Vairaktarakis, 2000) as
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Considering the optimistic model given by Eq. (19) with 
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Proposition 2: The optimal solution of the optimistic RS-SPP model is 
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Proof. See Appendix D.
3.3 The Minimax Regret Criterion
Assuming the decision maker is regret aversion, the minimax regret criterion is to minimize the worst-case regret. From Savage (1951), given an order quantity Q, the ‘regret’ of measuring the additional profit can be obtained with full information about the demand probability distribution 
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 is the order quantity to be chosen to maximize the expected profit given the probability distribution 
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The maximum regret can be seen as the maximum price, and one would have to know the exact demand distribution. Thus the optimal order quantity of RS-SPP under the minimax regret decision criterion is to solve the following problem,
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Since the actual end of period profit for the newsvendor in Eq. (12) can be reformulated as
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Now let 
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. Then the problem given by Eq. (34) can be reformulated as follows, by inverting the order of maximization and minimization:
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s.t. 
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Proposition 3: The optimal order quantity 
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where 
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 is a singleton probability distribution obtained by assigning the belief degree 
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Proof. See Appendix E.

It is easy to verify that our proposed result is the generalization of the interval SPP model. If we assume that the demand lies in the interval 
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Thus we have the optimal order quantity as
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which is consistent with the result of Perakis (2010).

3.4 The Maximum Entropy Criterion

Entropy maximization is not a criterion for decision making under uncertainty. Instead, it is a criterion for selecting a probability distribution as an input to a stochastic model. Laplace’s principle of insufficient reason states that, with no information available, all possible outcomes should be considered as equally likely (Luce & Raiffa, 1957). Jaynes (1957; 2003) generalized this principle by taking into consideration the distribution that maximizes the entropy over the set of distributions. The entropy of a probability distribution represents the amount of uncertainty associated with the distribution. The distribution that maximizes the entropy is thus a good prior distribution because it is the ‘maximally noncommittal with regard to missing information’ (Jaynes, 1957). The RS-SPP under the maximum entropy criterion can be expressed as


[image: image300.wmf]max(ln)

kk

xx

P

k

pp

Î

-×

å

P

.
 (
39)
where P, 
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 and 
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, k=1,...K, are defined in section 3.1.

Under the maximum entropy criterion formulate above, the optimal singleton probability distribution 
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Proposition 4: The optimal probability distribution of RS-SPP under the maximum entropy criterion has the following property. In each interval 
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Proof. See Appendix F.

Proposition 4 means that we need only consider the belief degree assigned to each of the single reference demands 
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, thus we can simplify the calculations during the use of the algorithms to calculate maximum entropy probability densities (Meyerowitz et al., 1994).
IV. Numerical Examples and Applications
As an example, we consider a company in China, which produces and sells various functional costumes. Now the company has developed a new swimming suit. The sales of the suit are strongly seasonal, mainly from June to September. After this period, since the costs related to the logistics process (i.e., transportation, sales promotion, etc.) are high comparing with the production costs (including material price, manufacturing costs, etc.), the leftover suits will be sold at a clearance price to improve the company's cash flow. Every year, the company has to purchase raw materials and arrange manufacturing in advance, and there is no opportunity to replenish inventory once the season has begun. As a consequence, the company must forecast the future demand and decide the quantity to produce before the selling season. Thus it can be formulated as a typical newsvendor problem. In this example, the unit product cost is 
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= 20 CNY (China Yuan), the unit selling price 
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 = 10 CNY, and the shortage penalty cost per unit 
[image: image312.wmf]l

= 30 CNY. We assume a set of assessing grades with N = 9 (more grades can be implemented in a similar way), i.e.{
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}, which is correspondent to the demand reference values (10, 20,…90) (multiplied by ten thousand units). Note for illustrative purpose the data presented in this section have been altered, however, the resulting qualitative relationships and insights drawn from this example are the same as they would be from using the actual data.
Comparing with the most existing SPP models with non-probabilistic uncertainties, our proposed methodology is quiet general, i.e. do not need any assumption of the demand, thus it is applicable to the problems with very complex demand uncertainties. It is apparently we cannot analyze all these complex cases because of the limitation of space although we try to address the most typical situation in the real application.

In general, the information for demand forecasting can be collected from several sources, for example,
1) Source 1: Since it is a fully new product, there is no historical sales data. However if it is believed that the new product has some common characteristics with a similar product, we can make use of the historical sales data of this similar product although we know that the lost sales were not recorded in the sales. To do this, we firstly calculate the frequency of the occurrences of these historical sales within a particular interval related to the demand reference values (i.e., a group), For example, if we have 1000 samples of the historian sales, and there are 100 samples with the sales value within the interval [15, 25] (multiplied by ten thousand units), then the frequency of this interval group is 0.1 as shown in Fig 1. Thus the historical sales of this similar product can be represented by the ER expression format as: {(20, 0.1); (30, 0.1); (40, 0.3); (50, 0.4); (60, 0.1)}, where (20, 0.1) means there are 10% chances that the demand value is 20 ten thousand units and so on. Note hereafter for clarity we use the demand reference values instead of the grades in the ER format as defined in expression (11).
In order to simplify our analysis, we set the center point of each group exactly equal to one of the reference demand values of the grades, for example, the second group is set as the interval of [15, 25], which is corresponding to the grade 
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 with the reference demand value as 20. However, this setting will lead to some extra errors. In fact, a better grouping method, for example, can set each group as [10, 20], then the frequency between this interval can be assigned to a grade interval 
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. It is not within the scope of the paper to explore which grouping method is the best or more appropriate for a specific situation .
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2) Source 2: Experts can give their demand forecasting from their different perspectives, and their forecasting values apparently may be very complex and disperse. For example, if there are two experts, Expert 1 mainly considers the sales in terms of the characteristics of the new product, and believes that this new product completely meets a group of customers’ preference. Thus the sales is believed to be high and the value will be in the range of (60-90) ten thousand units. Besides this, Expert 1 also thinks that the sales value may not be uniformly distributed in this minimum and maximum bounds if we consider the possibility, he thinks the most possible (more than 50%) sales value is 80, while he cannot give any other concrete information. Thus according to Expert 1, his assessment can be given by the ER format as {(80, 0.5); (60-90, 0.5)}. While Expert 2 argues that the future sales of the new product is totally unclear since the economic trends is highly fluctuating, and thus his assessment is formulated by the ER format as {(10-90, 1.0)}.
Thus the final forecasting should combine the above sources. If we assume the combining weight of Source 1 is 0.6, and the weight of each of the two expert’s judgments in Source 2 is 0.2. We can obtain the final demand forecasting assessments by the ER combination algorithms as: {(20, 0.0762); (30, 0.0762); (40, 0.2286); (50, 0.3048); (60, 0.0875); (80, 0.0635); (60-90, 0.0635); (10-90, 0.1016)}. Apparently, this combined assessment is complex and also very informative about the future demand. The detailed procedure of the ER combination algorithm is not the focus of this paper, and it can be found in Yang (2001) and Xu et al. (2006).
4.1 Numerical Analyze of a Simplified Example
In order to explain the computational details of the above proposed methodology systematically, we consider a simplified example in this sub-section, and a more complicated example will be adopted in the section 4.2 in order to further analyze the sensitivity properties of the proposed models. We assume the final demand forecasting is obtained from two sources: Source 1, the similar product’s historical sales data {(20, 0.1); (30, 0.1); (40, 0.3); (50, 0.4); (60, 0.1)} with a weight of 0.6, and Source 2, we only consider the opinion of Expert 2 {(10-90, 1.0)} with a weight of 0.4. By the ER combination algorithm, the final forecasting assessment (denoted as S19) is {(20, 0.0789); (30, 0.0789); (40, 0.2368); (50, 0.3158); (60, 0.0789); (10-90, 0.2105)} or,
S19 = {m22 = 0.0789; m33 = 0.0789; m44 = 0.2368; m55 = 0.3158; m66 = 0.0789; m19 = 0.2105; the other 
[image: image317.wmf]ij

m

 unmentioned are zeros}.
(
40)
It is worth noting in expression (40) that there is approximately a belief degree of 21% assigned to the grade interval 
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. According to the random set theory, if we assume the realized demand values are chosen from the set {10, 20, ... 90}, then this expression can be equivalently transformed to a family of random distributions 
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 as, 
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where 
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p

 denotes the probability of the demand value being 10, 
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 denotes the probability of the demand value being 20,... etc., and m19,k ,k = 1,...9 is an auxiliary variable that denotes a portion of the belief degree m19 which will be eventually reassigned to single grade Hk if S19 is realized to a specific probability distribution. According to this transformation, the belief degrees expressed by the ER expression framework can be interpreted by the general probability distribution. In expression (40), If the belief degree is evaluated to a grade interval, for example, m19 = 0.2105, it means that the same value of probability can be redistributed to any subset of this grade interval, such as grade intervals 
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 etc. It is easy to rewrite expression (41) as follows,
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From expression (41-42), it is evident that if the belief degree is exactly assigned to a single grade, for example m22=0.0789 which is exactly assigned to grade H22 with the demand reference value of 20, it actually means that the minimum probability of this demand value is 0.0789. Since the maximum belief degree of 
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, which is finally assigned to the grade H22, is equal to m19 = 0.2105, thus the maximum of 
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 is m22 + m19 = 0.0789 + 0.2105 = 0.2894. In the similar way, the minimum and the maximum of 
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 can also be calculated as shown in expression (42).
In comparison, we firstly consider a traditional stochastic newsvendor model in which the demand forecasting is solely given by Source 1:{(20, 0.1); (30, 0.1); (40, 0.3); (50, 0.4); (60, 0.1)} and Expert 2’s opinion of Source 2 is completely ignored. According to the standard newsvendor analysis, if the demand follows a traditional probability distribution with continuous cumulative density function 
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, an optimal order quantity 
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Thus according to the above formula, we can obtain this optimal order quantity is 
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. It is obvious that this result is imperfect, since all the uncertainties contained in Experts 2’s opinion have not been considered.
Now we consider the problem under the setting of the final demand assessment given by S19. Given an order quantity 
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, the belief distribution of the total profit 
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 can also be expressed by our proposed uncertainty expression scheme as shown in section 3.2, and can be calculated using the extension theorem of the random set theory as shown in Eqs. (7-8). 

In order to assess the profit, according to section 2.2, we firstly construct a set of 21 evaluation grades, and their profit reference values are set to be -1000, -900, -800,...,-100, 0, 100,..., 1000 thousand CNY respectively. Then each demand reference value and its correspondent profit value according to the function 
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 is calculated as shown in Fig 2 (where Q = 60), and each grade interval (or a demand reference value interval) and its image of the function mapping can be derived. Note that we only need to consider the demand reference values or intervals with positive masses.
For example, in S19, m22 = 0.0789 means that the demand is exactly equal to 20 with a mass value of 0.0789. Since this demand value D = 20 has a definite profit value as -200 thousand CNY according to the function 
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 when Q = 60. This means the actual profit is exactly -200 thousand CNY with the same mass value of 0.0789. Similarly, m33 = 0.0789 means that the demand value D = 30, and its profit 
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 when Q = 60 is equal to 0 thousand CNY, means the profit is exactly 0 thousand CNY with the same mass value of 0.0789. For m44 = 0.2368, we can derive that the profit is exactly 200 thousand CNY with the same mass value of 0.2368, and so on, for m55 = 0.3158, the profit is exactly 400 thousand CNY with the same mass value of 0.3158; for m66 = 0.0789, the profit is exactly 600 thousand CNY with the same mass value of 0.0789. While for m19 = 0.2105, this means the demand is between an interval [10, 90], since the function 
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 is continuous with D, thus we know the profit is also within the interval [Cmin, Cmax], where
Cmin = 
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Fig.  AUTONUM  \* Arabic . The profit function 
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 with D = 60
Thus for m19 = 0.2105, we know the profit 
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 takes values in [-400, 600] thousand CNY with the mass value of 0.2105.
In summary, when the demand is evaluated as S19 and 
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 = 60, the mass density distribution of the profit can also be evaluated by the ER uncertainty expression framework defined in section 2.2 , which are {(-200, 0.0789); (0, 0.0789); (200, 0.2368); (400, 0.3158); (600, 0.0789); ([-400, 600], 0.2105)}. In this example for simplicity, the profit reference values are carefully chosen that the resulting profit 
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 when the demand takes one demand reference value is exactly equal to one of the profit reference values. However, this is not necessarily in general. Since if the resulting profit is not equal to one of the profit reference values, the mass belonging to this profit can be redistributed between the two adjacent profit reference values linearly.
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c) Plausibility
Fig.  AUTONUM  \* Arabic . The distribution of mass density, belief and plausibility
The mass distribution of the profit is important, especially when the decision maker wants to know the complete vision of the final results if there are complex uncertainties. In the above calculation, the uncertain parts of the demand (i.e. m19 = 0.2105) will definitely result in a propagated uncertainties in the total profit. Thus according to our methodology, these uncertainties can also be evaluated and expressed by the above ER expression framework. The decision maker may be able to give more scientific decisions given this complete vision of results without losing some important scenarios.
It is apparent that the decision is not necessarily unique if the problem is associated with “deep” uncertainties. In our proposed RS-SPP models we try to help the decision maker to choose the most suitable solution, and the following decision criteria can be applied.
1) The Pessimistic, Optimistic and Arrow and Hurwicz 
[image: image346.wmf]a

-Maxmin Criteria
In this example, the expected profits of our proposed pessimistic and optimistic models can be seen as the upper and lower bounds of the cases as shown in Fig. 1, when the demand belief distribution contains ‘less uncertainty’. For example, the following two demand belief distributions, S11 and S99, can be regarded as the ‘realized’ demand belief distributions of S19 in expression (40), where in S11 the total unknown m19 = 0.2105 is assigned to H1 (or the demand is realized to D1 ) and in S99 it is assigned to H9 (or the demand is realized to D9 ): 
S11 = {m11 = 0.2105; m22 = 0.0789; m33= 0.0789; m44 = 0.2368; m55 = 0.3158; m66 = 0.0789; the other 
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S99 = {m22 = 0.0789; m33 = 0.0789; m44 = 0.2368; m55 = 0.3158; m66 = 0.0789; m99 = 0.2105; the other 
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m

 unmentioned are zeros} 
(
44)

Since S11, S99 and S19 both means families of single probability distributions as shown in expression (41) and (42), the families of single probability distributions defined by S11, S99 are ‘included’ in the family of S19, thus S11, S99 can be regarded as the ‘realized’ ‘less uncertain’ belief distributions of S19.

More demand belief distributions that are ‘included’ in S19 such as S22, S33, S44, S55, S66, S77, S88 (which have the similar definitions to S11 and S99) can be considered with the fixed order quantity Q = 50 as shown in Fig.2. For example, S33 = {m22 = 0.0789; m33 = 0.0789 + 0.2105 = 0.2894; m44 = 0.2368; m55 = 0.3158; m66 = 0.0789; the other 
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 unmentioned are zeros}, both the pessimistic and optimistic expected profits of the case S33 are 265.77 (ten thousand CNY), and they lie between the interval of the pessimistic and optimistic expected profits of case S19. Other cases which contain unknown parts but have ‘less uncertainty’ than S19 are also illustrated in Fig2. For example,

S46 = {m22 = 0.0789; m33 = 0.0789; m44 = 0.2368; m55 = 0.3158; m66 = 0.0789; m46 = 0.2105; the other 
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In S46, compared with S19, (m19 = 0.2105) is replaced by (m46 = 0.2105), thus S46 can also be regarded as one of the ‘realized’ demand belief distributions of S19, thus the pessimistic and optimistic expected profits of S46 must lie between the interval for S19. Other cases such as S13, S14, S15, S17, S45, S56, S57, S37 and S39 can also be found in Fig 4. 
Furthermore, Fig. 5 also shows more general relationships between one demand belief distribution and its ‘realized’ and ‘included’ belief distributions. For example, the pessimistic and optimistic expectation profits of S46 are the upper and lower bounds of those of S44, S55, S66, S45 and S56.
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Fig.  AUTONUM  \* Arabic . The expected profits with respect to 
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Fig.  AUTONUM  \* Arabic . The optimistic and pessimistic expected profits with 
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 = 50 and different demand belief distributions

From the calculation of the optimal order quantity in case of S19, it is apparent that our proposed models under the optimistic, pessimistic and Arrow and Hurwicz 
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-maxmin decision criteria differ from the traditional stochastic SPP model. Under the optimistic criterion, we can show that the optimal order quantity is 50, which is equal to one of the demand reference values, as we have proved in proposition 2. But it is noted that the optimal solution cannot be obtained simply by assigning the unknown (m19 = 0.2105) to either demand grade 
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 or 
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 as shown in Fig. 4 (where these two cases are denoted by S11 and S99 respectively). While under the pessimistic criterion, the optimal solution is not necessarily equal to one of the demand reference values. In the same example, when 
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 is given, (m19 = 0.2105) will be assigned to one of the endpoints in [
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] in the calculation of maximum 
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 under the pessimistic criterion, but the resulting optimal order quantity is 58. We note that when 
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, the expected profit under the probability distribution S11 where m19 is totally assigned to 
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 is equal to that of S99 where m19 is assigned to 
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.
Thus according to our example, in our RS-SPP model, unlike the traditional stochastic SPP models where this unknown is completely ignored, the existing unknown (m19 = 0.2105), can be explicitly expressed and the ‘optimal’ order quantity is carefully considered under various decision preferences/criteria. For example, if the decision maker is optimistic, he only considers to maximize the highest possible profit (
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, i.e. the optimistic case as shown in Fig. 4), thus the resulting order quantity is 
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 = 50. While if he is a pessimistic decision maker, what he consider is the lowest possible profit, the problem turns to maximize this lowest possible profit, thus the optimal order quantity according to his attitude is 
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 = 58 (
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, i.e. the pessimistic case as shown in Fig.1). Other cases such as 
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 can also be found in Fig.4.
Further experiments (as shown in Fig. 6, where we consider cases with l = 0, 10, 20, ...100 respectively ) also show that the optimal order quantity under the Arrow and Hurwicz 
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- maxmin criterion always equals to one of the solutions under the pessimistic and optimistic criteria.
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Fig.  AUTONUM  \* Arabic . The optimal order quantities of the Arrow and Hurwicz 
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-maxmin RS-SPP model
2) The Minimax Regret Criterion
Given the belief distribution of the demand as S19 in expression (42), we can find the two extreme distribution as S11, where the unknown m19 = 0.2105 is assigned to 
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 and S99, where m19 is assigned to 
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.Thus according to the results of the traditional stochastic SPP model, we have 
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In order to find the optimal order quantity 
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 of the RS-SPP model under the minimax regret criterion, we assume that 
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 and q take values as 10, 11,…90. Table 1 shows part of the computational table of 
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 row, it is decreasing from 26.88 to 0, and we observe that 
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 must be between 55 and 56. Computational experiments with more densely distributed 
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	50
	51
	...
	54
	55
	56
	57
	...
	89
	90

	50
	0
	0.1211
	...
	0.4844
	0.6055
	0.7266
	0.8477
	...
	7.011
	7.211

	51
	0.0894
	0
	...
	0.3633
	0.4844
	0.6055
	0.7266
	...
	6.8899
	7.0899

	...
	...
	...
	...
	...
	...
	...
	...
	...
	...
	...

	54
	0.3576
	0.2682
	...
	0
	0.1211
	0.2422
	0.3633
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	6.4844

	57
	0.6258
	0.5364
	...
	0.2682
	0.1788
	0.0894
	0
	...
	6.1633
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	...
	...
	...
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	...
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	...
	...

	89
	1.1985
	1.1091
	...
	0.8409
	0.7515
	0.6621
	0.5727
	...
	0
	0.2000

	90
	1.2090
	1.1196
	...
	0.8514
	0.7620
	0.6726
	0.5832
	...
	0.0105
	0
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	0.6941
	...
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The logic of the above mentioned computational procedures can also be explained as follows. For this case where the demand is S19 as defined in Eq. (40), under the Minimax Regret Criterion, the maximum of the regret is to be minimized. Thus in the first procedure, in order to maximize the regret, from Proposition E, in the family of the singleton probability distributions as define by Eqs. (41-42), we need only consider the two extreme single probability distributions S11 and S99 as defined in Eqs. (43-44), 
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where 
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 in this case is S11, and 
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 is S99.
Then, the above expression is to be minimized to find the optimal quantity 
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 with Q are shown in Fig 7, it is easy to observe that the two functions intersect at 
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Fig.  AUTONUM  \* Arabic . The computation of the optimal order quantity under the Minimax Regret Criterion
3) The Maximum Entropy Criterion
We firstly define a series of demand values 
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 as 10, 11, …90, i.e. K = 81. According to Proposition 4, for the demand belief distribution S19 under the maximum entropy criterion, the unknown (m19 = 0.2105) will be distributed among the above demand series as uniformly as possible, thus the selected probability distribution 
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 = {(20, 0.0789); (30, 0.0789); (40, 0.2368); (50, 0.3158); (60, 0.0789); other 
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 is with a probability 0.2105/(81-5) = 0.00277}. According to the results of the traditional stochastic SPP model, the optimal order quantity under the maximum entropy criterion is 
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4.2 Numerical Analysis for the More Complicated Example
In this sub-section, we analyze the more complicated example as mentioned in the beginning of this section. i.e. the demand is evaluated as {(20, 0.0762); (30, 0.0762); (40, 0.2286); (50, 0.3048); (60, 0.0875); (80, 0.0635); (60-90, 0.0635); (10-90, 0.1016)} which is combined from Source1) and Source 2) with the two expert’s judgments. In this mass distribution, besides the mass assigned exactly to the six reference demand values, there are two apparent demand unknowns, one is between 60-90 ten thousand units with mass value of 6.35%, and the other is between 10-90 ten thousand units, which is a global unknown and with mass value of 10.16%.
According to the same procedures as shown in the subsection 4.1, it is easy to derive the mass distribution of the output profit when Q is given. For this example, (20, 0.0762) means m22 = 0.0762, the demand is exactly 20 with a mass value of 0.0762. Since this demand value D = 20 has a definite profit value as -200 thousand CNY according to the function 
[image: image410.wmf](,)

CQD

 when Q = 60. It means that the actual profit is exactly -200 thousand CNY with the same mass value of 0.0762. Similarly, (30, 0.0762) means m33 = 0.0762, the demand D = 30 and its correspondent profit is equal to 0 thousand CNY with the same mass value, and so on. (80, 0.0635) means m88 = 0.0635, the demand D = 80 and its correspondent profit is equal to 0 thousand CNY with the mass value of 0.0635.
Now we consider the two unknowns. (60-90, 0.0635) means m69 = 0.0635, the demand is between an interval [60, 90], since the function 
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 is continuous with D, thus we know the profit is also between an interval [-300, 600]. (10-90, 0.1016) means m19 = 0.1016 and the profit is also between an interval [-400, 600].
In the above calculation, only when the demand D = 30 and D = 80, their profits are the same. Thus according to the following extension principle defined in Eqs(7-8), the mass value of the profit reference value of 0 thousand CNY is equal to the sum of those of D = 30 and D = 80, i.e. 0.0762+0.0635=0.1397.
In summary, the mass density distribution of the profit can be evaluated by the ER uncertainty expression framework as {(-200, 0.0762); (0, 0.1397); (200, 0.2286); (400, 0.3048); (600, 0.0875); ([-300, 600], 0.0635); ([-400, 600], 0.1016)}.
Fig. 8 shows the sensitive analysis of the optimal order quantities under the Arrow and Hurwicz 
[image: image412.wmf]a

-maxmin Criterion. From these numerical analyses, the optimal order quantity when 
[image: image413.wmf]a

= 0.5 is always between the quantities for 
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= 0.0 and 
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= 1.0. Unlike the traditional SPP model as shown in Eq. (13), the optimal order quantity in our proposed models is more complicated and not necessarily monotonously increasing or decreasing with any of the parameters. 
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Fig.  AUTONUM  \* Arabic . Sensitive analysis of the optimal order quantities under the Arrow and Hurwicz 
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The sensitive analysis of the optimal order quantities under the Minimax Regret Criterion are performed as shown in Fig. 9, where 
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Fig.  AUTONUM  \* Arabic . Sensitive analysis of the optimal order quantities under the Minimax Regret Criterion
V. Conclusions

Demand uncertainty is one of the most important factors affecting the effectiveness of an inventory management system. Dealing with various types of uncertainty has been the focus of a wide range of research in inventory management. Many researchers have concentrated on the randomness aspect of uncertainty and developed a lot of stochastic modelling techniques under certain probability assumptions. But in reality, it is not always possible for the decision-maker to gather enough historical data. In fact, external demand is often estimated imprecisely based on experts’ judgments, experience and intuitions. So it is necessary to explore the methodology to handle various uncertainties in the decision problems.

In this paper, we proposed an ER based interval grade belief uncertainty expression framework of SPP, This framework is quite general and can be applied to represent a variety of complex uncertainties, including probability, interval as well as global and local ignorance. Unlike most of the traditional SPP models, this uncertainty expression framework is basically non-parametric, i.e. it makes fewer assumptions about the uncertainty, and it is especially applicable to the environment which is complex, ambiguous, or lack of statistical data.

Our proposed RS-SPP model aims to understand and measure the propagation of these uncertainties. In order to do so, we employed the random set theory to calculate and express the uncertainty of output in the same ER based interval grade belief uncertainty expression framework, thus the decision maker can have a complete vision of the systems output (e.g. the total profit in our numerical example) given the uncertain inputs (e.g. the uncertain demand in our example). As a result a good and reliable decision can be made under this complete vision of uncertainties. 
In this paper, we also investigated the ‘optimal’ order quantities under various decision conditions such as the optimistic, pessimistic, Arrow and Hurwicz 
[image: image430.wmf]a

-maxmin, minimax regret and maximum entropy criteria. We proved that some of these ‘optimal’ order quantities have the close form results in our RS-SPP model. 
The work discussed in this paper provides a fundamental step to solve more complex inventory problems, such as multiple period periodic review inventory problems or multi-echelon systems. There is no question that there remain many uncertain resources to be considered in our model, including lead time, cost, supply and uncertain relationships between demand and price. Further research will be conducted to address these issues.
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Appendices: Proofs 

A. Proof of Eq. (17-18). 

According to the relationship between the random set theory and the probability theory, we rewrite Eqs. (15-16) and Eqs. (17-18) in terms of the probability family 
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By substituting Eq. (A-1), the pessimistic expectation profit function in Eq. (15) can be written as,
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Now we consider the term 
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Similarly, for the optimistic profit function in Eq. (16) 
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B. Proof of Proposition 1.

B.1 Each term in the objective function of the pessimistic model in Eq. (17), i.e.
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C. Proof of the equivalence of model(19) and model (20-30).

C.1 We firstly prove that for a given 
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Since the optimistic and pessimistic model are independent on each other, we only need to prove that for a given 
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For (C-1), we consider the following three cases:
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D. Proof of Proposition 2.

In general, the optimal order quantity Q must satisfy the following two conditions,
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The optimal order quantity Q must be either exactly equal to one of the reference demand values or lying in the interval of these two reference demand values.
D.1 Without loss of generality, we first assume the optimal Q
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Consider the first term above, since the realized demand 
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, the right side of the inequality sign in condition (D-1) can also be separated into three parts, i.e., 
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where the first term above can be reformulated as 
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Now consider condition (D-2), since 
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Similar to the derivation of condition (D-1), the condition (D-2) finally becomes,


[image: image615.wmf],:,:,:

,1,,

11

()()()0

ijijij

ijijij

ininin

jnjnjn

csmcrlmrcm

£³+£

£³+³+

-+----³

ååå

.

(D-4)
Combining the results of (D-3) and (D-4), we have, 
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This means the optimal Q
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By applying the same procedures in section D.1, condition (D-1) becomes 
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Similarly, the left side in condition (D-2) can also be separated into the three parts as: 
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Thus the condition (D-2) becomes 
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(D-6)
Combining the result of section D.1 with (D-5) and (D-6) complete the proof. QED.

E. Proof of Proposition 3.

E.1 First of all, we prove that 
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According to Eq. (14) and (37),
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In the following we need only consider the maximization of 
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This means the function 
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E.2 Proof of the optimal condition in Eq.(38).

Firstly we assume the order quantity Q can take a series of NQ values as 
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in a NQ by NQ table as shown in Fig. E1. Apparently each diagonal element in the table is zero. And it is easy to verify that q1 < q2.
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Now we consider a column Q in matrix 
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1) When Q < q1
In this case, when q>q1, the maximum element of the column Q is in the row q=q2; when q≤ q1, the values of 
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in the column Q is increasing in q. Thus in summary, the maximum element of the column Q is always in the row q=q2 (This case is shown as the column Q=Qa in Fig. E1).

2) When Q > q2
In this case, when q<q2, the maximum element of the column Q is in the row q=q1; when q ≥ q2, the values of 
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 in the column Q are decreasing in q. In summary, the maximum element of the column Q is always in the row q=q1 (This case is shown as the column Q=Qb in Fig. E1).

Now we consider the row q=q2. When Q<q2, the values of 
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in the row q2 are decreasing in Q, until at (Q=q2, q=q2) 
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Consider the row q=q1, 
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 equals zero at (Q=q1, q=q1), and when Q>q1, the values of 
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 in the row q1 are increasing in Q.

In summary, we can expect that the min-max value 
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 be attained simultaneously at the element (q=q1, Q=Q(re)) as shown in Fig E1. Thus we have 
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It is also apparently that q1 ≤ Q(re) ≤ q2.

Substituting Eq. (E-1) and rewriting the expression above complete the proof. QED.

F. Proof of Proposition 4.

If we assume that the total belief degrees over the interval (Di, Di+1) is 
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. In order to find the maximum entropy belief distribution over the above demand series, we can formulate the following objective function by use of the Lagrangian multiplier 
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For a given k, we have
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This implies 
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 is evenly distributed into the above series of demand values, each of which has the belief value of 
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