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Abstract

For single decision maker optimization problems that lack time efficient algorithms to determine

the optimum, there is a need for heuristics. In the context of coordinated production planning,

the seminal paper of Graham (1969) provided a performance analysis of heuristics and obtained a

bound in relation to the centralized optimum.

This paper introduces a framework that includes a performance analysis of a so-called equi-

librium heuristic in the setting of multiple decision maker problems. The framework consists of

three steps: a heuristic for each player that leads to a strategy profile, the verification that this

strategy profile is a Nash equilibrium, and finally a worst case cost analysis to obtain a bound on

the performance of the heuristic in terms of the aggregate cost in the obtained Nash equilibrium

in relation to the centralized optimum.

We implement our general framework in a setting of sequencing situations with selfish agents,

multiple identical machines, and the sum of completion times as cost criterion. We provide a tight

upper bound for the performance of our equilibrium heuristic. Simulations show that the equilib-

rium heuristic generally performs much better than the derived tight upper bound. Finally, the

relation with the price of anarchy is discussed.
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1 Introduction

Price-only contracts, which specify a constant selling price per unit, are a well-known cause for double

marginalization. Its analysis exemplifies that local optimal decisions can lead to a joint outcome that

can be improved upon (see, e.g., Perakis and Roels (2007)). This phenomenon is apparent in a wide

variety of operations management settings. In selfish routing it is well-studied and best known for

Braess’s paradox in which the addition of an extra edge that is seemingly helpful, has a negative

effect on all traffic, due to local optimization (see Braess (2005)). Fransoo and Lee (2013) name

the coordination of container shipments across the container supply chains as a key industry problem,

following up on, e.g., Lange and Chouly (2004) who state that the behavior of different actors involved

affect the performance of hinterland supply chains. In competitive outsourcing environments this

phenomenon can also be observed. Outsourcing is becoming increasingly important since companies

that produce advanced products completely in-house are becoming more and more rare. Hence, apart

from managing their own production facilities, companies have an increasing need to tightly control

outsourced operations. Specialized suppliers may well be capable of providing high-quality parts that

meet all product specifications. Several industries, e.g., electronics, automotive, aerospace, logistics,

information technology, include the presence of multiple suitable suppliers, who all possibly serve other

clients as well.

There are two important issues that arise in the competitive situations described above. First, an

agent faces the problem of finding an appropriate strategy since his costs depend on the strategies of the

other agents as well. This dependence on other agents’ strategies is not only a complex problem, but

also justifies the search for strategies that result in a Nash equilibrium. Second, equilibria are typically

inefficient, i.e., the aggregate costs are higher than those in the centralized optimum (also known as

the social optimum). This paper introduces a framework that takes both issues into account. The

first step is the introduction of a heuristic that for each agent prescribes a strategy. The second step is

the verification of whether the resulting strategy profile is a Nash equilibrium. If the heuristics induce

a Nash equilibrium, then we call it an equilibrium heuristic. Finally, the third step is a performance

analysis of the equilibrium heuristic. More precisely, the third step aims at providing a bound on the

performance of the equilibrium heuristic in terms of the aggregate costs in relation to those in the

centralized optimum.

Our approach parallels the performance analysis considered in the seminal paper of Graham (1969)

for coordinated production planning. Graham (1969) introduces a heuristic for these single decision

maker problems. A performance bound of the heuristic is obtained by worst case costs analysis. For

an overview on bounds of performance analyses in scheduling we refer to Graham et al. (1979) and
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Pinedo (2002).

In contrast to Graham (1969) we consider multiple decision maker problems. Therefore, in our

framework we have a heuristic that is employed by each decision maker and thus leads to a strategy

profile. The heuristics become more attractive if at the induced strategy profile no decision maker has

an incentive to deviate unilaterally, i.e., cannot be profitably changed by an individual agent. There-

fore, we incorporate the concept of Nash equilibrium to check whether the heuristic is an “equilibrium

heuristic.” Similarly to Graham (1969) a performance bound of the (equilibrium) heuristic is obtained

by worst case cost analysis.

We illustrate our framework in a setting of (M ||
∑
Ci) sequencing situations, i.e., multiple identical

machine sequencing situations using as cost criterion the sum of completion times. These sequencing

situations are not only interesting from a theoretical perspective to illustrate the implementation

of the framework, but have also their own merits in practical environments. In fact, the practical

situations that are described by our sequencing model are manyfold. This is due to the increasing

trend of outsourcing and subcontracting of supply chain activities (both in manufacturing as well

as logistics), in particular over the past two decades. Companies have come to the conclusion that

it is better to have the execution of (part of) their supply chain carried out by specialized firms.

Through outsourcing a company may obtain additional flexibility, lower its break-even point, or shorten

its balance sheet. Typical examples can be found in the semi-conductor industry, in particular in

customized chip design and manufacturing, in printed circuit board (sub-)assembly operations or in

electronic products and systems assembly operations. Some world-class electronics companies act more

as supply chain orchestrators rather than as operators. The level of control outsourcing companies want

to have depends on the prime reason for outsourcing and the criticality of the outsourced operation

and its resulting components or products. If the prime reason for outsourcing is cost and the resulting

components are of a commodity type, the outsourcing company just wants to control the output level,

and does not mind so much the sequencing and scheduling details. However, if the prime reason for

outsourcing is the access to highly specialized and complex processes, and the resulting products are

highly critical for the performance and quality of the end-product, then the outsourcing company

probably aims to stay atop of the sequencing and scheduling of the outsourced operation.

More specifically, our model can be related to by the previously mentioned outsourcing activities

in the semi-conductor industry. We consider a sequencing situation in which jobs have to be allocated

to a number of identical machines. Indeed, it is not at all atypical that semi-conductor and electronics

assembly situations have a number of identical machines in operation. Moreover, in order to mitigate

supply chain risks, outsourcing companies tend to no longer have single-sourcing policies but apply
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dual or even multiple sourcing strategies. They outsource to multiple companies that are preferably

located in different geographical, economic, and political regions, and that can all produce the required

components or products at the required specification levels. In our setting, multiple outsourcing

companies are assumed to draw upon a common capacity source of the identical machines. Indeed

this is typical for the industry situations described above. Because of the highly specialized level

of technology and the required economies of scale, the contract manufacturing companies almost

always produce for multiple clients. The paper presents the supply chain situation as a typical area

for application of the model developed. How this application works out specifically and in all detail,

needs to be analyzed further as that depends also on the specific supply chain configuration (number of

outsourcing companies, number of service providers used, characteristics of the machines and processes,

etc.), as well as on the contractual and operational arrangements between outsourcing companies on

the one hand and their supply chain service providers on the other.

We assume jobs are owned by selfish agents. Each job is characterized by its processing time, i.e.,

the time any machine takes to handle the job. The cost of a job is determined by its completion time

and the cost criterion of an agent/player is the sum of completion times of his jobs. A set of jobs that

is assigned to a machine is processed in such a way that the total costs are minimal. This implies that

jobs are ordered in increasing processing time on each machine. A strategy of a player is an allocation

of his jobs to the machines. There is no straightforward way for a player to determine an appropriate

strategy due to the strategic interaction with the other players.

To implement our framework for (M ||
∑
Ci) sequencing situations, we first introduce the so-called

selfish allocation heuristic. For each player separately the heuristic probabilistically assigns the jobs to

the machines in such a way that the resulting schedule would be optimal for this player in case there

were no jobs of other players. So, if there is a unique player, the selfish allocation heuristic yields an

optimal allocation. However, the selfish allocation heuristic is employed by all players simultaneously

and independently. Hence, any machine typically receives jobs from different players. Second, we

show that the selfish allocation heuristics lead to a strategy profile that is indeed a Nash equilibrium.

Finally, we provide a performance bound of the selfish allocation heuristic through a worst case cost

analysis. In particular, we obtain a tight bound that only depends on the number of machines.

Next, we discuss the literature that is closely related to our paper and that studies the efficiency

loss due to competition in sequencing situations. The focus in these papers, however, is either on the

price of anarchy or on the decentralization cost. The price of anarchy is the ratio between the cost

of the worst Nash equilibrium (or, equivalently, the Nash equilibrium with highest cost) and the cost

attained at the centralized optimum, and has been studied in parallel to the decentralized cost (which
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is determined by the best Nash equilibrium). Koutsoupias and Papadimitriou (1999) introduce the

price of anarchy and show that the price of anarchy is at most 3
2 if there are two identical machines

and the objective criterion is the makespan. Immorlica et al. (2009) consider general multiple machine

scheduling situations with objective criterion the makespan. They provide mechanisms that minimize

the price of anarchy. Bounds for the price of anarchy in scheduling situations with the weighted

completion time criterion are provided in Correa and Queyranne (2012) and Cole et al. (2015). For

sequencing situations with the minsum objective, i.e., the sum of completion times, bounds for the

price of anarchy are provided in Hoeksma and Uetz (2012). Lee et al. (2012) analyze the price of

anarchy for various objective criterions as well as various ordering policies per machine. For a setting

in which processing times increase as long as they are not processed, an analysis of the price of

anarchy for various ordering policies per machine and several objective criterions can be found in

Chen et al. (2017). Bukchin and Hanany (2007) study the decentralization cost of a dispatching-

sequencing problem. Each decision maker has a set of jobs that can be processed either in-house,

which is less costly, or can be sent to a subcontractor, which is more costly. They provide bounds

for the decentralization cost for an arbitrary number of jobs and decision makers. Moreover, they

introduce a scheduling-based coordinating mechanism such that the centralized optimum is obtained

in a Nash equilibrium. Bukchin and Hanany (2011) consider a decentralized job shop scheduling

system. They analyze the bounds of the decentralization cost and propose a mechanism to reduce this

cost.

In contrast to our approach, the Nash equilibria in the papers mentioned above are not the result

of a heuristic approach. Moreover, the Nash equilibria considered in these papers are the Nash

equilibrium with lowest cost or the Nash equilibria with highest cost. This is not a requirement for

the Nash equilibrium that results from the selfish allocation heuristic. Finally, the models studied in

the abovementioned papers differ in at least one crucial aspect from our model. The difference is in

the cost criterion (sum of completion times vs. make span as in Koutsoupias and Papadimitriou (1999)

and Immorlica et al. (2009)), or the requirement that jobs have to be processed on all machines (cf.

Correa and Queyranne (2012) and Cole et al. (2015)) whereas in our case each job has to be processed

on one machine, or the assumption that each player owns exactly one job (cf. Hoeksma and Uetz

(2012), Lee et al. (2012), and Chen et al. (2017)) whereas we assume that a player may own a set of

jobs. Additionally, Lee et al. (2012), and Chen et al. (2017) consider pure Nash equilibria, whereas

we focus on mixed Nash equilibria as pure Nash equilibria need not exist in our setting. Bukchin and

Hanany (2007) consider a setting in which they allow the possibility of different processing times on

different machines, but they consider two machines only, with the costs at the subcontractor for a
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job being fixed, implying it is independent of strategies of other players. Bukchin and Hanany (2011)

study jobshops and flowshops and restrict attention to two machines as well.

The remainder of the paper is organized as follows. In Section 2, the sequencing model is formally

described and explained by some illustrative examples. In Section 3, we present the framework that

consists of an equilibrium heuristic and a performance analysis, which provides a tight bound for the

performance of the equilibrium heuristic. In Section 4 we report on a series of simulations which show

that the performance of the selfish equilibrium heuristic is typically much better than the bound. In

Section 5, we show that in our particular setting the selfish equilibrium heuristic generates the worst

equilibrium. Finally, Section 6 concludes and contains some suggestions for further research.

2 Sequencing model

Our sequencing model is inspired by the previously discussed outsourcing activities in the semi-

conductor industry. Let M = {1, . . . , |M |}, |M | ≥ 2, be the finite set of (identical) production

entities, which we refer to as machines. Let N be the finite set of outsourcing companies, which we

refer to as agents. Let Ji be the set of orders, or shortly jobs, owned by agent i. We assume that for

all i, j ∈ N with i 6= j, Ji ∩Jj = ∅. Let J = ∪iJi. We assume each job has non–preemptive processing

requirements, i.e., once it is started it cannot be interrupted. Each job j ∈ J has processing time

pj > 0. To avoid degenerate situations that require cumbersome notation we assume that for j, j′ ∈ J

with j 6= j′, pj 6= pj′ . A (scheduling) problem is a quadruple Λ = (M,N, (Ji)i∈N , (pj)j∈J). Whenever

there is no possible confusion we omit the set of machines M from the specification of the scheduling

problem.

An allocation is an assignment of the jobs to the machines. Formally, a (deterministic) allocation

is a function a : J → M , where a(j) indicates the machine on which job j is allocated and hence

to be processed. Let A be the set of allocations. A schedule is a sequenced assignment of the jobs

to the machines. Formally, a (deterministic) schedule is a function σ : J → M × {1, . . . , |J |}, where

σ(j) = (σ1(j), σ2(j)) = (m, k) indicates that job j is scheduled in position k of machine m. We assume

that on each machine there is no idle time between jobs nor before the first job. Given a schedule σ,

job j’s predecessors are the jobs P (σ, j) = {j′ ∈ J : σ1(j′) = σ1(j) and σ2(j′) < σ2(j)}. Then, job

j’s completion time can be written as the sum of its processing time and the waiting time due to its

predecessors, i.e.,

Cj(σ) = pj +

 ∑
j′∈P (σ,j)

pj′

 .

Each agent determines which of his jobs are processed on which machine. In other words, each
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agent i chooses an allocation of its jobs ai : Ji →M , where ai(j) indicates the machine on which job

j is to be processed. Then, the resulting allocation is a : J → M with a(j) = ai(j) for each agent

i ∈ N and each job j ∈ Ji.

The central objective is to minimize the sum of completion times respecting the chosen allocation.

Let a be an allocation. A schedule σ respects allocation a if for each j ∈ J , σ1(j) = a(j), i.e., schedule

σ assigns each job to the same machine as allocation a. A schedule σ′ is a–optimal if it respects a and

for any other schedule σ that respects a,

∑
j∈J

Cj(σ
′) ≤

∑
j∈J

Cj(σ),

i.e., among all schedules that respect a, the sum of all completion times is minimized by schedule σ′.

Since allocation a determines the assignment of the jobs to the machines, a schedule that respects a is

a–optimal if and only if the jobs on each machine are scheduled in optimal order. Then, given that the

central objective is to minimize the sum of completion times, a schedule that respects a is a–optimal

if and only if for each machine m its jobs a−1(m) are scheduled in order of shortest processing time

(SPT), see e.g., Smith (1956).

A schedule σ∗ is optimal if for any other schedule σ,

∑
j∈J

Cj(σ
∗) ≤

∑
j∈J

Cj(σ),

i.e., the sum of all completion times is minimized by schedule σ∗. The following algorithm can be used

to find all optimal schedules.

Minimum Mean Flow Time1 (MFT) algorithm. (Horowitz and Sahni, 1976)

Step 1. For each machine m, set lm ≡ 0. Set J∗ ≡ J . As long as J∗ 6= ∅, do Procedure.

Begin Procedure.

Let j∗ ∈ J∗ be such that pj∗ > pj for all j ∈ J∗, j 6= j∗. Let m ∈M be a machine with lowest lm.

Set a∗(j∗) ≡ m and update lm ≡ lm + 1 as well as J∗ ≡ J∗\{j∗}.

End Procedure.

Step 2. Let σ∗ be an a∗–optimal schedule. �

We recall and state the following result for later reference.

Theorem 1. [Horowitz and Sahni, 1976] A schedule is optimal if and only if it can be obtained from

the MFT algorithm.

1Minimum mean flow time and minimum sum of completion times are equivalent objectives.
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We associate with each scheduling problem (N, (Ji)i∈N , (pj)j∈J) a (non–cooperative) scheduling

game Γ = (N, (Ai)i∈N , (ci)i∈N ), which is explained next. The set of players is given by N . The set of

(pure) strategies of player i ∈ N , denoted Ai, is the collection of functions ai : Ji →M . With a slight

abuse of notation, we associate with each strategy profile a = (ai)i∈N the allocation a : J → M with

a(j) = ai(j) for any i ∈ N and j ∈ Ji. Since all processing times are distinct, a strategy profile (or

equivalently, allocation) a induces2 a unique a–optimal schedule, which henceforth we will denote by

σa. Player i’s resulting “costs” are given by the sum of completion times of his jobs in σa. In other

words, player i’s cost function ci is given by

ci(a) =
∑
j∈Ji

Cj(σ
a).

In the next example we illustrate the model and some of the previously introduced concepts.

Example 1.

Let M = {1, 2} and N = {1, 2}. Let J1 = {α, γ} and J2 = {β, δ}. Suppose (pα, pβ, pγ , pδ) = (1, 2, 3, 4).

Each player has 4 pure strategies regarding his 2 jobs: he can send both jobs to machine 1, both jobs to

machine 2, or different jobs to different machines (two ways). Table 1 concisely depicts the scheduling

game. Player 1 is the row player and each row indicates which jobs are sent to machine 1 (the

complement is sent to machine 2). For instance, {α} corresponds with player 1’s strategy a1 with

a1(α) = 1 and a1(γ) = 2. Similarly, player 2 is the column player and each column indicates which

jobs are sent to machine 1. Next, we illustrate that each pair of numbers indicates the costs induced by

the corresponding strategy–profile. Consider, for instance, the pair ({α}, {β, δ}), which corresponds

with profile a = (ai)i=1,2 such that a1(α) = a2(β) = a2(δ) = 1 and a1(γ) = 2. Then, jobs α, β, and

δ end up together on machine 1 and job γ on machine 2. The unique a–optimal schedule σa satisfies

σa(α) = (1, 1), σa(β) = (1, 2), σa(γ) = (2, 1), and σa(δ) = (1, 3). Recall that the first coordinate

indicates the machine and the second coordinate indicates the position at that machine. So, machine

1 processes first α, then β, and finally δ; machine 2 only processes job γ. Then, player 1’s costs equal the

sum of the completion times of his jobs α and γ: Cα(σa)+Cγ(σa) = 1+3 = 4. Similarly, player 2’s costs

equal the sum of the completion times of his jobs β and δ: Cβ(σa)+Cδ(σ
a) = (1+2)+(1+2+4) = 10.

Hence, in this case the costs of the two players are given by (4, 10).

By applying Theorem 1 it follows that a schedule is optimal if and only if jobs δ and γ are processed

in the second position of different machines and jobs α and β are processed in the first position of

different machines. Hence, there are four optimal schedules and one easily verifies that their (minimal)

associated cost is 13.

2By SPT reordering on each machine.
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1\2 ∅ {β} {δ} {β, δ}

∅ 7,13 5,10 7,7 5,8

{α} 6,11 4,10 6,7 4,10

{γ} 4,10 6,7 4,10 6,11

{α, γ} 5,8 7,7 5,10 7,13

Table 1: Table of Example 1

Finally, the boldfaced numbers in Table 1 are related to the concept of Nash equilibrium, which

will be illustrated in Example 2. �

Let i ∈ N . A mixed strategy ãi of player i is a probability distribution over all pure strategies

ai ∈ Ai. At mixed strategy ãi, let Pr(ai|ãi) be the probability assigned to pure strategy ai ∈ Ai. Let

ã = (ãi)i∈N be a profile of mixed strategies. For any deterministic allocation a ∈ A, let Pr(a|ã) be

the probability of allocation a induced by ã, i.e.,

Pr(a|ã) =
∏
i∈N

Pr(ai|ãi). (1)

Denoting the expected completion time of j ∈ J by

C̃j(σ
ã) =

∑
a∈A

Pr(a|ã)Cj(σ
a),

we can write player i’s expected “costs” as

c̃i(ã) =
∑
j∈Ji

C̃j(σ
ã) =

∑
j∈Ji

(∑
a∈A

Pr(a|ã)Cj(σ
a)

)
. (2)

A profile of mixed strategies is a Nash equilibrium if no player has a profitable deviation, i.e., any

different strategy would not reduce his costs. Formally, a profile of mixed strategies ã is a (Nash)

equilibrium if there is no player i′ ∈ N with a strategy ã′i′ such that

c̃i′(ã
′) < c̃i′(ã),

where ã′ = (ã′i′ , (ãi)i 6=i′). Let E(Γ) be the set of Nash equilibria of game Γ. Set E(Γ) is nonempty as

all players have a finite number of pure strategies in Γ (cf. Nash (1951)).

The following example shows why we consider mixed strategies: not all games have a Nash equi-

librium in pure strategies.

Example 2. (No Nash equilibrium in pure strategies.)

Consider again the scheduling game discussed in Example 1. The boldfaced numbers in Table 1
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indicate each player’s best strategy (best response) given any of the other player’s strategies. For

instance, player 1’s strategy {γ} is the unique best response to player 2’s strategy {δ} since any other

strategy of player 1 yields higher costs for player 1: ∅ gives costs 7, {α} gives costs 6, and {α, γ} gives

costs 5, but {γ} gives costs 4. For this reason, 4 is the unique boldfaced number in column {δ}.

Although {γ} is a best response to {δ}, strategy–profile ({γ}, {δ}) is not a Nash equilibrium. The

reason is that player 2 has a profitable deviation: player 2’s cost is 10 but by switching to strategy {β}

he would have costs of only 7. (Note in fact that {β} is a best response to {γ} and hence its associated

payoff of 7 is boldfaced in row {γ}.) It is easy to verify that also in any other strategy–profile some

player has a profitable deviation. Hence, there is no Nash equilibrium in pure strategies.

There is a unique Nash equilibrium in mixed strategies. To see this, note that for player 1 it is

always strictly better to play {α} than ∅, and it is always strictly better to play {γ} than {α, γ}.

Similarly, for player 2 it is always strictly better to play {β} than ∅, and it is always strictly better

to play {δ} than {β, δ}. Therefore, in any Nash equilibrium, strategies ∅ (for both players), {α, γ}

(for player 1), and {β, δ} (for player 2) receive probability 0. Applying standard game–theoretic

tools (see, e.g., Osborne (2004)), one can easily show that the strategy–profile in which each of

the remaining strategies receives probability 0.5 constitutes the unique Nash equilibrium ã in mixed

strategies. Formally, ã = (ãi)i=1,2 consists of a probability distribution ã1 over player 1’s pure strategies

and a probability distribution ã2 over player 2’s pure strategies. Here, player 1 assigns probability

0.5 to his strategy a1
1 defined by a1

1(α) = 1 and a1
1(γ) = 2, and also probability 0.5 to his strategy

a2
1 defined by a2

1(α) = 2 and a2
1(γ) = 1. Similarly, player 2 assigns probability 0.5 to his strategy a1

2

defined by a1
2(β) = 1 and a1

2(δ) = 2, and also probability 0.5 to his strategy a2
2 defined by a2

2(β) = 2

and a2
2(δ) = 1.3

To calculate the expected costs of the unique Nash equilibrium ã we first compute the probability

of each deterministic allocation a ∈ A. From (1), it follows that for k, l = 1, 2,

Pr( (ak1, a
l
2) | ã ) = Pr(ak1|ã1)× Pr(al2|ã2) = 0.5× 0.5 = 0.25. (3)

Obviously, if for all k, l = 1, 2, a 6= (ak1, a
l
2), then Pr(a|ã) = 0.

3To see this, note that player 2 is indifferent between {β} and {δ} if and only if player 1 plays each of strategies

{α} and {γ} with probability 0.5 while player 1 is indifferent between {α} and {γ} if and only if player 2 plays each of

strategies {β} and {δ} with probability 0.5.
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Now, from (2) and (3) the expected costs of player 1 equal

c̃1(ã) =
∑
j=α,γ

C̃j(σ
ã) =

∑
j=α,γ

(∑
a∈A

Pr(a|ã)Cj(σ
a)

)

=
∑
j=α,γ

 ∑
k,l=1,2

0.25× Cj(σ(ak1 ,a
l
2))


= 0.25

∑
k,l=1,2

∑
j=α,γ

Cj(σ
(ak1 ,a

l
2))


= 0.25× (4 + 6 + 6 + 4) = 5,

where the penultimate equality follows from Table 1. Similar calculations give player 2’s expected

costs c̃2(ã) = 8.5. Hence, the cost induced by the unique Nash equilibrium is c̃1(ã) + c̃2(ã) = 13.5,

while the optimal (centralized) cost is 13 (see Example 1). �

Example 2 shows that Nash equilibria in pure strategies need not exist and that in a mixed Nash

equilibrium there can be a performance loss with respect to the situation in which there would be a

central authority.

3 Equilibrium heuristic and its performance

In this section we will formally describe the framework that consists of an equilibrium heuristic and a

performance analysis for the sequencing situations introduced in the previous section.

The general structure of the framework, that can be applied to any situation with selfish players,

can be described as follows. The first part of the equilibrium heuristic consists of a heuristic for each

player which leads to a strategy profile. In the second part it has to be verified that this strategy

profile is a Nash equilibrium. The quality of the equilibrium heuristic is evaluated by executing a

worst case cost analysis.

Now, we will describe formally the framework for the sequencing situation. The first step is the

introduction of the selfish allocation heuristic.

Selfish Allocation (SA) Heuristic (for player i ∈ N)

Step 1. For each machine m, set lm ≡ 0. Set J∗ ≡ Ji. As long as J∗ 6= ∅, do Procedure.

Begin Procedure.

Let j∗ ∈ J∗ be such that pj∗ > pj for all j ∈ J∗, j 6= j∗. Let m ∈M be a machine with lowest lm.

Set aSAi (j∗) ≡ m and update lm ≡ lm + 1 as well as J∗ ≡ J∗\{j∗}.

End Procedure.
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Step 2. Let ãSAi be the probability distribution over Ai that assigns equal probability to any ai ∈ Ai

that for all j, j′ ∈ Ji satisfies

ai(j) = ai(j
′) ⇐⇒ aSAi (j) = aSAi (j′),

and 0 otherwise. �

Note that the probability distribution obtained in Step 2 of the SA heuristic only gives (the same)

strictly positive probability to all allocations that can be obtained from aSAi by permutation of the

machines. Example 3 illustrates the two steps of the SA heuristic.

Remark 1. Since the procedure in the SA heuristic coincides with the procedure in the MFT algo-

rithm, it follows from Theorem 1 that schedule σa
SA
i is optimal for ({1}, J1, (pj)j∈J1). �

Example 3. (Illustration of the SA heuristic.)

Assume |M | = 3. Suppose player 1 has 7 jobs and J1 = {1, 2, . . . , 7}. Suppose that (p1, p2, . . . , p7) =

(1, 2, . . . , 7). It is easy to check that aSA1 : J1 →M defined by

aSA1 (3) = aSA1 (7) = 1

aSA1 (4) = aSA1 (5) = 2

aSA1 (1) = aSA1 (2) = aSA1 (6) = 3

can be obtained in the procedure in the SA heuristic. The corresponding probability distribution ãSAi

from the SA heuristic assigns probability 1
6 to the allocation aSA1 and the 5 other allocations of its

jobs that can be obtained by permuting the three batches of jobs on the machines. For instance, ãSAi

assigns probability 1
6 to the allocation a′1 : J1 →M defined by

a′1(1) = a′1(2) = a′1(6) = 1

a′1(3) = a′1(7) = 2

a′1(4) = a′1(5) = 3.

�

We now show that the profile ãSA = (ãSAi )i∈N is a Nash equilibrium. Since ãSA is obtained from

a heuristic, we will call it an equilibrium heuristic.

Theorem 2. Let Λ be a scheduling problem. Let Γ be its associated scheduling game. Then, the profile

obtained from the selfish allocation heuristic constitutes a Nash equilibrium of Γ. That is, ãSA ∈ E(Γ).

The proof of Theorem 2 and all other proofs are relegated to the Appendix.
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Remark 2. Any allocation aSAi that can be generated in the SA heuristic leads to a possibly different

mixed strategy ãSAi . However, any combination of such allocations for all players (ãSAi )i∈N is, by

Theorem 2, a Nash equilibrium of the scheduling game. Even though different combinations give

possibly different Nash equilibria, for each player all these Nash equilibria yield the same associated

expected costs. The proof is relegated to the end of the Appendix. �

Next, we study the performance of the equilibrium heuristic. More precisely, we determine the

loss of efficiency of the equilibrium heuristic with respect to the optimal schedules which could be

implemented by a central authority. It is convenient to introduce the ratio between the total cost

obtained in the equilibrium heuristic and the minimal total cost (obtained in case there would be a

central authority). For any scheduling game Γ, define

Price(Γ, SA) =

∑
j∈J C̃j(σ

ãSA
)∑

j∈J Cj(σ
∗)

,

where σ∗ is an optimal schedule. For any scheduling game Γ, Price(Γ, SA) ≥ 1. Small values of

Price(Γ, SA) indicate that the equilibrium heuristic performs relatively well in comparison to the

minimal total cost that a central authority could achieve. Our aim is to provide an upper bound for

Price.

The next theorem gives a tight bound for the performance of the equilibrium heuristic.

Theorem 3. Let Λ be a scheduling problem. Let Γ be its associated scheduling game. Then,

Price(Γ, SA) ≤ 3|M | − 1

2|M |
. (4)

Moreover, the bound in (4) is tight. That is, for any ρ < 3|M |−1
2|M | there is a scheduling problem with

|M | machines such that for its associated game Γ′, Price(Γ′, SA) ≥ ρ.

Theorem 3 shows that there is no sharper bound of the price of the equilibrium heuristic than (4).

Note that the bound is strictly increasing in the number of machines and that it converges to 3
2 .

4 Simulations

In this section we investigate the behavior of the price of selfish allocation in relation to the tight

bound of Theorem 3. For this purpose we simulate four different classes of scheduling problems that

are classified by the number of players and jobs. Examples of settings that have a good fit with

essential elements of our model when restricted to the various parameter domains, i.e., to the four

classes, are discussed at the end.
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First, we report the settings of the simulations. The inputs for each simulation are the number of

players |N |, the number of jobs per player |Ji| (i ∈ N), the processing time of each job pj (j ∈ J), and

the number of machines |M |. We distinguish among four different classes. The first class randomly

selects the number of players from the set {2, 3, 4, 5}. The number of jobs of each player is randomly

drawn from the set {1, 2, 3, 4, 5} and the processing times of each job is randomly drawn from the

interval (0, 1) of real numbers. Finally, the number of machines is randomly selected from the set

{1, 2, ..., 10}. The second class differs from the first one only by the set of numbers of jobs which is

replaced by {10, 11, 12, 13, 14, 15}. The third class differs from the first one only by the set of numbers

of players which is replaced by {5, 6, 7, 8, 9, 10}. Finally, the fourth class differs from the first one

by replacing the set of numbers of players by {5, 6, 7, 8, 9, 10} and the set of numbers of machines by

{2, 3, ..., 50}.

For each class 10,000 simulations are executed which results in the price of the selfish allocation

heuristic for each simulated scheduling problem. The resulting numerical data is depicted by means of

box plots in Figure 1. In each box plot the central line is the median, the central circle is the average,

the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the 2.5th (or lower)

and 97.5th (or upper) percentiles. We have also included the graph of the function x 7→ 3x−1
2x , which

by Theorem 3 gives the tight bound of the price of the equilibrium heuristic for any integer x ≥ 2

when there are x machines. Finally, in each box plot, the medians are connected by the graph of a

piecewise linear function.

Figure 1 a (b,c,d) represents the first (second, third, fourth) class of simulated scheduling problems

and allows us to make the following observations.

First, we consider the percentage loss of performance with respect to optimal schedules. We

observe that the average loss in performance is at most 23%. This value is attained in the fourth class

with |M | = 16, i.e., with relatively high numbers of players and machines. Here, the average price is

approximately 1.23. This is considerably lower than the tight upper bound in this situation: 1.468,

which reflects a loss of performance of 47%. Moreover, the relative distance as a percentage of (related

to the tight upper bound) the price averages and the corresponding tight upper bounds is at least

15%. This value is closely approximated in the third class with |M | = 10. If we consider the upper

percentile of the price of selfish allocation, then we observe that this relative distance is at least 4%.

This value is closely approximated in the first case with |M | = 2. However, in most situations it is

more than 10%. So, in most situations, it seems reality will work out a lot better than the worst case

possible outcome.

Second, taking the first class as starting point, we see that augmenting the number of jobs per

14



Figure 1: Box plots of price of selfish allocation for uniformly distributed processing times

players (i.e., shifting from the first class to the second class), the average price is reduced drastically.

So, with a relatively more dispersed job profile, the extra costs are less. Moreover, the distance between

the lower and upper percentiles is very small in comparison with this distance in the first class. This

seems counter intuitive, but in these two classes we have only a few players. The difference between

the two classes are the number of jobs. In the second class, where we have more jobs, the probability

to obtain a bad schedule is smaller than in the first class. Therefore, the payoff of the equilibrium

heuristic in the second class is considerably lower than the payoff of the equilibrium heuristic in the

first class. If the number of players is augmented (i.e., shifting from the first class to the third class)

we observe that the average price increases for sufficiently large |M |. This is caused by the fact that

with a smaller number of players each of them optimizes already to quite an extent, and there is less

room for a centralized decision maker to optimize this any further.

Third, if we augment the number of machines, the average price increases relatively quickly. This

implies that the optimal costs decrease more rapidly (i.e., a centralized decision maker would have

more room to optimize) than do the costs associated with the equilibrium heuristic. After the price

reaches a maximum it decreases relatively slowly. In fact, we can argue that when the number of
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machines tends to infinite (and all other parameters do not change), the price of anarchy tends to 1.

This is an immediate consequence of the fact that when there is a very large number of machines any

optimal schedule processes at most one job on each machine and the probability that the equilibrium

heuristic assigns two jobs to the same machine tends to 0.

All four classes can be envisaged. In many situations of outsourcing manufacturing jobs, one ob-

serves (i) relatively few players, (ii) relatively few outsourcing companies (machines) available and

used in each specific industry, and (iii) relatively many jobs (particularly when it comes to manufac-

turing electronic components or producing electronics sub-assemblies (PCB boards) of assemblies).

This suggests that the simulations of the second class are particularly relevant. Note that of all four

classes it is precisely in the second class where the average price of selfish allocation is lowest, i.e.,

where our equilibrium heuristic is likely to perform well.

In industries like aerospace, the number of players (e.g., Boeing, Airbus) is small, and the number

of outsourcing companies for, e.g., engines (GE, Rolls Royce) is small. However, a difference with

electronics is that in these industries the number of jobs is relatively small as well. Therefore the

latter industries seem to be best represented by the first class of our simulations.

The third class (which has more players in comparison to the first class) can also be encountered

in the semi-conductor industry, particularly in the area of application specific or custom designs. In

this section of the industry there are typically many specialized equipment producing players drawing

upon a limited number of chip making companies (foundries). In comparison to the second class, these

players (often smaller companies) submit less jobs per player. The price of selfish allocation in the

third class is higher than in the first class, and much higher than in the second class.

In comparison to the third class, the fourth class can have many more machines (up to 50). This

is typical for an industry situation where the outsourced operation is less capital intensive, allowing

more and smaller service providers to be viable. Examples can be found in an assembly type of

manufacturing, as well as packing or logistics operations. In this class we see that the price of selfish

allocation increases with the number of machines up to a point, but then decreases after that point

(i.e., when only one or very few jobs need to be allocated to a single machine).

We consider our simulations as a first necessary step before a decision about a possible cost-benefit

analysis is to be made.

5 Price of anarchy and decentralization cost

So far, we have focused on the performance of equilibrium heuristics. For a specific instance of a

multiple decision maker problem (sequencing situation in our setting) the equilibrium heuristic results
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in an equilibrium. Naturally, its performance is in between the performance of the equilibrium with

lowest total cost and the equilibrium with highest total cost, usually referred to as decentralization

cost and price of anarchy, respectively. Exploiting this relation per instance, performance bound

guarantees on a class of situations, naturally respect the same order between decentralization cost,

price of equilibrium heuristic, and price of anarchy. In this section we focus on these relations between

the three performance measures.

Let Λ be a scheduling problem. Let Γ be its associated scheduling game. The price of anarchy is

the ratio between the highest cost across all Nash equilibria and the optimal cost. Formally, the price

of anarchy is defined as

PoA(Γ) =
maxã∈E(Γ)

∑
j∈J C̃j(σ

ã)∑
j∈J Cj(σ

∗)
,

where σ∗ is an optimal schedule.

Similarly, the decentralization cost is the ratio between the lowest cost across all Nash equilibria

and the optimal cost. Formally, the decentralization cost is defined as

DC(Γ) =
minã∈E(Γ)

∑
j∈J C̃j(σ

ã)∑
j∈J Cj(σ

∗)
,

where σ∗ is an optimal schedule.

Theorem 2 states the profile obtained from the selfish allocation heuristic is a Nash equilibrium,

implying that for any game Γ the performance of the equilibrium heuristic is in between the decen-

tralization cost and the price of anarchy, i.e.,

1 ≤ DC(Γ) ≤ Price(Γ, SA) ≤ PoA(Γ). (5)

Theorem 3 provides a performance guarantee on the whole class of sequencing situations for the

price of selfish allocation. This performance guarantee is tight. In case tight performance guarantees

can be found for decentralization cost and price of anarchy as well, these guarantees should respect

an order in line with (5) as well. Figure 2 illustrates this relation in a stylized class containing exactly

two instances. At the same time it illustrates that the three (tight) performance guarantees need not

coincide.

In Figure 2 a class of multiple decision maker situations containing exactly two instances is consid-

ered. Each instance allows for several Nash equilibria. Equilibrium heuristic A selects equilibria A1

and A2 in instance 1 and 2, respectively. The left and middle parts in the figure illustrate the relation

between price of anarchy (PoA; highest NE), decentralization cost (DC; lowest NE), and equilibrium

heuristic performance per instance; the right part in the figure does the same for the associated tight

performance guarantees for the class.
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Figure 2: Relation between equilibrium heuristic, price of anarchy, and decentralization cost

Figure 2 illustrates that all three tight bounds could in principle be different. Assuming that there

are |M | = 2 machines, in Example 4 we show that for any ρ < 5
4 = 3|M |−1

2|M | there is a scheduling game

Γε(ρ) with DC(Γε(ρ)) = Price(Γε(ρ), SA) = PoA(Γε(ρ)) ≥ ρ. Therefore, since the bound in Theorem 3

is tight, by (5), the same bound is tight for the decentralized cost as well.

Example 4. (|M | = 2. Price of anarchy, price of selfish allocation, and decentralization cost.)

Let M = {1, 2} and N = {1, 2}. Let J1 = {α, γ} and J2 = {β, δ}. Let ε ∈ (0, 1
4). Suppose

(pα, pβ, pγ , pδ) = (ε, 2ε, 1 − 2ε, 1 − ε). Note pα < pβ < pγ < pδ. Consider the associated game Γε.

Similarly to the scheduling game discussed in Examples 1 and 2, each strategy can be fully described

by indicating which jobs are sent to machine 1 (the complement is sent to machine 2). And, as before,

there is a unique Nash equilibrium in mixed strategies. For player 1 it is always strictly better to play

{α} than ∅, and it is always strictly better to play {γ} than {α, γ}. Similarly, for player 2 it is always

strictly better to play {β} than ∅, and it is always strictly better to play {δ} than {β, δ}. So, in any

Nash equilibrium, strategies ∅ (for both players), {α, γ} (for player 1), and {β, δ} (player 2) receive

probability 0. Hence, it suffices to restrict attention to the reduced game described in Table 2, where

boldfaced numbers indicate best responses.

1\2 {β} {δ}

{α} 1 − ε, 2 1 + ε, 1 + 2ε

{γ} 1 + ε, 1 + 2ε 1 − ε, 2

Table 2: Table of Example 4
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Applying standard game–theoretic tools (see, e.g., Osborne, 2009) one can readily show that the

strategy–profile in which each of the strategies {α}, {γ}, {β}, and {δ} receives probability 1
2 constitutes

the unique Nash equilibrium ãSA in mixed strategies.4 Hence, the cost induced by the unique Nash

equilibrium are

c̃1(ãSA) + c̃2(ãSA) = [
1

2
(1− ε) +

1

2
(1 + ε)] + [

1

2
(2) +

1

2
(1 + 2ε)] =

5

2
+ ε.

From Theorem 1 it follows that the cost associated with any optimal schedule σ∗ equals

c1(σ∗) + c2(σ∗) = ε+ 2ε+ (ε+ 1− 2ε) + (2ε+ 1− ε) = 2 + 3ε.

Hence, from the unicity of the Nash equilibrium ãSA it follows that

DC(Γε) = Price(Γε, SA) = PoA(Γε) =
5
2 + ε

2 + 3ε
.

Note that limε→0DC(Γε) = 5
4 , which for |M | = 2 coincides with the tight bound established for the

price of selfish allocation in Theorem 3. �

In particular, in view of (5), Example 4 shows that for |M | = 2, the tight bound of the price of

selfish allocation is also a tight bound of the decentralization cost.

Corollary 1. Let Λ be a scheduling problem with |M | = 2. Let Γ be its associated scheduling game.

Then,

DC(Γ) ≤ 5

4
. (6)

Moreover, the bound in (6) is tight. That is, for any ρ < 5
4 there is a scheduling problem with |M | = 2

such that for its associated game Γ′, DC(Γ′) ≥ ρ.

For the scheduling games in Example 4, the price of anarchy coincides with the price of selfish

allocation. This follows from the following theorem, which shows this holds in fact for any scheduling

game.

Theorem 4. Let Λ be a scheduling problem. Let Γ be its associated scheduling game. Then, the price

of anarchy of Γ coincides with the price of selfish allocation of Γ, i.e., PoA(Γ) = Price(Γ, SA).

Theorems 3 and 4 immediately give the following tight upper bound of the price of anarchy.5

4See also footnote 3.
5For the specific case of 1 job per player, Rahn and Schäfer (2013) independently derived a similar result as in our

Corollary 2. Compared to our results we stress that they do not provide a proof, do not discuss the price of selfish

allocation, nor do they look at multiple jobs per player.
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Corollary 2. Let Λ be a scheduling problem. Let Γ be its associated scheduling game. Then,

PoA(Γ) ≤ 3|M | − 1

2|M |
. (7)

Moreover, the bound in (7) is tight. That is, for any ρ < 3|M |−1
2|M | there is a scheduling problem with

|M | machines such that for its associated game Γ′, PoA(Γ′) ≥ ρ.

Moreover, when there are more than two machines the upper bound of the price of selfish allocation

is, by (5), an upper bound of the decentralization cost as well. Note that, opposed to Corollary 1 in

which we could identify a tight bound for the case with exactly two machines, there is no guarantee

that this bound is tight for more than two machines as well. Hence, identifying a tight upper bound

of the decentralization cost in case of more than two machines is an interesting open problem.

6 Concluding remarks

Our analysis showed that optimal local decisions may lead to a joint outcome that can be improved

upon. This phenomenon is apparent in a wide variety of operations management settings, for example

in competitive outsourcing environments which are becoming increasingly important in business. In

this paper, we therefore focused on the costs of outsourcing decisions being made individually rather

than cooperatively.

This paper introduced a framework that takes into account two important issues that arise in

these competitive situations. First, the dependence of an appropriate strategy on the strategies of

other players, which justifies looking for equilibria. Second, the performance loss due to playing an

equilibrium. In this framework, we first introduce a heuristic that for each agent prescribes the strategy

in a specific setting. Second, we verify whether the strategy profile that results from the heuristics is

a Nash equilibrium. If a Nash equilibrium is established by the heuristics we call it an equilibrium

heuristic. Finally, we evaluate the performance of the heuristic equilibrium, i.e., we establish a bound

on the performance of the corresponding equilibrium payoffs in relation to the centralized optimum.

We illustrated our framework in the specific setting of sequencing situations. Sequencing situations

are not only interesting from a theoretical perspective, but also have their own merits in practical

environments. Many examples can be found in the outsourcing and subcontracting of supply chain

activities (both in manufacturing as well as logistics). For these situations, the results obtained in this

paper help players to select and set their strategies in case they act as selfish agents. Our analysis

quantified the difference between the individual and uncoordinated approach on the one hand, and

the common and coordinated approach on the other. It did so for different situations that vary in the

number of players (outsourcing companies), number of jobs, and the number of machines (outsourcing
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service providers). Simulation results showed that the performance gap in general is much smaller

than the worst case theoretical outcome. It was also observed that this gap increases with the number

of players (as with more selfish players there is more chance they are in conflict with each other),

but decreases drastically with the number of jobs per player (as the negative effects of individualistic

behavior tend to smooth out). Also the performance gap increases with the number of machines (with

more machines a coordinated or centralized approach has more options to optimize), but only up to a

point, after which it starts to decrease as the number of machines gets so large that only one or very

few jobs need to be allocated per machine.

This all gives support to business management in deciding on the right outsourcing approach

(which in a wider context includes decisions on the level of control on schedules, single vs. multiple

sourcing, whether to include sourcing from service providers that also serve the direct competition,

etc.). Knowing the performance gap, the management of outsourcing companies involved can decide

how and to what extent they want to participate in coordinating strategies. Such a coordination on the

one hand would introduce control effort, complexity and costs, but would allow to reach solutions that

are more efficient overall, and thus provide benefits for all involved. The approach of this paper is a

first step in a solid cost-benefit analysis of the desired levels of control and coordination in outsourcing

situations. The ultimate goal is to further enrich the analysis in order to provide support to effective

business management decisions.

Though focus of this paper has been on sequencing situations, we stress that our 3-step equilibrium

heuristic framework can be applied in a much wider context. In fact it can be applied to any Operations

Management setting in which locally optimal decisions can lead to an outcome that could centrally be

improved upon. Moreover, it is interesting to consider this approach if the setting of the sequencing

situation changes. For example, what will be the effect if there is a change in the cost criterion (e.g.,

makespan), job specific characteristics (e.g., release dates), job related characteristics (e.g., precedence

relations), etcetera. Hence, this paper has the potential to initiate a new line of research that is related

to sequencing situations.

7 Appendix

Lemma 1 is used in the proof of Theorems 2 and 4.

Lemma 1. For any pure strategy a◦1 of player 1, any j ∈ J1, and any j′ ∈ J\J1,

∑
a∈A: a(j′)=a(j)

Pr( a | (a◦1, (ãSAi )i∈N\{1}) ) =
1

|M |
. (8)
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Similarly, for any mixed strategies (ã◦i )i∈N\{1} of players N\{1}, any j ∈ J1, and any j′ ∈ J\J1,∑
a∈A: a(j′)=a(j)

Pr( a | (ãSA1 , (ã◦i )i∈N\{1}) ) =
1

|M |
. (9)

Proof. Let j ∈ J1. Let j′ ∈ J\J1 and i = o(j′). Note i 6= 1. We first prove the first statement.

By construction of ãSAi , player i assigns job j′ to any machine with probability 1
|M | . Therefore,

independently of player 1’s strategy a◦1, job j ∈ J1 will be on the same machine as j′ with probability

1
|M | . This proves the first statement.

We now prove the second statement. By construction of ãSA1 , player 1 assigns job j ∈ J1 to any

machine with probability 1
|M | . Therefore, independently of player i’s strategy ã◦i , job j′ ∈ Ji will be

on the same machine as j with probability 1
|M | . This proves the second statement.

Proof of Theorem 2:

Without loss of generality we show that player 1 has no profitable deviation. It suffices to show that

there is no pure strategy deviation that yields strictly lower costs for player 1 (see, e.g., Osborne,

2009). Let a′1 be a pure strategy of player 1. Let ã′ = (a′1, (ã
SA
i )i∈N\{1}). Let a1 ∈ AAS1 , i.e., a1 is a

pure strategy of player 1 such that Pr( a1 | ãSA1 ) > 0. Then,

c̃1(ã′) =
∑
j∈J1

C̃j(σ
ã′)

=
∑
j∈J1

(∑
a∈A

Pr(a|ã′)Cj(σa)

)

=
∑
j∈J1

∑
a∈A

Pr(a|ã′)

pj +
∑

j′∈P (σa,j)

pj′


=

∑
j∈J1

pj +
∑
a∈A

Pr(a|ã′)
∑

j′∈P (σa,j)

pj′


=

∑
j∈J1

pj +
∑
a∈A

Pr(a|ã′)

 ∑
j′∈J1∩P (σa,j)

pj′ +
∑

j′∈(J\J1)∩P (σa,j)

pj′


=

∑
j∈J1

pj +

∑
a∈A

Pr(a|ã′)
∑

j′∈J1∩P (σa,j)

pj′

+

∑
a∈A

Pr(a|ã′)
∑

j′∈(J\J1)∩P (σa,j)

pj′


=

∑
j∈J1

pj +
∑

j′∈J1∩P (σa′
1 ,j)

pj′

+
∑
j∈J1

∑
a∈A

Pr(a|ã′)
∑

j′∈(J\J1)∩P (σa,j)

pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σa′
1 ,j)

pj′

+
∑
j∈J1

∑
a∈A

Pr(a|ã′)
∑

i∈N\{1}

∑
j′∈Ji∩P (σa,j)

pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σa′
1 ,j)

pj′

+
∑
j∈J1

∑
i∈N\{1}

∑
a∈A

Pr(a|ã′)
∑

j′∈Ji∩P (σa,j)

pj′
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=
∑
j∈J1

pj +
∑

j′∈J1∩P (σa′
1 ,j)

pj′

+
∑
j∈J1

∑
i∈N\{1}

∑
a∈A

Pr(a|ã′)
∑

j′∈Ji: pj′<pj ,a(j′)=a(j)

pj′



=
∑
j∈J1

pj +
∑

j′∈J1∩P (σa′
1 ,j)

pj′

+
∑
j∈J1

∑
i∈N\{1}

 ∑
j′∈Ji: pj′<pj

 ∑
a∈A: a(j′)=a(j)

Pr(a|ã′)

 pj′


(a)
=

∑
j∈J1

pj +
∑

j′∈J1∩P (σa′
1 ,j)

pj′

+
∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |


(b)

≥
∑
j∈J1

pj +
∑

j′∈J1∩P (σa1 ,j)

pj′

+
∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |


(c)
= c̃1(a1, (ã

SA
i )i∈N\{1}).

Equality (a) follows from (8) with a◦1 = a′1. Inequality (b) follows from the fact that by Remark 1

σa1 is optimal for ({1}, J1, (pj)j∈J1). Equality (c) follows from arguments similar to those applied to

establish all previous equalities and (8) with a◦1 = a1.

So far, we have shown that

c̃1(a′1, (ã
SA
i )i∈N\{1}) ≥ c̃1(a+

1 , (ã
SA
i )i∈N\{1}) for all a+

1 ∈ A
AS
1 .

But then, since c̃1 is linear, it immediately follows that

c̃1(a′1, (ã
SA
i )i∈N\{1}) =

∑
a+1 ∈ASA

1

Pr(a+
1 |ã

SA
1 ) c̃1(a′1, (ã

SA
i )i∈N\{1})

≥
∑

a+1 ∈ASA
1

Pr(a+
1 |ã

SA
1 ) c̃1(a+

1 , (ã
SA
i )i∈N\{1})

= c̃1(ãSA1 , (ãSAi )i∈N\{1})

= c̃1(ãSA).

This shows that deviation a′1 is not profitable. Hence, ãSA is a Nash equilibrium. This completes the

proof. 2

Preparations Proof of Theorem 3:

Let i ∈ N . Denote Ji = {ji1, . . . , jini}. We denote the processing time of job jil by pil and assume

without loss of generality that pi1 < · · · < pini , i.e., the processing time of the jobs is increasing in

the second index. By Remark 2, we can conveniently fix, for any i ∈ N , any particular allocation aSAi

generated by the selfish allocation heuristic. It is easy to verify that for any i ∈ N , the allocation aSAi

such that

aSAi (jil) = 1 + (l − 1)mod|M | for each m ∈M = {1, . . . , |M |} and each l ∈ {1, . . . , ni}, (10)
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assigns the |M | largest jobs in Ji to different machines, the next |M | largest jobs to different machines,

etc. Hence, this allocation can be generated by the selfish allocation heuristic. For this reason, we

henceforth use exclusively the notation aSAi to denote the allocation specified in (10), unless explicitly

noticed otherwise. Similarly, ãSAi will denote the probability distribution obtained from applying the

second step of the SA heuristic to the allocation specified in (10). Finally, ASAi ⊆ Ai will denote the

pure strategies that receive (the same) strictly positive probability at ãSAi .

For j ∈ J , let o(j) denote the owner of job j, i.e., o(j) = i where i ∈ N is such that j ∈ Ji. For

j ∈ J , define

λj = |{j′ ∈ J : pj′ > pj}| and

κj = |{j′ ∈ J : pj′ > pj and o(j′) = o(j)}|.

The next lemma provides a convenient expression for the sum of expected costs induced by the Nash

equilibrium ãSA in terms of (κj , λj)j∈J and the processing times (pj)j∈J .

Lemma 2. Let Λ be a scheduling problem. Let Γ be its associated scheduling game. The sum of

expected costs induced by Nash equilibrium ãSA is given by 6

∑
j∈J

C̃j(ã
SA) =

∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)
.

Proof. For i ∈ N and m ∈ {1, . . . , |M |}, let Jim be the set of jobs of player i that allocation aSAi

assigns to machine m, i.e.,

Jim = {j ∈ Ji : aSAi (j) = m}.

Note that

c̃1(ãSA)
(d)
=

∑
a1∈ASA

1

Pr(a1|ãSA1 )
(
c̃1(a1, (ã

SA
i )i∈N\{1})

)
(e)
=

∑
a1∈ASA

1

Pr(a1|ãSA1 )

∑
j∈J1

pj +
∑

j′∈J1∩P (σa1 ,j)

pj′

+
∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |

 ,

where equality (d) follows from the linearity of c̃1 and equality (e) follows from (c) in the proof of

Theorem 2.

Since player 1 was an arbitrarily chosen player in the proof of Theorem 2, it holds that in fact for

each player i ∈ N ,

c̃i(ã
SA) =

∑
ai∈ASA

i

Pr(ai|ãSAi )

∑
j∈Ji

pj +
∑

j′∈Ji∩P (σai ,j)

pj′

+
∑
j∈Ji

 ∑
i′∈N\{i}

∑
j′∈Ji′ :pj′<pj

pj′

|M |


6For x ∈ R, bxc denotes the largest integer n with n ≤ x.
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Hence,∑
j∈J

C̃j(σ
ãSA

) =
∑
i∈N

c̃i(ã
SA)

=
∑
i∈N

∑
ai∈ASA

i

Pr(ai|ãSAi )

∑
j∈Ji

pj +
∑

j′∈Ji∩P (σai ,j)

pj′

+
∑
j∈Ji

 ∑
i′∈N\{i}

∑
j′∈Ji′ :pj′<pj

pj′

|M |


=

∑
i∈N

∑
ai∈ASA

i

Pr(ai|ãSAi )

∑
m∈M

∑
j∈Jim

pj +
∑

j′∈Ji∩P (σai ,j)

pj′

+

∑
i∈N

∑
ai∈ASA

i

Pr(ai|ãSAi )

∑
j∈Ji

∑
i′∈N\{i}

∑
j′∈Ji′ :pj′<pj

pj′

|M |


=

∑
i∈N

∑
m∈M

∑
j∈Jim

pj +
∑

j′∈Jim:pj′<pj

pj′

+
∑
i∈N

∑
j∈Ji

∑
i′∈N\{i}

∑
j′∈Ji′ :pj′<pj

pj′

|M |

=
∑
i∈N

∑
m∈M

∑
j∈Jim

pj +
∑

j′∈Jim:pj′>pj

pj

+
∑
i∈N

∑
j∈Ji

∑
i′∈N\{i}

∑
j′∈Ji′ :pj′>pj

pj
|M |

=
∑
i∈N

∑
m∈M

∑
j∈Jim

pj(1 +
∑

j′∈Jim:pj′>pj

1)

+
∑
i∈N

∑
j∈Ji

pj
|M |

 ∑
i′∈N\{i}

∑
j′∈Ji′ :pj′>pj

1


=

∑
j∈J

pj

(
1 +

⌊
κj
|M |

⌋)
+
∑
j∈J

pj
|M |

(λj − κj)

=
∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)
,

which proves the desired equality.

The next lemma shows that for a given set of jobs the price of the allocation heuristic is maximal

when all jobs are owned by different players. Let Λ = (N, (Ji)i∈N , (pj)j∈J) be a scheduling problem.

We define its associated simple scheduling problem by Λ′ = (N ′, (Ji)i∈N ′ , (pj)j∈J) where N ′ is such

that |N ′| = |J | and each player in N ′ owns exactly one job in J , i.e., for each i ∈ N ′, |Ji′ | = 1.

Lemma 3. Let Γ be the game associated with a scheduling problem Λ. Let Γ′ be the game associated

with the corresponding simple schedule problem Λ′. Then, Price(Γ, SA) ≤ Price(Γ′, SA).

Proof. Let ãSA(Λ) be the equilibrium heuristic for Λ and let ãSA(Λ′) be the equilibrium heuristic for

Λ′. Then, by Lemma 2,∑
j∈J

C̃j(σ
ãSA(Λ)) =

∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)

≤
∑
j∈J

pj

(
1 +

λj
|M |

)
=

∑
j∈J

C̃j(σ
ãSA(Λ′)).
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Let σ∗ be an optimal schedule (for both Λ and Λ′). Then,

Price(Γ, SA) =

∑
j∈J C̃j(σ

ãSA(Λ))∑
j∈J Cj(σ

∗)
≤
∑

j∈J C̃j(σ
ãSA(Λ′))∑

j∈J Cj(σ
∗)

= Price(Γ′, SA),

which completes the proof.

Lemma 3 shows that the extra cost of decentralized decision–making is maximal when the set of

all jobs is maximally spread over all players; and thus there are less costs when the set of jobs is

concentrated in less players.

The following lemma provides a convenient expression for the optimal sum of costs (as if there

were a central authority).

Lemma 4. Let Λ be a scheduling problem. For any optimal schedule σ∗, the associated (optimal) sum

of costs equals

∑
j∈J

Cj(σ
∗) =

∑
j∈J

pj

(
1 +

⌊
λj
|M |

⌋)
.

Remark 3. Obviously, the optimal cost is independent of the owners of the jobs. Also, in case there

is a unique player, the cost associated with any Nash equilibrium is optimal. Therefore, Lemma 4

can be obtained from Lemma 2 by assuming that there is a unique player (and hence, κj = λj for all

j ∈ J). �

Proof of Theorem 3:

Let Λ = (N, (Ji)i∈N , (pj)j∈J) be a scheduling problem. Let Γ be the game associated with Λ. By

Lemma 3, we may assume that for each i ∈ N , |Ji| = 1. With a slight abuse of notation, let

J = N = {1, . . . , n}. Without loss of generality we assume that p1 > · · · > pn. Let K = b |J ||M |c. We

assume K 6= |J |
|M | since the case K = |J |

|M | follows from similar (but easier) arguments.

The sum of expected costs induced by the equilibrium heuristic ãSA can now be written as∑
j∈J

C̃j(σ
ãSA

) =
∑
j∈J

pj

(
1 +

λj − κj
|M |

+

⌊
κj
|M |

⌋)
=

∑
j∈J

pj(1 +
λj
|M |

)

=
∑

k=0,...,K−1

∑
l=1,...,|M |

p(k|M |+l) (1 + k +
l − 1

|M |
) +

(
p(K|M |+1)(1 +K +

0

|M |
) + · · ·+ p|J |(1 +K +

|J | −K|M | − 1

|M |
)

)
(11)
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≤
∑

k=0,...,K−1

∑
l=1,...,|M |

p(k|M |+l) (1 + k +
|M | − 1

2|M |
) +

(
p(K|M |+1)(1 +K +

|M | − 1

2|M |
) + · · ·+ p|J |(1 +K +

|M | − 1

2|M |
)

)

=
∑

k=0,...,K−1

(
1 + k +

|M | − 1

2|M |

) ∑
l=1,...,|M |

p(k|M |+l)

 + (12)

(
1 +K +

|M | − 1

2|M |

)(
p(K|M |+1) + · · ·+ p|J |

)
.

Here, the first equality follows from Lemma 2. The second equality follows from the fact that for all

j ∈ J , κj = 0 (since for all i ∈ N , |Ji| = 1). The inequality follows from the identity∑
l=1,...,|M |

l − 1

|M |
=
|M | − 1

2

and the redistribution of this sum in such a way that the jobs with longer (shorter) processing times

have larger (smaller) coefficients on the right hand side than on the left hand side of the inequality.

(For the case k = K, the sum of coefficients is even augmented.)

The minimal sum of costs induced by an optimal schedule σ∗ can be written as∑
j∈J

Cj(σ
∗) =

∑
j∈J

pj

(
1 +

⌊
λj
|M |

⌋)

=
∑

k=0,...,K−1

(1 + k)

 ∑
l=1,...,|M |

p(k|M |+l)

+ (13)

(1 +K)
(
p(K|M |+1) + · · ·+ p|J |

)
,

where the first equality follows from Lemma 4.

For any integer k ≥ 0, we have

1 + k + |M |−1
2|M |

1 + k
=

1 + k

1 + k
+

|M |−1
2|M |

1 + k
≤ 1 +

|M | − 1

2|M |
. (14)

Let k = 0, . . . ,K − 1. From (14) it follows that(
1 + k + |M |−1

2|M |

)(∑
l=1,...,|M | p(k|M |+l)

)
(1 + k)

(∑
l=1,...,|M | p(k|M |+l)

) ≤
(

1 +
|M | − 1

2|M |

)
. (15)

Similarly,(
1 +K + |M |−1

2|M |

) (
p(K|M |+1) + · · ·+ p|J |

)
(1 +K)

(
p(K|M |+1) + · · ·+ p|J |

) ≤
(

1 +
|M | − 1

2|M |

)
. (16)

From (12), (13), (15), (16) and the fact that for any β, δ > 0 and any α, γ, ε ∈ R, [ αβ ,
γ
δ ≤ ε =⇒ α+γ

β+δ ≤ ε

] it follows that∑
j∈J C̃j(σ

ãSA
)∑

j∈J Cj(σ
∗)
≤
(

1 +
|M | − 1

2|M |

)
=

3|M | − 1

2|M |
,
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which completes the first part of the proof.

Next, we prove that the bound is tight. Let ρ < 3|M |−1
2|M | . Let n = |M |. Let 0 < p1 < p2 < · · · <

pn−1 < pn be such that

p1

pn

(
3n− 1

2n

)
≥ ρ. (17)

Let Λ = (N, (Ji)i∈N , (pj)j∈J) be the scheduling problem for which

• |J | = |N | = |M |;

• J = {1, . . . , n};

• for each i ∈ N , |Ji| = 1; and

• for each j ∈ J , the processing time of job j equals pj .

From Lemma 2, for the sum of expected costs induced by the equilibrium heuristic ãSA we have

∑
j∈J

C̃j(σ
ãSA

) =
∑

j=1,...,n

pj

(
1 +

n− j
n

)
. (18)

Obviously, the minimal sum of costs induced by an optimal schedule σ∗ equals

∑
j∈J

Cj(σ
∗) =

∑
j=1,...,n

pj . (19)

From (18) and (19) it follows that for the game Γ associated with Λ we have

Price(Γ, SA) =

∑
j∈J C̃j(σ

ãSA
)∑

j∈J Cj(σ
∗)

=

∑
j=1,...,n pj

(
1 + n−j

n

)
∑

j=1,...,n pj

≥

∑
j=1,...,n pj +

∑
j=1,...,n pj

(
n−j
n

)
npn

≥
np1 + p1

∑
j=1,...,n

(
n−j
n

)
npn

=
np1 + p1

(
n−1

2

)
npn

=
p1

(
n+ n−1

2

)
pnn

=
p1

pn

(
n+ n−1

2

n

)

=
p1

pn

(
3n− 1

2n

)
≥ ρ,
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where the last inequality follows from (17). This completes the second part of the proof. 2

Proof of Theorem 4:

Let ã be a Nash equilibrium. It is sufficient to show that each player has higher costs at ãSA than at

ã. Without loss of generality we show that player 1 has higher costs at ãSA than at ã. We have

c̃1(ã) ≤ c̃1(ãSA1 , (ãi)i∈N\{1})

(f)
=

∑
a1∈ASA

1

Pr(a1|ãSA1 )
(
c̃1(a1, (ãi)i∈N\{1})

)

=
∑

a1∈ASA
1

Pr(a1|ãSA1 )

∑
j∈J1

pj +
∑

j′∈J1∩P (σa1 ,j)

pj′

+

∑
a1∈ASA

1

Pr(a1|ãSA1 )

∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

∑
a∈A:a(j′)=a(j)

Pr(a|(a1, (ãi)i∈N\{1}))pj′


=

 ∑
a1∈ASA

1

Pr(a1|ãSA1 )
∑
j∈J1

pj +
∑

j′∈J1∩P (σa1 ,j)

pj′

+

∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

∑
a∈A:a(j′)=a(j)

Pr(a|(ãSA1 , (ãi)i∈N\{1}))pj′


(g)
=

 ∑
a1∈ASA

1

Pr(a1|ãSA1 )
∑
j∈J1

pj +
∑

j′∈J1∩P (σa1 ,j)

pj′

+

∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |


=

∑
a1∈ASA

1

Pr(a1|ãSA1 )

∑
j∈J1

pj +
∑

j′∈J1∩P (σa1 ,j)

pj′

+
∑
j∈J1

 ∑
i∈N\{1}

∑
j′∈Ji:pj′<pj

pj′

|M |


(h)
=

∑
a1∈ASA

1

Pr(a1|ãSA1 )
(
c̃1(a1, (ã

SA
i )i∈N\{1})

)
(i)
= c̃1(ãSA).

Here, the inequality follows from the fact that ã is a Nash equilibrium. Equalities (f ) and (i) follow

from the linearity of c̃1. Equality (g) follows from (9) with ã◦i = ãi, i ∈ N\{1}. Equality (h) follows

from (c) in the proof of Theorem 2. Therefore, for any player the expected costs at ãSA are higher

than those at any other Nash equilibrium ã. 2

Proof of Remark 2:

In the proof of Theorem 4 we show that for each player the equilibrium heuristic ãSA induced by (10)

yields weakly higher costs than any other Nash equilibrium. But one easily verifies that the arguments
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in Theorem 4 do not rely on our specific choice of ãSA. Therefore, any other Nash equilibrium in the

statement of Theorem 2 similarly yields for each player weakly higher costs than any other Nash

equilibrium. Then, for each player, all Nash equilibria in Theorem 2 yield precisely the same costs. 2
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