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Abstract

This paper investigates the resource-constrained project scheduling problem with alter-

native subgraphs (RCPSP-AS). In this scheduling problem, there exist alternative ways

to execute subsets of activities that belong to work packages. One alternative execution

mode must be selected for each work package and, subsequently, the selected activities

in the project structure should be scheduled. Therefore, the RCPSP-AS consists of two

subproblems: a selection and a scheduling subproblem. A key feature of this research is the

categorisation of different types of alternative subgraphs in a comprehensive classification

matrix based on the dependencies that exist between the alternatives in the project struc-

ture. As the existing problem-specific datasets do not support this framework, we propose

a new dataset of problem instances using a well-known project network generator. Fur-

thermore, we develop a tabu search that uses information from the proposed classification

matrix to guide the search process towards high-quality solutions. We verify the overall

performance of the metaheuristic and different improvement strategies using the developed

dataset. Moreover, we show the impact of different problem parameters on the solution

quality and we analyse the impact of distinct resource characteristics of alternatives on the

selection process.
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1. Introduction

The scheduling of activities subject to resource and technological constraints in order

to minimise the total project duration or makespan is the standard problem in the con-

text of project scheduling, known as the resource-constrained project scheduling problem

(RCPSP). We refer to multiple survey papers published on the basic principles of the

RCPSP (Demeulemeester and Herroelen, 2002; Brucker et al., 1999) and methods for the

RCPSP (Hartmann and Kolisch, 2000; Kolisch and Hartmann, 2006; Weglarz et al., 2011;

Weglarz, 2012). The problem is known to be NP-hard (Blazewicz et al., 1983). Several

researchers have relaxed some of the assumptions of the RCPSP in order to obtain a more

general project scheduling problem. We refer to the work of Hartmann and Briskorn (2010)

for a broad overview of the different extensions of the RCPSP. However, most research

studies retain the assumption that the project structure is deterministic and completely

known in advance. Based on discussions with practitioners, Vidal et al. (2011) observed

that engineering projects become larger, use more sophisticated technologies and involve

a larger number of stakeholders. Due to the ever-increasing complexity of projects (Marle

and Vidal, 2016), the above assumption has been rendered obsolete. In case that we relax

the assumption of a deterministic project structure, we consider a more general project

scheduling problem that consists of alternative, substitutable ways to execute the project.

In this research, the RCPSP is therefore extended with alternatives in order to allow a

flexible network topology. In this regard, we should mention an extension of the RCPSP

related to this research, called multi-mode RCPSP (MRCPSP) (Elmaghraby, 1977). In

the MRCPSP, activities can be performed in several modes that correspond to specific re-

source/time profiles of the activities. However, the main difference between the MRCPSP

and the scheduling problem proposed in this research is the level in the work breakdown

structure (WBS) at which the alternative execution modes are defined. The alternatives

are limited to the activity level in the former case, while the alternatives concern a com-

plete subgraph of activities in the latter case. The problem formulation should also be

clearly distinguished from modular projects with alternative technologies as investigated

by Creemers et al. (2015). In modular projects, the assumptions typically hold that (1)

modules are considered to be independent subparts, (2) different alternatives of a module

can be active in parallel and (3) modules can fail to deliver an outcome. In order to dif-

ferentiate the problem described in this paper from the above problems, we refer to this

problem as project scheduling with alternative subgraphs. The need to model alternative
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subgraphs in the RCPSP is motivated by several practical examples from project and job-

shop scheduling, disruption and portfolio management. Since projects have become highly

complex systems through a multitude of mutual interrelations between activities in the

project structure, the existence of alternatives is either imposed by the project’s reality or

sought-after by project managers. For example, Kis (2003) describes a case study in which

there exists a flexible production process for wire harnesses using general machines, spe-

cialised semi-automated machines or manual effort. These alternative processes are vital

to the flexibility required in today’s production processes. Similar, Kellenbrink and Helber

(2015) identify alternatives in highly complex regeneration processes of complex durable

goods such as aircraft engines. Within the boundaries set by legal constraints and engine

characteristics, this allows manufacturers to draft customised regeneration schedules for

the engines. Moreover, Kuster et al. (2008) discuss the aircraft turnaround process that

can be executed in different variations. The authors investigate how these alternative pro-

cesses can be used to manage frequently occurring disruptions. Finally, the existence of

alternatives can be used to model processes that produce multiple types of products on

shared resources, i.e. a flexible manufacturing system (FMS) (Lee and DiCesare, 1994).

In a FMS, jobs can be completed by executing different sequences of operations. The fact

that a process can be carried out in multiple ways is crucial to guarantee the flexibility

that typifies a FMS. The above examples provide both theoretical and practical support

for the project scheduling problem discussed in this research.

Despite that there has been an increasing volume of research on project scheduling

with alternatives in recent years, studies have been developed largely independent and are

motivated by small-scaled numerical examples and case studies. Therefore, they should

be combined as well as extended to provide a broader perspective on the problem area.

Furthermore, the majority of publications focus on a restricted definition of alternative

subgraphs that hinder the practical application of the scheduling problem. To the best

of our knowledge, no research to date provides a systematic analysis of the impact of the

characteristics of alternative subgraphs on the solution quality of project schedules as well

as the relationship between resources and alternatives.

Our research efforts result in four main contributions. (1) We extend the existing

problem formulation of project scheduling with alternative subgraphs with the concepts of

nested and linked alternatives. (2) We introduce a comprehensive theoretical framework

in order to unambiguously classify projects with alternative subgraphs. (3) We propose a

new benchmark dataset of artificial problem instances that supports the proposed problem
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formulation. (4) We develop a metaheuristic solution approach to obtain high-quality

solutions for the project scheduling problem with alternative subgraphs.

The outline of this paper is organised as follows. In section 2, we discuss the literature

overview and section 3 describes the problem statement. In section 4, the general solution

framework that is proposed in this research is presented, while the specific implementation

of the tabu search procedure is explained in detail in section 5. Section 6 details the new

benchmark dataset that is presented in this research as well as the computational results.

Finally, we discuss some general conclusions and suggestions for future research.

2. Literature overview

The existence of alternatives is often expressed by means of logical constraints such as

AND-, (exclusive) OR- or BI-constraints. In this section, we discuss the existing literature

on the application of such logical constraints in (1) project scheduling without resources,

(2) project scheduling with resources and (3) other related fields of research.

Initially, Neumann (1990) presents stochastic project networks in which activities are

only selected for implementation throughout the project progress. Tsamardinos et al.

(2003) present an approach to conditional planning where the presence of an activity in

the final solution depends on external conditions. Instead of enumerating all possible prece-

dence networks, the authors propose to extend the temporal constraint satisfaction problem

(TCSP) with observation nodes and labels to indicate which activities will be executed in

different situations. Beck and Fox (2000) define the concept of the probability of existence

(PEX) in order to model alternative activities. The expected PEX value of an activity rep-

resents the probability that the activity will be present in the final solution. Although the

previously mentioned studies include logical constraints apart from temporal constraints

in scheduling problems, they fail to exploit the integration between both constraints. How-

ever, Barták et al. (2008) extend temporal networks to deal with alternatives in such a

way that logical and temporal constraints are closely related. Building on prior research,

the authors propose a restricted temporal network with alternatives (TNA), called nested

TNA. This reduces the complexity of the problem to ensure a consistent selection of activ-

ities given prior decisions. Moreover, we should also mention the research of Ranjbar and

Davari (2013) with respect to the alternative-technologies project scheduling problem. The

authors investigate innovative Research and Development (R&D) projects in which several

alternative technologies might exist and, therefore, certain alternatives will be interrupted
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or even ignored depending on realised successes within the project.

Based on this aforementioned research on alternatives in project scheduling, several

papers propose each a different problem class that extends the RCPSP to include logical

constraints. Belhe and Kusiak (1995) observe that design processes comprise of different

types of logical relationships between activities: AND-, OR- and exclusive OR-relations.

The key difference between those types of relations is that the former relation does not

exclude activities during schedule generation, while the latter two relations might. Gillies

and Liu (1995) investigate the complexity of the resource-constrained scheduling problem

with generalised AND/OR-constraints as well as propose two heuristic solution procedures.

Moreover, Kuster et al. (2008) models project structures with mutual exclusion and inclu-

sion relationships between the activities in order to solve disruption management problems.

Capek et al. (2012) extend the RCPSP with alternative process plans that differ in terms

of activity, precedence and resource characteristics. The authors propose an integrated

approach to select a subset of activities that constitute a process plan and schedule the

selected activities in order to minimise the total project makespan. Kellenbrink and Hel-

ber (2015) introduce an extension of the RCPSP with model-endogenous decisions on the

project structure. In contrast to the current approach, they relax the assumption that

any dependency between the logical and precedence relations should exist. Moreover, Van-

houcke and Coelho (2016) propose a novel approach to include logical constraints in the

RCPSP. The additional OR- and BI-relations are converted into standard AND-relations

using a set of transformation rules. However, a satisfiability (SAT) solver should be included

in these algorithms to retain the logic of the transformed precedence relations. Finally, Tao

and Dong (2017) present an extension of the RCPSP that considers alternative activity

chains (RCPSP-AC). The authors introduce a modified project network, so-called AND-

OR project network, to represent the alternative structure and they develop a simulated

annealing procedure to solve large-scale problem instances of the RCPSP-AC.

An extensive amount of research has been devoted to the inclusion of alternatives

in the job-shop scheduling problem (JSP). Kis (2003) studies the JSP with processing

alternatives (AJSP). In this extension, the routing of jobs is represented by a directed,

acyclic graph that consists of AND- and OR-subgraphs. The former indicates a parallel

execution of the operations, while the latter consists of alternative subroutings of which

exactly one subrouting should be selected. Another field of research that is closely related

to project scheduling and that already considered the inclusion of alternatives is assembly

line balancing. Motivated by real-life cases, Capacho and Pastor (2006) study the simple
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assembly line balancing problem with alternatives (ASALB) in which certain parts of the

assembly line can be executed in different modes that correspond to different assembly

variants. In this research, a mathematical model is proposed to minimise the number of

workstations given a maximum cycle time in the ASALB. Later, Capacho et al. (2009)

extend the ASALB literature with a heuristic method to select assembly variants using

priority rules and random choices.

The current paper is founded on research efforts carried out in various fields over the

past decades, as discussed above, and was mainly inspired on the work of Kis (2003),

Capacho et al. (2009), Capek et al. (2012) and Kellenbrink and Helber (2015).

3. Problem formulation

In section 3.1, we give a brief overview of the general problem that is considered in this

study, while the problem formulation is discussed in more detail in section 3.2. Section 3.3

introduces the alternative subgraph matrix and provides formal definitions for the different

types of alternative subgraphs that are labelled in this classification matrix. Finally, we

provide an example to support the practical relevance of the RCPSP-AS in section 3.4.

3.1. Problem overview

Resource-constrained project scheduling requires a set of activities to be performed

on a set of resources, while taking into consideration both the precedence and resource

constraints. The project structure is explicitly assumed deterministic in the basic situation,

while there might exist multiple alternative ways to execute certain work packages in

practice. Each work package is represented by a subproject, i.e. a set of interrelated

activities with specific precedence relations and resource requirements. The decision to

relax the assumption of a deterministic project structure, therefore, results in two types of

work packages. First of all, there exist work packages without alternatives for which the

activities in the corresponding subprojects should always be executed. Secondly, there exist

work packages that consist of multiple alternatives. This implies that the activities in the

subprojects that correspond to these alternatives are considered optional. Furthermore,

there might exist dependencies between alternative execution modes of work packages. For

example, one alternative might trigger an additional choice amongst alternative execution

modes of a work package or different alternatives might be connected. Since each alternative

of a work package is characterised by specific precedence relations and resource constraints,
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decisions in the presence of such dependencies have a considerable impact on the quality

of the resulting project schedule. Hence, we are confronted with a complex selection and

scheduling problem. In order to select alternatives for work packages such that the objective

of the scheduling problem is optimised, the selection and the scheduling process should be

integrated.

3.2. Problem formulation

The traditional RCPSP investigates the situation where a set of activities needs to be

performed on a set of resources given precedence relations between those activities. Let

G = (N,A) be a directed acyclic graph that represents the activity-on-the-node (AoN)

project network, where the project consists of a set N of activities and A represents the set

of pairs of activities between which a finish-to-start precedence relation with zero minimum

time lags exists. It is typically assumed that the activities in G are topological ordered

starting from a dummy start activity 0 to a dummy end activity n+1. These dummy

activities ensure that the AoN-network has exactly one starting and finishing node, such

that each non-dummy activity is precedence related to the dummy start and end activity.

The n non-dummy activities 1 to n should be scheduled on a set Rρ of renewable resource

types for which the per-period available amount of each resource type k aρk is a priori

known and assumed constant over time. Each activity i in the set N is characterised by

an activity duration di and a resource requirement for each resource type ri,k. The dummy

activities in the project network are defined by a deterministic activity duration equal to

zero and a resource requirement likewise equal to zero. We assume that activities cannot

be interrupted, i.e. no pre-emption, which implies that once started an activity i should be

completely finished after di time units. A schedule S is defined by a vector of start times si

for all activities in the set N. When such a schedule satisfies all precedence and renewable

resource constraints, it is called a feasible schedule. The objective of the RCPSP is to find

the feasible schedule with the minimum makespan for a project.

The traditional RCPSP assumes that the project structure is deterministic. This im-

plies that all activities i ∈ N should be present in the optimal schedule Sopt, i.e. the

feasible schedule with minimal makespan, and consequently the precedence and resource

constraints of all activities should be satisfied. However, there are practical situations in

which activities can be excluded from the schedule, while the project still delivers on the

promised outcomes. The resulting problem is referred to as the resource-constrained project

scheduling problem with alternative subgraphs (RCPSP-AS). In this problem formulation,
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the set N of activities consists of two mutually exclusive and collectively exhaustive subsets

of activities: the set Nf of fixed activities and the set Na of alternative activities.

Fixed activity This activity should always be executed in order to complete the project.

Alternative activity The presence of this activity in the schedule is optional. Therefore,

the precedence and resource constraints of an alternative activity should only be satisfied

when the activity is included in the schedule.

3.3. Alternative subgraphs and numerical example

Given the definition of fixed and alternative activities, it is possible to describe project

scheduling problems with alternative subgraphs. When we consider how these alternative

activities are related to each other in the project network, we can distinguish between

different types of alternative subgraphs. First of all, it is possible that a work package that

can be executed in different alternative ways is embedded in an alternative of another work

package. In this situation, the selection process becomes more complex as the decision

to execute a work package in one alternative way might trigger an additional decision

in another work package with alternatives. In the remainder of this paper, we refer to

projects with such a project structure as nested projects. Secondly, it might be that an

alternative for one work package is connected to an alternative of the same or a different

work package. This implies that decisions made in different work packages with alternatives

are interconnected. Projects that consist of this type of project structure are called linked

projects.

We propose a dichotomous classification of the different types of alternative subgraphs

based on the above two dimensions in a 2x2-matrix, the so-called alternative subgraph ma-

trix (ASM) (see figure 1). The ASM provides a comprehensive classification of important,

practical cases of alternative subgraphs. These cases are already discussed in resource

management in general and project scheduling in particular, which provides practical and

theoretical justification for the ASM. In general, there exist different common types of

resource management decisions: a single preferred alternative, linked choices and deci-

sions within decisions (Gregory et al., 2012). Since resource-constrained project scheduling

is part of general resource management, these types of decisions are also covered in the

ASM. In particular, several real-life examples and case studies have been presented in the

field of project scheduling to support the practical relevance of the ASM. Capek et al.

(2012) distinctly exclude an interleaving between alternative branches (i.e. linked alterna-

tive branches) in their problem formulation and textually mention the concept of nested
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alternatives. Capacho et al. (2009) and Capacho and Pastor (2006) also mention that it is

possible and useful to nest alternative subgraphs.

The formal definition of the different types of alternative subgraphs in each of the

quadrants of the ASM is given in the remainder of this section. The introduced terminology

is derived from various research papers (Beck and Fox, 2000; Kis, 2003; Capacho and Pastor,

2006; Barták et al., 2008; Scholl et al., 2009; Capek et al., 2012; Kellenbrink and Helber,

2015) with the sole purpose of providing a coherent problem formulation. The problem-

specific parameters of the RCPSP-AS are summarised in table 1. For the sake of clarity,

the definitions described below are illustrated based on the examples shown in each of the

four quadrants of figure 1 (see table 2). Each curved line ’)’ in figure 1 marks a choice

between alternative branches in an alternative subgraph.

In order to provide a clear explanation for each of the different types of alternative sub-

graphs, we define three types of activities: the principal activity ρ ∈ Np, the branching

activity bρ,z ∈ N b and the terminal activity τρ ∈ N t.

Principal activity ρ A principal activity causes the decision amongst different choices

in the project structure. Therefore, this fixed or alternative activity should have at least

two mutually exclusive direct, alternative successors of which, respectively, exactly or at

most one should be selected.

Branching activity bρ,z A branching activity is an alternative activity that is the direct

successor of a principal activity ρ. The z branching activities represent the start of each

of the z choices that are caused by ρ.

Terminal activity τρ A terminal activity terminates the decision amongst different

choices in the project structure caused by ρ. Therefore, this fixed or alternative activ-

ity should have z direct, alternative predecessors that correspond with the z choices that

are caused by ρ.

Based on this terminology, we will define three types of graphs: the set of alternative

subgraphs P, the set of alternative branches Q and the set of alternative paths U . We

identify alternative subgraphs in order to provide a formal definition for a work package

with alternatives, where each alternative way to execute this work package is considered

an alternative branch of the corresponding alternative subgraph. Given the different alter-

native branches in each of the alternative subgraphs, a unique way to execute the project

is formally defined by an alternative path.

Alternative subgraph Pρ An alternative subgraph is an induced subgraph of G consist-
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Symbol Definition
A

c
ti

v
it

ie
s

Nf Set of fixed activities (Nf ⊆ N)
Na Set of alternative activities (Na ⊂ N)
Np Set of principal activities (Np ⊂ N)
N b Set of branching activities (N b ⊆ Na)
N t Set of terminal activities (N t ⊂ N)
N s Set of selected alternative activities (N s ⊆ Na)

G
ra

p
h

s

P Set of alternative subgraphs (|P| = Number of alternative subgraphs)
Pρ Alternative subgraph (Pρ ∈P and Pρ ⊂ N)
Q Set of alternative branches (|Q| = Number of alternative branches)
Qρ,z Alternative branch (Qρ,z ∈ Q, z ∈ {1, ..., |Pρ|} and Qρ,z ⊆ Pρ)

with |Pρ| = Number of alternative branches in alternative subgraph Pρ
U Set of alternative paths (|U | = Number of alternative paths)
u Alternative path (u ∈ U and u ⊆ N)

Table 1: Specific terminology of the RCPSP-AS

ing solely of alternative activities that originate from the same principal activity ρ with

the inclusion of the corresponding terminal activity τρ.

Alternative branch Qρ,z An alternative branch Qρ,z is a subset of activities in the

alternative subgraph Pρ that consist of the branching activity bρ,z as well as all its transitive

successors in Pρ.

Alternative path u An alternative path u is a subset of N that consists of the set of

fixed activities Nf and the logical feasible set of selected alternative activities N s, i.e.

u = {Nf ∪ (N s ⊆ Na)}. The set N s should satisfy the following two conditions. Condition

(1) guarantees that exactly one branching activity is selected when the corresponding

principal activity is selected. Condition (2) ensures the correct selection of non-branching

activities.

1. p ∈ Np ∩ (Nf ∪N s) =⇒ ∃!bp,z ∈ N s

2. k ∈ Nf ∪N s \Np&i ∈ Na&(k, i) ∈ A =⇒ i ∈ N s

Given this terminology, we propose the following definitions for the different types of al-

ternative subgraphs:

• G(N,A) is a non-linked non-nested project ⇔ (1)&(3)

• G(N,A) is a non-linked nested project ⇔ (2)&(3)
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No Yes

N
o

Ye
s

N
es

te
d 

al
te

rn
at

iv
e 

su
bg

ra
ph

s

Linked alternative branches

Non-linked nested project Linked nested project

Linked non-nested projectNon-linked non-nested project

2

3 6

5

S E1 4 7

2

3 6

5

S E1 4 7

Q1 Q2
Q3 Q4

2

3 7

6

S E1 4 85

2

3 6

5

S E1 4 87

Figure 1: Alternative subgraph matrix

• G(N,A) is a linked non-nested project ⇔ (1)&(4)

• G(N,A) is a linked nested project ⇔ (2)&(4)

with

Np ∩Na = ∅ (1)

Np ∩Na 6= ∅ (2)

∀k ∈ Na \Np&∀i ∈ Na \N t&@Qp,z ∈ Q&(k, i) ∈ A&k /∈ Qp,z&i ∈ Qp,z (3)

∃k ∈ Na \Np&∃i ∈ Na \ (N b ∪N t)&∃Qp,z ∈ Q&(k, i) ∈ A&k /∈ Qp,z&i ∈ Qp,z (4)

In a non-linked non-nested project, all principal activities are fixed activities and any

two alternative activities that are precedence related should belong to the same alternative

branch. A non-linked nested project has at least one principal activity that belongs to

the set of alternative activities. Any two precedence-related, alternative activities should

belong to the same alternative branch. However, this rule should not hold in case that

the first (second) alternative activity in the precedence relation is a principal (terminal)

activity. In a linked non-nested project, all principal activities are fixed activities,

similar to a non-linked non-nested project. Also, there exists at least one precedence-

related pair of alternative activities in which each alternative activity belongs to a different

alternative branch. This part of the definition allows the existence of linked alternative

branches. A linked nested project has at least one principal activity that belongs to

the set of alternative activities, similar to a non-linked nested project. Also, there is at
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least one precedence-related pair of alternative activities such that there exists at least

one alternative branch that contains the second but not the first alternative activity. This

indicates the existence of linked alternative branches. However, this rule should not hold

in case that the first (second) alternative activity in the precedence relation is a principal

(terminal) activity. In order to avoid poorly configured alternative subgraphs, the second

alternative activity cannot be a branching activity in the linked (non-) nested projects.

Note that condition (2) is a negation of condition (1) for the definition of the different types

of alternative subgraphs, while this is not the case for conditions (3) and (4). Consequently,

a project structure that does not satisfy condition (3) nor (4) does not result in a valid

project.

The objective of the RCPSP-AS is to select for each alternative subgraph Pρ at most

one alternative branch Qρ,z such that the corresponding logical feasible alternative path

u results in a precedence and resource feasible schedule with minimal project makespan.

In table 2, the discussed terminology is applied to the examples in figure 1 for the sake of

clarification. This terminology establishes one of the contributions of the presented paper

since it provides a unique problem definition for the RCPSP-AS.

3.4. Practical relevance

In this section, we will present a practical example to illustrate the idea behind nested

alternative subgraphs and linked alternative branches. Figure 2 shows a simplified repre-

sentation of part of a residential apartment building project in which the nodes resemble

work packages that consist of multiple activities. The project can be classified as a linked

Non-linked nested project Linked nested project

Nf {S,1,7,E} Na {2,3,4,5,6} Np {1,3} Nf {S,1,8,E} Na {2,3,4,5,6,7} Np {1,3}
N b {2,3,4,5} N t {6,7} N b {2,3,4,6} N t {7,8}
P1 {2,3,4,5,6,7} Q1,1 {2,7} Q1,2 {3,4,5,6,7} P1 {2,3,4,5,6,7,8} Q1,1 {2,5,7,8} Q1,2 {3,4,5,6,7,8}
P3 {4,5,6} Q3,1 {4,6} Q3,2 {5,6} P3 {4,5,6,7} Q3,1 {4,5,7} Q3,2 {6,7}
U

{
{S,1,2,7,E},{S,1,3,4,6,7,E},{S,1,3,5,6,7,E}

}
U

{
{S,1,2,5,7,8,E},{S,1,3,4,5,7,8,E},{S,1,3,6,7,8,E}

}
Non-linked non-nested project Linked non-nested project

Nf {S,1,4,7,E} Na {2,3,5,6} Np {1,4} Nf {S,1,4,8,E} Na {2,3,5,6,7} Np {1,4}
N b {2,3,5,6} N t {4,7} N b {2,3,5,6} N t {4,8}
P1 {2,3,4} Q1,1 {2,4} Q1,2 {3,4} P1 {2,3,4} Q1,1 {2,4} Q1,2 {3,4}
P4 {5,6,7} Q4,1 {5,7} Q4,2 {6,7} P4 {5,6,7,8} Q4,1 {5,7,8} Q4,2 {6,7,8}
U

{
{S,1,2,4,5,7,E},{S,1,2,4,6,7,E},{S,1,3,4,5,7,E}, U

{
{S,1,2,4,5,7,8,E},{S,1,2,4,6,7,8,E},{S,1,3,4,5,7,8,E},

{S,1,3,4,6,7,E}
}

{S,1,3,4,6,7,8,E}
}

Table 2: Illustration of terminology in table 1 based on figure 1
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nested project and consists of two sequential phases. Phase 1 focuses on the customised

construction and on-site installation of the terrace sliding door frames. In phase 2, the wa-

ter tightness of the metal frame should be tested as it might deform after the installation

due to climatological factors.

Nested alternative subgraphs. There exist two alternative ways to execute the work

in the first phase. In work package A, the metal frames are mass-produced for the entire

building and thus the potential reformation of the metal is neglected. A second option,

represented as work package B, is to construct a single frame, which is then subjected

to climatological factors such that the reformed frame can be used as a cast during mass

production. In this way, the frame will no longer reform after installation. In order to

proactively reform the frame, it can be placed onto the construction site (C) or reformed

under controlled settings in a laboratory (D). One can observe that the choice between

nodes C and D is nested in the choice for node B.

Linked alternative branches. There exist two alternative ways to execute stage 2 as

either all apartment units (E, F and G) or a random sample of all apartment units (H,

I, J and G) is tested to guarantee water tightness. The testing requires pumping water

onto the terrace and checking the installed frame for any leaks. The first option to test

the water tightness is to perform a 100% testing of the window frames in the apartment

units. Therefore, one has to measure the pressure equalisation (E), analyse the drainage

design (F) and perform a quality check of the metal frame (G). The second option is to

perform a random sampling testing and thus only test the water tightness in a selected

number of apartment units. In this case, the measurement of pressure equalisation (H) and

the analysis of drainage design (I) are again performed, however, on a limited number of

window frames. Subsequently, a sensitivity analysis (J) should be conducted to guarantee

an overall acceptable level of water tightness in the entire apartment building. In case that

the frames are mass-produced without cast (A), a 100% analysis of the drainage design (F)

is required since no proactive actions were taken to avoid reformation of the metal frames.

We incorporate the above situation in the project through a link between work packages

A and F. The quality check of work package G should also be executed in case that the

pressure equalisation is measured through a random sampling technique (H). We model

this situation through a link between work packages H and G.
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Figure 2: Illustrative example of linked nested project

4. Solution procedure

In section 4.1, we describe our general solution approach with building blocks that are

customised to either the selection or the scheduling subproblem. We provide a detailed

discussion of the different strategies for these building blocks in section 5. In section

4.2, we explain in detail the dynamic quadrant selection procedure that positions problem

instances in the ASM as this is a key feature of the proposed solution approach. For the

sake of clarity, table 3 provides a summary of the abbreviations and their explanation used

in this paper.

4.1. General approach for the RCPSP-AS

In this research, we implement a tabu search (TS) metaheuristic (Glover, 1986, 1989,

1990) in order to solve the RCPSP-AS. An initial solution is generated to start the TS

and, subsequently, we proceed to the first iteration of the neighbourhood (NH) search. The

best, non-tabu move in the NH, i.e. the move that results in the lowest project makespan,

determines the new solution. However, a tabu move that results in a solution with a better

objective value than the overall best solution encountered so far is accepted nevertheless.

This is a widely applied aspiration criterion in TS procedures to allow further investigation

of interesting areas of the solution space. The best move is subsequently added to the top

of the tabu list and, in case the tabu list is completely stocked, the move at the bottom

of the tabu list is made admissible again. Before the TS moves to the next iteration, the

current solution is further improved using a local search (LS). In case that the current
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Abbreviation Explanation Abbreviation Explanation

General problem Representation
ASM Alternative subgraph matrix CL Choice list
%flex Degree of flexibility RK Random key
%nested Degree of nested alternative subgraphs Initial solution
%linked Degree of linked alternative branches IN-1 Weight-based strategy
RC Resource constraindness IN-2 Random strategy
SP Serial-parallel indicator IN-3 Relaxation strategy
General procedure IN-4 Priority-rule strategy
TS Tabu search Neighbourhood
NH Neighbourhood NH-1 Improved alternative swap
LS Local search NH-2 Inserted alternative swap
MSILS Multi-start iterated local search NH-3 Random alternative swap
SOD Sum of durations NH-4 Adjecent pairwise interchange swap
TWC Total work content Local search
PEX Probability-of-existence LS-1 CL adjustment
CPLB Critical path lower bound LS-2 Forward-backward scheduling
API Adjecent pairwise interchange operator
TL-SCH Tabu list - scheduling subproblem
TL-SEL Tabu list - selection subproblem

Table 3: Summary list of abbreviations

solution is improved, the new solution is passed on to the next iteration of the TS. The

metaheuristic generates a pre-specified number of schedules after which the overall best

solution is returned as the final solution.

An important aspect of any metaheuristic is the solution representation. In our re-

search, a schedule is represented by a solution vector that consists of two lists: the random

key (RK) and the choice list (CL). The RK is a popular schedule representation in the

RCPSP literature that determines the scheduling priority of activities. The binary CL

controls whether an activity will be present or not (respectively a value equal to 1 or 0) in

the final schedule, similar to the mode list frequently used in the MRCPSP. We refer to the

work of Kolisch and Hartmann (1998) for a detailed explanation of the different solution

representations that are used for the RCPSP.

We propose a solution procedure that alternates between two search spaces: solutions

for the selection subproblem will focus on the selection of alternatives, while solutions for

the scheduling subproblem will optimise the scheduling priorities of the selected activities.

Since changes in the set of selected alternatives disrupt the current solution, much infor-

mation that is captured in this solution is lost. In order to avoid the depreciation of our

solution procedure to a simple random walk, we propose to focus less frequently on the

selection subproblem than on the scheduling subproblem. Consequently, a pre-specified
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number of iterations designated to the scheduling run are executed for each iteration of the

selection run to intensify the search for a high-quality schedule. An overview of the proce-

dure is given in figure 3. We initiate the procedure with a selection run, which consists of a

NH and a LS, to improve the set of selected alternatives in the project. After each iteration

of the selection run, we execute a pre-specified number of iterations of the scheduling run.

Each scheduling run again consists of two components: a NH and a LS. Afterwards, the

solution that results from the scheduling run is passed on to the next iteration of the se-

lection run. Hence, we will further investigate whether there exists a better set of selected

activities given the new scheduling priorities. After each selection and scheduling run, we

determine the quality of the obtained solution by scheduling the selected activities in the

CL given the scheduling priorities in the RK using the serial schedule generation scheme

(SSGS). The SSGS will consider each selected activity one at a time based on the RK and

schedule them as soon as possible within the precedence and resource constraints (Kel-

ley Jr., 1963). The procedure visits 5,000 schedules after which the overall best solution is

reported.

4.2. Dynamic quadrant selection

In our solution approach, we propose to guide the search towards a favourable set of

alternatives based on the position of the problem instance in the ASM. The general idea

can be explained as follows. Initially, each alternative branch is assigned a value, which

is referred to as weights in this paper. Subsequently, operators to select the best possible

alternative branch will use these weights as input during initialisation, neighbourhood

and local search. However, different operators exist for the different quadrants in the

ASM and a project can be positioned in each quadrant with a certain probability. In the

search procedure, a project instance will be assigned to a specific quadrant based on these

probabilities and the corresponding operator will be applied. Each time that alternative

branches need to be selected, the quadrant selection will be reconsidered and, hence, it is

called dynamic quadrant selection.

Calculation of weights. First of all, weights are assigned to each of the alternative

branches based on a measure that either captures information from the network, i.e. the

sum of durations (SOD), or from the resource usage, i.e. the total work content (TWC)

(Boctor, 1993). These weights guide the selection of alternative branches in the proposed

solution procedure. However, the calculations of the SOD and TWC differ between the

quadrants in the ASM:
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Figure 3: Overview of solution approach for the RCPSP-AS

Q1 For non-linked non-nested projects, these weights can easily be applied to prioritise

alternative branches. The SOD (TWC) of an alternative branch equals the sum of the

duration (work content) of the alternative activities that belong to this alternative branch.

Q2 In case of linked non-nested projects, the SOD (TWC) of an alternative branch is

extended with the SOD (TWC) of all its linked alternative activities. This is because the

SOD (TWC) of linked alternatives should be accounted for in the selection process.

Q3 In case of non-linked nested projects, the average SOD (TWC) of the alternative

branches of a nested alternative subgraph are added to the weight of the enclosing alter-

native branch. This is because one of the alternative branches in the enclosed alternative

subgraph needs to be scheduled, however, it is uncertain which one.

Q4 For linked nested projects, the calculations of the SOD (TWC) for linked non-nested

projects (Q2) and non-linked nested projects (Q3) are combined.

Dynamic use of weights. Subsequently, we position the problem instance with alterna-

tive subgraphs in the ASM. However, we will not consider the two dimensions of the ASM

as binary parameters that mark the presence or absence of nested alternative subgraphs

and linked alternative branches. On the contrary, the two dimensions will express a degree

of nested alternative subgraphs (%nested) and linked alternative branches (%linked) in

the range [0,1]. In this way, we convert the four-quadrant ASM into a two-dimensional

grid, such that a problem instance can be positioned in each quadrant of the ASM with
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a certain probability. For example, a problem instance with alternative subgraphs that

is characterised by a %nested and %linked equal to, respectively, 0.75 and 0.25 will be

positioned in each of the four quadrants of the ASM with the following probabilities:

• Non-linked non-nested project = (1−%nested)∗(1−%linked) = (1−0.75)∗(1−0.25) =

0.1875

• Linked non-nested project = (1−%nested) ∗%linked = (1− 0.75) ∗ 0.25 = 0.0625

• Non-linked nested project = %nested ∗ (1−%linked) = 0.75 ∗ (1− 0.25) = 0.5625

• Linked nested project = %nested ∗%linked = 0.75 ∗ 0.25 = 0.1875

The values for %nested and %linked are specific to each project instance and can be easily

calculated in advance. Details are provided in section 6.1. Based on the above probabil-

ities, it is decided which operator will be used to select the alternative branches in the

building blocks of the procedure. However, the assignment of a problem instance to a

quadrant of the ASM, and thus the selection of the appropriate operator, is reconsidered

each time an alternative branch needs to be selected. Observe that the illustrative example

discussed above can be positioned in each of the four quandrants with a non-zero prob-

ability. This implies that the project can be classified as non-linked and/or non-nested

despite that it contains nested alternative subgraphs (%flex=75%) and linked alternative

branches (%linked=25%). This misclassification is crucial to include randomness in the

solution procedure, however, it is less probable for project instances with more distinct

characteristics (i.e. very high or low %linked and %nested). Due to this misclassification,

the formulae presented in the previous paragraph cannot be applied in a straightforward

way. On the one hand, the formulae are self-evident in case that linked alternative branches

and nested alternative subgraphs are absent in the project, but considered in the formulae.

On the other hand, the linked alternative branches and nested alternative subgraphs are

neglected in the project in case that they are not considered in the respective formula. This

implies that the activities in nested alternative subgraphs or linked alternative branches

are assumed dummy activities in case that the nested alternative subgraphs or linked alter-

native branches are neglected. In order to clarify the calculations of the weights, we have

included a simplified example of a linked nested project in figure 4. The project consists

of two alternative subgraphs 1-2-3-4-5-6-7-8 and 3-4-5-6-7 that consist of two alternative

branches each, respectively, alternative branch 1-3-4-5-6-7-8 and alternative branch 2-8 in

the first alternative subgraph and alternative branch 3-4-6-7 and alternative branch 5-6-7

in the second alternative subgraph. The computations of the weigths based on the SOD
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for the different alternative branches in case that the project is classified in each of the

four quadrants is detailed in the corresponding table.

1 3

52
Weight 

1-3-4-5-6-7-8
Weight 

2-8
Weight
3-4-6-7

Weight 
5-6-7

Selected alternative 
path using SOD

Non-linked  
non-nested 4 10 5 8 Alternative path 

0-1-3-4-6-7-8

Linked  
non-nested 4 10 9 8 Alternative path 

0-1-5-6-7-8

Non-linked  
nested 10,5 10 5 8 Alternative path 

0-2-8

Linked  
nested 12,5 10 9 8 Alternative path 

0-2-8
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d=4 d=2

d=4
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d=3
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Figure 4: Illustration of weigth calculations based on the SOD for the different quadrants

5. Tabu search

This section provides a detailed discussion of the different strategies for the three build-

ing blocks in the proposed TS: initial solution (section 5.1), neighbourhood structure (sec-

tion 5.2) and local search (section 5.3). The generic procedure of the TS is shown in figure

5, which presents a more detailed implementation of the solution approach in figure 3.
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Figure 5: Generic tabu search procedure

5.1. Initial solution

In this research, two approaches can be followed to obtain a good initial solution for the

RCPSP-AS. Either the set of selected alternatives is controlled and the RK is randomly

generated, i.e. a controlled CL, or the generation of the RK is controlled and based on these
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scheduling priorities the CL is determined, i.e. a controlled RK. An experiment is designed

to determine the best approach for the generation of a high-quality initial solution.

Three controlled CL approaches to prioritise the alternative branches in an alternative

subgraph are compared in this research. The RK is each time randomly generated.

Weight-based strategy (IN-1) The first approach assigns a duration- or resource-based

weight to each alternative branch. Consequently, the alternative branches with the lowest

weight is selected for each alternative subgraph in such a way that the logical feasibility

is guaranteed. The dynamically adjusted weights are calculated as shown in section 4.2,

which results in four duration (resource)-based weights, labeled IN-1.1 (IN-1.5) up to IN-1.4

(IN-1.8) for Q1 up to Q4.

Random strategy (IN-2) The random approach for the controlled CL implies that for

each alternative subgraph one alternative branch is selected at random bearing in mind

the logical feasibility.

Relaxation strategy (IN-3) This approach constructs a controlled CL based on infor-

mation obtained from the optimal solution of the unconstrained version of the problem.

This approach is already applied in literature to derive priority rule-based heuristics (Rus-

sell, 1986). The unconstrained version of the RCPSP-AS assumes that an infinite amount

of renewable resources are available and the project structure is classified as a non-linked

(non-) nested project. Under these assumptions, the RCPSP-AS can be solved in poly-

nomial time using the procedure described by Capek et al. (2012). The set of selected

alternatives in the relaxation is used to construct the CL for the general problem.

In the controlled RK approach, priority values are systematically assigned to each activity.

Since a schedule should also be logical feasible, we propose to construct the CL based on

the RK as follows: an activity cannot be selected (i.e. cannot assign a value equal to 1 in

the CL) based on the RK when this causes a logical conflict with a higher-priority, selected

activity.

Priority-rule strategy (IN-4) The priority-rule strategy assigns a priority to each ac-

tivity that increases as the activity has a lower earliest start time (EST) according to the

critical path calculations (Kelley Jr., 1963) and the length of the alternative branch that

encompasses the activity decreases. This priority rule is derived from Capek et al. (2012).

Similar to this author, we put more emphasis on the first than on the second component

of the calculation as we weigh the components with a value equal to, respectively, 5 and 3.
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5.2. Neighbourhood structure

At each iteration, the TS procedure searches for the best, non-tabu neighbour of the

current solution. The NH of a solution is defined by the set of solutions that can be ac-

cessed from the current solution by means of a single move. We propose four types of

moves, which result in four distinct NH structures. The first group of moves act on the

CL (NH-1, NH-2 and NH-3), while the second group of moves act on the RK (NH-4). The

first group of moves swap every selected alternative branch with each other alternative

branch in the same alternative subgraph. In case that a selected or deleted alternative

branch consists of nested alternative subgraphs or linked alternative branches, all the re-

lated alternative activities need to be, respectively, selected or deleted as well. When an

alternative branch that contains a nested alternative subgraph is selected, it goes without

saying that only one of the alternative branches in the enclosed alternative subgraph can

be selected. However, there exist a potentially large number of neighbours in this NH.

In a project with x alternative subgraphs and y alternative branches for each alternative

subgraph, the NH size grows in the worst case to (xy − 1). Therefore, we restrict the size

of the NH in the approaches NH-1, NH-2 and NH-3 in the following way. Each selected

alternative branch is swapped with each unselected alternative branch in the same alterna-

tive subgraph, but we consider the alternative subgraphs independent of each other. This

implies that the alternative branches in one alternative subgraph are swapped, while the

selection of alternative branches in the other, unrelated alternative subgraphs is retained.

Improved alternative swap (NH-1) In this NH, a selected alternative branch is only

swapped with an unselected alternative branch that has an improved dynamically adjusted

weight calculated as shown in section 4.2.

Inserted alternative swap (NH-2) In this NH, a quick check is performed to ensure

that the considered neighbour has the potential to improve the current solution without

the need to generate a complete schedule. Therefore, a lower bound on the duration of

the neighbouring alternative branch is computed (section 6.2.1). Subsequently, we delete

the selected alternative branch from the current schedule and check whether the neighbour

can be inserted in the schedule based on the lower bound. Therefore, we consider the start

time of the branching activity and the finish time of the terminal activity of the selected

alternative branch in the schedule. However, we use the position of the problem instance in

the ASM to determine the terminal activity as we regard or disregard the linked and nested

alternatives. In case that the lower bound is higher than or equal to the time interval in
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which the selected alternative branch was scheduled, the quality of the solution cannot be

improved through the proposed swap and the swap is excluded from the NH. In the other

case, the swap will be executed.

Random alternative swap (NH-3) In this NH, each selected alternative branch is

swapped with one random, unselected alternative branch in the same alternative subgraph.

Adjacent pairwise interchange (NH-4) The NH of a solution consists of the set of

solutions that can be obtained from the current solution by swapping two activities in the

schedule that are adjacent, but not precedence related (Morton and Pentico, 1993). We

limit the NH by swapping only the critical activities with their adjacent activities.

5.3. Local searches

We again consider two types of LS procedures: one procedure attempts to improve the

choices amongst alternatives with given scheduling priorities (i.e. LS-1), while the other

procedure attempts to improve the schedule given a rigid set of decisions (i.e. LS-2).

CL adjustment (LS-1) For each selected alternative branch in the current solution,

there is a probability that the CL adjustment will be executed. This probability is derived

from the concept of the PEX (Beck and Fox, 2000). In this paper, however, the PEX

calculations are considered at the level of the alternative branches rather than the activity

level. The probability of existence (PEX) of an alternative branch is determined based

on the number of alternative branches in the alternative subgraph and whether or not

the alternative subgraph is nested. In case that there exist five alternative branches in

one stage, the PEX of each alternative branch is equal to 20%. Let us assume now that

there exist two stages with each five alternative branches, however, the five alternative

branches in the second stage are nested in one of the alternative branches in the first

stage. In this case, the PEX of each alternative branch in the second stage is equal to

4% (= 20% ∗ 20%). For each non-selected alternative branch in an alternative subgraph

with a selected alternative branch, we draw a value uniformly at random from the interval

[0,1]. In case that the value is lower than the PEX-value of the alternative branch, this

alternative branch is selected given that its dynamically adjusted weight is higher than the

currently selected alternative branch to avoid cycles in the search. The general idea of this

LS is to invest less time in searching for a better solution by selecting alternative branches

with a lower PEX, while at the same time more effort is invested in selecting alternative

branches with a higher PEX.
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Forward-backward scheduling (LS-2) This multi-pass scheduling method is well-know

in the RCPSP literature (Li and Willis, 1992). Since the forward-backward scheduling

method is implemented in this research as a LS in an iterative procedure instead of a

multi-pass scheduling method, we do not compile the initial activity loading list using the

heuristics proposed by Li and Willis (1992). Rather, we prefer to exploit the knowledge

that is stored in the iterative procedure by using the priority values in the RK of the

current solution for the creation of the initial forward and backward schedules.

6. Computational results

In this section, we test the different parameter settings and strategies of the TS and

evaluate the overall performance of the fine-tuned procedure. Section 6.1 presents the novel,

problem-specific dataset that is generated in this paper based on the ASM. In section 6.2,

we validate the performance of the different building blocks of the TS and we report on the

overall performance of the procedure. Finally, the impact of the problem parameters on

the solution quality is investigated in section 6.3. All tests were carried out on a computer

with an Intel Core i5 processor 2.5 GHz and 8 Gb RAM.

6.1. Benchmark dataset

6.1.1. Generation process

Several datasets have been developed based on different network generators for the

RCPSP (Vanhoucke et al., 2016). Since the RCPSP is extended with a selection subproblem

in this research, the datasets in these studies are insufficient to test the presented solution

approach for the RCPSP-AS. Therefore, we provide an overview of the datasets that are

used in the distinct problems with alternatives that support this research (see table 4).

Based on this overview, we can conclude that most datasets related to the RCPSP-AS

are small-scale and problem-specific. Moreover, the majority of the datasets are randomly

generated without the use of a network generator with the exception of Kellenbrink and

Helber (2015). However, Elmaghraby and Herroelen (1980) have indicated the importance

of using a dataset with problem instances that span the full range of problem complexity.

This could be considered a drawback of the existing datasets for optimisation problems

with a selection subproblem. For example, most research papers discussed above neglect

the links that might exist between alternatives (see column flexibility parameters in table

4). Again, the dataset of Kellenbrink and Helber (2015) is considered the most suitable
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Problem General information Flexibility parameters Project parameters Problem-specific information

Paper Dataset Generator Subsets #Inst Nested Linked #Act #RR #NR

Alternative process plan Beck and Fox (2000) - Notional data Set 1 480 Y N 10 10 n.a. Max. number of alternatives =
{

1, 3, 5, 7
}

(resource) scheduling problem Makespan factor =
{

1.0, 1.1, 1.2, 1.3, 1.4, 1.5
}

Set 2 480 Y N
{

5, 10, 15, 20
} {

5, 10, 15, 20
}

n.a. Fixed number of alternatives = 5

Makespan factor =
{

1.0, 1.1, 1.2, 1.3, 1.4, 1.5
}

Set 3 480 Y N 10 10 n.a. Set 1 with alternative resources [1,6]

Job-shop scheduling Kis (2003) - Notional data n.a. 40 N N
{

5, 10
} {

5, 10, 15, 20
}

n.a. Number of OR-subgraphs =
{

1, 2, 3
}

with processing alternatives MPM Notional data edata 43 n.a. n.a.
{

5, 6, 10, 15
} {

6, 10, 15, 20, 30
}

n.a. Avg. Mi,j = 1.15; Max. Mi,j =
{

2, 3
}

rdata 43 n.a. n.a.
{

5, 6, 10, 15
} {

6, 10, 15, 20, 30
}

n.a. Avg. Mi,j = 2; Max. Mi,j = 3

vdata 43 n.a. n.a.
{

5, 6, 10, 15
} {

6, 10, 15, 20, 30
}

n.a. Avg. Mi,j = 1
2m; Max. Mi,j = 4

5m

Alternative subgraphs assembly Capacho and Pastor (2006) - Notional data n.a. 82 N N [8, 111] n.a. n.a. CT = [20, 4676]

line balancing problem Number of subassemblies =
{

2, 3, 4
}

Capacho et al. (2009) - Notional data n.a. 150 N N [37, 305] n.a. n.a. CT = [28, 11570]

Number of subassemblies =
{

2, 3, 4
}

Scholl et al. (2009) - Notional data Set 1 269 Y N n.a. n.a. n.a. Portion of variable sub-processes = 2

Set 2 269 Y N n.a. n.a. n.a. Portion of variable sub-processes = 5

Set 3 269 Y N n.a. n.a. n.a. Portion of variable sub-processes = 7

Set 4 269 Y N n.a. n.a. n.a. Portion of variable sub-processes = 10

Production scheduling with Capek et al. (2012) - Notional data n.a. 1040 Y N [10, 2000] [1, 5] n.a. Processing time = [1, pmax] with pmax = 15 or 100

alternative process plans Number of time-lags = |E(Gprec)|+ n
3 for positive values

Number of time-lags = n
5 for negative values

Boctor (1993) - boct50 120 n.a. n.a. 50 [1, 4] n.a. We refer to Boctor (1993)

boct100 240 n.a. n.a. 100 [1, 4] n.a. We refer to Boctor (1993)

Kis (2003) Notional data n.a. 40 N N
{

5, 10
} {

5, 10, 15, 20
}

n.a. See problem-specific information of Kis (2003)

Resource-constrained project Kellenbrink and Helber (2015) - ProGen Set 1 1536 Y Y 30 2 2 Nummber of choices =
{

2, 4
}

and number of act. that causes further act. =
{

1, 2
}

scheduling problem with Number of optional act. per choice =
{

2, 4
}

and number of dependent activities caused by optional activity =
{

1, 3
}

model-endogenous decisions RFR =
{

0.5, 1
}

; RSR =
{

0.25, 0.5, 0.75, 1
}

; RFN =
{

0.5, 1
}

; RSN =
{

0.75, 1
}

; NC =
{

1.5, 1.8, 2.1
}

;

on the project structure Set 2 1536 Y Y 60 2 2 Number of choices =
{

3, 6
}

and number of act. that causes further act. =
{

2, 4
}

Number of optional act. per choice =
{

2, 4
}

and number of dependent activities caused by optional activity =
{

1, 3
}

RFR =
{

0.5, 1
}

; RSR =
{

0.25, 0.5, 0.75, 1
}

; RFN =
{

0.5, 1
}

; RSN =
{

0.75, 1
}

; NC =
{

1.5, 1.8, 2.1
}

;

Set 3 1536 Y Y 90 2 2 Number of choices =
{

4, 8
}

and number of act. that causes further act. =
{

3, 6
}

Number of optional act. per choice =
{

2, 4
}

and number of dependent activities caused by optional activity =
{

1, 3
}

RFR =
{

0.5, 1
}

; RSR =
{

0.25, 0.5, 0.75, 1
}

; RFN =
{

0.5, 1
}

;RSN =
{

0.75, 1
}

; NC =
{

1.5, 1.8, 2.1
}

;

Set 4 1536 Y Y 120 2 2 Number of choices =
{

5, 10
}

and # of act. that causes further act. =
{

4, 8
}

Number of optional act. per choice =
{

2, 4
}

and number of dependent activities caused by optional activity =
{

1, 3
}

RFR =
{

0.5, 1
}

; RSR =
{

0.25, 0.5, 0.75, 1
}

; RFN =
{

0.5, 1
}

; RSN =
{

0.75, 1
}

; NC =
{

1.5, 1.8, 2.1
}

;

legend

Mi,j Number of machines j available for processing operations i

m Number of different machines

n Number of activities

CT Cycle time

pmax max. value of the activity processing time

|E(Gprec)| Number of edges in graph Gprec defined in Capek et al. (2012)

RFR Resource factor of the renewable resources

RSR Resource strength of the renewable resources

RFN Resource factor of the non-renewable resources

RSN Resource strength of the non-renewable resources

NC Network complexity

Table 4: Literature on benchmark datasets for scheduling problems related to the RCPSP-AS
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dataset for the RCPSP-AS. However, a straightforward application in our research is ren-

dered impossible due to some limitations. First of all, the flexibility parameters proposed

in section 3.3 are not used in the controlled design of this dataset. Furthermore, the com-

plexity of the selection subproblem is kept rather low as the number of choices as well

as the number of activities per choice is limited in all problem instances to, respectively,{
2, 10

}
and

{
2, 4

}
(see column problem-specific information in table 4). Based on this

analysis, we observe the need for a new benchmark dataset for the RCPSP-AS. Therefore,

we develop a large-scale dataset that is made available for the evaluation of algorithms

and the facilitation of future research. Moreover, the data generation process is executed

in a controlled way and supported by the RanGen 2 network generator (Vanhoucke et al.,

2008). We can distinguish between problem parameters that are related to the alternative

subgraphs (i.e. flexibility parameters) and problem parameters that capture information

about the network topology and resource profile of the project (i.e. project parameters).

Note that the flexibility parameters determine the complexity of the selection subproblem

regarding the selection of alternatives. Given a rigid set of alternatives, the project param-

eters will impact the complexity of the scheduling subproblem. In the remainder of this

section, we present several project and flexibility parameters and we briefly illustrate our

procedure to construct the dataset using a controlled design based on these parameters.

To the best of our knowledge, none of the existing network generators can deal with

the selection subproblem of the RCPSP-AS. Neither, we are aware of any research on the

relationship between the characteristics of alternative subgraphs and the complexity of

problem instances of the RCPSP-AS. Therefore, we introduce four flexibility parameters:

the degree of flexibility (%flex), the degree of nested alternatives (%nested), the degree of

linked alternatives (%linked) and the flexibility distribution. The %flex parameter gives

an indication of the number of alternatives in the project network. While the %flex indi-

cator determines the size of the alternative subgraphs in the RCPSP-AS, the %nested and

%linked indicators imply its complexity. The %nested parameter gives an indication of the

relative number of alternatives that are embedded in another alternative, while the %linked

parameter marks the relative number of links between alternatives in a problem instance.

Moreover, the flexibility distribution indicates where these alternatives are allocated in the

project network.

The data generation procedure to construct our dataset consists of four major steps

that are illustrated in table 5.

In the first step, the procedure is initiated with a serial project structure that consists
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of a pre-specified number of nodes, which reflect the different stages in the project. The

overall maximum number of alternatives in the project is defined by two metrics: the

number of stages and the maximum number of alternatives per stage. Both parameters are

assumed equal to 5, which results in a maximum number of alternatives equal to 25.

In the second step, we decide on the actual number of alternatives in the project and

the flexibility distribution of these alternatives over the different stages in the project. We

include the alternatives as parallel nodes at each stage in the project structure. The actual

number of alternatives in the project can be calculated as the %flex ∈ [0, 1] multiplied

by the maximum number of alternatives in the project imposed in the first step of the

data generation. Once the number of alternatives has been defined, the proposed dataset

covers four flexibility distributions ∈ {1, 2, 3, 4} in order to assign these alternatives to the

different stages in the project:

Early focus (1) We start with the allocation of alternatives to the first stage in the

project and repeat this process for the following stages until all alternatives have been

allocated.

Middle focus (2) We start with the allocation of alternatives to the middle stage in the

project and consecutively assign the remaining alternatives in an alternating manner to

the next and the previous stage in the project.

Late focus (3) The alternatives are distributed in a similar way than in the early focus

scenario, however, in descending order of stage number.

Uniform distribution (4) The alternatives are added one alternative at a time starting

from the first up to the last stage in the project, after which the procedure is repeated.

In the third step of the data generation procedure, the project structure obtained after

the second step is transformed into a project structure with nested alternative subgraphs

and linked alternative branches. Both extensions can be integrated in the dataset through

the addition of arcs between the nodes in the project structure. The number of nested

alternatives can be computed as the %nested ∈ [0, 1] multiplied by the actual number of

alternatives that can potentially be nested. In order to include the nested alternatives, we

add arcs between a single node in one stage and a set of nodes in the succeeding stage. The

number of linked alternatives can be computed as the %linked ∈ [0, 1] multiplied by the

actual number of alternatives that can potentially be linked. In order to include the linked

alternatives, we connect two nodes in the alternative subgraphs without the unwanted

creation of more nested alternatives. With respect to the number of potentially linked
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nodes, each node can only be linked to a node with a higher rank according to a ranked list

from 1 to the total number of nodes (e.g. [1,19] in the example of table 5). This ensures

a unique assignment of linked alternatives as we want to avoid that, for example, node 18

is linked to node 19 and visa versa. Consequently, the number of potentially linked nodes

is equal to 18 in this example since the last non-dummy node (i.e. node 19) cannot be

linked to a node with a higher rank. Since there might still exist some floating nodes in

the project structure after the inclusion of the required arcs, the unconnected nodes are

connected with additional arcs between the stages. This is represented in table 5 by �.

In the fourth step, the generation procedure will replace each node in the project

structure, which corresponds to an execution mode of a work package, by a subproject

using the network generator RanGen 2 (Vanhoucke et al., 2008). We refer to existing

research (Herroelen and De Reyck, 1999) that focuses on the topological structure and

the resource allocation to determine the scheduling complexity. First of all, the topological

indicators provide information on the structure and size of the project network (Vanhoucke

et al., 2008; Demeulemeester et al., 2003). In our dataset, we measure the topological

complexity of the subprojects by means of the serial/parallel indicator (SP) (Tavares,

1999). Secondly, several measures have been introduced to link the resource characteristics

of a project with the scheduling complexity (Demeulemeester et al., 2003). For the proposed

dataset, we compute the resource requirements of the activities by means of the resource use

(RU) (Demeulemeester et al., 2003) and generate the resource tightness using the resource-

constrainedness (RC) (Patterson, 1976). The project parameters define the project network

that is included in each alternative execution mode of a work package and thus impact the

complexity of the scheduling subproblem of the RCPSP-AS.

6.1.2. Activity networks of step 4

In step 4, the work packages in the project structure are implemented by means of a set

of interrelated activities in a subproject. As a result, we have to create activity networks

for the subprojects that correspond with the alternatives in the project structure. In

this section, we will briefly discuss the number of activities and resources in the activity

networks. The number of activities in each alternative (i.e. each node) in each stage is

not equal for all alternatives, since the data generation procedure creates shorter (e.g.

alternative path 5-7-14-20 in table 5) and longer (e.g. alternative path 5-6-11-16-20 in

table 5) alternative paths in the project structure. Consequently, some alternatives would

always be preferred over others in case that the scheduling complexity of all alternatives
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would be assumed equal. Instead, an approach to generate alternative paths that are more

or less equal to each other is proposed. More precisely, the number of activities in each

node is directly proportional to the number of stages each node spans. For nodes that are

connected to the next stage, the number of activities is set low (e.g. 10 activities in nodes

7, 10 and 11 in table 5), while nodes that are connected with further stages in the project

are set proportionally higher (e.g. 20 activities in nodes 12,13,14 and 15 in table 5). In

doing so, the choices between alternative paths result in similar projects with respect to the

overall number of activities that need to be scheduled. In order to analyse the impact of

resource characteristics on the selection process, we have used a similar approach to create

alternatives with different resource profiles that are similar in scheduling complexity. More

precisely, the number of resources in each of the subprojects is directly proportional to the

number of stages each node spans, while the RU equals to the number of resources. For

nodes that are connected to the next stage, the number of resources is set low (e.g. one

resource in nodes 7, 10 and 11 in table 5), while nodes that are connected with further

stages in the project are set proportionally higher (e.g. two resources in nodes 12,13,14

and 15 in table 5). In order to allow a fair comparison between the alternatives, the work

content divided by the resource availability is assumed equal in all subprojects.

6.1.3. Details of linked alternative branches

The project structure obtained after the first three steps of the data generation process

consists of nodes that reflect alternative execution modes of work packages, while the fourth

step focusses on the activities as the work packages are replaced by activity networks. This

distinction between the work package level (steps 1-2-3) and the activity level (step 4) is

important to accurately model the linked alternative branches. For example, each node

in table 5 corresponds to an execution mode of a work package and not a single activity.

Consequently, the links between nodes in table 5 represent links between alternatives rather

than links between activities in the activity network. The links between activities can

only be implemented when the nodes are replaced by subprojects in step 4. Given that

we have generated a subproject in each node of the project structure, we still need to

establish the links between the individual activities. In this research, we model a link by

selecting an activity in each of the two subprojects making sure that the selected activity

in the subproject that is connected by the incoming arc is not a branching activity. The

restriction that prohibits activities to be linked to a branching activity is stipulated in

equation 4 in section 3.3. For example, there exists a link between nodes 2 and 7 in table

28



5. Assume that both nodes 2 and 7 are replaced by a small project network that consists of

four activities. In figure 6, we graphically illustrate the different options to implement the

link between an activity in node 2 and 7. In the above situation, we observe an infeasible

link between activity 2 in node 2 and activity 5, which is the branching activity in node

7. In the below situation, a feasible link is implemented between activities 2 and 6 in,

respectively, nodes 2 and 7.

2 7
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Node 2
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Figure 6: An illustration of links between work packages and links between activities

6.1.4. Benchmark dataset

The result of the stepwise data generation is a complete project network with alternative

subgraphs that can be classified based on a set of flexibility and project parameters. The

test instances in our dataset have been generated given the problem settings displayed in

table 6. Using 10 instances for each setting, we obtain a dataset of 10*4*4*5*5*3*3 =

36,000 instances. Table 7 provides an overview of the exact number of activities in each

problem instance that corresponds with a given problem setting. The test instances in this

dataset can be downloaded from the website www.projectmanagement.ugent.be.

6.2. Performance of tabu search procedure

6.2.1. Initial solution

The four different initial solution procedures that are described in section 5.1 are inves-

tigated to find the best approach. Table 8 summarises the average project makespan (Avg.

makespan) over all problem instances in the dataset obtained using each of these strategies

as well as the percent deviation from the best strategy (Dev. best). We also compare the

performance of the strategies with a proposed lower bound (Dev. CPLB-A). This lower

bound is derived from the well-known critical path lower bound (CPLB) for the RCPSP.
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Number of activities/resources:

Node 1, 2, 3, 4 and 5: 10/1
Node 6, 7, 8, 9 and 10: 10/1
Node 11: 10/1
Node 12, 13, 14 and 15: 20/2
Node 16, 17, 18 and 19: 10/1
Node 20: 10/1

Table 5: An illustration of the data generation procedure to construct a project instance
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Problem parameters

Flexibility parameters Project parameters

Number of instances 10

Number of activities 10*number of connected stages

Number of resources number of connected stages

Step 1
Number of stages 5

Max. number of alternatives per stage 5

Step 2
Degree of flexibility 0.25, 0.50, 0.75, 1

Flexibility distribution 1, 2, 3, 4

Step 3
Degree of nested alternative subgraphs 0, 0.25, 0.50, 0.75, 1

Degree of linked alternative branches 0, 0.25, 0.50, 0.75, 1

Step 4
SP 0.25, 0.50, 0.75

RC 0.25, 0.50, 0.75

Table 6: Parameter settings used to generate the test instances for the RCPSP-AS

However, the CPLB calculations cannot be applied in a straightforward manner in the

RCPSP-AS since it consists of both fixed and alternative activities. Therefore, we propose

the following adjustments to the CPLB calculations: (1) neglect the links between alter-

native branches and (2) select the shortest alternative branch in each alternative subgraph

of the project. We refer to this lower bound as the CPLB with alternatives (CPLB-A).

Recall that eight different variants for IN-1 exist depending on which adjusted weight is

used for the selection of alternative branches. It can be seen that IN-1.8 yields on average

the lowest project makespan. The relative difference in solution quality with a random

initial solution (IN-2) mounts to 15.89% on average. Moreover, we also observe that even

the variants of IN-1 with the lowest performance result on average in a significant lower

project makespan than IN-2. The approach that uses information from the optimal solu-

tion of the relaxation of the problem (IN-3) results in a good overall performance and the

controlled RK approach (IN-4) results on average in better initial solutions than IN-2, but

worse than IN-1 and IN-3. This can be explained by the fact that IN-4 applies a priority

rule that accounts for the presence of alternatives but neglects the specific characteristics

of the alternative subgraphs. For the sake of completeness, we have subdivided the results

in table 8 based on the position of the problem instance in the ASM. We should note that

problem instances with a %linked or %nested < 50% (≥ 50%) are classified, respectively,

as low (high) linked or nested.

31



%flex

0.25 0.5 0.75 1

Flexibility distribution

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

%
n

e
st

e
d

0 122 122 123 126 183 183 184 186 244 246 245 246 306 306 306 306
0.25 122 130 162 135 201 212 182 205 263 285 243 275 345 345 345 345
0.50 161 130 162 154 240 222 223 244 342 304 282 334 424 424 424 424
0.75 161 120 152 183 270 241 211 303 371 483 321 423 543 543 543 543
1 161 131 132 222 301 281 262 382 481 562 452 542 702 702 702 702

Table 7: Number of activities for different combinations of parameter settings

IN-1.1 IN-1.2 IN-1.3 IN-1.4 IN-1.5 IN-1.6 IN-1.7 IN-1.8 IN-2 IN-3 IN-4

Avg. makespan 204.96 205.58 211.15 207.23 205.43 202.98 205.48 201.44 233.44 213.85 222.42
Dev. best (%) 1.75 2.06 4.82 2.88 1.98 0.77 2.01 - 15.89 6.16 10.42
Dev. CPLB-A (%) 64.81 65.31 69.78 66.63 65.18 63.21 65.22 61.97 87.70 71.95 78.85

Q1
Avg. makespan 186.67 187.18 185.42 185.82 187.32 187.56 187.42 187.64 211.76 189.97 191.71
Dev. best (%) 0.68 0.95 - 0.22 1.03 1.16 1.08 1.20 14.21 2.02 3.40

Q2
Avg. makespan 195.87 200.53 196.16 195.60 196.62 195.91 196.50 195.63 221.10 200.16 213.95
Dev. best (%) 0.14 2.52 0.28 - 0.52 0.16 0.46 0.02 13.03 2.33 9.38

Q3
Avg. makespan 201.96 202.27 207.92 204.87 202.34 201.52 202.23 200.81 228.32 207.35 216.12
Dev. best (%) 0.57 0.73 3.54 2.02 0.76 0.35 0.70 - 13.70 3.26 7.62

Q4
Avg. makespan 221.16 219.34 234.74 226.07 221.41 215.52 221.66 211.85 254.72 238.28 245.92
Dev. best (%) 4.39 3.54 10.81 6.71 4.51 1.73 4.63 - 20.23 12.48 16.08

Table 8: Performance of the different initial solution generation strategies
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6.2.2. Multi-start iterated local search

In order to validate the performance of the TS procedure, we have initially solved each

problem instance in the dataset using a multi-start iterated LS (MSILS). The MSILS ap-

proach will iteratively call a LS routine, each time starting from a different initial solution,

to obtain a local optimum for the optimisation problem. In this research, we apply the

API-operator (NH-4) to improve a random initial solution (IN-2) until no more improve-

ments can be obtained, after which the procedure is relaunched using another random

initial solution (i.e. MSILS-1). The average overall best makespan obtained after 5,000

visited schedules using MSILS-1 is presented in table 9. We observe that the solution

quality is only 1.69% better than the average, random initial solution (Dev. IN-2) and

even 13.92% worse than the average, best initial solution (Dev. IN-1.8). This shows that

a single solution that corresponds to a good set of alternatives outperforms an iterative

search without a clever selection of alternatives. Subsequently, we investigate the perfor-

mance of the MSILS in case that we start each LS routine with a good initial solution

(IN-1.X) rather than a random initial solution (i.e. MSILS-2). The specific variant of IN-1

is determined based on the dynamic quadrant selection in order to avoid that the same

initial solution is used in each LS routine, which would contradict the iterative nature of

the MSILS process. We observe that the average makespan obtained after 5,000 schedules

decreases with 10.99% in case that a good rather than a random initial solution is used

(Dev. MSILS-1). In order to further test the potential of MSILS-2, we include the itera-

tive forward-backward LS (LS-2) after the exploration of the NH in each LS routine (i.e.

MSILS-3). Table 9 shows that MSILS-3 further improves the performance of MSILS-2.

6.2.3. Tabu search procedure

In order to determine the best parameter settings for the TS, a number of experiments

have been carried out. Initially, we should determine the length of the tabu list and the

MSILS-1 MSILS-2 MSILS-3

Avg. makespan 229.48 204.27 200.56
Dev. IN-2 (%) -1.69 -12.50 -14.08
Dev. IN-1.8 (%) 13.92 1.41 -0.43
Dev. MSILS-1 (%) - -10.99 -12.60

Table 9: Relative performance of the different scenarios for the MSILS approach
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number of iterations of the scheduling run within an iteration of the selection run. Further-

more, we test the added value of the different NH and LS procedures. The experiments to

fine-tune the performance of the proposed TS are performed on a training set of 100 test

instances. The results of these experiments are summarised in tables 10-12.

Parameter settings. Since the proposed TS procedure consists of a tabu list for the

scheduling (TL-SCH) and selection (TL-SEL) subproblem, we run two independent ex-

periments in order to determine the length of these tabu lists. In these experiments, the

size of the tabu list is expressed in terms of the number of activities and the number of

alternative branches in the problem instances, respectively, for TL-SCH and TL-SEL. This

is important as the number of activities and alternatives can vary widely between the in-

stances and therefore an absolute size of the tabu lists is undesired. We observe from table

10 that a list size equal to 0.50 times the number of activities for the TL-SCH and 0.25

times the total number of alternative branches for the TL-SEL result in the best outcome.

We also note that it is optimal to iterate two scheduling runs within one iteration of the

selection run.

Neighbourhood structure. The three NH structures that focus on the selection sub-

problem (NH-1, NH-2 and NH-3) are tested on the same training set to find the best

approach. We have investigated the performance of NH-1 for each of the four duration-

and resource-based weights (NH-1.1 up to NH-1.8) as well as for the dynamic quadrant

selection (NH-1.X). Since NH-2 also depends on the position of the problem instance in

the ASM, we also test the performance of this NH in case that each of the four quadrants

are assumed (NH-2.1 up to NH-2.4) and the quadrants are dynamically selected (NH-2.X).

According to the %nested and %linked, an instance of the RCPSP-AS can be uniquely

classified in a single quadrant of the ASM. In this research, we also test the performance

of NH-1 and NH-2 in case that the operators are selected based on a misclassification of

the project instances (e.g. NH-1.1 is used in case that the instance should be positioned

in Q2). We refer to section 4.2 for a detailed explanation of the calculation of the weights.

The average project makespan and run time of each NH structure is shown in table 11. We

observe that NH-1 and NH-2 outperform NH-3, independent of the configuration and that

NH-1.X is deemed the overall best NH. Furthermore, we notice that the dynamic selection

of quadrants outperforms a more rigid position of the problem instances in the ASM for

both NH-1 and NH-2. In summary, we will apply NH-1.X as NH structure in the final

version of the TS. In order to analyse the relation between the position of the problem
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instances in the ASM and the performance of the different NH structures, we subdivide

the results in table 11 based on the position of the problem instance in the ASM. The two

following contributions can be drawn from this additional analysis. First of all, NH-1.5 up

to NH-1.8 is the technique with on average the best solution quality in case that the variant

of the NH is used that corresponds to the actual position of the problem instance in the

ASM (i.e. NH-1.5 is used for Q1, NH-1.6 for Q2, etc.). The characteristics of the alternative

subgraphs are not as clearly captured in the other NH structures. Secondly, the dynamic

quadrant selection procedure pays off in all four quadrants, although its potential is highest

in the most complex quadrant Q4. The NH-1.X structure has two important properties.

First of all, it facilitates an increased exploration in the TS as different quadrants are

selected throughout the procedure for the calculation of weights. Secondly, the dynamic

quadrant selection is guided by the position of the problem instance in the ASM based

on %nested and %linked, which increases the randomness in the TS procedure. In order

to illustrate that the improved performance of NH-1.X is not merely due to the increased

randomness, we execute an additional experiment in which we perform a dynamic quadrant

selection that selects the quadrant uniformly at random (NH-1.U). According to NH-1.U,

each quadrant in the ASM is selected with a probability equal to 25% in the dynamic quad-

rant selection. This allows us to show the relevance of the dynamic quadrant selection.

The experiments show that NH-1.U results on average in a similar project makespan as

the NH-1.X. The superior performance of NH-U and NH-1.X clearly illustrates that the

dynamic quadrant selection works better than the NH-1.1 to NH-1.8 methods, which focus

only at a single quadrant for the selection of a NH. In the remainder of the experiments,

we have used NH-1.X instead of NH-U since the NH-U results in a slightly higher project

makespan (0,16%) than NH-1.X.

Local searches. We also test different configurations of the TS in order to investigate the

added value of both LS procedures. The independent inclusion of LS-1 and LS-2 in the TS

yields a decrease of the total makespan of, respectively, 0.90% and 1.19%. With respect

to LS-1, we also check the performance of the TS with the inclusion of a LS-1 after each

scheduling run (LS-1.2) rather than after two iterations of the scheduling run (LS-1.1). The

experiments show a slight improvement of the solution quality compared to LS-1.1. The

impact of the LS procedures is summarised in table 12. As expected, the inclusion of both

LS procedures increases the run time of the TS. However, we note that the increase is more

significant for both LS-1.1 and LS-1.2 than for LS-2 although the relative improvement of

35



LS-2 is higher. Based on the above analysis, we decide to include LS-1.2 and LS-2 in the

fine-tuned TS discussed below.

Overall performance of TS. Given the best combination of parameter settings as well

as the preferred NH and LS procedures, the TS was run with a stopping criterion of 5,000

schedules for all instances in the dataset. The results are summarised in table 13. The

average project makespan that is obtained through the TS over all problem instances equals

182.49, while the project makespan obtained through the MSILS-3 procedure is on average

9.90% (Dev. TS) higher. This implies that the memory structures of the TS pay off for the

RCPSP-AS as a much better solution can be obtained within a limited number of generated

schedules compared to the MSILS search strategy. Also, we compare the quality of the

solution obtained through the TS and MSILS-3 with a single (initial) schedule in order to

show the improvement potential of both approaches. One can observe that a single schedule

with a focus on the selection subproblem (IN-1.8) results in a project makespan that is only

slightly higher than the MSILS-3 solution. This shows the importance of a good initial

solution that considers the complexity of the selection subproblem, rather than a random

initial solution that is iteratively improved over multiple scheduling steps. The project

makespan obtained through the TS improves on average the solution quality of the best

initial solution IN-1.8 with 10.38%. This relative deviation even increases to 27.92% in the

case that a random initial solution (IN-2) is considered. On average, the project makespan

deviates 31.85% from the CPLB-A. Furthermore, we have conducted an additional analysis

to investigate the improvement potential of the TS. Therefore, we have investigated the

number of schedules that should be visited in the TS before the best solution after 5,000

schedules in the MSILS-3 approach was obtained. The results are shown in figure 7. We

Tabu size 0.01 0.05 0.1 0.25 0.5 0.75

Average makespan TL-SCH 188.92 188.92 188.92 185.74 185.74 185.94
Dev. best size TL-SCH (%) 1.71 1.71 1.71 - - 0.11
Average makespan TL-SEL 183.77 183.70 183.80 183.19 183.40 183.31
Dev. best size TL-SEL (%) 0.32 0.28 0.33 - 0.11 0.07

# iterations 1 2 5 10 25 50

Avg. makespan 182.02 182 182.13 182.37 185.26 189.75
Dev. best (%) 0.01 - 0.07 0.20 1.79 4.26

Table 10: Parameter settings
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Neighbourhood NH-1.1 NH-1.2 NH-1.3 NH-1.4 NH1-5 NH-1.6 NH-1.7 NH-1.8 NH-1.X NH-2.1 NH-2.2 NH-2.3 NH-2.4 NH-2.X NH-3

Avg. makespan 183.93 183.69 188.24 191.14 184.46 183.89 184.46 183.77 182.93 183.18 187.84 183.15 187.44 183.55 185.46
Dev. best (%) 0.55 0.42 2.90 4.49 0.84 0.52 0.84 0.46 - 0.14 2.68 0.12 2.46 0.34 1.38

Run time (s) 0.89 0.86 0.86 0.82 0.89 0.85 0.89 0.84 0.85 0.89 0.86 0.88 0.85 0.86 0.87

Q1
Avg. makespan 172.31 172.03 172.63 172.59 172.34 172.31 172.34 172.31 171.63 172.03 174.50 172.25 174.00 170.69
Dev. best (%) 0.95 0.79 1.14 1.12 0.97 0.95 0.97 0.95 0.55 0.79 2.23 0.92 1.94 -

Q2
Avg. makespan 184.94 185.10 186.69 186.21 185.58 185.63 185.58 185.63 183.54 183.96 193.81 183.60 193.69 187.54
Dev. best (%) 0.76 0.85 1.71 1.45 1.11 1.14 1.11 1.14 - 0.23 5.60 0.03 5.53 2.18

Q3
Avg. makespan 185.67 186.35 189.23 190.60 185.85 186.56 185.85 185.46 185.63 185.60 186.98 184.83 185.92 184.21
Dev. best (%) 0.79 1.16 2.73 3.47 0.89 1.28 0.89 1.22 0.77 0.76 1.50 0.34 0.93 -

Q4
Avg. makespan 187.26 186.15 195.56 203.03 188.17 186.08 188.17 185.82 185.75 186.00 190.36 186.56 190.25 186.17
Dev. best (%) 0.82 0.22 5.28 9.30 1.30 0.18 1.30 0.04 - 0.13 2.48 0.43 2.42 0.22

Table 11: Performance of the different neighbourhood structures

Local searches no LS-1 LS-1.1 LS-1.2 no LS-2 LS-2

Avg. makespan 214.30 212.37 212.23 183.19 181.01
Dev. basic scenario (%) - -0.90 -0.97 - -1.19
Run times (s) 0.89 0.93 1.01 0.85 0.85

Table 12: Performance of the different local searches

observe that for a large number of instances (more than 19,000 instances) a lower project

makespan can be obtained after less than 100 visited schedules in the TS compared to the

best solution obtained through the MSILS-3 after 5,000 schedules. Moreover, for 95% of the

instances, for which the TS results in a lower project makespan compared to the MSILS-3

approach, a better solution is obtained already within 2,000 visited schedules. Figure 8

shows the average makespan obtained in the TS for different numbers of visited schedules

as a stopping criterion. This clearly shows that the lowest project makespan found in the

TS decreases drastically during the first visited schedules, where further improvements are

harder to come across in the later visited schedules as the solution quality converges to the

best found solution. This behaviour is in line with the expectations as improvements are

typically more radical in the beginning of a metaheuristic procedure, but more incremental

at the end of the procedure.

6.3. Impact of problem parameters

6.3.1. Impact of flexibility parameters

In this section, we examine the impact of the four parameters that uniquely define

the alternative subgraphs (see section 6.1) on the solution quality. Table 14 summarises

the results. We observe that an increased number of alternatives in the project structure

result in a significant improvement of the solution quality. The project makespan deviates
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Procedure Initial solution LB

TS MSILS-3 IN-2 IN-1.8 CPLB-A

Avg. makespan 182.49 200.56 233.44 201.44 124.37
Dev. TS (%) - 9.90 27.92 10.38 -31.85
#schedules 5,000 5,000 1 1 -
run time (s) 0.88 0.88 - - -

Table 13: Performance of TS
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Figure 7: Improvement potential of the TS compared to the best found solution in the MSILS-3

with 7.97% when we compare the scenarios with the lowest and the highest %flex. This

observation can be explained by the fact that no marginal costs of additional alternatives

are explicitly included in this research. As a result, more flexibility in the project structure

provides more opportunities to create a schedule with a better overall project makespan.

However, this increased degree of freedom comes at the cost of an increased computational

time. The results also show that an increased number of linked alternative branches and

nested alternative subgraphs has on average a negative impact on the solution quality. The

average project makespan increases, respectively, with up to 4.70 % and 10.43% in case that

we move from a low to a high %linked and %nested. These results could be expected since

the complexity of the problem increases as more dependencies exist between alternatives,

which is also supported by the increased run times for higher levels of %linked and %nested.

Note that the impact of a high %nested on the computational complexity is more distinct

than a high %linked. We observe on average a slightly lower project makespan in case that

the alternatives are equally distributed over the project horizon (i.e. strategy 4 compared
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Figure 8: Average makespan after different numbers of visited schedules in the TS

to strategies 1, 2 and 3). This implies that a lower project makespan can be expected when

the alternatives are distributed rather than concentrated in the project.

6.3.2. Impact of project parameters

We briefly describe the impact of the project parameters SP and RC on the solution

quality. The results are provided in table 15. As expected, the solution quality deteriorates

as the resource constrainedness increases and the network topology of the subprojects in

the project structure becomes more sequential. At the same time, the run time of the TS

decreases with an increased SP and RC level due to a decreased degree of freedom during

scheduling.

%flex %linked
0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Avg. makespan 190.49 184.05 178.98 176.43 179 180.61 181.97 183.44 187.41
Dev. best (%) 7.97 4.32 1.45 - - 0.90 1.66 2.48 4.70
Run time (s) 0.41 0.68 1.05 1.41 0.80 0.86 0.90 0.93 0.93

flexibility distribution %nested
1 2 3 4 0 0.25 0.5 0.75 1

Avg. makespan 182.68 183.13 182.58 181.56 175.03 176.99 181.16 185.97 193.29
Dev. best (%) 0.62 0.87 0.56 - - 1.12 3.51 6.25 10.43
Run time (s) 0.86 0.89 0.83 0.96 0.61 0.70 0.83 1.02 1.26

Table 14: Impact of the flexibility parameters on the soluton quality
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RC
0.25 0.50 0.75

SP
0.25 89.37 (1.00) 158.88 (0.95) 228.87 (0.92)
0.50 126.85 (0.89) 178.53 (0.88) 235.20 (0.86)
0.75 176.96 (0.82) 204.56 (0.82) 243.16 (0.81)

Table 15: Impact of the project parameters on the solution quality (run times (s))

6.3.3. Impact of resource characteristics of alternatives

As already stated in section 6.1, the problem instances in our dataset are constructed

in such a way that the number of resources required to complete a work package is directly

proportional to the number of stages that each work package spans. Recall that a non-

nested alternatives that spans 3 stages consists of 30 activities and requires 3 resource

types, while three consecutive nested alternatives each consist of 10 activities and require

1 resource type. In this way, we can distinguish between complete, global alternative

execution modes of a work package that call for a higher number of general resources

and partial, specialised alternative execution modes of a work package that call for a

lower number of dedicated resources. The former type of alternatives allow for a global

optimisation of the project schedule, but correspond to a more complex scheduling problem.

The latter type of alternatives consist of multiple, less complex local optimisation problems.

In this section, we analyse the impact of the different resource profiles of the alternatives on

the outcome of the selection process. Since the trade-off discussed above is most apparent

in problem instances with a high %flex and %nested, we focus our analysis on the 360

problem instances in the dataset that are characterised by a %flex=1, %nested=1 and

%linked=0. Note that the conclusions for other problem settings can be derived from

the presented analysis as they propose special cases of the tested instances. We run an

experiment to gather the average makespan of the different alternative paths that span,

respectively, 1, 2, 3, 4 and 5 stages for each of the 360 instances. This information reflects

the expected solution quality for a given trade-off between general and dedicated resources.

In our experiments, we could partially confirm our conjectured statements explained in this

section. We saw that in case of low RC values, the lowest makespan was obtained with

two connected stages. This is not equal to the lowest value (i.e. one connected stage), but

nevertheless relatively low. For a high RC value, this number of connected stages is equal

to five (i.e. the highest possible value in our data). Obviously, this effect would be more
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profound if we should generate our data with more than five connected stages.

6.4. Impact of modified dataset

The data generation procedure described in section 6.1 consists of two layers. In the

high-level layer, the project structure with alternative subgraphs is constructed, while

each node is replaced by a project network in the low-level layer. In order to generate

a dataset that covers all possible structures and complexities, we generate an alternative

dataset in which the two layers are interchanged. This implies that the high-level layer

considers the creation of a project network, while each node in the project network is

then replaced by an alternative subgraph in the low-level layer. In this case, the steps

discussed above remain valid, however, we first execute step 4 followed by steps 1 to 3.

In the modified dataset, each activity consists of subactivities that can be executed in

different alternative ways, represented by the alternative subgraphs. The characteristics

of these low-level subactivities are inherited from the higher-level activities. In order to

construct the modified dataset, we generate 400 distinct alternative subgraphs based on

the flexibility parameters %flex, %nested, %linked and the flexibility distribution. Also,

we generate 90 (i.e. 10 instances for each setting) project networks with 10 activities based

on the project parameters SP and RC. Consequently, we obtain a modified dataset with

36,000 instances, which combined with the initial dataset results in an overall problem-

specific dataset with 72,000 instances. The test instances in the modified dataset can also

be downloaded from the website www.projectmanagement.ugent.be. In the remainder of

this section, we will analyse the performance of the TS procedure and evaluate the impact

of the problem parameters for the modified instances. However, the instances in both

datasets differ significantly with respect to their overall project structure. Therefore, we

have to create a new training set from the modified dataset in order to fine-tune the TS

procedure. Overall, the MSILS-3 results on average in a project makespan equal to 227.50,

while an average makespan equal to 193.82 (-14.81%) is obtained through the use of the

fine-tuned TS procedure. The additional experiments show that most conclusions obtained

in section 6.3 can be generalised to the modified dataset. However, we will briefly discuss

the three main differences:

1. The effect of the flexibility parameters %nested and %linked on the average project

makespan is larger in the modified dataset as the alternative subgraphs are more

deeply embedded. Consequently, the relative impact of the selection subproblem is
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larger. We observe that an increase in %nested and %linked from 0% to 100% results

in an increase in project makespan, respectively, equal to 16% and 54.86%.

2. When no nested and linked alternative subgraphs are included in the network (i.e.

%nested and %linked = 0), a higher number of alternative branches (i.e. high %flex)

leads to a lower makespan. When these alternative branches are nested and/or linked

(i.e. %nested and %linked > 0), however, adding more alternative branches does not

always reduce the project makespan. The lowest makespan is then obtained at %flex

values around 50%.

3. The preference for an equal flexibility distribution (i.e. strategy 4) is not supported

in the modified dataset. The overall best flexibility distribution is strategy 1, fol-

lowed by strategies 3 (+3.21%), 4 (+4.81%) and 2 (+5.90%). This discrepancy can

be explained by the way the modified dataset is constructed. Since the low-level

alternative subgraphs are embedded in the nodes of the high-level project network,

the alternatives are, to a certain extent, equally distributed over the project horizon,

even in strategies 1, 2 and 3.

7. Conclusions

This paper considers the problem of scheduling a project with fixed and alternative

activities. Each alternative activity belongs to one or multiple alternative branches and

subsets of these alternative branches are combined into alternative subgraphs. The ob-

jective of the problem is to select (at most) exactly one (nested) non-nested alternative

branch for each alternative subgraph (i.e. selection subproblem) and assign start times to

all fixed and selected alternative activities (i.e. scheduling subproblem), such that a logi-

cal, precedence and resource feasible project schedule is obtained with a minimal project

makespan. We have proposed to uniquely classify problem instances with alternative sub-

graphs based on two dimensions in the ASM: the absence/presence of nested alternative

subgraphs and/or linked alternative branches. In this paper, we have also generated a

dataset in which problem instances with alternative subgraphs are constructed using a

controlled design. As the RCPSP-AS involves two subproblems, we present a TS that fo-

cuses on the scheduling and the selection subproblem. The results show that the proposed

TS outperforms the MSILS on the problem instances in the dataset. The computational

results further demonstrate the positive impact of the %flex as well as the negative impact
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of the %linked and %nested on the project makespan. For a given number of alterna-

tives, a slightly better solution quality can be on average obtained when the alternatives

are uniformly allocated to different project stages rather than concentrated in a limited

number of project stages. Furthermore, it is shown that the selection process is influenced

by the resource availability and requirements in the project. As the alternatives that span

a larger number of stages require multiple, generalised resources, they underperform in

case of a high RC. The opposite is true for a sequence of alternatives that each span a

smaller number of stages and require less, dedicated resources. In the case of a low RC, the

decision for such alternatives does not warrant a global optimisation. Future research will

focus on closing small-scale instances of the RCPSP-AS and providing optimal benchmarks

to investigate the performance of heuristic procedures. Furthermore, better lower bounds

that incorporate some of the specifications of scheduling problems with alternatives should

be developed. More research efforts will also be devoted to the inclusion of the cost of

flexibility in the framework of alternative subgraphs in order to further improve the prac-

tical applicability of the problem area. First of all, a cost can be induced in the scheduling

problem for the inclusion of alternative branches in an alternative subgraph. The penalty

factor can increase (non-) linearly with the number of alternative branches that are added

to an alternative subgraph and/or the number of alternative subgraphs that are added to

the project. From a practical point of view, the existence of nested alternative subgraphs

and linked alternative branches might also impact, respectively, the cost of including an

alternative subgraph and an alternative branch.
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