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Abstract

This paper uses stochastic optimisation techniques to allocate scarce national resource across eight

cities to best respond to three simultaneous disasters happening across these locations. Our first

model analyses the risk of not being able to achieve performance targets given resource constraints

while our second model analyses the resources needed to meet target performance levels. A third

hybrid model (constructed from the first two models) analyses the implications of different financial

budgets. Additional sensitivity analysis is performed by looking into different settings of location

importance, number of simultaneous disasters, and resource requirements. We reflect on the use

of such modelling techniques for these problems and discuss the influence of political aspects of

resource allocation which such models cannot address. We also reflect on the need for advanced

modelling to recognise the abilities of the users and the availability of realistic assumptions if they

are to influence the practices of disaster managers.

Keywords: OR in disaster relief, simultaneous disasters, resource allocation, stochastic

optimisation

1. Introduction

Disasters are exceptional events for a country, not least because of the usually long periods

when none occurs but also because responding to them consumes vast resources. These resources

are often specific to a particular type of disaster and provide capabilities to save life, protect people

and their possessions from harm, and lessen the effects of the impact - for example, equipment to

decontaminate a population following chemical release. As disasters seldom happen, these resources

are usually scarce as it is infeasible for cities to have large quantities of specialist equipment lying

idle between disasters. Consequently, some resources are often held by national government to

be shared across cities when the need arises [55]. Thus, an affected city can accumulate needed

resources through requesting mutual aid from unaffected cities [49], regional/national assets [18], and

international sources [16]. The allocation of specialist resources is made more difficult when multiple

disasters occur simultaneously, each demanding the shared resource, as “The size, complexity, and
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number of simultaneous disasters influence the ability of all ... [organizations] to respond. Events

may occur, particularly in multi-state disasters that exceed FEMA’s planning targets.” [2].

The real case that our paper considers is the UK Government’s New Dimension Programme

[36] which was the UK’s £330m investment in emergency response capabilities following the 11th

September 2001 terrorist attacks in New York. The programme focused on new capabilities to

tackle three simultaneous events happening anywhere in the country including those associated

with a major flood (specifically, water rescue and high volume pumping) and those associated with

a terrorist attack (specifically, urban search and rescue, and mass decontamination). Our scenarios,

assumptions, models and analyses mirror the New Dimension Programme to answer the question -

How do we allocate scarce emergency resources (people and equipment) to respond to three large-

scale simultaneous floods or terrorist attacks happening in a country? To answer this question we

worked closely with New Dimension documentation and the UK’s Chief Fire Officers Association’s

national lead officer for command and control aspects of the New Dimension Programme. The

novelty of this paper is the development of Operational Research models which focus on a major

problem that governments are grappling with - How to prepare for multiple simultaneous large-scale

emergencies happening at the same time, needing the same resources.

Contributions and paper outline

Our paper presents two models to allocate multiple types of scarce resource in preparing for,

and responding to, three simultaneous disasters. The first is a two-stage stochastic optimisation

model that allocates existing resources to achieve the best performance i.e. addressing how targets

can be met. The second model determines the optimal resource capacity to manage all possible

scenarios i.e. addressing what additional resources are needed to meet targets. In addition to these

two main models, we use a third (hybrid) model to analyse the impact of financial budget on how

to allocate additional resources.

Our models reflect how simultaneous disasters thinly stretch shared resources across geograph-

ical areas and have more complex demands because, for example: affected areas have different

time-dependent demand for resources which only become apparent at different times during the

response; resources are shared across different disaster types; and some resources are constrained by

deployment regulations. The models analyse the importance of such aspects of emergency response,

culminate in sensitivity analyses of not being able to meet the demands created by simultaneous

emergencies. We consider the influence of political factors on future investment decisions as well

as compare the effect of the strategic importance of cities across a country. To explain the models,

the paper begins with a literature review of resource allocation for responding to simultaneous dis-

asters. The models are then introduced, followed by their application to a case study. Discussion

and implications conclude the paper.

2. Literature Review

‘Everyday emergencies’ (such as a car crash or medical incident) are foreseen events that require

a general emergency response and, for these, analysts can use historic data to plan [24]. Disasters
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are different as they can be unforeseen, rare events with extreme consequences (‘black swan’ events)

or a confluence of foreseen events in ways that create unanticipated, rare consequences (‘perfect

storm’ events) [40]. Disasters also create overwhelming demand, require a more substantial response

from scarce specialist resources, and may quickly exhaust local resources thereby requiring a wider

resource pool. Thus, disaster planning is difficult, in part, because of the need to model exceptions

for which there is often minimal or imperfect data and because of the high risks involved in using

scarce of resources [27] to protect nationally important assets [10] and help vulnerable people [50].

Our focus is on resource allocation in disasters and there is substantial research on this topic. For

example, resource allocation in each of the four phases of the disaster life cycle [16] has been the topic

of much study: in the preparedness phase (e.g. estimating loss before a disaster happens to identify

important infrastructure to protect [50]) and in the response phase (e.g. where to move equipment

to during a disaster to meet demand [14]). The disaster life cycle also includes phases for after a

disaster (recovery) [12] and to avoid the effects of a disaster (mitigation) [30] but these are not the

focus of our paper. The breadth of research on resource allocation in disasters is described in review

papers by Özdamar and Ertem [39] who review mathematical models developed for humanitarian

logistics, Anaya-Arenas et al [6] who review research on relief distribution networks, and de la Torre

et al [17] who review the use of disaster relief logistics.

The published research on resource allocation exploits a breadth of model types but shows

a preference towards optimisation - Galindo and Batta [21] and Altay and Green [5] found that

optimisation is the most heavily exploited analytical approach in disaster analytics with 23.1% and

32.1% of the published research (respectively) - also see Tables A.10, A.11, and A.12 in Appendix A.

This preference includes stochastic optimisation models (e.g. for prepositioning emergency logistics

[48, 46]) and dynamic optimisation models (e.g. for adapting response strategies [19, 29]). There

is also a growing interest in using game theory to understand disasters, addressing issues such

as protecting citizens and infrastructure from aggressors who target system weaknesses [50] and

attracting donations based on perceived effectiveness in delivering relief to disaster victims [34].

Similarly, robust optimisation models are becoming popular as they “immunize against uncertainty”

so avoid the need to provide some probabilistic information which can be difficult to estimate

for disasters [9] (e.g. likelihood of disaster scenarios). Robust optimisation has been applied to

evacuation planning to handle scenarios with significant infeasible cost [65], planning emergency

logistics to handle the problem of time-dependent uncertainty [8], organizational resilience to handle

the problem of unknown loss potential [29], and relief distribution plans to handle the uncertainties

following an earthquake [35]. The objectives of disaster optimisation models are varied but include,

from Tables A.10, A.11, and A.12, to minimize expected costs [4], minimize casualties [48], minimize

completion times [63], maximize equity of those affected [45], maximize recovery coverage [12], and

maximize the fairness of relief distribution [56].

Common across many disaster optimisation studies is resource allocation based on the value or

importance of elements being modelled, for example, the value of a target to a defender [10, 50, 27],

the value of a business function to a plan [12], the importance of an item in a relief pack [46],
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the importance of products that satisfy recipients [56], the priority of helping wounded people [66],

or the priority of transporting evacuees compared to products [38, 35]. For good reason, not all

studies optimise importance e.g. Salmerón and Apte [48] assume “both groups [of people] are

equally important in the sense that failing to meet either demand results in persons to perish”

(p566). Importance is an aspect considered in our models and is a focus of our discussion.

While there is much research on everyday emergencies occurring at the same time, there is less on

simultaneous disasters. We define simultaneous disasters as two or more disasters that temporally

overlap, may be geographically distant, yet make demands of the same pool of resources. As this

pool is finite, the resourcing challenge is the competition from the disasters for scarce specialist

resources combined with the need to transport these across an area, efficiently, to satisfy competing

demands. We distinguish these from ‘multiple disasters’ (incidents occuring in the same place but

with no temporal overlap [47]) and from ‘secondary disasters’ [67] or ‘serial disaster chains’ (“a series

of major disasters that occur as an offshoot of a major disaster” [57, p510], such as an earthquake

causing a landslide [64]). These distinctions are important because unrelated multiple incidents

do not make resource allocations more challenging than for single disasters, and the physical co-

location of serial disaster chains means the need for resource is geographically concentrated thereby

avoiding extensive travel and easing the challenge of mutual aid (discussed below). On the number

of simultaneous incidents, the UK government’s “planning assumptions [were] . . . based on three

simultaneous major incidents” [58], while the USA government sought to “develop, acquire, and

coordinate a national operational capability, and the resources and assets to simultaneously respond

to four catastrophic plus twelve non-catastrophic incidents, anywhere in the country” [2, p11].

This focus on simultaneous disasters is novel as “there are few methods to model the practical

situations of multiple-resource, multiple-response and multiple-point” [67, p11067] because “the

traditional emergency resource allocation in the literature considers only a single incident at a

time” [52, p200]. When the literature considers more than one disaster, it is typically a single type

of disaster in more than one place, for example from Table A.10, simultaneous failures disrupting

communication networks [1, 44], more than one area being affected by a storm [48], more than one

wildfire [33], or secondary disasters such as earthquake aftershocks [67]. Some research considers

simultaneous events but assumes that each rescue agency can only respond to a single event at

any time [25], while others limit the potential of applying their model to more than one incident to

future work [27]. Wex et al [63, p697] deconstructed disasters into “a large number of geographically-

dispersed incidents, such as fires and collapsed buildings” but they focus on efficient allocation of

response at a local level rather than taking a national perspective. We found only two papers

that consider more than one type of disaster happening simultaneously: Albores and Shaw [3]

who evaluate three simultaneous events of different types, requiring different sorts of responses,

happening in different locations; Su et al [52, p200] who “allocate multiple emergency resources of

multiple rescue agencies to multiple concurrent incidents in a parallel manner”.

Another aspect that is important to our paper but seldom found in the literature is the borrow-

ing of emergency resources from across cities to address the scale of the disaster, so-called mutual
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aid. Mutual aid is a facility that “authorizes a state [or region] to enter into a bilateral or mul-

tilateral agreements with its neighbors. A mutual aid agreement allows one government agency

to come to the aid of another” [49, p102]. Su et al [52] do not consider mutual aid as a way of

coping with simultaneous disasters, but Albores and Shaw [3] do through a prioritised system of

borrowing resources from regions in a pre-specified order. The complication that mutual aid brings

in simultaneous incidents is the conflicting priorities for which regions should satisfy which requests.

The final aspect not often found in the disaster planning resource allocation literature which

this paper considers is the impact of deployment regulations on the ability of personnel to work

safely in hazardous situations. In existing studies often the number of personnel are modelled as a

homogeneous type [52] or not treated as a constraint [7]. However, deployment regulations ensure

safe working especially in hazardous environments, for example, the amount of aircraft flying time

for aircrew [7] or, as in our case, the working time in firefighting breathing apparatus [3]. Deployment

regulations are time-dependent resource constraints which influence the capacity of staff to complete

tasks and so effect the number of staff needed to accomplish the activity on time.

The issues reviewed above are central to our development of stochastic optimisation models

that consider: three simultaneous disasters of different types requiring different types of response;

the demand for scarce, shared, local and national, specialist resources; responses needed at different

cities that may be geographically spread; prioritising some cities based on their national importance

including the receiving of mutual aid; deployment regulations to ensure safe working. In our first

model, we handle the risk of not being able to fully respond to simultaneous disasters with existing

capabilities using a stochastic optimisation approach. The second optimisation model addresses

how to eliminate that risk by considering additional resource capabilities. The third (hybrid) model

considers both aspects given a limited financial budget. The details of the models to analyse resource

allocations are described next.

3. Mathematical Formulations

3.1. Problem Description

Reserves of national resources are strategically placed around a country to handle potential (si-

multaneous) disasters at several locations. We focus on this strategic resource allocation problem

in the preparedness phased while considering its effects in the response phase when actual simulta-

neous disaster scenarios happen. Both equipment and personnel resources are needed in response

to disasters and different operations require different types of equipment. For example, search and

rescue units are needed for urban search and rescue (USAR) operations while response units are

needed for mass decontamination (MD) operations. In addition to equipment, we need specialists,

the personnel qualified to operate these equipment. We also need generalists who support special-

ists and handle generic operations. Generalists and specialists are firefighters and we assume there

are enough firefighters who can be trained as generalists and specialists. Specialist equipment units

include vehicles to transport the equipment as well as personnel needed to operate the unit. For

example, a high volume pump (HVP) unit for flood pumping operations consists of two vehicles to
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carry pump and hose equipment and required personnel. Additional specialists and generalists (if

required) travel using fire engines and we assume there are enough fire engines to transport these

additional personnel when needed.

The requirements for resources are different for different types of disasters. For example, a

radioactive bomb attack requires specialist equipment for MD and USAR while a natural flood

would need HVP and USAR but may not need mass decontamination. Common resources such as

USARs are needed in response to several types of disasters, which makes the resource allocation

difficult given that more than one type of disasters will be considered in our models.

Resource allocation decisions made in the preparedness phase affect decisions made in the re-

sponse phase when an actual disaster happens. In general, the first few hours after a disaster

happens are the most important to save life and protect assets, thus our models focus on these

first hours as the timespan of the response phase. In addition to specialist equipment and per-

sonnel, additional generalists are required to support specialists and handle general tasks. Most

requirements of specialist equipment (and personnel) are non-cumulative, i.e., they only specify

the required number of specialist equipment (or personnel) at a specific time without accounting

for how long those specialist equipment (and personnel) are available before that. For example, a

requirement of 10 generalists on-site within 3 hours is satisfied if there are 10 generalists available

right after the third hour. These generalists can arrive on-site any time within the first 3 hours.

For some equipment, the requirement is throughput-related and cumulative, i.e., represented by the

amount of work done over time. For example, a decontamination target of 3000 causalities within 3

hours is 3 unit-hours if the decontamination capability of the units is 1000 casualties per hour. This

requirement is satisfied if there is one response unit available right after the first hour and one more

unit is available right after the second hour. Figure 1 shows the differences between non-cumulative

and cumulative requirements. Additional specialists are required after the first deployment period

to make sure that specialist equipment can be operated without stopping given that rest breaks

between deployment shifts are required for personnel. For generalists, we assume that initial re-

quirements are sufficient to cover breaks between deployments given the flexibility of generalists in

handling different operations.

Figure 1: Non-cumulative vs. cumulative requirement

Given these time-dependent resource requirements, requested specialist equipmentand personal
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need to be transported from multiple locations to the disaster site. These resource request deci-

sions, i.e., when, where, which resource, and how much to request, need to be made throughout the

response phase. A simultaneous disaster scenario describes the details of where these simultane-

ous disasters happen and their resource requirements. Together with resource allocation decisions,

these resource request decisions determine how effective the response is in satisfying resource re-

quirements for simultaneous disaster scenarios. We aim to make resource allocation decisions which

allow effective responds, i.e., resource request decisions, to be made later in anticipation of po-

tential simultaneous disaster scenarios. Given our focus is on resource allocation decisions in the

preparedness phase, not dynamic resource request decisions in the response phase, we consider this

as a two-stage problem with resource allocation decisions in the preparedness phase as first-stage

decisions and resource request decisions in the response phase are second-stage decisions. The

scenario-based representation of uncertainty of simultaneous disasters, i.e., when and where these

disasters might happen and what resource will be needed, is relevant for the two-stage models.

Given a simultaneous disaster scenario where all time-dependent resource requirements are known,

resource request decisions can be determined using a multi-period setting in which the timespan

of the response phase is discretized appropriately. Figure 2 shows the overall two-stage decision

framework with respect to two phases of the disaster life cycle, preparedness and response phase.

Figure 2: Two-stage decision framework with respect to preparedness and response phase

3.2. Notation and Model Settings

For clarity of exposition, Table 1 summarises all relevant parameters used to develop our math-

ematical optimisation models. We now describe these parameters.

The set of locations where resources can be placed (and disasters might happen) is denoted by

N . We let Ei ⊆ N be the list of locations from where equipment and personnel can be requested in

response to a disaster happening at location i, i ∈ N . Resources should be requested first from the

locations where a disaster happens, which implies i ∈ Ei for all i ∈ N . To emphasize the importance

of utilizing resources from the location where disasters happen, pij , j ∈ Ei, denotes the preference of

requesting resources from location j for a disaster happening at location i with pii = 1 and pij > 1

if j 6= i for all i ∈ N . The preference depends on travel times between pairs of locations among

other factors. Finally, the response time needed to transport specialist equipment and personnel

from location j to location i is denoted by rij for all i ∈ N and j ∈ Ei.
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Table 1: Parameters for the proposed optimisation models

N set of locations
Ei lists of locations equipment and personnel can be requested

when a disaster happening at location i ∈ N
pij request preference/priority of location j, j ∈ Ei
rij response time needed to bring equipment and personnel from location j to location i
R set of equipment types
αr number of specialists required to operate a unit of type-r equipment, r ∈ R
βr number of generalists required to support a unit of type-r equipment
or on-site setup time of type-r equipment
K set of disaster types
Rk set of equipment types need in response to a type-k disaster, k ∈ K
Tk set of time points when resource requirements need to be specified in response to a

type-k disaster
ck,r indicator whether type-r equipment requirements in response to a type-k disasters are

cumulative or not
S set of scenarios
Ls set of simultaneous disasters happening in scenario s, s ∈ S
il location where disaster l happens, l ∈ Ls
kl type of disaster l, l ∈ Ls
dlr(t) requirement for type-r equipment, r ∈ Rkl , at time t, t ∈ Tkl ,

in response to disaster l, l ∈ Ls
dl0(t) requirement for generalist at time t, t ∈ Tkl , in response to disaster l,

l ∈ Ls
qs probability of scenario s
Cr capacity of type-r equipment
Ts time horizon of resource requirements in response to all disasters in scenario s
D duration of deployment shifts (and deployment breaks)
ιi importance indicator of location i
γr cost per unit of type-r equipment
B total budget

There are different types of specialist equipment and R denotes the set of all equipment types.

αr and βr denote the number of specialists and supporting generalists needed to operate a unit of

type-r equipment, r ∈ R, respectively. These personnel are transported together with equipment

units when requested. Finally, the setup time for type-r equipment before they can be operated is

denoted by or for all r ∈ R.

More than one type of disasters is considered. We use K to denote the set of disaster types

and let Rk ⊆ R be the set of equipment types needed in response to type-k disasters, k ∈ K. To

model time-dependent resource requirements throughout the timespan of the response phase, we

use Tk to denote the set of time points when requirements for all types of specialist equipment in

Rk and those for generalists need to be specified in response to type-k disasters, k ∈ K. In addition,

ck,r ∈ {0, 1} is used to indicate whether requirements for type-r equipment in response to type-k

disasters are cumulative or not for all k ∈ K and r ∈ Rk.
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Potential simultaneous disaster scenarios are given in a set S. For a scenario s, s ∈ S, Ls denotes

the set of simultaneous disasters happening in that scenario. For each disaster l, l ∈ Ls, happening

in scenario s, il and kl denote its location and its disaster type, respectively. In addition, the

requirement for type-r specialist equipment, r ∈ Rkl at time t, t ∈ Tkl , in response to the disaster l

is denoted by dlr(t) for all l ∈ Ls. Similarly, dl0(t) denotes the requirement for generalists at time t,

t ∈ Tkl , in response to the disaster l, l ∈ Ls. To handle time-dependent resource request decisions,

we define Ts such that [0, Ts] is a discretized time horizon that covers all the time points when

resource requirements are specified for all simultaneous disasters happening in scenarios s. Note

that Ts can be different for different scenario s ∈ S depending on types and scales of simultaneous

disasters in those scenarios. Finally, for each scenario s, s ∈ S is assigned with a probability

of qs ≥ 0 such that
∑
s∈S

qs = 1. Given the set S of simultaneous disaster scenarios and current

total capacities Cr of type-r equipment, r ∈ R, we are ready to develop mathematical models to

determine how to allocate available resources so that whatever disaster scenario happens, it can be

handled as effectively as possible.

3.3. Penalty-Based Model

The first optimisation model aims to determine if there are feasible allocations of equipment

among all locations that can respond satisfactorily to all scenarios s ∈ S given the current capacities

of all resources, i.e., resource requirements of all simultaneous disasters happening in each scenario

s are satisfied at all times during the timespan of the response phase. We impose a penalty if a

resource requirement is not satisfied in any scenario and formulate the problem as a total expected

weighted penalty minimization problem. It is obvious that if there is no penalty (i.e., zero minimum

expected penalty), the current capacities of all resources are enough to handle effectively all given

simultaneous disaster scenarios. Before discussing how to formulate the objective of this penalty-

based model, we describe all decision variables (see Table 2) and constraints of the model.

Resource allocation decisions in the preparedness phases are the main first-stage decision vari-

ables. Let wir ∈ Z+ be the number of type-r equipment units allocated at location i, i ∈ N . Given

the capacity Cr of type-r equipment, r ∈ R, these decision variables need to satisfy the following

capacity constraints: ∑
i∈N

wir = Cr, ∀ r ∈ R. (1)

Given a scenario s ∈ S, time-dependent resource request decisions in the response phase are the

main second-stage decision variables. Let xi,jr,s(t) be the number of type-r equipment units, r ∈ R,

to be requested in response to disasters happening at location i, i ∈ N , from nearby locations

j ∈ Ei at the beginning of each time period t, t = 1, . . . , Ts. Together with the equipment requested,

αr · xi,jr,s(t) type-r specialists will be transported from location j to location i so that the equipment

can be operated. Similarly, βr · xi,jr,s(t) generalists will also travel together with the equipment

requested. In addition to these generalists who help with specialist equipment, we take into account

the requests for additional generalists to support the operation. Let xi,j0,s(t) be the number of
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Table 2: Decision variables of the penalty-based model (P)

First-stage decision variables:
wri number of type-r equipment units, r ∈ R, allocated at location i, i ∈ N
w̄ri number of specialists who can operate type-r equipment, r ∈ R, allocated at location

i, i ∈ N
Second-stage decision variables:

xi,jr,s(t) number of type-r equipment units, r ∈ R, requested in responses to disasters
happening at location i, i ∈ N , from nearby location j, j ∈ Ei, at the beginning of
time period t, t = 1, . . . , Ts, in scenario s, s ∈ S

xi,j0,s(t) number of additional generalists requested in responses to disasters happening at

location i, i ∈ N , from nearby location j, j ∈ Ei, at the beginning of time period t,
t = 1, . . . , Ts, in scenario s, s ∈ S

x̄i,jr,s(t) number of additional specialists who can operate type-r equipment, r ∈ R, requested
in responses to disasters happening at location i, i ∈ N , from nearby location j,
j ∈ Ei, at the beginning of time period t, t = 1, . . . , Ts, in scenario s, s ∈ S

yir,s(t) number of type-r equipment units, r ∈ R, in operation at location i, i ∈ N , at the

beginning of time period t, t = 1, . . . , Ts, in scenario s, s ∈ S
yi0,s(t) number of generalists presenting at location i, i ∈ N , at the beginning of time period

t, t = 1, . . . , Ts, in scenario s, s ∈ S
ȳir,s(t) number of specialists who can operate type-r equipment, r ∈ R, presenting at location

i, i ∈ N , at the beginning of time period t, t = 1, . . . , Ts, in scenario s, s ∈ S
zir,s(t) number of type-r equipment units, r ∈ R, ready to be operated at location i, i ∈ N , at

the beginning of time period t, t = 1, . . . , Ts, in scenario s, s ∈ S
vir,s(t) actual requirement of specialists who can operate type-r equipment, r ∈ R, at location

i, i ∈ N , at the beginning of time period t, t = 1, . . . , Ts, in scenario s, s ∈ S
ulr,s(t) penalty value if the requirement for type-r equipment, r ∈ R, in response to disaster l,

l ∈ Ls, is not satisfied at the beginning of time period t, t = 1, . . . , Ts, in scenario s,
s ∈ S

additional generalists that need to be requested in response to disasters happening at location i,

i ∈ N , from nearby locations j ∈ Ei at the beginning of each time period t, t = 1, . . . , Ts. Finally,

given the requirement of rest breaks between deployment shifts, we need to request additional

specialists to arrive later to ensure the continuity of the operation of specialist equipment once it

starts. Let x̄i,jr,s(t) be the number of additional specialists who can operate type-r equipment, or

type-r specialists for short, r ∈ R, that need to be requested in response to disasters happening at

location i, i ∈ N , from nearby locations j ∈ Ei at the beginning of each time period t, t = 1, . . . , Ts.

In order to check whether resource requirements of all simultaneous disasters happening in

scenario s are satisfied, we compute how many specialist equipment units are in operation at each

location within the time horizon [0, Ts]. Given a scenario s ∈ S, let yir,s(t) be the number of type-r

equipment units, r ∈ R, which are in operation at location i, i ∈ N , at the beginning of each time

period t, t = 1, . . . , Ts. Similarly, let yi0,s(t) be the number of generalists, and ȳir,s(t) be the number

of type-r specialists, r ∈ R, which are currently at location i, i ∈ N , at the beginning of each time

period t, t = 1, . . . , Ts. Clearly, yi0,s(1) = yir,s(1) = ȳir,s(1) = 0 for all i ∈ N and r ∈ R. We can
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compute these numbers for other time periods as follows:

yir,s(t+ 1) = yir,s(t) +
∑

j∈Ei:t+1>or+rij

xi,jr,s(t+ 1− or − rij), (2)

yi0,s(t+ 1) = yi0,s(t) +
∑

j∈Ei:t+1>tij

[
xi,j0,s(t+ 1− tij) +

∑
r∈R

βr · xi,jr,s(t+ 1− tij)

]
, (3)

ȳir,s(t+ 1) = ȳir,s(t) +
∑

j∈Ei:t+1>tij

[
x̄i,jr,s(t+ 1− tij) + αr · xi,jr,s(t+ 1− tij)

]
, (4)

for all r ∈ R and t = 1, . . . , Ts − 1. (2) takes into account the travel time and the setup time for

equipment to be ready at the disaster site. (3) and (4) state that additional numbers of generalists

and specialists to be requested to fulfill the demand.

To handle the requirement of additional specialists to cover deployment breaks, we compute

zir,s(t), the number of type-r equipment units, r ∈ R, at location i, i ∈ N , which are ready to be

operated at the beginning of period t, t = 1, . . . , Ts. We have:

zir,s(t) =
∑

j∈Ei:t>or+rij

xi,jr,s(t− or − rij), ∀ r ∈ R, t = 1, . . . , Ts. (5)

Supposing specialists can work for D time periods, i.e., the duration of each deployment shift, before

taking a break of the same interval, the actual requirement of type-r specialists is as follows:

vir,s(t) =

min{t,D}−1∑
τ=0

zir,s(t− τ) + 2 ·
t−1∑

τ=min{t,D}

zir,s(t− τ), ∀ r ∈ R, t = 1, . . . , Ts. (6)

This formulation indicates that we need to request more specialists to handle deployment breaks

after the first deployment. Similar to the case of generalists, these requirements of type-r specialists

are not cumulative.

Finally, to formulate the objective of this penalty-based model, for each scenario s ∈ S, let

ulr,s(t) ≥ 0 be the penalty if the requirement for type-r equipment, r ∈ R, in response to the

disaster l ∈ Ls in a simultaneous disaster scenario s ∈ S is not satisfied at the beginning of the time

period t, t ∈ Tkl . For non-cumulative requirements, the penalty is defined as

ulr,s(t) = max
{
dlr(t)− yilr,s(t), 0

}
. (7)

For cumulative requirements, the penalty is defined as the cumulative shortfall,

ulr,s(t) = max

{
dlr(t)−

t∑
τ=1

yilr,s(τ), 0

}
. (8)

Given that it is more pressing to satisfy earlier requirements in the context of disaster response, we
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weight the penalties with higher weights for smaller t. In this model, we choose the weights T −t+1

for all t = 1, . . . , Ts, where T = max
s∈S

Ts. The total expected weighted penalty can be computed as

∑
s∈S

qs
∑
l∈Ls

ιil
∑
r∈Rkl

∑
t∈Tkl

(T − t+ 1) · ulr,s(t), (9)

where ιi is an importance indicator of location i. The higher the value of ιi is, the more important it is

to satisfy the resource requirements of disasters happening at location i. This penalty represents the

risk of not being able to handle uncertain simultaneous disaster scenarios effectively and minimising

it will be the main objective in this model.

Given that requirements for specialists are not the same as requirements of specialist equip-

ment due to the need of covering deployment breaks, we introduce a secondary objective into the

model to determine how many specialists should be allocated at different locations. Let w̄ir ∈ Z+

be the number of type-r specialists, r ∈ R, that should be allocated at location i, i ∈ N . These

are additional first-stage decision variables of the model and, in practice, the consideration of

these would help disaster managers determine and plan specialist training based on the special-

ist requirement at each location. A secondary objective of minimizing the total number of spe-

cialist equipment and specialists,
∑
i∈N

∑
r∈R

(
wir + w̄ir

)
allows us to determine the numbers of spe-

cialist equipment and specialists needed at each location. Finally, to enforce the request orders

and timings for equipment and personnel, we impose another secondary objective of minimizing∑
s∈S

Ts∑
t=1

∑
i∈N

∑
j∈Ei

pij(T − t+1) ·

(
xi,j0,s(t) +

∑
r∈R

xi,jr,s(t)

)
. These two secondary objectives will be scaled

appropriately to reflect their secondary nature. We can now formulate our first model (P) (P for

penalty) as a two-stage mixed-integer linear stochastic optimisation model as follows.

(P ) : min
∑
s∈S

qs
∑
l∈Ls

ιil
∑
r∈Rkl

∑
t∈Tkl

(T − t+ 1) · ulr,s(t) + θ ·

[
N∑
i=1

∑
r∈R

(
wir + w̄ir

)]
+ · · ·

µ ·

∑
s∈S

Ts∑
t=1

∑
i∈N

∑
j∈Ei

pij(T − t+ 1) ·

(
xi,j0,s(t) +

∑
r∈R

xi,jr,s(t)

)
s.t. yi0,s(1) = yir,s(1) = ȳir,s(1) = 0, ∀ i ∈ N , r ∈ R, s ∈ S, (10)

yir,s(t+ 1) = yir,s(t) +
∑

j∈Ei:t+1>or+rij

xi,jr,s(t+ 1− or − rij), (11)

yi0,s(t+ 1) = yi0,s(t) +
∑

j∈Ei:t+1>tij

(
xi,j0,s(t+ 1− tij) +

∑
r∈R

βr · xi,jr,s(t+ 1− tij)

)
(12)

ȳir,s(t+ 1) = ȳir,s(t) +
∑

j∈Ei:t+1>tij

(
x̄i,jr,s(t+ 1− tij) + αr · xi,jr,s(t+ 1− tij)

)
, (13)

∀ i ∈ N , r ∈ R, s ∈ S, t = 1, . . . , Ts − 1,
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zir,s(t) =
∑

j∈Ei:t>or+rij

xi,jr,s(t− or − rij), (14)

vir,s(t) =

min{t,D}−1∑
τ=0

zir,s(t− τ) + 2 ·
t−1∑

τ=min{t,D}

zir,s(t− τ), (15)

∀ i ∈ N , r ∈ R, s ∈ S, t = 1, . . . , Ts,

yil0,s(t) ≥ d
l
0(t), ∀ l ∈ Ls, t ∈ Tkl , s ∈ S, (16)

ȳilr,s(t) ≥ vilr,s(t), ∀ l ∈ Ls, r ∈ Rkl , t = 1, . . . , Ts, s ∈ S, (17)

ulr,s(t) ≥ dlr(t)− yilr,s(t), ∀ l ∈ Ls, r ∈ Rkl : cl,r = 0, t ∈ Tkl , s ∈ S, (18)

ulr,s(t) ≥

(
dlr(t)−

t∑
τ=1

yilr,s(τ)

)
, ∀ l ∈ Ls, r ∈ Rkl : cl,r = 1, t ∈ Tkl , s ∈ S, (19)

ulr,s(t) ≥ 0, l ∈ Ls, t ∈ Tkl , r ∈ Rkl , s ∈ S, (20)

N∑
i=1

wir ≤ Cr, ∀ r ∈ R, (21)

Ts∑
t=1

∑
j:i∈Ej

xj,ir,s(t) ≤ wir, ∀ i ∈ N , r ∈ R, s ∈ S, (22)

Ts∑
t=1

∑
j:i∈Ej

(
x̄j,ir,s(t) + αr · xj,ir,s(t)

)
≤ w̄ir, ∀ i ∈ N , r ∈ R, s ∈ S, (23)

xi,j0,s(t), x
i,j
r,s(t), x̄

i,j
r,s(t) ∈ Z+, ∀ i ∈ N , j ∈ Ei, r ∈ R, s ∈ S, t = 1, . . . , Ts, (24)

wir, w̄
i
r ∈ Z+, ∀ i ∈ N , r ∈ R, (25)

where 0 < θ, µ < 1 are small enough scaling parameters. The first four constraints, (10), (11), (12),

and (13), provide calculations of the state variables yi0,s(t), y
i
r,s(t), and ȳir,s(t) for i ∈ N , r ∈ R,

s ∈ S, and t = 1, . . . , Ts. The next two constraints, (14) and (15), handle the calculations of

specialist requirements given the need of covering deployment breaks. The next two constraints,

(16) and (17), make sure personnel demands are satisfied. The next three constraints, (18), (19),

and (20), handle the penalties of unsatisfied equipment requirements defined in (7) and (8). The

next three constraints, (21), (22), and (23), make sure that capacity limits are taken into account

properly. Finally, the last two constraints, (24) and (25), indicates that personnel and equipment

requests as well as resource allocations need to be non-negative integers.

The proposed model allows us to make strategic first-stage decisions (resource allocation deci-

sions in the preparedness phase) as well operational second-stage decisions (resource request deci-

sions in the response phase) in response to potential simultaneous disaster scenarios as effectively

as possible given the current resource capabilities. It is natural to follow up with the question of

whether current resource configurations could be changed to provide better responses to potential

simultaneous disaster scenarios. In the next section, we propose another model to address this issue.

13



3.4. Resource-Based Model

The model proposed in the previous section deals with the current resource capabilities. It is

important to check whether the current resource capabilities are enough to satisfactorily respond

to all potential simultaneous disaster scenarios provided. The main objective of this second model

is to determine the minimum resource capabilities which can be used to handle all simultaneous

disaster scenarios without any penalty, i.e., all resource requirements are satisfied throughout the

timespan of the response phase. In order to model this objective, let ∆Cr ∈ Z+ be the required

number of additional type-r equipment units, r ∈ R, to guarantee that all resource requirements

are satisfied in each simultaneous disaster scenario. These are first-stage decision variables, i.e.,

how much additional resource capabilities are needed, are determined in the preparedness phase.

Similar to the previous model, we again need to determine how to allocate resources at each

location and how to request specialist equipment and personnel when a simultaneous disaster sce-

nario happens. However, instead of aiming to minimize the risk of not satisfying requirements in

response to disasters in each scenario, we impose the condition that resource requirements need to

be always satisfied no matter which simultaneous disaster scenario happens given the new resource

capabilities. This condition removes the risk of not being able to respond satisfactorily in poten-

tial simultaneous disaster scenarios. More concretely, the three penalty-related constraints (18),

(19), and (20) are now replaced by the following two new constraints, which make sure resources

requirements are satisfied no matter which simultaneous disaster scenario happens:

yilr,s(t) ≥ dlr(t), ∀ l ∈ Ls, r ∈ Rkl : cl,r = 0, t ∈ Tkl , s ∈ S, (26)

and
t∑

τ=1

yilr,s(τ) ≥ dlr(t), ∀ l ∈ Ls, r ∈ Rkl : cl,r = 1, t ∈ Tkl , s ∈ S. (27)

The main objective of this model is to minimize the total cost of changes made to the current

resource capabilities, which is defined as
∑
r∈R

γr ·∆Cr, where γr is cost per unit of type-r equipment,

r ∈ R. Similar to the previous model, we keep the two secondary objectives with their appropriate

scaling parameters. The second model (R) (R for resource) can be formulated as follows:

(R) : min
∑
r∈R

γr ·∆Cr + θ ·

[∑
i∈N

∑
r∈R

(
wir + w̄ir

)]
+ · · ·

µ ·

∑
s∈S

Ts∑
t=1

∑
i∈N

∑
j∈Ei

pij(T − t+ 1) ·

(
xi,j0,s(t) +

∑
r∈R

xi,jr,s(t)

)
s.t. yi0,s(1) = yir,s(1) = ȳir,s(1) = 0, ∀ i ∈ N , r ∈ R, s ∈ S, (28)

yir,s(t+ 1) = yir,s(t) +
∑

j∈Ei:t+1>or+rij

xi,jr,s(t+ 1− or − rij), (29)
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yi0,s(t+ 1) = yi0,s(t) +
∑

j∈Ei:t+1>tij

(
xi,j0,s(t+ 1− tij) +

∑
r∈R

βr · xi,jr,s(t+ 1− tij)

)
(30)

ȳir,s(t+ 1) = ȳir,s(t) +
∑

j∈Ei:t+1>tij

(
x̄i,jr,s(t+ 1− tij) + αr · xi,jr,s(t+ 1− tij)

)
, (31)

∀ i ∈ N , r ∈ R, s ∈ S, t = 1, . . . , Ts − 1,

zir,s(t) =
∑

j∈Ei:t>or+rij

xi,jr,s(t− or − rij), (32)

vir,s(t) =

min{t,D}−1∑
τ=0

zir,s(t− τ) + 2 ·
t−1∑

τ=min{t,D}

zir,s(t− τ), (33)

∀ i ∈ N , r ∈ R, s ∈ S, t = 1, . . . , Ts,

yil0,s(t) ≥ d
l
0(t), ∀ l ∈ Ls, t ∈ Tkl , s ∈ S, (34)

ȳilr,s(t) ≥ vilr,s(t), ∀ l ∈ Ls, r ∈ Rkl , t = 1, . . . , Ts, s ∈ S, (35)

yilr,s(t) ≥ dlr(t), ∀ l ∈ Ls, r ∈ Rkl : cl,r = 0, t ∈ Tkl , s ∈ S, (36)

t∑
τ=1

yilr,s(τ) ≥ dlr(t), ∀ l ∈ Ls, r ∈ Rkl : cl,r = 1, t ∈ Tkl , s ∈ S, (37)∑
i∈N

wir ≤ Cr + ∆Cr, ∀ r ∈ R, (38)

Ts∑
t=1

∑
j:i∈Ej

xj,ir,s(t) ≤ wir, ∀ i ∈ N , r ∈ R, s ∈ S, (39)

Ts∑
t=1

∑
j:i∈Ej

(
x̄j,ir,s(t) + αr · xj,ir,s(t)

)
≤ w̄ir, ∀ i ∈ N , r ∈ R, s ∈ S, (40)

xi,j0,s(t), x
i,j
r,s(t), x̄

i,j
r,s(t) ∈ Z+, ∀ i ∈ N , j ∈ Ei, r ∈ R, s ∈ S, t = 1, . . . , Ts, (41)

wir, w̄
i
r ∈ Z+, ∀ i ∈ N , r ∈ R, , (42)

∆Cr ∈ Z+, ∀ r ∈ R. (43)

In this model, two constraints (36) and (37) make sure that all equipment requirements are

satisfied. The constraint (21) in the previous model is replaced by (38). Note that this model does

not need probabilistic information of potential simultaneous disaster scenarios, which can be an

advantage given that, in reality, it is usually difficult to determine the probability of simultaneous

disaster scenarios occurring. To conclude this section, we provide a comparison between the two

proposed models in Table 3. Note that an additional hybrid model, which we call budget-based model

(see Appendix D), is proposed later to incorporate decisions on buying and allocating additional

resources given a limited budget while minimizing the risk of not satisfying all resource requirements

in potential simultaneous disaster scenarios.

15



Table 3: Comparison between the penalty-based and resource-based model

Penalty-base model (P) Resource-based model (R)

Main objective To minimize the risk of not To minimize the cost of
satisfying all resource requirements additional resource capabilities

Distinct decision Penalty decision variables ulr,s(t) Additional resource capability

variables decision variables ∆Cr
Resource Penalty-related constraints: Resource requirements always
requirement (18), (19), and (20) satisfied:
constraints (36) and (37)

Capacity
∑
i∈N

wir ≤ Cr, ∀ r ∈ R
∑
i∈N

wir ≤ Cr + ∆Cr, ∀ r ∈ R
constraints

4. Case Study

4.1. Case Study Development

To build the models we first wrote a case study of UK planning for a disaster. The case study was

developed using Critical Incident Case Study method [60] which is used to explore the relationships

between variables in a significant critical situation, so is particularly useful for understanding disaster

response [61]. Our critical incident was the deployment of UK New Dimension resources [53, 3].

We collected data to understand the deployment context and factors to be modelled.

There were three aspects to developing the case study. First, a document review [11] identified

publicly available details about the New Dimension Programme such as: preparing for three simul-

taneous incidents [58] of different types [53], small number of core regions/cities [3], throughputs

[13], protocols for requesting additional resources [3], financial details [36] and regular travel times.

Documents were mostly from the UK Government plus limited academic literature. While useful

in giving official government information, the documents did not contain sufficient detail on factors

to model - hence we sought detailed information from collaboration with experts.

Second, we collaborated with a recently retired strategic commander who had 40 years of ex-

perience working in and commanding UK emergency response operations 1. From this expert we

enhanced our understanding of the factors from the document review and identified new factors to

better align the models with real world practices. Initially we conducted two unstructured inter-

views with the expert which followed the exploratory method of critical incident technique [60, p2]

which is “used for the study of factors, variables, or behaviours that are critical to the success or

failure of an activity”. Thus, in these interviews the expert talked about critical incidents and past

experiences of managing New Dimension incidents response from which we extracted the structure

of the emergency response context, practical insights, variables and relationships between variables.

For example, we found additional details about appropriate scenarios (flooding and terrorist at-

1Shortly after the 9/11 attacks, the expert was appointed as the UK Chief Fire Officers Association’s national lead
officer for command and control aspects of the New Dimension Programme and, in an associated role, designed the
national course to train the UK’s strategic commanders to prepare them for command of disaster response operations,
including New Dimension, so was a nationally recognised authority.
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tack), transportation of equipment, equipment set up times, manpower and equipment availability,

staff requirements for safe working, and shift breaks. After the first interview we wrote a detailed 7

page case study of New Dimension response to an incident to create a case study scenario (on which

Section 4.2 is based), with timings and resources requests (Figure 3), capacities and requirements

(Table 4) and targets (Tables B.13 and B.14). The case was enhanced with details from the second

interview. The expert provided feedback on each version of the written case study and provided

feedback to correct information and add nuances to enhance its realism. Our initial models were

built based on this case study but many remaining questions led to three follow-up interviews with

the expert. As the expert was not a modeller, we did not present our actual models during follow-up

interviews but we did present (in a written and narrative, non-technical manner) their variables,

assumptions and logic. To consider how they were treated in the model, each interview took the

expert through new developments of the model to gain feedback on how to more closely align it with

operational realities - after which the written case was updated and checked by the expert. Also,

by understanding additional nuances we identified variables appropriate for sensitivity analysis. All

interviews were held across five half-day sessions.

While the bases for our case were New Dimension practices, on advice of the expert to avoid

political and security considerations we changed or generated some details which had no significance

on the process of analysis. For example, we changed country information (layout, population

information and priority of cities (Fig 3)) and we generated details to respect political sensitivities

(such as location importance - ιi in Tables 6a and 6b), and security considerations (such as risk

likelihoods - qs).

Lastly, once mature we gave the written case to two other UK commanders who exercised to

receive New Dimension resources for real emergencies. We interviewed these commanders with a

view to using their knowledge of our critical incident to check its variables, assumptions and logic to

ensure it was as realistic as possible without compromising sensitivities. Interviews were structured

by the written case as we traced through its contents to gain feedback. The interviews increased

our confidence in the case as no major changes were identified. The product was a case which

experts gave us confidence accurately reflected the New Dimension Programme realities and which

is provided in Sections 4.2 and 4.3. We now explain the case.

4.2. Case Study Description

We situate our study in a country which has 54 million inhabitants, 27 million of whom live in its

eight major cities (A-H). Each city has a large population with a similar demography. These cities

are considered as network locations where we need to prepare resource allocation for responding

to simultaneous disasters. The estimated travel times between cities are displayed in Figure 3. In

addition, given that the specialist equipment is seldom used and so not stored in the city centre,

we need to consider the time to move equipment to the scene from its storage location within each

city (displayed in bracket next to each city).

When disasters happen, cities can request the help of equipment/personnel from other cities to

augment their own resources. When a city requests such help, there is an established protocol for
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Figure 3: City map, estimated travel times, and resource request orders

the order in which they ask for help. If another city is not able to supply assistance when asked

(or not able to supply sufficient assistance to meet the response targets), the next city on the list

is asked to provide assistance i.e. A will ask B first, C second, and so on until it has sufficient

resource. The list is displayed next to each city in Figure 3.

The national government in this country has a policy that each of the eight cities must plan suffi-

cient emergency resources to address two types of disaster: coordinated terrorist attacks and major

flooding. Declaring a disaster means that city officials can ask neighbouring cities for assistance

in the form of emergency response personnel and equipment to help tackle the disaster. Further-

more, the national government has set performance targets that emergency responders should plan

to meet. However, even during a disaster, specialists and generalists need 5 hours break between

deployments to allow for recuperation and ensure safe working.

The first disaster for which cities must plan is a series of coordinated terrorist attacks involving

radioactive bombs (so-called ‘dirty bombs’) which contaminate an area. Two main tasks needed are

mass decontamination of affected people and urban search and rescue to find victims. To conduct

mass decontamination (MD), responders require a vehicle called an IRU (Incident Response Unit) to

transport the equipment. Each IRU can transport two MD1 structures (to decontaminate members

of public) and one MD4 structure (to decontaminate firefighters and their equipment). Throughput

of each MD1 structure is 150 people processed each hour of operation and there are 72 IRUs within

the country. Urban search and rescue (USAR) operations are conducted using USAR units. There

are 20 USAR units in the country.

The second disaster is a major flood (either coastal or from nearby reservoirs). The locations

of cities that are more vulnerable to a flood have been identified. The potential for the collapse of
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city structures from flood waters bring the need for two main operations: flood water pumping and

USAR. USAR operations use USAR units as in a terrorist attack disaster. Flood water pumping

operation needs High Volume Pump (HVP) units, each of which consists of one pump vehicle unit

and one hose unit vehicle. There are 46 HVP units available in the country. Requirements for all

three specialist equipment are in Table 4. Note that the demand requirement for IRU is cumulative

while those for other specialist equipment are non-cumulative.

Table 4: Capacity and requirements for specialist equipment

Unit type IRU USAR HVP

Number of units available 72 20 46

Specialists per unit 10 10 2
Generalists per unit 20 25 5
Setup time (mins) 60 30 60

Research has been conducted to estimate the maximum target response levels (e.g. amount of

equipment/personnel) needed to deliver an appropriate weight of response to a disaster taking into

account the population size of each city. The detailed target response levels for terrorist attack

disaster are in Table B.13 while those for flooding disaster are in Table B.14 in Appendix B.

The objective is to allocate these equipment around the country so that response targets can

be met when simultaneous disasters happen. The national policy requires response to up to three

simultaneous disasters. Therefore, we generate all potential scenarios in which three simultaneous

disasters of a same type happen in three different cities, either terrorist bomb attacks or major

flooding. For example, a scenario is three simultaneous disasters happening in any three cities A-H,

e.g., A, B and H. Given our focus is on resource allocation, we will not consider scenarios with less

than three simultaneous disasters. Also, we only need to consider maximum target response levels

in the scenarios. If scenarios with maximum target response levels can be handled efficiently, other

scenarios with lower target response levels can be handled appropriately too. Given eight cities

and two disaster types, a total 112 scenarios of three simultaneous disasters can be constructed.

Given that there are limited data that can be used to estimate the actual probabilities of these

scenarios, we use equal probabilities for all scenarios in the first model (P) as suggested by the

experts. Arguably, equal scenario probabilities in this model indicate that inadequate response

levels (due to lack of resources) in any disaster scenarios are equally important. In the next section,

we show how the case study is solved and report the results.

4.3. Computational Results

Both proposed models, (P) and (R), are mixed-integer optimisation problems with a scenario-

based structure. In this case study, the demand requirements indicate that the time horizon we need

to consider for these disaster scenarios is 10 hours. Given other time-related inputs, it is reasonable

to set the time unit to be 20 minutes, i.e., 30 time periods will be considered over the time horizon.

We heuristically set θ = 10−3 and µ = 10−5 for the secondary objectives and the detailed heuristics

is described in Appendix C.1. The models are solved using IBM CPLEX 12.7 coded in C++ on

19



a Linux computer with 3.00 gigahertz CPU and 32 gigabyte RAM. Before reporting the results

obtained from the models, we generate random instances of the models with different numbers of

cities to test the computational aspect. The random instances are generated with random locations

chosen uniformly within a square box of 100 by 100. The travel times are computed based on their

Euclidean distances. The request preferences are determined based on distances between locations.

Simultaneous disaster scenarios are constructed as in the case study with three disasters of a same

type (either flooding or terrorist attack) happening at three different cities. The setup times are

also randomly generated but the maximum setup time is set to be 3 time periods. The periods

when resource requirements are provided are generated randomly within the planning horizon with

the total number of these periods is kept the same as in the case study. The first of these periods is

generated such that it is always possible to fulfil the requests if there are enough resources by taking

into consideration the setup times. The amounts of resources requested are randomly generated

using a uniform distribution with the maximum variation of 20% from the amount requested of the

same resource in the case study. Finally, we keep the deployment duration the same as in the case

study. Using this data generation procedure, we generate 10 instances for each value of |N |, the

number of locations, from 5 to 12. Figure C.13 in Appendix C.2 shows the city locations in a 9-city

random instance while Figure C.14 shows different time-dependent IRU resource requirements in

10 different random instances.

We solve generated random instances using IBM CPLEX with MIP relative gap of 0.01% and

time limit of 3600 seconds. Figure 4 shows sizes of these instances in terms of number of decision

variables and number of constraints for the model (P). The average computational times as well as

the worst-case and best-case computational times among 10 instances are plotted in Figure 5 given

different numbers of locations. We focus mainly on results of the model (P) here. For the model

(R), similar results of computational times are obtained - reported in Figure C.15 in Appendix C.3.

Figure 4: Problem sizes of model (P) given different numbers of locations

The results show that the size of the problem increases almost exponentially in terms of the

number of locations. For |N | = 11, there are almost 107 decision variables and 1.5×106 constraints.

Computational times also increase exponentially in terms of the number of locations. Among 10

randomly generated instances for |N | = 11, there is one instance that cannot be solved within the

time limit (returning zero first-stage solutions which are feasible). The remaining instances can

be solved with the average computational time of approximately 2800 seconds. For |N | = 12, all

generated instances cannot be solved within the time limit. Given their large sizes, approximately
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Figure 5: Computational times of model (P) given different numbers of locations

1.5× 107 decision variables and 2× 106 constraints, the physical memory required to handle these

instances exceeds 20 gigabytes. We solve one of the instances again without time limit and an

optimal solution is found (with the given MIP optimality gap of 0.01%) after approximately 9000

seconds during which the physical memory required increases to almost 30 gigabytes. There are

few heuristics to solve large-scale mixed-integer stochastic optimisation problems such as integer

L-shaped algorithms [28] which rely on optimality cuts or progressive hedging algorithms (PHA)

(see, e.g.,[59, 20]) which use scenario decomposition. For the two proposed stochastic optimisation

models, scenario decomposition is more effective than the introduction of optimality cuts to provide

approximation of the second-stage objective. Given that the main case study, which is a focus of

the paper, can be solved by IBM CPLEX, we only report some results of the PHA heuristic in

Appendix C.4. Results obtained for the case study are reported next.

4.3.1. Penalty-Based Model and Location Importance

The first model (P) provides us with resource allocation given the existing capabilities of the

country. For these experiments, we set the importance of all locations to be the same, i.e., ιi = 1 for

all i ∈ N . The results show in every scenario considered with three simultaneous disasters, there

are not enough USAR units to meet the demand for USAR operations. Given 20 USAR units are

available in the country, the model recommends to place 10 units in A and 10 units in C. This is

reasonable given that the resource requirements in A are the highest while the location of C acts as

a transit hub, which allows us to move equipment and personnel around efficiently. For example,

when three simultaneous terrorist attacks happen in A, B, and D, the optimal solution is to use 10

USAR units located in A for the attack in A while moving 10 USAR units located in C to D. Both

A and C need 5 more USAR units to fulfill the requirements while B received no USAR units at

all. A similar situation arises for scenarios with three simultaneous flooding disasters. For example,

when there are floods happening in F, G, and H at the same time, certain USAR units are moved

from A and C to H and F to partially satisfy the demand requirements while G received no USAR

units. Figure 6 shows two cases of unsatisfied demands happening in these examples.

In contrast to USAR resource, the results show that there are enough IRUs and HVP units.

The allocation of all resources are displayed in Table 5a. It also shows that we only need to use

48 (out of 72) IRUs and 35 (out 46) HVP units without causing any issue in handling the given

scenarios of three simultaneous disasters, either terrorist attacks or major flooding. For HVP, the
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Figure 6: Unsatisfied demands due to insufficient number of USAR units

results indicate that D and G are also important given that they can act as transit hubs, from where

equipment and resources can be delivered to disaster sites efficiently when requested.

Given that we need extra specialists to handle deployment breaks, the number of specialists

based in each city can be higher than the number required to handle the specialist equipment. For

example, the results show 30 HVP specialists are required in A (instead of 20 to handle 10 HVP

units). These extra specialists will be transfered to disaster locations to replace the first group of

specialists during their deployment breaks if needed when disasters happen. Similarly, even though

there is no USAR units located in B and D, the model recommends to keep some specialists at

these two locations so that deployment breaks can be handle efficiently.

Table 5: Resource allocation results from different models

(a) Stochastic optimisation model with all scenarios

A B C D E F G H

IRU 6 6 6 6 6 6 6 6
USAR 10 0 10 0 0 0 0 0
HVP 10 3 3 5 3 3 5 3

(b) Single scenario of three bomb attacks at A, B, and D

A B C D E F G H

IRU 6 6 0 6 0 0 0 0
USAR 10 10 0 0 0 0 0 0
HVP 0 0 0 0 0 0 0 0

To evaluate the stochastic optimisation model, we compute two measures, the Expected Value

of Perfect Information (EVPI) and the Value of Stochastic Solution (VSS). The EVPI considers the

penalties obtained from wait-and-see solutions for individual scenarios, i.e. with perfect information,

and compares the expected value (WS) of these penalties with the expected penalty (RP) obtained

from the stochastic optimisation model (P). On the other hand, the VSS compares the performance

of solutions obtained from the deterministic model when data are assumed to be deterministic with

that of the solution obtained from the stochastic optimisation model in terms of expected penalty.

For this case study, the expected value of the penalties obtained with wait-and-see solutions is

WS = 215.01 while the minimal expected penalty of the stochastic optimisation model is RP =

289.66. The EVPI is computed as EVPI = RP - WS = 74.65. It shows that the expected penalty

is decreased by 25.77% with perfect information. In order to compute VSS, we need to select data

for the deterministic model as a reference. Given that there is no “average” scenario to represent

all scenarios, we use individual disaster scenarios as reference data for the deterministic model. We
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compare the expected penalties (EEVs) obtained from these 112 deterministic solutions with the

expected penalty obtained from the stochastic solution and the VSS measure is computed as VSS

= EEV - RP. The results show that the average expected penalty from deterministic solutions is

2028.66 (7 times increase), the minimum is 1489.30 (5 times increase) while the maximum is 2545.10

(8 times increase). Under this setting of reference data for the deterministic model, wait-and-see

solutions for individual scenarios are solutions of deterministic models. These solutions focused only

on three locations specified in each scenario. For example, when there are three simultaneous bomb

attacks at A, B, and D, the optimal solution is to allocate 6 IRUs at each of these locations, 10

USARs each at A and B, and there is no need to allocate any HVPs (see Table 5b).

Clearly, if this scenario happens, the wait-and-see solution mentioned will results in the minimum

penalty, which shows the value of perfect information. However, if a different scenario happens,

no matter whether it is another bomb attack scenario at different locations or a flooding scenario,

the provided solution will not be able to cope. Indded, it performs much worse with the expected

penalty of 1646.30 than the stochastic solution (RP=289.66) given the stochastic solution considers

all scenarios in which disasters can happen at any three locations and it reflects how resources are

allocated as shown in Table 5a. The analysis of VSS therefore indicates the importance of the

stochastic solution compared to deterministic solutions in this case study.

The initial setting of location importance assumes that the risk of not satisfying resource re-

quirements at any location is equivalently significant. In reality, these parameters can be set by

disaster managers based on different criteria. We present here two potential approaches to set the

importance ιi of all locations. The first approach is based on the level of resource requirements at

each location. Given the resource requirements in Tables B.13 and B.14, we run model (P) with two

additional settings, I1 and I2, for location importance, which splits the locations into three groups

based on population size, (A), (D,G), and (B,C,E,F,H). These settings are shown in Table 6a.

Table 6: Location importance settings based on different criteria

(a) Population size

A D G B C E F H

I1 1 0.5 0.5 0.2 0.2 0.2 0.2 0.2
I2 1 0.5 0.5 0.1 0.1 0.1 0.1 0.1

(b) Geopolitics

A B C D H E F G

I3 0.2 0.5 0.5 0.5 0.5 1 1 1
I4 0.1 0.5 0.5 0.5 0.5 1 1 1

With these two settings of location importance, the results show that the allocation of equipment

remains the same as the original setting. The changes appear in the allocation of specialists,

especially the specialists for USAR units. Figure 7a shows these changes in detail with I0 denoting

the original setting of location importance. The results show that when we reduce the importance of

other locations as compared to that of A, the allocation of USAR specialists concentrates more and

more on A (due to its importance and size). On the other hand, the allocation of USAR specialists

in C reflects the significance of its transit hub nature.

The second approach of how to set the importance parameters is based on a hypothetical po-

litical assumption under which the three northern locations E, F, and G are the most important
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Figure 7: USAR specialist allocation given different settings of location importance

whereas the southern location A is the least important. The two additional settings of importance

parameters, I3 and I4, are shown in Table 6b.

With these two new settings of location importance, the allocation of USAR units is completely

changed. One now should allocate 10 USAR units in D and the remaining 10 units in G, which

shows the importance of G as well as the transit hub nature of both D and G. The allocation of

USAR specialists is also changed with the results shown in Figure 7b. Similar to the allocation of

USAR units, the allocation of USAR specialists emphasize the importance of D and G. When the

importance of A is reduced further, the allocation of USAR specialist concentrates more on D and

G. These results show that it is critical to calibrate these importance settings appropriately.

4.3.2. Resource-Based Model and Budget Analysis

Given the need more equipment to satisfy resource requirements when the given simultaneous

disaster scenarios happen, we now run the second model (R) to figure out the needed additional

amounts of resources. For this model (R), we use the costs per unit shown in Table 7.

Table 7: Cost per unit (in million pounds) for specialist equipment

IRU USAR HVP

γr 0.77 4.4 1.17

The results show that one would need 25 more USAR units (or 45 units in total) to efficiently

handle all given simultaneous disaster scenarios and no additional IRUs or HVP units are required.

The allocation of USAR units does not concentrate on A and C any more. The additional units

are allocated in various locations and it shows that G is an important location given its transit hub

nature. The detailed allocation is shown in Table 8.

Table 8: Allocation of USAR units given additional resources

A B C D E F G H

10 0 10 5 5 5 9 1

We now consider the effect of number of simultaneous disasters in each scenario on required

resources. We vary the number of simultaneous disasters in each scenario from 1 to 7 and solve the

model (R) using all scenarios in each case. Table 9 shows the total number of scenarios, |Sk|, given

k simultaneous disasters in each scenario, for k = 1, . . . , 7.

The results show that allocations for HVPs remain the same in all cases while those for IRUs

only reduce slightly, by 4 IRUs when k = 1 and 1 IRUs when k = 2). It implies there are enough
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Table 9: Total number of scenarios given different number of simultaneous disatsers

k 1 2 3 4 5 6 7

|Sk| 16 56 112 140 112 56 16

IRUs and HVPs and their allocations allows us to handle effectively multiple disasters at different

locations simultaneously with minimum requests from other locations. On the other hand, there are

not enough USAR units and even for scenarios with single disasters, we still need 10 more USAR

units. Figure 8 shows the total numbers of additional USAR units needed to handle scenarios of k

simultaneous disasters, k = 1, . . . , 7.

Figure 8: Number of additional USAR units needed given different number of simultaneous disasters

The number of additional USAR units needed is increased when the number of simultaneous

disasters in each scenario increases, showing more USAR units are essential since they are needed

in both types of disasters. Similar to the original case of three simultanous disasters, in addition

to A and C being important locations, G also becomes important with a high number of allocated

USAR units. For example, when there are k = 7 simultaneous disasters in each scenarios, 15 USAR

units are allocated at G, which is the same allocated at A and C.

The need of additional resources depends on resource requirements in each scenario. In the next

experiment, we vary the resource requirements with a scaling factor σ, i.e., dlr(t) ← σ · dlr(t) and

dl0(t)← σ ·dl0(t) for all r, l, and t, where σ ∈ [0.4, 1.6]. Figure 9 shows the total amounts of resources

needed to handle three simultaneous disasters with different levels of resource requirements. We

can see that when σ = 0.4, no additional resources are needed and when σ = 1.6, all three resources

requires additional units. The results show that the current capacity of HVPs is appropriate for a

slight increase (less than 20%) in the level of resource requirements while that of IRUs can handle

three simultaneous disasters if the resource requirements are increased by 50%. The constraint is

the USAR resource, whose current capacity can only handle less than 50% of the current level of

resource requirements.

Next, we analyse the effect of the budget for additional resources. To effectively handle three

simultanous disasters, the total amount of money needed for additional resources is £110m. In

reality, the budget could be smaller and we now analyse the impact of budget on how to buy and

allocate additional resources. In order to do so, we construct a new model (B) (B for budget)

which incorporates decisions buying and allocating additional resources with a given budget while

aiming to minimize the risk of not satisfying all resource requirements when simultaneous disaster
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Figure 9: Total mumbers of resource units needed given different resource requirement levels

scenarios happen. The budget-based model (B) can be constructed based on the two proposed

models (P) and (R) with an additional budget parameter B. The details of the model (B) are

presented in Appendix D. We run the model (B) with different levels of budget B while considering

two importance settings, I1 and I3. It is obvious that the budget will be used for additional USAR

units given that other resources are already sufficient. Figure 10 shows the allocation results of

additional USAR units under those two settings for location importance. The total number of

USAR units increases from 20 to 42 when the budget increases from 0 to £100m. When the budget

is small, the location importance plays a significant role in deciding where to allocate USAR units.

If the budget is increased, additional USAR units are spread to various locations, especially those

which can act as transit hubs (C, D and G). When the budget is close to sufficient (B = 100),

both allocation results are exactly the same, which shows that the diminishing influence of location

importance setting. The results are close to the ones obtained from the model (R) of unlimited

budget without any location importance setting. In the next section, we discuss the implications of

these results for our case study as well as disaster planning applications in general.

Figure 10: Allocation of USAR units given different budgets under different location importance settings

5. Discussions and Conclusions

The proposed models are built to address two issues faced by decision makers in disaster plan-

ning. The first issue is how to minimize the risk of not being able to meet the response targets for all

disaster scenarios given existing capabilities. The second issue is how to reduce or eliminate that risk
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by purchasing additional resources. We have demonstrated that these issues can be addressed using

the proposed stochastic optimisation models. Real constraints such as requirements on deployment

breaks can be handled effectively in these mathematical optimisation models. For the first model,

we argue that equal scenario probabilities can be considered if there are limited data. However, if

we gather experts’ opinions on the risks (or probabilities) of these simultaneous disaster scenarios

and estimate them with some confidence intervals, the stochastic optimisation model (P) could be

extended to a robust stochastic optimisation model to handle the ambiguity in scenario probabilities

(see, e.g., [54]). In practice, it could be difficult for experts to estimate such risks [40]. This difficulty

is reflected in the UK where the national government’s Cabinet Office only publishes estimates of

single events occurring in the next five years e.g. coastal and inland flooding are estimate to have

a probability of “between 1 in 200 and 1 in 20”; while “catastrophic terrorist attacks” is “medium

low” [37]. Similar to scenario probabilities, it is also difficult to estimate the (maximum) target

response levels for disaster scenarios, i.e., the scales of the simultaneous disasters, especially when

they are time dependent. The proposed models could benefit from an accurate estimation model of

these disaster scales or one could attempt to model the uncertainty of these target respone levels

in a relevant robust stochastic optimisation model. Computationally, the proposed models have a

large number of second-stage decision variables and constraints due to the multi-period structure

of its second stage. Even though the focus of the paper is the case study, further development of

more efficient heuristics could be useful for larger applications.

Models such as the ones described in this paper present new ways of analysing the issues to

identify efficient configurations of resources for disaster response. One practical consideration often

missing from these models, however, is the political nature of decision making which is especially

notable in disaster management [50, 41]. In the preparedness phase, resource allocations should

recognize the characteristics of an area/city, i.e., that different cities have different hazards, risks,

vulnerabilities and defenses [50]. Thus, citizens will experience disasters differently because of how

they have prepared their personal resilience [51] and because of exogenous factors, for example:

the ease of access to physical upgrades to better disaster-proof houses [32]; societal deprivation

that reduces local resource availability to attenuate negative effects; operational limitations that

cause response systems to operate sub-optimally [42]. Partly because disasters are evocative, many

characteristics (including those mentioned here) are politically charged so resource allocations can

be politically influenced especially when inequalities across a population are exposed and make

headlines. Here, the equality of citizens concept [62] highlights the need for government to establish

a consistency of response for citizens irrespective of where they live to ensure that local inequalities

of preparedness do not put some people at a disproportionate risk. In both preparation and response

there exists a tension between the need for equality across a country and enhanced protection of

areas of special importance, for example, those that contain critical national infrastructure or create

national economic wellbeing. Consequently, some areas may be perceived to receive priority when

resource allocations are decided. Thus, while our results may indicate rational allocations, these are

not necessarily politically feasible [31]. Ultimately, the intervention of political will could inform
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solutions because disasters are political spaces [55]. Although a limitation, this is also the strength

of analytical models in their power to bring transparency and evidence to such decisions - cutting

through political biases. In our proposed models, we introduce the local importance parameters

which decision makers can set to partially balance out the political dimensions of implementation

when the final decisions are made.

Another practical consideration made in this paper is that the decision makers are expert risk

managers, potentially with knowledge and know-how relevant to the models [41] but not with

an analytical training. This is problematic as Gonçalves [22] found that humanitarian decision

makers often rely on experience and simple decision heuristics which lead to non-optimal decisions.

Analytical models offer different ways of thinking but the skills required to decipher their intricacies

(and their results) may not be possessed by potential users. Thus, we concentrate on aligning our

model as closely as possible to information actually available in the context - to allow for maximum

translation by emergency responders. Aligned with this is our assertion that our models are more

useful in the planning phase rather than in the heat of emergency response, especially the budget

model to consider the purchase of additional resource. In trainings, potential users can benefit

from the analytical capabilities offered by such models e.g. to stress test their knowledge of the

relationship between variables; experiment with resource configurations to explore the dynamics

of the system they seek to understand; and, tailor the inputs, processes and outputs to their

particular context. Once confidence has been built in training sessions, testing their ability to

calculate optimality during emergency exercises (and thereby produce output to be integrated into

the decision making process) is a step towards operational deployment during real incidents.

In conclusion, we began this paper by noting that the allocation of scarce resources is a challenge

for disaster preparation and response and this is especially apparent given the political nature of

the contexts. The models we provide can inform decisions by giving an evidence base to balance the

politics when allocating scarce national resource so that all citizens are equally protected from the

effects of simultaneous disasters. While there may be a temptation to procure as much equipment

as funds allow, the balance of different types of equipment requires understanding of the tradeoffs

in achieving performance targets. Such models are institutionalised in other fields and so their

propagation in disaster management is worthwhile to inform investment and allocation decisions.

On future work, robust stochastic optimisation models could be considered to handle the ambiguity

in scenario probabilities and the uncertainty in target response levels. Computationally, efficient

heuristics for larger instances, perhaps with additional practical constraints, are also relevant as

future work.
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ment with different models, objectives, and settings.
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Appendix B. Case Study: Target Response Levels

Table B.13 displays the target response levels for terrorist attack disaster while those for flooding

disaster are shown in Table B.14.

Table B.13: Response targets of equipment being on-site and operational following a terrorist attack disaster

City/Operation Mass decontamination

A
Process 3000 casualties within 3 hrs
Remainder of 1000 casualties within 10 hrs
Require 50 generalists

D, G
Process 3000 casualties within 3 hrs
Remainder of 1000 casualties within 10 hrs
Require 50 generalists

B, C, E, F, H
Process 3000 casualties within 3 hrs
Remainder of 1000 casualties within 10 hrs
Require 50 generalists

City/Operation Urban search and rescue

A
Provide 10 USAR units within 2 hrs
Remainder of 5 units within 10 hrs
Require 150 generalists

D, G
Provide 10 USAR units within 4 hrs
Remainder of 5 units within 10 hrs
Require 100 generalists

B, C, E, F, H
Provide 10 USAR units within 4 hrs
Remainder of 5 units within 10 hrs
Require 80 generalists

Table B.14: Response targets of equipment being on-site and operational following a flooding disaster

City/Operation Flood water pumping

A Provide 10 HVP units within 2 hrs

D, G Provide 5 HVP units within 2 hrs

B, C, E, F, H Provide 3 HVP units within 2 hrs

City/Operation Urban search and rescue

A
Provide 10 USAR units within 2 hrs
Remainder of 5 units within 10 hrs
Require 150 generalists

D, G
Provide 10 USAR units within 4 hrs
Remainder of 5 units within 10 hrs
Require 100 generalists

B, C, E, F, H
Provide 10 USAR units within 4 hrs
Remainder of 5 units within 10 hrs
Require 80 generalists
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Appendix C. Computational Tests: Settings and Additional Results

Appendix C.1. Parameter Settings

We first solve the model only with the primary objective of minimising the total expected

weighted penalty by setting θ = µ = 0. The results show that resource requests do not follow

the given preferences. We heuristically set the value of µ to µ = 10−5 with which the penalty

remains the same as with µ = 0 while the secondary objective of
∑
s∈S

Ts∑
t=1

∑
i∈N

∑
j∈Ei

pij(T − t + 1) ·(
xi,j0,s(t) +

∑
r∈R

xi,jr,s(t)

)
decreases significantly and becomes stable as show in Figure C.11. Similarly,

in order to determine the actual (minimum) numbers of specialist equiment and specialists, espe-

cially when there are more than enough resources, we need to set an appropriate positive value for

θ. According to Figure C.12, with θ = 10−3, the secondary objective of
∑
i∈N

∑
r∈R

(
wir + w̄ir

)
achieve

its minimum value given that the penalty remains the same as with θ = 0. Given the analysis, we

set θ = 10−3 and µ = 10−5 for all experiments.

Figure C.11: Values of preference-related secondary objective with different µ

Figure C.12: Values of resource-related secondary objective with different θ

Appendix C.2. Random Instance Generation: Examples

Figure C.13 shows the city locations in a 9-city random instance while Figure C.14 shows different

time-dependent IRU resource requirements in 10 different random instances.
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Figure C.13: City locations in a random instance with 9 cities

Figure C.14: Time-dependent IRU resource requirements in 10 different random instances

Appendix C.3. Computational Results for Model (R) using IBM CPLEX

Figure C.15 shows computational times of the model (R) given different numbers of cities.

Figure C.15: Computational times of model (R) given different numbers of cities

Appendix C.4. Computational Results with PHA

We implement the PHA algorithm using a similar framework as described in [20, Algorithm

2] for two-stage mixed-integer stochastic optimisation problems with scenario bundles. For our
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models, the scenarios are bundled such that all locations and all types of disasters are covered

in most of the bundles. The lower bound is computed from the first initialisation stage of the

algorithm ([20, Proposition 1]). The original algorithm requires us to solve mixed-integer quadratic

optimisation problems in the decomposition stage and it is impractical to solve given the sizes

of tested instances. We modify these sub-problems by replacing the proximal term with squared

two-norm by the proximal term with `1-norm, which allows us to reformulate the sub-problems

as mixed-integer linear optimisation problems. These problems are solved with IBM CPLEX. We

follow recommendations in [59] for parameter selection and termination criteria. The best solution

(in terms of the objective) among all solutions obtained in the last iteration of the PHA algorithm

is chosen as the heuristic solution. We solve instances of the model (P) with different number of

cities using this PHA-based heuristic and compare the results with those with IBM CPLEX. Figure

C.16 shows that with large instances of more than 9 cities, the heuristic is more efficient in terms

of computational time. In addition, given the advantage of the PHA algorithm in terms of memory

usage, we are able to solve larger instances with 15 and 20 cities using the heuristic whereas IBM

CPLEX cannot handle them.

Figure C.16: PHA vs. CPLEX computational times given different numbers of locations

The trade-off is the quality of the final solution. Let define ZH and ZL to be the objective value

of the heuristic solution and the lower bound, respectively, obtained from the PHA algorithm, and

Z∗ to be the optimal value obtained from IBM CPLEX. Figure C.17 shows the actual (relative)

optimal gap ρ =
ZH − Z∗

Z∗
and the maximum optimality gap ρm =

ZH − ZL
ZL

for all tested instances

with different numbers of cities. The results indicate that the maximum gaps can be close to 50%

but the actual gaps are much smaller. The PHA algorithm achieves 7% gap in the best instance

while it is approximately 25% in the worst instance. Note that the PHA algorithm is a heuristic for

mixed-integer problems and these computational results show that while it can solve larger instances

than IBM CPLEX, the quality of the solution is not guaranteed to be high in all instances.
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Figure C.17: Actual and maximum (relative) optimal gaps for different instances

Appendix D. Budget-Based Model (B)

The budget-based model (B) incorporates the additional resources into the capacity constraints:

N∑
i=1

wir ≤ Cr + ∆Cr, ∀ r ∈ R,

and imposes an additional budget constraint,
∑
r∈R

γr ·∆Cr ≤ B, where B is the total budget. The

detailed model (B) is written as follows:

(B) : min
∑
s∈S

qs
∑
l∈Ls

ιil
∑
r∈Rkl

∑
t∈Tkl

(T − t+ 1) · ulr,s(t) + θ ·

[
N∑
i=1

∑
r∈R

(
wir + w̄ir

)]
+ · · ·

µ ·

∑
s∈S

Ts∑
t=1

∑
i∈N

∑
j∈Ei

pij(T − t+ 1) ·

(
xi,j0,s(t) +

∑
r∈R

xi,jr,s(t)

)
s.t. yi0,s(1) = yir,s(1) = ȳir,s(1) = 0, ∀ i ∈ N , r ∈ R, s ∈ S, (D.1)

yir,s(t+ 1) = yir,s(t) +
∑

j∈Ei:t+1>or+rij

xi,jr,s(t+ 1− or − rij), (D.2)

yi0,s(t+ 1) = yi0,s(t) +
∑

j∈Ei:t+1>tij

(
xi,j0,s(t+ 1− tij) +

∑
r∈R

βr · xi,jr,s(t+ 1− tij)

)
(D.3)

ȳir,s(t+ 1) = ȳir,s(t) +
∑

j∈Ei:t+1>tij

(
x̄i,jr,s(t+ 1− tij) + αr · xi,jr,s(t+ 1− tij)

)
, (D.4)

∀ i ∈ N , r ∈ R, s ∈ S, t = 1, . . . , Ts − 1,

zir,s(t) =
∑

j∈Ei:t>or+rij

xi,jr,s(t− or − rij), (D.5)

vir,s(t) =

min{t,D}−1∑
τ=0

zir,s(t− τ) + 2 ·
t−1∑

τ=min{t,D}

zir,s(t− τ), (D.6)

∀ i ∈ N , r ∈ R, s ∈ S, t = 1, . . . , Ts,
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yil0,s(t) ≥ d
l
0(t), ∀ l ∈ Ls, t ∈ Tkl , s ∈ S, (D.7)

ȳilr,s(t) ≥ vilr,s(t), ∀ l ∈ Ls, r ∈ Rkl , t = 1, . . . , Ts, s ∈ S, (D.8)

ulr,s(t) ≥ dlr(t)− yilr,s(t), ∀ l ∈ Ls, r ∈ Rkl : cl,r = 0, t ∈ Tkl , s ∈ S, (D.9)

ulr,s(t) ≥

(
dlr(t)−

t∑
τ=1

yilr,s(τ)

)
, ∀ l ∈ Ls, r ∈ Rkl : cl,r = 1, t ∈ Tkl , s ∈ S(D.10)

ulr,s(t) ≥ 0, l ∈ Ls, t ∈ Tkl , r ∈ Rkl , s ∈ S, (D.11)

N∑
i=1

wir ≤ Cr + ∆Cr, ∀ r ∈ R, (D.12)∑
r∈R

γr ·∆Cr ≤ B, (D.13)

Ts∑
t=1

∑
j:i∈Ej

xj,ir,s(t) ≤ wir, ∀ i ∈ N , r ∈ R, s ∈ S, (D.14)

Ts∑
t=1

∑
j:i∈Ej

(
x̄j,ir,s(t) + αr · xj,ir,s(t)

)
≤ w̄ir, ∀ i ∈ N , r ∈ R, s ∈ S, (D.15)

xi,j0,s(t), x
i,j
r,s(t), x̄

i,j
r,s(t) ∈ Z+, ∀ i ∈ N , j ∈ Ei, r ∈ R, s ∈ S, t = 1, . . . , Ts,(D.16)

wir, w̄
i
r ∈ Z+, ∀ i ∈ N , r ∈ R, (D.17)

∆Cr ∈ Z+, ∀ r ∈ R. (D.18)

41


	Introduction
	Literature Review
	Mathematical Formulations
	Problem Description
	Notation and Model Settings
	Penalty-Based Model
	Resource-Based Model

	Case Study
	Case Study Development
	Case Study Description
	Computational Results
	Penalty-Based Model and Location Importance
	Resource-Based Model and Budget Analysis


	Discussions and Conclusions
	Reviews of Papers in Resource Allocation in Disaster Management
	Case Study: Target Response Levels
	Computational Tests: Settings and Additional Results
	Parameter Settings
	Random Instance Generation: Examples
	Computational Results for Model (R) using IBM CPLEX
	Computational Results with PHA

	Budget-Based Model (B)

