BNl ORCA - Online Research @ Cardiff

PRIFYSGOL

CARDYB

This is an Open Access document downloaded from ORCA, Cardiff University's
institutional repository:https://orca.cardiff.ac.uk/id/eprint/116137/

This is the author’s version of a work that was submitted to / accepted for
publication.

Citation for final published version:

Ahmed, Leena, Mumford, Christine and Kheiri, Ahmed 2019. Solving urban transit
route design problem using selection hyper-heuristics. European Journal of
Operational Research 274 (2) , pp. 545-559. 10.1016/j.ejor.2018.10.022

Publishers page: http://dx.doi.org/10.1016/j.ejor.2018.10.022

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting
and page numbers may not be reflected in this version. For the definitive version of
this publication, please refer to the published source. You are advised to consult the
publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for
publications made available in ORCA are retained by the copyright holders.

Solving Urban Transit Route Design Problem using
Selection Hyper-heuristics

Leena Ahmed*?, Christine Mumford®, Ahmed KheiriP

*Cardiff University, School of Computer Science
Queens building, 5 The Parade, Roath, Cardiff, CF24 3AA, UK.
email: {AhmedLH, MumfordCL} @cardiff.ac.uk
b Lancaster University, Department of Management Science
Lancaster, LA1 4YX, UK. email: a.kheiri@lancaster.ac.uk

Abstract

The urban transit routing problem (UTRP) focuses on finding efficient trav-
elling routes for vehicles in a public transportation system. It is one of
the most significant problems faced by transit planners and city authorities
throughout the world. This problem belongs to the class of difficult combi-
natorial problems, whose optimal solution is hard to find with the complex-
ity that arises from the large search space, and the number of constraints
imposed in constructing the solution. Hyper-heuristics have emerged as
general-purpose search techniques that explore the space of low level heuris-
tics to improve a given solution under an iterative framework. In this work,
we evaluate the performance of a set of selection hyper-heuristics on the
route design problem of bus networks, with the goal of minimising the pas-
sengers’ travel time, and the operator’s costs. Each selection hyper-heuristic
is empirically tested on a set of benchmark instances and statistically com-
pared to the other selection hyper-heuristics to determine the best approach.
A sequence-based selection method combined with the great deluge accep-
tance method achieved the best performance, succeeding in finding improved
results in much faster run times over the current best known solutions.

Keywords: Transportation, Optimisation, Routing, Meta-heuristics

1. Introduction

The ever-increasing use of private transportation throughout the cities
of the world is resulting in unacceptable levels of congestion, pollution, and

*corresponding author

Preprint submitted to European Journal of Operational Research October 10, 2018

environmental, social and economic cost. This has led to move towards im-
proving public transportation services and encouraging citizens to use them
more. The design of public transit systems is a complicated task that needs
to satisfy the requirements of many stakeholders with conflicting needs, in-
cluding passengers who are looking for a comfortable, reliable and fast ser-
vice, and the transportation companies who aim to provide an adequate
services within reasonable costs while achieving maximum profit.

Ceder and Wilson (1986) identified five main stages in the development
of public transit: (1) network design (2) frequency setting (3) timetable
development (3) bus scheduling, and (5) driver scheduling. In this work we
apply hyper-heuristics to the network design element referred to as urban
transit routing problem (UTRP), which focuses on finding efficient routes
in a public transportation system.

Public transit route planning works with a pre-defined road network
that has pre-defined pick-up, and drop-off locations, with the goal of finding
efficient and feasible routes that satisfy all passenger demand, and reduce
travel times, transfers, and costs. The vast search space and the many
constraints involved means that it can be a challenging task to attain feasible
solutions especially when the network size increases.

Meta-heuristics have enjoyed some success on versions of the UTRP, with
genetic algorithms (GAs) as a particularly popular choice (Chakroborty and
Wivedi, 2002; Fan and Machemehl, 2006; Fan and Mumford, 2010; Mumford,
2013). However with the very long run times involved for population-based
methods for this problem, and the complicated parameter setting and tun-
ing needed in most cases, applications tend to be limited to relatively small
instances. In this paper we propose hyper-heuristics as a possible way for-
ward. Hyper-heuristics have a clear advantage in terms of run time over
population-based methods such as GAs because their focus is on a single
point in the search space, rather than a population of points. Furthermore,
hyper-heuristics have built-in mechanisms that carry out the tuning and
parameter setting without the need for human intervention, and use only
simple low level heuristics that are fast and easy to design.

Hyper-heuristics are general methodologies that mix and control a set
of pre-defined low level heuristics while solving computationally difficult
problems (Burke et al., 2013). There are two main classes of hyper-heuristics
identified in the literature (Burke et al., 2010), selection hyper-heuristics
which select from a known set of low level heuristics, and generation hyper-
heuristics that generate new heuristics from components of existing ones.
In this study, we focus on the selection class in which an initial solution
is iteratively improved, passing through two stages of selection and mowve

acceptance, until satisfying a termination criterion.

The present paper focusses on examining and comparing the performance
of several selection hyper-heuristics, combining different known selection
and move acceptance methods on the route design problem (UTRP) with
the goal of minimising the average passengers travel time, and the costs of
the operators. We implement several problem-specific low level heuristics,
and moreover explain in depth our applied methodology and test our set of
selection hyper-heuristics on a range benchmark instances.

Section 2 summarises the previous research on this problem, outlining
key approaches from the literature. Section 3 describes the UTRP in depth,
explaining its objectives and constraints. The hyper-heuristic approach ap-
plied to the problem and the low level heuristics we use are explained in
section 4. In section 5, our results are presented and analysed and then
compared with the current best-known results. Finally section 6 presents
the conclusion and future plans.

2. Related Work

2.1. Urban Transit Routing Problem

There is a considerable amount of research published on transit plan-
ning, due to its practical importance. Some researchers focused on a single
aspect of transit planning, while others tried to solve multiple aspects si-
multaneously. Mathematical programming techniques such as in (Byrne,
1975; Schéele, 1980; Vaughan, 1986; Wan and Lo, 2003; Guan et al., 2006)
have been proposed to solve the UTRP. However, such methods are suitable
only for very small sized instances. As a result, heuristic methods have been
popular and applied in many studies. Probably, Patz (1925) was the first to
tackle the route design problem using heuristics. He developed an iterative
procedure to generate network lines (routes) based on penalties. Initially
the network contains lines between each origin- destination pair with associ-
ated penalties calculated from the number of passengers who need transfers
to complete their journey. The network lines are iteratively deleted based
on these penalties. His approach was applied on a small ten node instance,
but was not extensible. Following that, Mandl (1979, 1980) applied a two
stage procedure, where a feasible route set is first generated, followed by a
heuristic procedure to improve the set quality. His pioneering work produced
the Swiss 15 node instance, which has become a defacto benchmark used by
most researchers. Baaj and Mahmassani (1991, 1995) also developed a three
stages heuristic approach based on artificial intelligence tools composed of
a route generation algorithm guided by the passengers demand, followed by

an analysis procedure to compute a number of performance measures for
the initially generated route set. Finally a route improvement algorithm
utilises the computed measures to produce feasible, improved route set. Lee
and Vuchic (2005) developed an iterative heuristic procedure to solve the
network design and frequency setting particularly with variable demand un-
der a total fixed demand. The objective was to decrease the total travel
time through an improvement procedure on an initially generated network
utilising the shortest path. A transit assignment procedure was also applied
to concentrate demand on certain routes, eliminating less efficient routes.

In recent years, meta-heuristic methods have become a popular choice
for solving the UTRP, with a specific focus on genetic algorithms. Pattnaik
et al. (1998) was one of the first attempts to apply GAs to the transit route
network design problem. They attempted to find transit routes and their
associated frequencies with the objective of reducing the overall system cost
(i.e. user and operator). They designed a two phase model: the first phase
generates candidate solutions guided by the demand matrix and the route
set constraints, and the second phase applies a GA to improve the quality
of the route sets. They experimented with both fixed-length and variable-
length string encoding schemes. Similar work was developed later by Tom
and Mohan (2003) using a simultaneous route and frequency coded model.

Chakroborty and Wivedi (2002) proposed a three stage approach: an ini-
tial generation procedure using heuristic methods, a modification procedure
based on a GA, and finally an evaluation procedure where they used a fit-
ness function weighting three components: passengers in-vehicle and transfer
times, percentage of demand satisfied with zero, one, and two transfers, and
the percentage of unsatisfied demand. They applied their proposed method
to Mandl’s benchmark and could find better results compared with other
methods that time. In (Chakroborty, 2003), the author addressed both
transit route design and scheduling problems sequentially by applying the
same GA approach they used in their previous work on Mandl’s benchmark.
The work also focused on showing the effectiveness of GA approaches on
this problem compared to the previous traditional approaches.

Mumford (2013) developed several intelligent genetic operators within
an evolutionary bi-objective framework, with the joint goals of minimising
passengers average travel time, and operator cost. A heuristic-based method
was implemented to seed the population with feasible route sets, in addition
to a new crossover operator, and mutation operators to add and delete
groups of nodes to the routes. This work proposed four new benchmark
instances which were made public for researchers.

Chew et al. (2013) also approached the UTRP as a bi-objective problem.

In their proposed algorithm the initial population is created with the aid of
Floyd’s algorithm for all pairs shortest paths. Their experiments were tested
on Mand!’s instance and compared with the work of Mumford (2013) and
Fan and Mumford (2010), where they reported improved results.

The work in (John et al., 2014) is built upon the work of Mumford
(2013) using an NSGA-II bi-objective framework. They developed a new
powerful heuristic construction method for candidate route sets generation
and implemented eight new operators to perform replace, exchange, and
merge operations. Their approach found improved results from both the
passenger and the operator perspectives. The method was later implemented
in a parallel model by Cooper et al. (2014) to improve its efficiency in terms
of run times. Other studies that applied GAs to the route design problem
and simultaneously incorporated route frequencies can be seen in (Fan and
Machemehl, 2006; Szeto and Wu, 2011; Bagloee and Ceder, 2011; Cipriani
et al., 2012).

In addition to GAs, other meta-heuristic approaches have been success-
fully applied to the UTRP. Fan and Mumford (2010) applied hill-climbing
and simulated annealing. Kilig and Gok (2014) reported the importance of
good quality initial solutions. They proposed a new initial route generation
method that employs the level of demand as guidance for their construction.
They used hill climbing and tabu search algorithms to test their method,
and implemented simple operators to modify route sets including add, delete
and swap. Other meta-heuristic methods applied to the UTRP include bee
colony (Nikoli¢ and Teodorovi¢, 2013, 2014) and particle swarm optimisation
(Kechagiopoulos and Beligiannis (2014)).

Several works used meta-heuristic approaches to handle real case prob-
lems for specific cities and towns. Poorzahedy and Rouhani (2007) hy-
bridized a previously implemented ant system with concepts of meta-heuristic
algorithms including genetic algorithms, tabu search, and simulated anneal-
ing to solve the network design problem. Seven hybrids were created and
tested on two networks: the network of Sioux Falls, and the real network of
Mashhad city in Iran that contains over 1000 nodes. Pacheco et al. (2009)
applied local search and tabu search strategies to solve a bus network design
problem of Burgos city in Northern Spain to minimise the trip duration and
waiting time at bus stops. Other real case applications are in (Zhao and
Zeng, 2006; Mauttone and Urquhart, 2009).

Several books and review papers have presented a more comprehensive
coverage of previous literature in public transit planning. The interested
reader can refer to (Ceder, 2016; Guihaire and Hao, 2008; Kepaptsoglou
and Karlaftis, 2009; Schobel, 2012; Farahani et al., 2013; Ibarra-Rojas et al.,

Table 1: Some selected routing problems in which hyper-heuristics were used as solution
methodologies

Problem Domain ‘ Reference

Ready-mix concrete delivery Misir et al. (2011)
Dynamic capacitated vehicle routing | Garrido and Castro (2012)
Capacitated vehicle routing Marshall et al. (2015)
Dial-a-ride with time window Urra et al. (2015)

Periodic vehicle routing Chen et al. (2016)

Vehicle routing with cross-docking Yin et al. (2016)

2015).

There are some clear limitations with most previous approaches to solv-
ing the UTRP problem. The lack of benchmark data for the problem is a
serious issue, and many researchers implemented methods that are highly
specific to given towns or cities. Furthermore, these instances are not pub-
licly available so we cannot judge the generality of the applied methods.
Other researchers who implemented and tested their methods on benchmark
instances used Mandl’s 15 node benchmark, which is a very small instance.
We cannot judge the performance of a method in terms of scalability based
on such a small network. If we consider GA approaches in particular, with
a population of perhaps several hundred solutions to maintain, the run-
time for a road network of 100 vertices or above can be measured in days
rather than hours. To the best of the authors’ knowledge, the use of hyper-
heuristics for the UTRP remains unexplored in the literature. Our reason
for choosing it was driven by several motivations: (i) Hyper-heuristics are
reasonably generic and are easy to implement and maintain. Thus we expect
that our implementation can be applicable to other variants of UTRP with
minimal adaptation. (ii) The success of hyper-heuristics in solving several
NP-hard optimisation problems generally and complex routing problems
specifically (Table 1). (iii) The use of a single solution based framework can
help solving the run-time issues of the problem. (iv) With the aid of ap-
propriate low level heuristics, hyper-heuristics can handle complex solution
spaces and therefore help with the scalability of the instances.

2.2. Selection Hyper-heuristics

The motivation behind hyper-heuristics is to develop methods that are
more generally applicable than other implementations of search methodolo-
gies. When using hyper-heuristics, the search is achieved at a more abstract
level (i.e. the space of low level heuristics), instead of the space of problem

solutions. In this way, the search can be utilised to focus on other qualities
such as changes in the objective and the execution time of the search pro-
cess. Burke et al. (2010) classified hyper-heuristics based on the nature of
the heuristics search space into selection hyper-heuristics that select from
an existing set of heuristics, and generation hyper-heuristics that generate
new heuristics from the components of existing ones. The former class is
the focus of our study.

The traditional selection hyper-heuristic framework consists of two con-
secutive processes: a heuristic selection to choose a low level heuristic and
generate a new solution, and move acceptance to decide the acceptability of
the new solution based on the fitness evaluation. The two processes iter-
ate until meeting a termination condition. We will now outline the set of
selection and move acceptance methods used in our study.

Most of the simple selection methods were identified in (Cowling et al.,
2000). Simple Random (SR) uses a uniform probability distribution to ran-
domly select a low level heuristic at each step. Random Descent (RD)
selects a low level heuristic randomly, and repeatedly applies it as long as
it is making an improvement. Random Permutation (RP) forms an initial
permutation of the low level heuristics and selects one at a time at each step.
Random Permutation Descent (RPD) organises the low level heuristics in
a similar way to RP but applies the selected heuristic repeatedly similar to
RD if an improvement is made. The Greedy selection method (GR) applies
all low level heuristics to a candidate solution, and chooses the heuristic that
generates the most improved solution.

Move acceptance methods can be categorised as either deterministic or
non-deterministic. Deterministic methods always return the same decision
for any given set of input parameters, whilst non-deterministic methods
(inspired by meta-heuristic methods) depend on the current time or step in
making their decision. The deterministic methods applied in our study are:
Only Improve (OI) which only accepts the improved solutions, and Improve
or Equal (IE) which accepts non-worsening solutions. The non-deterministic
move acceptance methods included in our study are: Simulated Annealing
(SA), Great Deluge (GD) and Late Acceptance (LA).

Simulated annealing has been applied as a move acceptance component
in selection hyper-heuristics by several studies (Bilgin et al., 2006; Kalen-
der et al., 2013) and has proved to be successful. In (Bilgin et al., 2006),
simulated annealing was used with theA})robability of accepting worsening

moves given by the formula: p; = e “F(~1) where Af is the change in the
evaluation function at time ¢, T is the maximum time and AF' is the range

for the maximum change in the evaluation function.

Great deluge accepts all improved solutions, and the worsening solutions
are accepted if their objective value is equal to or better than a specific
cost value called the ‘level’. Initially the level is equal to the cost of the
initial solution, and is updated afterwards at each step with the formula:
7= fo+AF x (1 — %), where AF is the maximum change in the objective
value, fo is the final expected objective value, T is the time limit, and ¢ is
the time at the current step.

Late acceptance was first introduced in (Burke and Bykov, 2008). It
compares the quality of the current solution with the solution generated L
steps earlier during the search. This method requires the implementation
of a circular queue of size L to save the objective values of L previously
generated solutions. The performance of this method heavily depends on
the queue size as stated in (Burke and Bykov, 2008).

2.2.1. Sequence-based Selection Hyper-Heuristic

Generally, a selection method will choose a single heuristic and apply
it to the current solution to generate a new solution. In our study, as one
of our selection methods, we have utilised a scheme inspired by the hidden
Markov model (HMM) (Kheiri and Keedwell, 2017) that applies sequences
of heuristics to a given solution, where the low level heuristics represent the
hidden states of the model. In this selection method each low level heuristic
is associated with two probabilities: a probability to move to another low
level heuristic including itself, and a probability to determine whether to
terminate the sequence at this point. An outline of Sequence-based Selection
Hyper-Heuristic (SSHH) is given in Algorithm 1.

If the low level heuristics set is [llhg, llh1, ..., llh,_1], we define a transi-
tion matrix (Tran = nxn) which specifies scores for each low level heuristic,
from which we derive the probabilities of moving from one heuristic to an-
other. We also define a sequence construction matrix (Seq = n x 2) which
stores scores for each of the n low level heuristics in two columns: continue
and end. Following the addition of each low level heuristic to the sequence,
the matrix Seq is used to compute the status of that sequence: either the
sequence will end at this point and the low level heuristics within it will be
applied to the current solution in the order in which they appear, or the
sequence will continue, and the next low level heuristic will be selected. Ini-
tially every element in the two matrices is assigned the value ‘1’, but these
values are incremented to reward sequences of low level heuristics that are
successful in improving the quality of the best solution so far.

At first, a random low level heuristic is selected ({lhcyrr) and added to the

Algorithm 1: Sequence-based selection hyper-heuristic

Let S,S’, S, be candidate, new and best solutions, respectively;
Let Tran be the transition matrix;
Let Seq be the sequence construction matrix;
Let [lho,llhy,llhg, ... llh,—_1] be the low level heuristics set;
Let HeuristicsSequence be the application sequence of low level heuristics;
HeuristicsSequence < | |;
curr « SelectRandomly[0,1,2,...,n — 1];
HeuristicsSequence.add(llhcyrr);
repeat
next < SelectNext(Tran, curr);
HeuristicsSequence.add(llhyeqzt);
Status < ComputeStatus(Seq, next);
if Status = end then
S’ « Apply(HeuristicsSequence, S);
if S’ isBetterThan S), then
Sp S,;
Update(Tran, Seq);
18 end
19 S « Accept(S,S5');
20 HeuristicsSequence.clear|();
21 end
22 curr <— next;

© 0 N O o~ W N

[T S S O
N 0 oA @ N RO

23 until TimeLimit;

sequence (line 8). The next low level heuristic ({lhnezt) is chosen by selection
procedure SelectNext (line 10) based on the roulette wheel selection strat-
egy with a probability equal to: Tran[curr|[next]/ >, Tran[curr|[j]. The
selected heuristic ({lhpeqy) is then added to the growing sequence of low level
heuristics (line 11) and the status for this low level heuristic is computed with
the procedure (ComputeStatus) (line 12) which determines whether or not
the sequence will terminate at this point. The choice made here is also based
on roulette wheel selection with the probability of continuing the sequence
given by: Seg[next][continue]/(Seq[next][continue] + Seq[next][end]). If
Status = end, the sequence is complete and will be applied to the current
solution to generate new solution (line 14). If the new solution is accepted
and improved over the best solution, the scores in the matrices for the rele-
vant low level heuristics are increased by one as a reward (line 17), increasing
the chance of selecting the sequence that generates improved solutions. In
addition, Seq is also updated by incrementing the end column for the final

low level heuristic in the active sequence of low level heuristics and incre-
menting the continue columns for the non-terminal low level heuristics. For
a more in depth description of the method with examples the reader can
refer to (Kheiri and Keedwell, 2015, 2017).

3. Problem Description

The transport network can be represented using an undirected graph:
G = {V,E}. The vertices in the graph V = {vj,v9,...,v,} represent ac-
cess points (i.e. bus stops), and the edges connecting the vertices £ =
{e1,e2,...,em} C V x V represent direct transport links (i.e. roads). We
also present two symmetrical matrices:

1. A travel time matrix 7', which associates each edge with a specific
weight value representing time required to traverse the edge. t;; is the
travel time between v; and v;. Note that t;; = 400 if v; and v; are
not directly connected, and t; = 0

t11 ti2 o tin
toq1 oo - ton
tn,l tn,Q te tn,n

2. A demand matrix D, representing the number of passengers travel-
ling between two points in the network (which may consist of several
edges in the transport network), where d;;, represents the number of
passengers travelling from vertex v; and v;, and d;; = 0.

dig dip - dip
do1 dop -+ dap
dn,l dn,? o dn,n
A route vy = {viy,Viy, ...,V }, Where v;, € {v1,v2,...,v,}, is defined

as a simple path in the graph connecting a set of edges. A route network
R ={r, : 1 < a < |R|}, is a connected set of routes, and a subgraph
of the transport network. It should contain all the vertices present in the
transport network, and a subset of its edges. The route network is what
actually represents a solution to our model. We will also define the transit
network, which is the network constructed during the evaluation of the route
network. During the evaluation, each node that corresponds to a transfer

10

Route 3

0 @ @7 o @ ———— Transfer Link

(c)

Figure 1: (a): Feasible route network containing three routes. (b): Transit network show-
ing the duplication of nodes and transfer edges connecting the duplicates. (c): Infeasible
disconnected network

point between two routes is duplicated, and the two duplicates are connected
through a transfer edge (Figure 1). The size of the route network can grow
as much as an order of magnitude during evaluation, depending on the
number of routes, their lengths and connectivity. Mathematically, let £, be
the set of edges of route r,. G' = {V', E'} is the transit graph in which
V' C R x V. We define the node y,,; as a pair consisting of a route r,, and
a vertex, v; € V. Let (Yr,i,yr,j) € E' be the edge from node y,,; to node
Yr,j i the transit graph. Consequently, we define two types of edges: (i)
transport edges (E}) correspond to in-vehicle travel links between two nodes
within the same route, and (ii) transfer edges (E%) correspond to transfers
from one route to another.

Ei = U {(ymiayruj) : (Uz‘,Uj) & Ea} (1)
re€R

Eé = U {(yraia yrbi) U ETg N Tb} (2)
v; €V

Two objectives are considered in our model, the passenger cost, and the
operator cost. An efficient public transportation system from the perspec-
tive of passengers, is a system with the lowest travel time, and the least
number of transfers, or no transfers at all. Whereas the network operators

11

are looking to reduce their cost and increase their profits. These objectives
are contradicting, since reducing the overall expenditures may result in a
poor service for passengers and vice versa.

To evaluate the passenger cost for a route network R = {rq,72,...,7g/},
the relevant transit network is built during the evaluation to incorporate
both in-vehicle travel time, and transfer penalty. The passenger cost rep-
resents the average travel time of a single passenger when travelling in the
network between source and destination. The minimum journey to travel
between the two vertices v;, vj in the route network (R) is given by the short-
est path a;;(R) from node {y,,; : v; € rq} to node {yr,; : v; € 1} in the
transit network, including both transport edges (Equation 1) and transfer
edges (Equation 2). The passenger cost is the total travel time made by
all passengers who travel from their source to destination using the shortest
path, over the entire demand served by the network (Mumford, 2013):

: leéZ R
Z’L,j—l J]() (3)
Zi,j:l dij

The transport network operator aims to reduce the total cost of the
system, while satisfying at least the minimum level of service quality. The
operator costs include the fleet size required to satisfy the demand, the total
distance travelled by the vehicles, the costs of maintenance, and the drivers
employment costs. To simplify the operator costs, we use the sum of the
cost (in time) for traversing all the routes in one direction (Mumford, 2013):

Co(R)=>_ > ty (4)

Ta€R (vi,0;)EEq

CP(R) =

The fleet size is also an important consideration for the operator. We will
not include it as an objective for the meantime but will describe a simple
way to calculate the total fleet size required to cover the entire network
demand. This could be simply done by dividing the total length of the
routes (multiplied by 2 to represent travelling in the opposite direction) by
the route headway (equals 10 considering an average waiting time of 5).
Following these calculations, if we considered that the total length of the
routes is equal to the lower bounds of the operator cost (Mumford, 2013),
the smallest network in the data set will require (2>1<g3 = 13) buses and the
largest network will require 186 buses.

We also use other performance indicators commonly quoted in the liter-
ature (Chakroborty and Wivedi, 2002; Fan and Mumford, 2010; Mumford,
2013; Kihig and Gok, 2014) to evaluate the route sets more comprehensively.

12

dp: The percentage of demand satisfied with zero transfers.

di: The percentage of demand satisfied with one transfer.

do: The percentage of demand satisfied with two transfer.

dun: The percentage of demand unsatisfied (assuming that making
three transfers or more is unacceptable).

We have a set of constraints that define the feasibility criteria of a route
network. We list these constraints as follows:

C1: A route network must contain all the vertices (bus stops) present
in the road network.

C2: All routes present in the route network must be free of cycles.
This means a route with duplicate vertices is not accepted.

C3: The route network must be connected allowing a passenger to
reach any destination in the network from any source.

C4: The number of vertices in any route must not be less than a min-
imum number, and not exceed a maximum number. These numbers
are present as problem parameters set by the user.

C5: The total number of routes in the route network is set to a spec-
ified number determined as a parameter by the user.

We have previously mentioned the complexity of the UTRP, and the
difficulty of incorporating real world assumptions and constraints. For this
reason, we have applied a set of constraints to simplify our model, in order
to allow us to focus on a general methodology for network design that can be
compared to previous work. Our assumptions are listed below (Mumford,
2013):

Vehicles travel back and forth on the same route, and reverse their
direction every time they reach the route terminal.

The choice of a route from the passenger perspective is based on the
shortest path (in terms of travel time + transfer time) between their
origin and destination.

The time the passenger needs to make a transfer is set to 5 minutes
(in line with previous research).

Only symmetrical networks are considered. The values of the demand
and travel time are the same regardless of the travel direction between
any two points.

The demand and the travel time between any two points in the network
is fixed.

One way streets are not considered. We assume that all road segments
are traversed in two directions.

13

For the scope of this work, we will also assume that there are sufficient
vehicles traversing each route, and with enough capacity to cover the de-
mand between all the bus stops. The frequency of the routes though can
be calculated using a demand assignment procedure (Arbex and da Cunha,
2015) to determine high demand routes and transfer points and a simple
heuristic procedure (Szeto and Wu, 2011) to redistribute the total available
fleet (calculated as mentioned in this section) between the routes, allowing
larger number of buses to be assigned to busier routes.

4. Hyper-heuristics for Urban Transit Route Design Problem

The main aim of this study is to implement a selection hyper-heuristic
framework with different combinations of selection and move acceptance
methods and apply it to benchmark instances with the goal of finding the
best possible routes from passenger and operator perspectives in the shortest
possible time. In this section we present an overview of the methodology
applied to achieve this.

4.1. Fvaluation Method

A solution S is in the form of a two-dimensional vector, and a candidate
solution is evaluated using the following equation:

f(S) = al + BCy + 7Co+ (5)

where «, § and v are constants used to weight the three components of
the objective function; C, and C, are calculated using Equations 3 and 4
respectively; and F' represents the feasibility of the solution and it computes
to what extent the solution meets the five problem constraints presented
in Section 3. If any of these constraints is violated at any position in the
route set, it is penalised by increasing its value by one. For example for
each missing node in the route set, the constraint concerned with including
all the vertices is increased by one. Similarly, for the other four constraints
with each individual violation. F' is then calculated as the sum of these
constraint violations. A route set is only accepted if this sum is zero. Note
that F', Cp, and C, can be treated as separate objectives in a multi-objective
formulation or combined into a single objective as in Equation 5. In the
present paper the objectives are considered separately in the main, simply
to facilitate comparisons with published results produced by other state-
of-the-art methods. However it is clear that compromise solutions between
objectives will be required in practice, and for this reason we include a brief

14

illustration of how our hyper-heuristic approach can be extended to produce
such a set of solutions in Section 5.5

4.2. Initial Solutions

The initial route set generation procedure constructs a single initial so-
lution that obeys all feasibility constraints. The process consists of two
stages: construction and repair. In the construction stage, a pool of can-
didate routes is generated by applying Dijkstra algorithm and finding the
shortest travel time path between every pair of nodes in the network. All
of the shortest paths that obey the user constraints for maximum and min-
imum route length are included in the pool. The route set is then built
by selecting one route at a time from the pool, until the route set reaches
the required size as pre-determined by the user. The first route is selected
by trying all of the routes from the pool in turn, and choosing “the best”
according to Equation 5, with parameters 3, and v set to zero, and « is
set to one. The initial generation procedure is focussing solely on building
a feasible route set, and not on its quality. Thus the candidate route that
produces the minimum number of feasibility violations is chosen as the first
route. The second route is then selected from the pool in a similar way,
this time applying Equation 5 to the growing route set consisting of the first
route, and the various candidates for the second route, and once again the
procedure makes “the best choice”. The selection procedure continues until
the initial route set contains the required number of routes. Although the
construction stage reduces the feasibility constraint violations to a minimum,
it does not guarantee a feasible route set is obtained. For this reason, a re-
pair stage is applied when needed. This consists of a simple hyper-heuristic
combining simple random selection and improve or equal acceptance. This
hyper-heuristic evaluates the route set with the same parameter settings as
the construction stage and terminates immediately after finding a feasible
solution.

4.3. Hyper-heuristics

The constructed initial solution is introduced as the current solution (.S)
to the hyper-heuristic framework. The selection method applies a single
heuristic, or a sequence of heuristics (in the case of SSHH) to S, generating
a new solution S’, which is evaluated using Equation 5 with the following
parameters settings: « is set to co to ensure non-feasible solutions are always
rejected, 8 and ~ are set based on whether the solution is being evaluated
from the passenger or the operator perspective. 3 = 1 and v = 10710 for
the passenger perspective, and vice versa for the operator. The low level

15

of 10719 provides an effective tie-breaker. Following evaluation the accep-
tance method is applied, which determines whether S’ will replace S or not.
In this work we are evaluating the performance of several selection hyper-
heuristics made up by alternative pairings between the various selection and
the various acceptance methods. More specifically we pair the following
selection methods: Simple Random (SR), Random Descent (RD), Random
Permutation (RP), Random Permutation Descent (RPD), Greedy Selection
(GR), Sequence-based Selection (SS); with the move acceptance methods:
Only Improve (OI), Improve or Equal (IE), Late Acceptance (LA), Great
Deluge (GD), Simulated Annealing (SA). In LA after performing a series of
experiments with different memory sizes for the circular queue L, we have
set this value to 40.

4.4. Low Level Heuristics

The hyper-heuristic controls a set of seven low level heuristics to improve
the quality of a given route set (see Figure 2).

e LLHO: Selects a random route and a random position in this route
and adds a random node into this position.

e LLH1: Selects a random route and a random position and deletes the
node in that position.

e LLH2: Selects a random route and two random positions and swaps
the two nodes in these positions.

e LLH3: Selects a random route and two random positions. The node
in the first position is inserted into the second position.

e LLH4: Selects a random route and a random position and replaces
the node in this position with another random node.

e LLH5: Selects two random routes and a random position on each
route. The node in the first position is inserted into the second position
on the second route.

e LLHG6: Selects two random routes and a random position on each
route and swaps the nodes in these positions.

4.5. Problem Instances

In this study, we have used Mandl’s benchmark with route set sizes 4,
6, 7, 8 considering each a separate problem. These variants are commonly
used in the literature (Mumford, 2013; Chew et al., 2013). We have also used
the four benchmark instances published in (Mumford, 2013) which are large
size instances based loosely on the number of routes and the connectivity of

16

A T N

(a) Add (b) Delete

(c) Swap inside route (d) Insert inside route
o—»c/:.o\o‘o—@ --
(e) Replace (f) Insert between routes

(g) Swap between routes

Figure 2: Low level heuristics set description. Straight arcs are edges in the route, dashed
arcs are edges removed after applying the low level heuristic, curved arcs are edges added
after applying the low level heuristic

bus network maps of real cities: one in China (Yubei), and two in the UK
(Cardiff, and Brighton). These instances provide a variety of network sizes
which is necessary to assess the scalability of our methods. The features of
our datasets are provided in Table 2.

5. Empirical Results

5.1. Experimental Setup

We carried out our experiments in two phases: The first round of ex-
periments evaluates the solution from the passenger perspective. In these
experiments Equation 5 is used to evaluate the solution with the following
parameters setting: o = oo, =1 and v = 107!°. In the second round of
experiments the solution is evaluated from the operator perspective using
the settings: o = oo, =0 and v = 1 for 80% of the run time, and for the
rest of the search time f3 is set to 10719, The reason for this is to focus on

17

Table 2: Features of our dataset

Number of Number | Number of vertices per | Average transit
Instance . . .
vertices, edges | of routes route (min - max) network size
Mandl4 15, 21 4 2-8 29
Mandl6 15, 21 6 2-8 29
Mandl7 15, 21 7 2-8 29
MandI8 15, 21 8 2-8 29
Mumford0 30, 90 12 2-15 86
Mumfordl 70, 210 15 10 - 30 231
Mumford2 110, 385 56 10 - 22 715
Mumford3 127, 425 60 12 - 25 930

improving the routes based on the operator qualities instead of wasting the
search time with the complex calculations of the passenger objective.

The experiments were conducted on a device with the following spec-
ifications: Intel Core i5 at 2.30GHz with memory of 8GB. Each selection
hyper-heuristic is run for ten trials on each instance and terminates after
the run time elapses. The run time is set to vary according to the instance
size by adding thirty seconds for each node.

5.2. Passenger Perspective

Tables 3 and 4 show the results from the passenger prescriptive experi-
ments in terms of the average travel time for a single passenger (measured
in minutes) for all the selection hyper-heuristics averaged over the ten tri-
als. The minimum and the maximum values have also been recorded. The
Kruskal-Wallis test is performed with 95% confidence level to compare the
pairwise statistical variations in the performance between two algorithms.
The following notations are used: Given two algorithms X versus Y, > (<)
denotes that X (Y) performs better than Y (X), and this variation is statis-
tically significant, > (<) denotes that X (Y') performs slightly better than
Y (X), but the performance is not statistically significant, and = denotes
that X and Y perform equally. The values associated with these notations
in the tables represent the number of times a particular hyper-heuristic is
statistically significant, not statistically significant, or equally performing
against the other selection hyper-heuristics in the tested set. The average
number of iterations is also reported using the following notations: m refers
to the number of iterations in millions, and k refers to the number in thou-
sands.

It can be observed from the results the success of sequence-based selec-
tion method (SS), outperforming other selection methods regardless of the

18

61

Table 3: Results of the thirty selection hyper-heuristics from the passenger perspective for Mandl instances. Best values per each

instance are highlighted in bold

MANDL4 MANDLG6 MANDL7 MANDLS
MA SM avg std min > < > < TIter avg std min > < > < Iter avg std min > < > < Iter avg std min > < > < Iter
SR 10.891 0.273 10.716 0 12 0 17 39m 10.510 0.140 10.309 0 6 5 18 17m 10.480 0.113 10.316 0 12 3 14 13m 10.360 0.114 10.190 0 7 5 17 10m
RD 10.831 0.270 10.523 0 6 1 21 40m 10.555 0.207 10.322 0 7 2 20 18m 10.491 0.106 10.344 0 13 2 14 13m 10.407 0.070 10.325 0 16 2 11 11m
oI RP 10.736 0.247 10.515 0 6 6 17 37m 10.457 0.111 10294 0 6 9 14 16m 10.472 0.107 10.328 0 12 4 13 14m 10.457 0.100 10.272 0 13 0 16 1lm
RPD 10.718 0.152 10.515 0 6 10 13 380m 10.645 0.260 10.438 0 12 0 17 18m 10.500 0.323 10.278 0 9 1 1913m 10.417 0.118 10.242 0 8 1 20 10m
GR 10.778 0.208 10.611 0 7 5 17 5m 10.513 0.104 10.369 0 11 4 14 2m 10.504 0.089 10.346 0 13 0 16 1lm 10.383 0.125 10.227 0 8 3 18 1m
SS 10.606 0.065 10.510 0 6 18 4 57m 10.346 0.109 10.190 0 0 15 14 28m 10.264 0.074 10.185 0 6 15 8 23m 10.194 0.086 10.094 0 0 15 14 16m
SR 10.821 0.231 10.641 0 8 3 18 39m 10.558 0.105 10.383 0 11 1 17 17m 10.371 0.121 10.206 0 7 10 12 13m 10.278 0.073 10.166 0 7 9 13 1lm
RD 10.831 0.270 10.523 0 6 1 21 40m 10.501 0.131 10.336 0 9 6 14 17m 10.392 0.127 10.246 0 8 7 14 13m 10.278 0.054 10.157 0 7 8 14 10m
IE RP 10.735 0.247 10.515 0 6 7 16 36m 10.473 0.139 10.312 0 6 7 16 18m 10.426 0.116 10.209 0 7 6 16 13m 10.278 0.113 10.167 0 7 7 15 10m
RPD 10.721 0.158 10.515 0 6 9 14 37m 10.417 0.077 10.327 0 8 12 9 16m 10.453 0.112 10.306 0 11 5 13 13m 10.363 0.094 10.194 0 7 4 18 1lm
GR 10.784 0.208 10.611 0 7 4 18 5m 10.517 0.110 10.349 0 9 3 17 2m 10.387 0.094 10.245 0 8 8 13 1Im 10.283 0.101 10.128 0 3 6 20 1m
SS 10.606 0.065 10.510 0 6 18 4 58m 10.314 0.055 10.216 1 0 15 13 28m 10.234 0.065 10.168 2 3 15 9 22m 10.168 0.064 10.102 1 1 16 11 16m
SR 10.665 0.065 10.523 0 6 14 9 38m 10.444 0.148 10.241 0 6 10 13 19m 10.281 0.103 10.130 0 0 13 16 13m 10.212 0.095 10.112 0 1 12 16 10m
RD 10.725 0.099 10.619 0 7 8 14 39m 10.391 0.106 10.244 0 6 13 10 18m 10.352 0.117 10.229 0 7 11 11 14m 10.200 0.074 10.106 1 1 13 14 10m
LA RP 10.708 0.081 10.617 0 7 11 11 40m 10.464 0.100 10.239 0 6 8 1517m 10.291 0.117 10.177 0 5 12 12 14m 10.261 0.089 10.171 0 7 11 11 11m
RPD 10.683 0.084 10.608 0 6 12 11 39m 10.439 0.137 10.248 0 6 11 1218m 10.376 0.121 10.137 0 0 9 20 14m 10.275 0.127 10.164 0 7 10 12 11m
GR 10.672 0.119 10.572 0 6 13 10 5m 10.347 0.079 10240 0 6 14 9 2m 10.265 0.070 10.195 0 7 14 8 2m 10.204 0.076 10.109 1 1 12 15 2m
SS 10.608 0.071 10.510 0 6 17 6 62m 10.272 0.082 10.184 0 0 20 9 27m 10.183 0.048 10.114 8 0 14 7 21m 10.155 0.052 10.090 2 0 20 7 19m
SR 10.604 0.050 10.533 1 6 19 3 46m 10.302 0.103 10.229 0 4 17 8 23m 10.191 0.046 10.127 6 0 15 8 17m 10.158 0.045 10.105 2 1 17 9 14m
RD 10.597 0.074 10.500 1 6 20 2 45m 10.280 0.064 10.216 3 0 16 10 23m 10.227 0.071 10.146 0 1 19 9 17Tm 10.157 0.041 10.123 2 2 18 7 14m
D RP 10.587 0.044 10.489 2 1 20 6 46m 10.256 0.043 10.208 5 0 17 7 22m 10.235 0.054 10.137 4 0 12 13 18m 10.162 0.049 10.113 2 2 16 9 14m
RPD 10.627 0.049 10.560 1 6 14 8 47m 10.260 0.042 10.194 7 0 14 8 23m 10.227 0.037 10.182 5 6 15 3 17m 10.155 0.033 10.097 4 0 17 8 14m
GR 10.623 0.048 10.518 1 6 15 7 6m 10.291 0.051 10.211 3 0 15 11 3m 10.228 0.029 10.192 5 7 13 4 2m 10.174 0.047 10.114 2 2 14 11 1m
SS 10.521 0.050 10.482 6 0 17 6 72m 10.212 0.043 10.180 6 0 21 2 33m 10.135 0.034 10.101 13 0 14 2 24m 10.098 0.023 10.069 11 0 17 1 19m
SR 10.484 0.005 10.48223 0 6 0 38m 10.222 0.005 10.213 16 0 7 6 18m 10.154 0.013 10.133 16 0 8 5 14m 10.113 0.007 10.099 12 0 14 3 1lm
RD 10.486 0.005 10.482 22 0 6 1 39m 10.220 0.009 10.200 15 0 9 5 18m 10.151 0.016 10.128 16 0 9 4 14m 10.121 0.008 10.106 11 1 12 5 11m
SA RP 10.488 0.007 10.482 22 0 4 3 39m 10.218 0.009 10.196 16 0 9 4 18m 10.154 0.014 10.139 15 1 8 5 14m 10.118 0.011 10.103 11 1 13 4 1lm
RPD 10.487 0.006 10.482 22 0 5 2 39m 10.216 0.010 10.196 15 0 11 3 18m 10.149 0.010 10.136 17 0 9 3 14m 10.117 0.009 10.106 11 1 14 3 1lm
GR 10.489 0.006 10.482 22 0 3 4 5m 10.207 0.008 10.191 16 0 12 1 2m 10.134 0.011 10.117 17 0 11 1 2m 10.105 0.006 10.096 15 0 12 2 1m
SS 10.489 0.007 10.482 22 0 2 5 67m 10.202 0.009 10.190 16 0 13 0 26m 10.122 0.008 10.110 19 0 10 0 21m 10.093 0.005 10.084 23 0 6 O 15m

0¢

Table 4: Results of the thirty selection hyper-heuristics from the passenger perspective for Mumford instances. Best values per each

instance are highlighted in bold

MUMFORDO MUMFORD1 MUMFORD2 MUMFORD3
MA SM avg std min > < > < Iter avg std min > < > < Iter avg std min > < > < Iter avg std min > < > < Iter
SR 14.611 0.087 14.496 0 15 3 11 2m 22.302 0.160 22.086 0 0 6 23 1m 27.241 0.101 27.103 0 22 0 7 440k 30.254 0.115 30.105 0 13 2 14 385k
RD 14.621 0.080 14.488 0 15 2 12 2m 22.294 0.116 22.100 0 0 9 20 1m 27.161 0.100 26.982 0 19 3 7 438k 30.280 0.071 30.121 0 13 0 16 387k
oI RP 14.563 0.113 14.380 0 3 5 21 2m 22.314 0.153 22.085 0 0 3 26 1lm 27.166 0.113 26.999 0 19 2 8 448k 30.245 0.091 30.138 0 16 3 10 386k
RPD 14.702 0.145 14.501 0 16 0 13 2m 22.308 0.164 22.113 0 0 5 24 1m 27.235 0.112 27.070 0 21 1 7 445k 30.204 0.053 30.149 0 17 4 8 368k
GR 14.606 0.137 14.352 0 2 4 23 300k 22.372 0.086 22.253 0 2 2 25243k 27.135 0.199 26.859 0 17 4 8 63k 30.197 0.106 30.053 0 10 6 13 55k
SS 14.669 0.136 14.467 0 14 1 14 2m 22.580 0.179 22.280 0 3 0 26 2m 26.915 0.150 26.705 0 8 12254k 29.732 0.095 29.609 8 2 15 4 242k
SR 14.409 0.071 14.287 0 0 7 22 2m 22.241 0.158 22.021 0 0 15 14 1m 26.654 0.135 26.473 4 3 11 11 522k 29.963 0.084 29.836 2 5 14 8 470k
RD 14.449 0.150 14.322 0 0 6 23 2m 22.207 0.104 22.097 0 0 19 10 1m 26.692 0.113 26.488 5 3 9 12519k 29.964 0.118 29.834 0 5 14 10 475k
IE RP 14.403 0.081 14.310 0 0 9 20 2m 22.282 0.100 22.169 0 0 10 19 1m 26.705 0.109 26.546 4 4 7 14 514k 29.945 0.103 29.848 2 5 17 5 474k
RPD 14.362 0.073 14.275 0 0 12 17 2m 22.224 0.152 22.051 0 0 17 12 1m 26.695 0.094 26.560 5 4 7 13520k 29.982 0.089 29.803 5 4 7 13 466k
GR 14.407 0.099 14.281 0 0 8 21 310k 22.234 0.100 22.118 0 0 16 13 250k 26.694 0.112 26.532 5 4 8 12 3k 29.964 0.146 29.730 1 4 14 10 3k
SS 14.395 0.119 14.234 0 0 10 19 2m 22.399 0.138 22.205 0 0 1 28 1m 26.258 0.134 26.120 19 1 8 1 305k 29.399 0.165 29.087 21 1 6 1 292k
SR 14.285 0.110 14.118 4 0 20 5 2m 22.095 0.071 22.000 2 0 26 1 2m 26.382 0.089 26.262 11 2 14 2 814k 29.747 0.078 29.626 9 2 12 6 730k
RD 14.312 0.088 14.138 4 0 15 10 2m 22.075 0.096 21.955 2 0 27 0 2m 26.442 0.091 26.259 11 2 11 5 818k 29.701 0.100 29.549 14 1 11 3 725k
LA RP 14.301 0.106 14.160 0 0 23 6 2m 22.180 0.102 22.012 0 0 24 5 2m 26.402 0.065 26.268 14 2 10 3 832k 29.745 0.107 29.528 9 1 13 6 721k
RPD 14.271 0.061 14.178 5 0 20 4 2m 22.124 0.095 22.007 1 0 25 3 2m 26.428 0.090 26.307 11 2 12 4 819k 29.731 0.083 29.580 9 2 15 3 722k
GR 14.234 0.066 14.158 4 0 25 0 351k 22.179 0.093 22.083 0 0 25 4 450k 26.593 0.088 26.483 8 3 9 9 168k 29.904 0.079 29.806 6 4 14 5 3k
SS 14.346 0.102 14.198 1 0 15 13 2m 22.120 0.119 21.906 0 0 27 2 2m 25.661 0.073 25.52329 0 0 O 589k 28.811 0.089 28.71029 0 0 0 598k
SR 14.312 0.100 14.176 3 0 17 9 5m 22.296 0.151 22.013 0 0 8 21 3m 26.529 0.126 26.374 8 2 13 6 651k 29.960 0.090 29.762 5 4 12 8 511k
RD 14.347 0.096 14.168 4 0 11 14 5m 22.271 0.117 22.036 0 0 12 17 3m 26.588 0.072 26.475 10 3 8 8 640k 29.977 0.083 29.795 5 4 8 12501k
D RP 14.319 0.090 14.219 0 0 18 11 5m 22.195 0.126 22.053 0 0 23 6 3m 26.553 0.129 26.417 8 2 12 7 640k 29.958 0.137 29.800 0 4 18 7 498k
RPD 14.302 0.084 14.205 4 0 18 7 5m 22.197 0.092 22.089 0 0 22 7 3m 26.569 0.140 26.315 5 2 14 8 641k 29.997 0.092 29.808 2 4 9 14 504k
GR 14.310 0.070 14.229 4 0 17 8 604k 22.255 0.089 22.132 0 O 14 15 505k 26.618 0.125 26.468 5 3 11 10 88k 30.019 0.114 29.848 0 5 10 14 72k
SS 14.270 0.070 14.123 6 0 20 3 5m 22.216 0.082 22.076 0 0 18 11 3m 26.067 0.130 25.888 26 1 2 0 524k 29.330 0.122 29.117 24 1 4 0 365k
SR 14.352 0.031 14.300 4 0 10 15 2m 22.311 0.108 22.176 0 0 4 25 2m 26.938 0.158 26.703 0 9 5 15627k 30.272 0.091 30.109 0 13 1 15576k
RD 14.373 0.036 14.319 4 0 7 18 2m 22.265 0.062 22.157 0 0 13 16 2m 26.910 0.101 26.773 2 12 7 8 625k 30.202 0.184 29.988 0 9 5 15 565k
SA RP 14.355 0.044 14.299 4 0 9 16 2m 22.276 0.074 22.187 0 0 11 18 2m 26.897 0.145 26.590 1 8 9 11648k 30.083 0.158 29.832 0 5 9 15575k
RPD 14.345 0.043 14.291 4 0 13 12 2m 22.298 0.090 22.188 0 0 7 22 2m 26.931 0.131 26.777 0 12 7 10636k 30.185 0.202 29.910 0 8 7 14 557k
GR 14.257 0.071 14.139 4 0 23 2 361k 22.201 0.105 22.026 0 0 21 8 348k 26.937 0.081 26.793 2 12 4 11 85k 30.159 0.111 29.973 0 9 8 12 77k
SS 14.250 0.052 14.137 6 0 22 1 2m 22.201 0.084 22.072 0 0 20 9 2m 26.344 0.112 26.173 11 1 15 2 346k 29.499 0.148 29.246 21 1 5 2 327k

move acceptance. This observation applies for all instances. Figure 3 shows
the performance variation of our applied selection methods giving advan-
tage for SS. The non-deterministic acceptance methods were more success-
ful. Simulated annealing achieved the best results in all Mandl variants,
delivering an improved performance that is statistically significant. Great
deluge found the best minimum results in all Mandl instances. In the larger
instances late acceptance and great deluge were the most successful. How-
ever LA found slightly better averages and minimum results compared to
GD. Given these observations we carried out the next round of experiments
from the operator perspective using three selection hyper-heuristics (SS-SA,
SS-GD, SS-LA).

10.6 F 7 T
30.2 | ‘|' .
10.5 |- : 301 |I| Ifl i
10.4 | |y L= 1
—= 29.6 |- .
10.3] 1 T
29.4 .
_L b —
10.2 |- e 29.2 + J_ :
| | | | | | 29 | | | | | |
SR RD RP RPD GR SS SR RD RP RPD GR SS

(a) (b)

Figure 3: Box plots from 10 runs for all selection methods combined with GD acceptance
method for (a) Mandl6 instance, and (b) Mumford3 instance. Values in Y axis show the
average travel time and the lower boxes represent the best selection methods

5.8. Operator Perspective

Table 5 summarises the results of the experiments from the operator
perspective using the average objective function value over the ten trials,
the minimum values, and the pair-wise statistical performance. Compar-
ing these results with the lower bounds for the operator cost published in
(Mumford, 2013), all three selection hyper-heuristics succeeded in finding
the lower bound in the Mandl problem variants and the Mumford0 instance
on each of the ten trials. Referring to the table, GD is the most successful,
scoring better averages and minimum values with a statistically significant
performance compared to SA and LA. On the other hand, the best approach
from the passengers’ perspective is not so obvious. For this reason another
round of experiments was conducted using longer run times.

21

Table 5: Results of the three best selection hyper-heuristics from the operator perspective.
Best averages and minimum values per instance are highlighted in bold

SS-SA SS-GD SS-LA
Instance avg std min Iter v.s avg std min Iter v.s avg std min Iter
Mandl(4,6,7,8) 63.0 0.00 63 350m = 63.0 000 63 350m = 63.0 0.00 63 350m
Mumford0 94.0 0.00 94 424m = 94.0 000 94 417Tm = 94.0 0.00 94 423m
Mumford1 4239 3.75 419 485m < 414.1 490 406 467Tm > 4348 6.08 427 488m
Mumford?2 1761.1 26.96 1722 209m < 1438.2 39.25 1382 194m > 2007.0 36.51 1952 214m
Mumford3 1966.7 16.13 1944 182m < 1935.4 45.71 1881 182m > 2607.3 16.78 2577 195m

5.4. Longer Runs

In this series of experiments we have given each of the three hyper-
heuristics longer running times to observe whether improved performance
can be obtained if there is more time to modify routes. We increased the
running time by a factor of ten (i.e. the largest instance in the set will run
for ten hours and ten times the number of iterations), and performed a two
runs on each instance: one from the passenger perspective, and one from the
operator perspective. According to Table 6 the results of these runs revealed
the success of GD from the operator perspective similar to the short run time
experiments, and from the passenger perspective GD performed the best in
Mandl problems, Mumford0 and Mumfordl instances.

In the short run time experiments LA was successful in the larger in-
stances and was slightly better than GD. This success also continues in the
longer time experiments with insignificant performance difference in com-
parison to GD.

5.5. Obtaining Multiple Solutions

The previous experiments focused on finding the best possible route sets
from passenger or operator perspectives separately. For practical use on real
world public transit systems however, a compromise between the needs of
the conflicting stakeholders will be required. To demonstrate how this can
be achieved, another round of experiments has been carried out using SS-GD
(the best performing algorithm). To ensure balance and fairness between the
two objectives, their values have been normalised to 1 using the following
parameters setting in Equation 5: o = oo, f = ﬁ, Y= o
Cpinit, Coinit €equals the passenger and operator costs of the initial solution
respectively. Several weight settings were then chosen to give a spread of
compromise solutions.

We have tested this approach on Mandl instance (with six routes) by

running several experiments each for a duration equal to the short run time

where

22

Table 6: Results of the long runs experiments from passenger and operator perspectives.
Best values are highlighted in bold

Instance Cp C, Cp Co Cp Co
SS-SA SS-GD SS-LA
Passenger Perspective

Mandl4 10.482 148 10.482 148 10.576 140
Mandl6 10.187 216 10.179 212 10.321 186
Mandl7 10.119 214 10.103 250 10.150 232
Mandl8 10.086 251 10.080 272 10.095 260
Mumford0 14.157 725 14.093 722 14.218 734
Mumfordl 21.961 2073 21.699 1956 22.096 2010
Mumford2 25.554 5276 25.196 5257 25.001 5480
Mumford3 28.261 5807 28.056 6119 27.894 6217

Operator Perspective

Mandl4 13.8754 63 14.6718 63 13.8754 63
Mandl6 13.4804 63 14.2832 63 14.3571 63
Mandl7 13.6763 63 14.4438 63 14.8645 63
Mandl8 14.2158 63 14.7938 63 15.0572 63
Mumford0 24.814 94 26.320 94 28475 94
Mumfordl 42.922 414 39.452 408 35.269 437
Mumford2 42.356 1436 46.865 1330 41.188 1508
Mumford3 44.771 1877 46.054 1746 42.569 1758

with different weights combination per run and the results are plotted in
Figure 4 along with the best results for the passenger and operator acquired
previously. Clearly computing more compromise solutions will increase the
cumulative run time of the optimisation. On the other hand, we do not
require the vast populations generally needed to maintain diversity for evo-
lutionary algorithms.

5.6. Analysis of SS-GD

Based on the extensive experiments carried out we have chosen SS-GD
as our best performing algorithm. The following analysis is performed on
Mandl6 and Mumford3 instances, representing the smallest and largest net-
works in our dataset. We took Mandl6 further into analysis as its the most
common variant of Mandl’s problem addressed in the literature.

Figure 5 shows the average utilisation rate for each low level heuristic for
Mandl6 and Mumford3 instances after running each for a single run under
SS-GD from both passenger and operator perspectives, considering only the
applications of the low level heuristics that end the active sequence and
improve over the best solution (i.e. Seq = end).

23

200 R
’ 150 - 8
@
o)
2
© 100 - 1
50 \ \ \ \ =

10 11 12 13 14
Passenger Cost

Figure 4: A plot showing a number of solutions between the best passenger and operator
results in Mandl6 instance. Each point represents a different solution with different weight
values.

From the passenger perspective, the add low level heuristic (LLHO) was
the most successful in both instances, achieving the most contribution in
the best solutions. Other low level heuristics that were also successful are
insert (LLH3), replace (LLH4) in Mandl6, and delete (LLH1) in Mumford3.
In contrast, the add low level heuristic was the least successful from the
operator perspective, and most of the contribution was achieved by the
delete (LLH1), swap (LLH2), and insert (LLH3) low level heuristics.

Figure 6 shows the transition, and the sequence construction frequency
matrices, again for Mandl6 and Mumford3. A few interesting observations
can be made. From the passenger perspective, we note from the sequence
construction matrix that on the whole low level heuristics have a higher
probability to end the sequence than continue it, which indicates that low
level heuristics that contribute strongly to producing the best solutions,
perform this success individually in sequences of length one. Specifically the
add low level heuristic (LLHO) in Mumford3 which is the most successful in
the set by referring to Figure 5, works almost independently. Yet from the
transition matrix, some good sequences with a longer length than one can be
identified, such as the combination of insert to different route (LLH5), and
insert on the same route (LLH3) low level heuristics with the add low level
heuristic (LLHO) in Mandl6. From the operator perspective, similarly the
most successful low level heuristics (i.e. LLH1, LLH2, LLH3) operate best

24

Mandl6 Mumford3

G

8%

24%

(a) Passenger perspective

Mandl6 Mumford3

4%
' 8%
4%

LLHO [0 LrLH4
LLH1 [0 cLies
LLH2 [] LrHe
LLH3

EECN

(b) Operator perspective

Figure 5: Average utilisation rate for each low level heuristic considering the invocations
that generated improvements on the best solution in Mandl6 and Mumford3 instances

individually in both instances. In Mandl6, and Mumford3 the add low level
heuristic tends to work better in sequences longer than one from the sequence
construction matrix, unlike its behaviour in the passenger perspective. One
of these sequences is the combination of add and delete low level heuristics
in Mandl6. These observations show the intelligence of the SS method in
identifying good sequences and understanding the relationships between low
level heuristics in two different instances. The SS method has the advantage
of intelligently revealing how the low level heuristics operate. Some low level
heuristics may have a high utilisation rate, yet they achieves this with the
support of other low level heuristics that might seem to have low contribution
to the best solutions, but are necessary part in making the success of the
high utilisation low level heuristics.

25

LLH6 I W B LLHO LLH6 . Seqeon
LLH1 Segend
Il =
LLH5 LLH2 LLH5
LLH4 e == LLH4
LLH3 Il e LLHA LLH3
LLH2 I | LS LLH2
LLH6
LLH1 [LLH1
LLHO | — | LLHO | | | | |
0 02 04 06 08 1 0 02 04 06 08 1
Transition Probability Acceptance Strategy Probability
(a) Mandl6 Passenger
LLH6 I8 | |mswm LLHO LLH6 N Seqeon
LLH5 [s LLH5 Sedend
LLH4 [[] ——— LLH4
LLH3 W | e LU LLH3
LLH2 [} -Eigz LLH2
LLH1 n LLH1
LLHO | | | | .\ LLHO | | | | |
0 02 04 06 08 1 0 02 04 06 08 1
Transition Probability Acceptance Strategy Probability
(b) Mumford3 Passenger
LLH6 NN = I LLHO LLH6 W Segeon
LLH1 Seqend
LLH5 HEE = LLH2 LLH5
LLH4 [D | 111 LLH4
LLH3 P 0 semLLH4 LLH3
LLH2 EEE | S LLHS LLH2
LLH6
LLH1 [LLH1
LLHO | | _ | LLHO | |
0 02 04 06 038 1 0 02 04 06 038 1
Transition Probability Acceptance Strategy Probability
(c) Mandl6 Operator
LLHG [l I |- LLH LLH6 - Segeon
LLH1 Segend
[
LLH5 LLH2 LLH5
LLH4 R | LLH4
LLH3 | | oo LLH4 LLH3
LLH2 | I, | < LLIS LLH2
LLH6
LLH1 [LLH1
LLHO I LLHO ‘ ‘ |
0 02 04 06 08 1 0 02 04 06 08 1
Transition Probability Acceptance Strategy Probability

(d) Mumford3 Operator

Figure 6: Transition and sequence construction frequency matrices for Mandl6 and Mum-
ford3

26

Table 7: Passenger perspective results compared to other approaches

Instance Parameter Mandl (;l;jiki’st)\ir(:: lflinm?:il Mumford Chew et al. John et al. Kilig and $S-GD
)) o 1979 : 201: 2017 2014 ok (2014 e
(1979) (2002) (2010) (2013) (2013) (2014) Gok (2014)
Passenger 12.90 11.90 11.37 10.57 10.50 - 10.56 10.48
Operator - - 147 149 150 - 137 148
Mandl4 do 69.49 86.86 93.26 90.43 91.84 - 91.33 91.84
° dy 29.93 12.00 6.74 9.57 8.61 - 8.16 8.15
dy 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00
dun 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00
Passenger - 10.30 10.48 10.27 10.21 10.25 10.29 10.18
Operator - - 215 221 224 212 216 212
do - 86.04 91.52 95.38 96.79 - 95.5 97.17
Mandlg 4 - 13.96 8.48 456 3.21 - 45 2.82
dy - 0.00 0.00 0.06 0.00 - 0.00 0.00
dun - 0.00 0.00 0.00 0.00 - 0.00 0.00
Passenger - 10.15 10.42 10.22 10.16 - 10.23 10.10
Operator - - 231 264 239 - 274 250
Mandl7 do - 89.15 93.32 96.47 98.01 - 97.04 98.84
andi dy - 10.85 6.36 3.34 1.99 - 2.83 1.15
da - 0.00 0.32 0.19 0.00 - 0.13 0.00
dun - 0.00 0.00 0.00 0.00 - 0.00 0.00
Passenger - 10.46 10.36 10.17 10.11 - 10.20 10.08
Operator - - 283 291 256 - 298 272
do - 90.38 94.54 97.56 99.04 - 97.37 99.16
MandI8 N - . . n
dy - 9.62 5.46 2.31 0.96 - 2.63 0.83
do - 0.00 0.00 0.13 0.00 - 0.00 0.00
dun - 0.00 0.00 0.00 0.00 - 0.00 0.00
Passenger - - - 16.05 - 15.40 14.99 14.09
Operator - - - 759 - 745 707 722
do - - - 63.20 - - 69.73 88.74
Murmford 4 - - - 35.82 - - 30.03 11.25
do - - - 0.98 - - 0.24 0.00
dun - B - 0.00 - - 0.00 0.00
Passenger - - - 24.79 - 23.91 23.25 21.69
Operator - - - 2038 - 1861 1956 1956
do - - - 36.60 - - 45.10 65.75
Mumford1 4 - - - 52.42 - - 49.08 34.18
dy - - - 10.71 - - 5.76 0.07
dun - - - 0.26 - - 0.06 0.00
Passenger - - - 28.65 - 27.02 26.82 25.19
Operator - - - 5632 - 5461 5027 5257
do - - - 30.92 - - 33.88 56.68
Murnford2 a - - - 51.29 - - 57.18 43.26
dy - - - 16.36 - - 8.77 0.05
dun - - - 1.44 - - 0.17 0.00
Passenger - - - 31.44 - 29.50 30.41 28.05
Operator - - - 6665 - 6320 5834 6119
do - - - 27.46 - - 27.56 50.41
Mumford3 4 - - - 50.97 - - 53.25 48.81
dy - - - 18.79 - - 17.51 0.77
dun - - - 2.81 - - 1.68 0.00

5.7. Comparison with Other Approaches

We compared our results from the passenger and operator perspectives
with the state-of-the-art methods. We used the long run results of SS-GD
representing our best results. Referring to Tables 7 and 8 our method found
the best average travel times in all Mandl instances as well as the best dp,
di, dg in all cases except in Mandl4 instance. In Mumford’s instances, our
approach outperformed the methods in (Mumford, 2013; John et al., 2014;
Kili¢ and G&k, 2014) in terms of the average travel time, and dy, dy, d2
values scoring zero percentage for unsatisfied demand in all cases. From the

27

Table 8: Operator perspective results compared to other approaches
Mumford Chew et al. John et al.
Instance Parameter (2013) (2013) (2014) SS-GD
Operator 63 63 63 63
Passenger 15.13 13.88 13.48 14.28
. do 70.91 70.91 - 62.23
Mandl6 dy 25.5 25.50 - 27.16
dy 2.95 2.95 - 9.57
dun 0.64 0.64 - 1.028
Operator 111 - 95 94
Passenger 32.40 - 32.78 26.32
, doy 18.42 - - 14.61
Mumford0 ds 93,40]] 31.59
dsy 20.78 - - 36.41
dun 37.40 - - 17.37
Operator 568 - 462 408
Passenger 34.69 - 39.98 39.45
. . do 16.53 - - 18.02
Mumford1 d 99.06)) 29.88
ds 29.93 - - 31.90
dun, 24.66 - - 20.19
Operator 2244 - 1875 1330
Passenger 36.54 - 32.33 46.86
§ dp 13.76 - - 13.63
Mumford2 d 97.69]) 93 58
do 29.53 - - 23.94
dun 29.02 - - 38.82
Operator 2830 - 2301 1746
Passenger 36.92 - 36.12 46.05
. do 16.71 - - 16.28
Mumford3 d 33.69 .) 924.87
da 33.69 - - 26.34
dun 20.42 . . 32.44

operator perspective, we succeeded in finding the lower bound in Mandl’s
four problems and in Mumford0 instance. Our approach also found the best
results in Mumfordl, Mumford2 and Mumford3 instances. This comparison
proves the success of hyper-heuristics on this problem, outperforming the
previously reported results using GA approaches. Cooper et al. (2014) re-
ported that the implementation of John et al. (2014) required 44 hours to
run Mumford3 instance, and to improve this, a parallel implementation of
the algorithm is required. Kili¢ and Gok (2014) required more than eight
hours to initialise route sets and run a simple hill climbing algorithm in
Mumford3 instance. Hyper-heuristic was able to find new best solutions
after running Mumford3 for a single hour.

28

6. Conclusion

The goal of hyper-heuristics is to raise the level of generality by using
methods that are easy-to-implement, cheap-to-maintain, yet deliver excel-
lent performance on different problem domains. We have applied selec-
tion hyper-heuristics to the complex problem of urban transit network de-
sign. Thirty selection hyper-heuristics combining several known selection
and move acceptance methods were tested and applied on a set of bench-
mark instances and their performances were compared to determine the
best algorithm. Our analysis showed the success of the sequence-based selec-
tion method combined with great deluge acceptance method, outperforming
other selection hyper-heuristics in both passenger and operator objectives.
The hyper-heuristic approach which has been applied for this particular
problem for the first time was very successful, beating the current known
state-of-the art results in a very reasonable run times. Our future plan is to
continue working on this research by expanding the ideas mentioned on the
present paper. We will further explore the hyper-heuristic multi-objective
model introduced here, with the goal of obtaining useful compromise solu-
tions cheaply in terms of run times. Furthermore, we will focus our future
efforts on data extracted from publically available sources for real road net-
works, bus routes and passenger demand, rather than simply use artificially
created instances. Later on, we propose to incorporate frequency setting
and fleet size limitation as well as other operational constraints.

References

Arbex, R. O., da Cunha, C. B., 2015. Efficient transit network design and
frequencies setting multi-objective optimization by alternating objective
genetic algorithm. Transportation Research Part B: Methodological 81,
355-376.

Baaj, M. H., Mahmassani, H. S.,; 1991. An Al-based approach for transit
route system planning and design. Journal of Advanced Transportation
25 (2), 187-209.

Baaj, M. H., Mahmassani, H. S., 1995. Hybrid route generation heuristic
algorithm for the design of transit networks. Transportation Research Part
C: Emerging Technologies 3 (1), 31-50.

Bagloee, S. A., Ceder, A. A., 2011. Transit-network design methodology for
actual-size road networks. Transportation Research Part B: Methodolog-
ical 45 (10), 1787-1804.

29

Bilgin, B., Ozcan, E., Korkmaz, E. E., 2006. An experimental study on
hyper-heuristics and exam timetabling. In: International Conference on
the Practice and Theory of Automated Timetabling. pp. 394-412.

Burke, E. K., Bykov, Y., 2008. A late acceptance strategy in hill-climbing
for exam timetabling problems. In: PATAT 2008 Conference, Canada.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.,
Qu, R., 2013. Hyper-heuristics: A survey of the state of the art. Journal
of the Operational Research Society 64 (12), 1695-1724.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Oann, E., Woodward,
J. R., 2010. A classification of hyper-heuristic approaches. In: Handbook
of Metaheuristics. Springer, pp. 449-468.

Byrne, B. F., 1975. Public transportation line positions and headways for
minimum user and system cost in a radial case. Transportation Research
9 (2-3), 97-102.

Ceder, A., 2016. Public transit planning and operation: Modeling, practice
and behavior. CRC press.

Ceder, A., Wilson, N. H., 1986. Bus network design. Transportation Re-
search Part B: Methodological 20 (4), 331-344.

Chakroborty, P., 2003. Genetic algorithms for optimal urban transit network
design. Computer-Aided Civil and Infrastructure Engineering 18 (3), 184—
200.

Chakroborty, P., Wivedi, T., 2002. Optimal route network design for transit
systems using genetic algorithms. Engineering Optimization 34 (1), 83—
100.

Chen, Y., Mourdjis, P., Polack, F., Cowling, P., Remde, S., 2016. Evaluating
hyperheuristics and local search operators for periodic routing problems.
In: European Conference on Evolutionary Computation in Combinatorial
Optimization. Springer, pp. 104-120.

Chew, J. S. C., Lee, L. S., Seow, H. V., 2013. Genetic algorithm for biob-
jective urban transit routing problem. Journal of Applied Mathematics.

Cipriani, E., Gori, S., Petrelli, M., 2012. Transit network design: A proce-
dure and an application to a large urban area. Transportation Research
Part C: Emerging Technologies 20 (1), 3-14.

30

Cooper, I. M., John, M. P., Lewis, R., Mumford, C. L., Olden, A., 2014.
Optimising large scale public transport network design problems using
mixed-mode parallel multi-objective evolutionary algorithms. In: IEEE
Congress on Evolutionary Computation (CEC),. IEEE, pp. 2841-2848.

Cowling, P., Kendall, G., Soubeiga, E., 2000. A hyperheuristic approach to
scheduling a sales summit. In: International Conference on the Practice
and Theory of Automated Timetabling. Springer, pp. 176-190.

Fan, L., Mumford, C. L., 2010. A metaheuristic approach to the urban
transit routing problem. Journal of Heuristics 16 (3), 353-372.

Fan, W., Machemehl, R. B., 2006. Optimal transit route network design
problem with variable transit demand: genetic algorithm approach. Jour-
nal of Transportation Engineering 132 (1), 40-51.

Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., Rashidi, H., 2013. A review
of urban transportation network design problems. European Journal of
Operational Research 229 (2), 281-302.

Garrido, P., Castro, C., 2012. A flexible and adaptive hyper-heuristic ap-
proach for (dynamic) capacitated vehicle routing problems. Fundamenta
Informaticae 119 (1), 29-60.

Guan, J., Yang, H., Wirasinghe, S. C., 2006. Simultaneous optimization of
transit line configuration and passenger line assignment. Transportation

Research Part B: Methodological 40 (10), 885-902.

Guihaire, V., Hao, J.-K., 2008. Transit network design and scheduling:
A global review. Transportation Research Part A: Policy and Practice
42 (10), 1251-1273.

Ibarra-Rojas, O., Delgado, F., Giesen, R., Munoz, J., 2015. Planning, oper-
ation, and control of bus transport systems: A literature review. Trans-
portation Research Part B: Methodological 77, 38-75.

John, M. P., Mumford, C. L., Lewis, R., 2014. An improved multi-objective
algorithm for the urban transit routing problem. In: European Conference
on Evolutionary Computation in Combinatorial Optimization. Springer,
pp- 49-60.

Kalender, M., Kheiri, A., Ozcan, E., Burke, E. K., 2013. A greedy gradient-
simulated annealing selection hyper-heuristic. Soft Computing 17 (12),
2279-2292.

31

Kechagiopoulos, P. N., Beligiannis, G. N., 2014. Solving the urban transit
routing problem using a particle swarm optimization based algorithm.
Applied Soft Computing 21, 654-676.

Kepaptsoglou, K., Karlaftis, M., 2009. Transit route network design prob-
lem: review. Journal of Transportation Engineering 135 (8), 491-505.

Kheiri, A., Keedwell, E., 2015. A sequence-based selection hyper-heuristic
utilising a hidden Markov model. In: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, pp. 417—
424,

Kheiri, A., Keedwell, E., 2017. A hidden Markov model approach to the
problem of heuristic selection in hyper-heuristics with a case study in high
school timetabling problems. Evolutionary Computation 25 (3), 473-501.

Kili¢, F., Gok, M., 2014. A demand based route generation algorithm for
public transit network design. Computers & Operations Research 51, 21—
29.

Lee, Y.-J., Vuchic, V. R., 2005. Transit network design with variable de-
mand. Journal of Transportation Engineering 131 (1), 1-10.

Mandl, C., 1979. Applied network optimization. Operations Research and
Industrial Engineering. Academic Press.

Mandl, C. E., 1980. Evaluation and optimization of urban public transporta-
tion networks. European Journal of Operational Research 5 (6), 396-404.

Marshall, R. J., Johnston, M., Zhang, M., 2015. Hyper-heuristic operator se-
lection and acceptance criteria. In: European Conference on Evolutionary
Computation in Combinatorial Optimization. Springer, pp. 99-113.

Mauttone, A., Urquhart, M. E., 2009. A route set construction algorithm for

the transit network design problem. Computers & Operations Research
36 (8), 2440-2449.

Misir, M., Vancroonenburg, W., Verbeeck, K., Berghe, G. V., 2011. A selec-
tion hyper-heuristic for scheduling deliveries of ready-mixed concrete. In:
Proceedings of the Metaheuristics International Conference. pp. 289-298.

Mumford, C. L., 2013. New heuristic and evolutionary operators for the
multi-objective urban transit routing problem. In: ITEEE Congress on
Evolutionary Computation (CEC), 2013. IEEE, pp. 939-946.

32

Nikoli¢, M., Teodorovi¢, D., 2013. Transit network design by bee colony
optimization. Expert Systems with Applications 40 (15), 5945-5955.

Nikoli¢, M., Teodorovi¢, D., 2014. A simultaneous transit network design
and frequency setting: Computing with bees. Expert Systems with Ap-
plications 41 (16), 7200-7209.

Pacheco, J., Alvarez, A., Casado, S., Gonzélez-Velarde, J. L., 2009. A tabu
search approach to an urban transport problem in northern spain. Com-
puters & Operations Research 36 (3), 967-979.

Pattnaik, S., Mohan, S., Tom, V., 1998. Urban bus transit route network
design using genetic algorithm. Journal of Transportation Engineering
124 (4), 368-375.

Patz, A., 1925. Die richtige auswahl von verkehrslinien bei groflen strassen-
bahnnetzen. Verkehrstechnik 50, 51.

Poorzahedy, H., Rouhani, O. M., 2007. Hybrid meta-heuristic algorithms
for solving network design problem. European Journal of Operational Re-
search 182 (2), 578-596.

Schéele, S., 1980. A supply model for public transit services. Transportation
Research Part B: Methodological 14 (1-2), 133-146.

Schobel, A.; 2012. Line planning in public transportation: models and meth-
ods. OR Spectrum 34 (3), 491-510.

Szeto, W. Y., Wu, Y., 2011. A simultaneous bus route design and frequency
setting problem for Tin Shui Wai, Hong Kong. European Journal of Op-
erational Research 209 (2), 141-155.

Tom, V., Mohan, S., 2003. Transit route network design using frequency
coded genetic algorithm. Journal of Transportation Engineering 129 (2),
186-195.

Urra, E., Cubillos, C., Cabrera-Paniagua, D., 2015. A hyperheuristic for
the dial-a-ride problem with time windows. Mathematical Problems in
Engineering 2015.

Vaughan, R., 1986. Optimum polar networks for an urban bus system with a
many-to-many travel demand. Transportation Research Part B: Method-
ological 20 (3), 215-224.

33

Wan, Q. K., Lo, H. K., 2003. A mixed integer formulation for multiple-
route transit network design. Journal of Mathematical Modelling and Al-
gorithms 2 (4), 299-308.

Yin, P.-Y., Lyu, S.-R., Chuang, Y.-L., 2016. Cooperative coevolutionary
approach for integrated vehicle routing and scheduling using cross-dock
buffering. Engineering Applications of Artificial Intelligence 52, 40-53.

Zhao, F., Zeng, X., 2006. Simulated annealing—genetic algorithm for transit

network optimization. Journal of Computing in Civil Engineering 20 (1),
57-68.

34

