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Abstract

In this paper, we study a dynamic and stochastic pickup and delivery problem proposed recently by Srour,

Agatz and Oppen. We demonstrate that the cost structure of the problem permits an effective solution

method without generating multiple scenarios. Instead, our method is based on a careful analysis of the

transfer probability from one customer to the other. Our computational results confirm the effectiveness of

our approach on the dataset of Srour et al., as well as on new, large problem instances.
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1. Introduction

In this paper, we consider dynamic pickup and delivery problems with time window uncertainties as defined

recently by Srour et al. (2016). In that model, there is a transportation service provider that gets calls from

customers with exact pickup and drop-off locations, but with inaccurate estimations of the time windows for

the transportations. The time windows of the service requests become known with certainty only after a

second call from the customers, shortly before the service may start.

Srour et al. (2016) describe a couple of real-world scenarios where the above uncertainty is predominant.

For instance, harbor pilots, who drive ships to berth, know the locations of the ships, and also where they

will berth, but the arrival times of the ships are often uncertain. A related problem is the transportation of

containers by tracks from pickup points to drop-off locations, where the exact time of releasing a container

at the pickup terminal is not known in advance. They also mention transportation of patients after medical

treatments from the hospital to home, where the exact completion time of the treatments is not known with

certainty. A related application is on-demand chauffeur services that drive home clients in their own cars after

a party. We can extend this list by transportation tasks in a workshop, where semi-finished goods must be

transported by fork-lifts, or autonomously guided vehicles between the machining cells, and the pickup and

drop-off locations are perfectly known, but the time window of service is uncertain even if a schedule of the
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manufacturing operations is broadcasted in advance. As Srour et al. noted in their examples the customers

can request the transportation service by giving the exact pickup and drop-off locations, while providing the

time window of starting the service only approximately, e.g., around 2 p.m. Then, when the customer has

more information about its service requirements, it calls the service provider again telling the time window in

which it expects the transportation to start from the pickup to the drop-off location. Since the pickup and

drop-off locations may be known well in advance, and also some estimation of the time window of starting

the service is preannounced by each customer, the service provider may exploit this information to increase

service level and to reduce its costs.

The main result of this paper is a new algorithm that may help transportation service providers that

operate in the above context to find better vehicle tours. Our method estimates the expected operational

costs, which is the sum of the total deadhead cost, and the penalty paid due to missed customer requests.

The novelty of our approach is that we solve only a single minimum cost flow problem at each decision point,

which determines the next task for each vehicle. In contrast, Srour et al. maintain a set of scenarios and solve

a mixed-integer linear program (MIP) for each of them at each decision point, and then they synthesize the

routings of the vehicles. However, our method outperforms their method in terms of average total cost on

several classes of instances with various characteristics, while it is inferior only in a well-characterized setting.

We believe that the success of our approach is due to the cost structure of the problem at hand, where the

penalty of rejecting a customer request is very high compared to deadhead costs. Another advantage of our

method is its low running time, the entire simulation run with 100 customers and 40 vehicles was less than a

second. The exact solution of the same instance with perfect information and large desired time windows was

frequently more than 20 minutes on a modern notebook. This would prohibit the application of scenario-based

approaches which would repeatedly solve MIPs, as the solution time of a single MIP would be too large, not

mentioning that for a large number of customers, one may have to consider much more scenarios than Srour

et al. did on their 20-customer instances.

In Section 2, we review the related literature, and in Section 3 we give a formal description of the problem

studied. Our method is presented in Section 4, and the datasets used in our computational experiments are

described in Section 5. In Section 6, we summarize computational results, where on the one hand, we compare

our method to that of Srour et al., and on the other hand, we evaluate it on new, large instances. We conclude

the paper in Section 7.

2. Literature review

Dynamic pickup-and-delivery is a rapidly developing field of transportation research, which is certified by

a series of recent review papers, see e.g., Berbeglia et al. (2010); Pillac et al. (2013); Psaraftis et al. (2016). In
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Psaraftis (1988), a vehicle routing problem is characterized as dynamic, if the input of the problem is received

and updated concurrently with the determination of the routes. Using the terminology of Berbeglia et al.

(2010), in this paper we focus on a one-to-one problem, where each request has an origin and a destination. In

a dynamic and stochastic problem, some exploitable stochastic information is available about the dynamically

revealed information (Pillac et al., 2013).

The problem studied in this paper has recently been proposed by Srour et al. (2016). In their model,

each customer first preannounces its request, then confirms it at some later time, not much before the service

actually should start. In the preannouncement, the exact pickup and drop-off locations are provided along

with an estimation of the pickup time by means of a time window. However, the preannounced time window

can change in the future when the customer confirms its request. On the other hand, the distribution of the

difference between the start (or end) of the preannounced and the confirmed time windows is known. The

authors propose 4 methods to solve the dynamic problem. All the methods are based on solving a MIP,

which models a (static) pickup and delivery problem with some of the customer requests. In the ”Ignore”

method, preannouncements are ignored and at any time only the confirmed requests are used to determine

the tours of the vehicles. In the ”Näıve” method, preannounced time windows are used until the customers

confirm their requests, from which time on they are replaced by the confirmed ones. However, in the more

advanced ”MTS-veh” and ”MTS-seq” methods, first multiple scenarios are generated for the realization of

preannounced, but unconfirmed time windows, which are used along with the confirmed ones in the MIP

models to be solved, for more details see the Appendix. The scenario-based approach finds its roots in the

paper of Bent and Van Hentenryck (2004), who propose a method for a dynamic routing problem with time

windows. In their method, multiple scenarios are generated containing the known requests, and also some

possible future requests. Future requests are obtained by sampling their probability distributions. In Tirado

and Hvattum (2017), a dynamic and stochastic routing problem of a sea transportation company is studied,

where vessels have to transport cargo between sea-ports, and part of the customer requests are known in

advance, while the others arrive according to some probability distribution. The scenarios generated at each

decision point contain the known, unprocessed requests, and also a sampling of the future requests. The

authors propose local search based heuristics to evaluate the scenarios and to choose the next actions for the

vessels.

The main novelty of the model of Srour et al. (2016) is that until the customers confirm their requests, only

stochastic information is available on the desired service time windows, but the pickup and drop-off locations

are known from the preannouncements. In contrast, in most of the previous work on dynamic vehicle routing

problems, the dynamic data consists of the complete user requests, i.e., pickup and drop-off locations, along

with the desired time windows are revealed together. Mitrović-Minić et al. (2004) consider a dynamic pickup
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and delivery problem with time windows where no probabilistic information about future requests are known.

Instead, they divide the time horizon into short and long term, and apply different objective functions for the

two periods when inserting new customer requests into the tours of the vehicles. Günlük et al. (2006) propose

a complex method for continually reoptimizing the schedule of a fleet of vehicles and drivers to adapt it to

the new or updated reservations. They maintain a foreground schedule, which is always feasible, and it is

modified either by incorporating into it the output of the integer programming based optimization engine run

periodically, or by a fast heuristic to respond to changes since the last run of the optimization engine. Ichoua

et al. (2006) study a dynamic vehicle routing problem, where the area served is divided into geographical

zones, and also the planning time horizon is divided into periods. The requests are not known in advance,

but the probability of receiving at least one customer request in a given geographical zone and time period

can be calculated. This information is used in order to decide if a vehicle should stay in the same zone and

wait for customer requests or move to another zone in the next period. The authors adapt the method of

Gendreau et al. (1999) to determine the routing of the vehicles. Ho and Haugland (2011) formulate and solve

a dial-a-ride problem, where each customer request has a probability known by the service provider. For

finding the routes of the vehicles, a local search, and a tabu search procedure are proposed, in which the next

solution is chosen by selecting the best (non-tabu) neighbor of the current solution. The value of a solution

is its expected cost, and a procedure is devised for finding the best neighbor in O(n5) time, where n is the

number of customers. Therefore, the computation time of a single iteration is O(n5), which is considerable if

n is large. Ferrucci et al. (2013) devise a pro-active real-time control approach for a dynamic vehicle routing

problem in which dummy customer requests are generated based on historic data to anticipate future requests.

The authors classify the quality of stochastic knowledge attainable from past request information, and they

identify structural diversity as a crucial criterion. Albareda-Sambola et al. (2014) consider a multi-period

vehicle routing problem with probabilistic information. In their model, the time horizon is divided into time

periods, and for the current as well as for the future periods, the probability that the given period is in the

time window of the customer is known. For the current period it is 0 or 1, but for future periods, it can be any

value between 0 and 1. In each time period, it is decided which customers to serve, and also the tours of the

vehicles serving them are planned. Muñoz-Carpintero et al. (2015) propose a method based on evolutionary

algorithms to solve a dial-a-ride problem, in which future requests are not known in advance, but the average

service patterns from the past are taken into account to devise robust tours for the vehicles.

3. Problem statement

In this section, we first define and formalize the static and deterministic problem (Section 3.1). This

is a classical pickup and delivery problem with unit vehicle-capacity: there are vehicles that have to serve
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Table 1: Notations

V , J fleet of vehicles, and set of customers

[ei, `i], [êi, ˆ̀
i] desired, and respectively estimated (preannounced) time window of customer i

ai, ci preannouncement time, and confirmation time

TWi length of the time window (TWi = `i − ei = ˆ̀
i − êi)

Li lead time (Li = ei − ci)

disti Euclidean distance between the pickup and the drop-off location of customer i

f, g fixed constants for calculating the profit

profiti profit earned by serving customer i (f + disti × g)

h cost factor for computing the routing cost

Jrej rejected customers

RC routing cost: h × total distance operating empty of all the vehicles

LP lost profit: the total profit missed of all the rejected customers (
∑
i∈Jrej profiti)

p(i), d(i) pickup and drop-off nodes of customer i in the network

σ speed of the vehicles

τα,β travel time between locations α and β

∆ the parameter of the uniformly distribution of ei, that is, ei ∼ U(êi −∆, êi + ∆)

customers (jobs) to earn as much profit as possible. Due to the capacity of the vehicles, each vehicle can serve

at most one customer at the same time. In our problem description, we closely follow that of Srour et al.

(2016), however, our integer programming formulation is different from theirs for technical reasons.

Then, we turn to a dynamic and stochastic model in which information about the customers is disclosed

gradually over time. We present the details of the dynamic and stochastic model in Section 3.2. Again, the

presented model is identical to that of Srour et al. (2016). We have summarized the most important notations

of this section in Table 1.

3.1. The static, deterministic problem

A transportation service provider (service provider, for short) has a fleet of vehicles, V , and each vehicle

can serve only one request at a time. The vehicles are identical from the point of view of the customers. The

service provider receives a set of pickup and delivery requests from a set of customers J .

A service request (customer) i ∈ J specifies the pickup and drop-off locations and a time window for the

desired pickup time. That is, since typically the customers have some flexibility in their timing, each customer

i specifies its desired pickup time by means of a time window [ei, `i], where ei is the earliest pickup time, and

`i = ei +TWi is the latest pickup time, and TWi is the length of the time window . The transportation service

for customer i cannot start before ei, or after `i. So, if no vehicle starts to serve customer i in the time window

[ei, `i], then the request is rejected .
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The profit earned by the service provider by serving a customer i ∈ J is

profit i = f + disti × g,

where f and g are fixed amounts in some monetary unit, while disti is the Euclidean distance between the

pickup and the drop-off location of i. The service provider wants to minimize its total cost defined as

total cost = RC + LP, (1)

where RC is the routing cost and LP is the lost profit . The former one is computed as

RC = h× the total distance of the vehicles operating empty,

i.e., the cost of moving from the depot to the first pickup location, from a drop-off location to the next pickup

location, or back to the depot. The cost of serving the requests, i.e., a function of the disti, is not added to

the cost function, because that is paid by the customers. The lost profit is

LP =
∑
i∈Jrej

profiti,

where the summation is over all the rejected (unserved) customers Jrej .

In the above model, we may reinterpret rejection as subcontracting some of the requests to external

providers. That is, suppose the service provider pays an amount of f1 + g1 × disti to another transportation

company for fulfilling the request of each rejected customer i, and it earns f2 + g2 × disti′ by serving a

customer i′ (f1, f2, g1, g2 are fixed). Let f := f1 +f2 and g := g1 +g2, and then the lost profit (
∑

i∈Jrej (f+g×

disti)) represents the difference between the profit actually earned by the service provider, and the maximum

achievable profit which could be earned by serving all of the customers (without the routing costs in both

cases).

The additional assumptions in the model are as follows. The vehicles start from a depot and have to

return to the same depot after finishing operation. Like Srour et al. (2016), we assume that the travel times

of the vehicles are deterministic and can be calculated accurately using the distances between locations. The

travel time between locations α and β is denoted by τα,β, while their Euclidean distance is denoted by distα,β.

Using the notation σ for the speed of the vehicles, we have σ · τα,β = distα,β.

Now we formulate the problem as a mathematical program. The essence of the model is a network with

a source node s and a sink node t, one node for each vehicle v, and for each customer i ∈ J , two nodes, p(i)

and d(i), representing the pickup and drop-off locations, respectively. There are directed arcs from the source

node to the vehicle nodes, from the vehicle nodes to the pickup nodes of the customers, from the pickup to

the drop-off node of the same customer, from the drop-off nodes of the customers to the pickup nodes of other
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v1

v2
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p(i) d(i) p(j) d(j)

t

vk: vehicle node

p(i), d(i): pickup and drop-off nodes of customer i

Figure 1: Fragment of the network

customers, and from each vehicle node and from each drop-off node to the sink node (see Fig. 1). The cost of

these arcs are listed below:

costα,β :=



0,
if (α = s and β ∈ V ), or (α ∈ V and β = t),

or, for some i ∈ J, α = p(i) and β = d(i)

h · distdepot ,p(i) − profit i, if α ∈ V and β = p(i) for some i ∈ J

h · distd(j),p(i) − profit i, if α = d(j) and β = p(i) for some i 6= j ∈ J

h · distd(i),depot , if, for some i ∈ J, α = d(i) and β = t.

Let N denote the set of all nodes in the network and E the set of all arcs. Each arc has capacity 1. The

supply of the source node s is set to |V |, which has to be carried to the sink node t, which has a matching

demand.

Each s− t path in this network represents a routing plan of a vehicle, i.e., the first node of the path after

the source node is a vehicle node, then comes a (possibly empty) alternating sequence of pickup and drop-off

nodes, and finally, an arc to the sink node representing the way back to the depot.

Now we define an integer program based on the network above. There is a binary routing variable xα,β for

each arc (α, β). If xα,β = 1, where α and β denote pickup or drop-off locations, respectively, or α = s (start

from the depot), or β = t (return to the depot), then it means that there is a vehicle that moves between

these locations. In addition, there is a set of continuous variables δi for each i ∈ J , representing the time of

starting to serve customer i.
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After these preliminaries, the mathematical programming formulation is as follows.

minimize
∑

(α,β)∈E

costα,βxα,β (2)

subject to

xsv = 1, ∀v ∈ V (3)∑
(α,β)∈E

xα,β =
∑

(β,α)∈E

xβ,α, ∀α ∈ N \ {s, t} (4)

max{ei, τdepot,p(i)} ≤ δi ≤ `i, ∀i ∈ J (5)

δj +M(1− xd(i),p(j)) ≥ δi + τp(i),d(i) + τd(i),p(j), ∀i, j ∈ J (6)

xα,β ∈ {0, 1}. ∀(α, β) ∈ E (7)

The objective function to be minimized expresses the total cost traveling idle plus the lost profit, since the

profit of serving customer i is deduced from the traveling cost for each arc (α, p(i)) (cf. definition of costv,p(i)

and costd(j),p(i)), and since from p(i) any path must cross the edge (p(i), d(i)), any minimum cost feasible

solution minimizes the total cost of traveling idle plus
∑

i∈J profit i · (1− xp(i),d(i)), which is the lost profit.

Constraint (3) guarantees that each vehicle has a (possibly empty) task list, (4) ensures that the vehicle

cannot stop outside the depot, (5) implies that the vehicles can serve customers only within their time

windows, and the service cannot start earlier than a vehicle can get to the respective pickup location, while

(6) guarantees that the vehicles have enough time to serve a customer and then travel to the next one. Note

that (6) rules out cycles in the feasible solutions, i.e., each arc (α, β) with xα,β = 1 belongs to an s− t path

P , where we have xα′,β′ = 1 for each (α′, β′) ∈ P .

Remark: We can drop several arcs from the network: if ei + τp(i),d(i) + τd(i),p(j) > `j then it is impossible

for a vehicle to serve j ∈ J after serving i ∈ J , thus we can delete the arc (d(i), p(j)).

3.2. The dynamic, stochastic problem of Srour et al. (2016)

As we have mentioned, information about the customers is not known initially. We get this information

about each customer in two steps. First, the customers preannounce their service requests. The preannounce-

ment for i ∈ J is made at time ai, and it specifies the pickup and the drop-off locations, along with an

estimation of the earliest and latest pickup times, êi and ˆ̀
i, respectively. These times determine the time

window of customer i, i.e. TWi = ˆ̀
i− êi. Then, each customer i ∈ J confirms its request by calling the service

provider at some time ci > ai again, and specifying the desired pickup time window with the earliest pickup

time ei, and the latest pickup time `i = ei + TWi. Each customer i reports its desired time window [ei, `i]

by Li time units before the service may start, where Li is a parameter known by the service provider, i.e.,

ei − ci = Li holds. The above data is illustrated on a timeline in Fig. 2.
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nounced, ai

job con-

firmed, ci ei

êi

`i

ˆ̀
i

announcement

lead time, Li

desired time

window

preannounced

time window

Figure 2: The various data attached to a request

The preannounced time window [êi, ˆ̀
i] is only an estimation, or forecast of the desired time window [ei, `i].

The difference of ei− êi can be seen as a random variable known only in distribution in the course of planning

until customer i confirms its request. The distribution may be empirically learned by the service provider

operating for a longer period. So, we assume that ei is uniformly distributed in [êi−∆, êi+∆], for some known

parameter ∆. Likewise, the parameter Li known by the service provider may be learnt from past experience,

or may be part of a service contract. These assumptions are from Srour et al. (2016).

At any moment of time, a vehicle can be in one of the following states: (i) waiting idle at some location

(at the depot, at the pickup, or drop-off location of a customer, or at some waiting area), (ii) on the way to

some target location set by the service provider, (iii) transporting a customer to its drop-off location. The

service provider can interrupt (ii), and set a new target location for a vehicle, or may simply ask a vehicle to

stop and wait at its current position until the next command.

We want to suggest a strategy for the service provider that helps minimize the total cost (2). At any

time moment the strategy knows all the preannounced, and confirmed requests, the announcement lead times

along with the distribution of the possible realizations of the pickup time windows, and the states and current

positions of the vehicles.

4. Algorithmic approach

In this section, we describe a method that helps the transportation service provider to operate its vehicles.

Firstly, we give an overview of the entire process in Section 4.1. Then, we present two simple methods that

can be used for improving the results: a strategy for reducing the total distance travelled idle is presented in

Section 4.2, and in Section 4.3 a simple heuristic is described to estimate the number of vehicles needed to

serve the preannounced requests. After that, we outline the core algorithm that has to be applied at every

decision point (Section 4.4). In the proposed algorithm, a minimum cost flow problem is solved, where some

of the arc weights are based on the probabilities of some events. A method for computing these probabilities

is given in Section 4.5, where a numerical example is also presented. An illustration of the complete method

is provided in the Appendix.
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4.1. Overview of the method

The transportation service provider receives a sequence of pickup and delivery requests over time, and it

maintains a routing plan for each vehicle under its control. The routing plans are adjusted time and again to

take into account the new events. The vehicles get commands only for the next action. New commands can be

issued at any moment of time, and the current target location or state of a vehicle can be modified arbitrarily,

with the exception that the transportation of a customer cannot be interrupted. From an algorithmic point

of view the service provider executes an Event loop as shown below.

Algorithm Event loop

Initialization: each vehicle is in the depot, no information is available about the customers.

1. Wait until a new event occurs (a customer preannounces/confirms its request or a vehicle arrives to its

target location).

2. Invoke Subroutine Opt (see Section 4.4) with the actual time tact, the actual positions and states of the

vehicles and the preannounced or confirmed requests received until tact.

3. According to the output of Subroutine Opt, send new commands to the vehicles.

4. If all customers are served or rejected, then the vehicles go back to the depot, and the processing of

events is stopped. Otherwise, proceed with Step 1.

The algorithm maintains the ”wall clock” time tact, which is initially set to the beginning of the service

period, and updated each time an event is processed. Events are processed in chronological order, no special

tie-breaking rule is applied. Re-optimization occurs upon any of the following events:

• a preannouncement is received from a customer,

• a customer confirms its request,

• a vehicle arrives to the target location set by the service provider (waiting area, pickup / drop-off

location).

In order to decide about the possible modification of the routing plans, the service provider has to solve

an optimization problem while taking into account the state and the current position of the vehicles, the

preannounced requests along with the distribution of the possible realizations of the time windows, and the

confirmed requests. After solving the optimization problem, a subset of vehicles may receive new commands,

i.e., if the result is that a vehicle has to change (i) its target location, or (ii) its state, then it gets a new

command. Note that (i) may occur if a vehicle is on the way to a target location, but as a result of re-

optimization, it has to go to another location, and (ii) may occur if the vehicle is waiting at some location,
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Figure 3: Partially approaching the pickup location of a customer

and the new routing plan sets a new target location, or it is on the way to some target location, and according

to the new routing plan it has to stop at its current position and wait for the next command. As we will see in

the computational results, waiting at some location may readily help reduce the total distance traveled idle.

In Section 4.4, we describe the optimization algorithm (Subroutine Opt) to determine the new routing

plans for the vehicles.

4.2. Partial execution of commands

In this section, we describe a simple technique to reduce the total distance traveled idle of the vehicles.

Suppose a vehicle v gets a command to go to a customer, say i, which has not confirmed its request yet.

This could be a good idea if the announcement lead times are short and the time windows are narrow. Upon

arriving to the pickup location of i, another customer, say j, not too far away confirms its request. Then v

may serve customer j instead of i, and later another vehicle may serve i. However, this can be a detour for

v. To reduce the total deadhead costs, the vehicles can apply the following strategy. Instead of going to the

pickup location of i, the vehicle v only approaches the pickup location of i at a distance such that the time

needed to arrive to the pickup location of i is Li + γTWi. This guarantees that when i confirms its request

at time ci, then at time ci + Li + γTWi, vehicle v can arrive to the pickup location of i. Since Li = ei − ci

by definition, this means that v can arrive to i after a fraction γ of the desired time window of i has passed.

We call this strategy partial execution with parameter γ. On the other hand, if the vehicles always go to the

pickup location of the unconfirmed requests, then they follow the full execution strategy.

For an illustration, see Fig. 3. In the figure, we assume that vehicle v has a unit speed, so time is equivalent

to distance traveled. Since the travel time from the pickup location of i to the pickup location of j is larger

than that from the waiting area to j, should j confirm its request before i, the service provider could modify

the routing of v at a smaller cost. In Section 6, we will demonstrate that this simple strategy can reduce the

total deadhead cost.

4.3. Reducing the number of vehicles based on the preannounced requests

If the number of vehicles is significantly larger than necessary, our method may produce high routing costs,

since it tries to give some task to every vehicle. To decrease it, we have implemented a simple method: at
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the beginning of the service period, after receiving the preannounced requests, the service provider can solve

the static, deterministic problem replacing ei and `i with the preannounced times êi and ˆ̀
i (the values ei

and `i are not known before ci). Let V ∗ be the number of vehicles that serve at least one customer in the

optimal solution of the static, deterministic problem. Then, during the service period, the service provider

uses only min{|V |, (1 + ε)V ∗} vehicles to serve the confirmed requests, where ε ≥ 0 is a parameter that can

be set experimentally. This method is usable only if all the preannounced requests are received by the service

provider before the beginning of the service period.

4.4. Probabilistic model and min-cost-flows

In this section, we describe the optimization problem solved by the service provider each time it wishes to

adjust the routing plans of the vehicles.

Suppose that (re)optimization occurs at time tact. We say that a customer i ∈ J is rejected at time tact, if

it has already confirmed its request (ci ≤ tact), it is not served yet, and the latest pickup time `i < tact. Note

that at tact, the service provider knows the following data:

• the actual position and task (if any) of each vehicle,

• preannounced information for the customers with ai ≤ tact,

• confirmed information (desired pickup time window [ei, `i]) for customers with ci ≤ tact,

• the parameter ∆.

The first step of the method is to build a network like we have presented in Section 3.1, using only the

information known at tact. After that, a minimum cost flow problem is solved, and from the solution the next

action of each vehilce is extracted. Note that flow problems can be solved very fast, see Ahuja et al. (1993),

thus we expect very good running times for the whole procedure (see Section 6.2.1).

We construct the network for the optimization problem to be solved at tact by removing some nodes and

arcs of the network described in Section 3.1, and by modifying the arc costs based on a probabilistic model.

At tact, we abandon all the customers that are already rejected at tact, or being served by a vehicle (on the

way from the pickup to the drop-off location), already served, or who have not preannounced their request

yet. Let Jact denote the set of customers which are not abandoned at tact. We remove from the static network

all the nodes p(i) and d(i) with i ∈ J \ Jact along with all the incident arcs.

Since at time tact each vehicle can be at some location different from the depot, or may be serving a

customer, we have to redefine the distances distv,β, where v ∈ V and β ∈ {t}∪{p(i) | i ∈ Jact}. Let loc(v, tact)

denote the location of vehicle v at time tact.
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• If v is serving some customer j at time tact, then for each i ∈ Jact, let distv,p(i) := dist loc(v,tact),d(j) +

distd(j),p(i) (the total distance to be traveled to the pickup location of i through the drop-off location of

j), and let distv,t := dist loc(v,tact),d(j) + distd(j),t (the total distance to be traveled to the depot).

• If v is not serving a customer, then for each customer i ∈ Jact, let distv,p(i) := dist loc(v,tact),p(i) (the

distance between loc(v, tact) and the pickup location of i). Likewise, let distv,t := dist loc(v,tact),t (the

distance between loc(v, tact) and the depot).

With these distances, we redefine the traveling times τα,β as distα,β/σ, where σ is the common speed of the

vehicles.

In our model there are two sources of uncertainty: (1) the desired time window [ei, `i] for each customer

i ∈ Jact, who has not confirmed its request by tact, and (2) the completion time of serving some customer

i ∈ Jact, which has not been started by tact. Therefore, we associate a feasibility indicator (a random variable)

Iα,p(j) ∈ {0, 1} with each arc entering the node p(j) for j ∈ Jact, that has the following meaning:

(a) If α = v for some vehicle node v ∈ V , then Iv,p(j) = 1 if and only if the vehicle v can arrive to the pickup

location of i before `j .

(b) If α represents the drop-off location of some customer i ∈ Jact, then Id(i),p(j) = 1 if and only if it is feasible

to serve both of customers i and j (in this order) by the same vehicle, that is, the completion time of

serving i plus the travel time to the pickup location of j is not more than `j . Note that the possibility of

serving j after i depends on two events: (i) on the completion time of i (which also depends on several

events, like on `i and on the time when the vehicle that serves i arrives to the pickup location of i) and

(ii) on `j . Our method is based on a simplification: when we calculate the probability of Id(i),p(j) = 1,

we only take i and j into consideration, and neglect the positions of the vehicles (for details see the next

section).

If α = v, and customer j has confirmed its request by tact, then the value of Iv,p(j) can be determined with

certainty. In contrast, if customer j has not confirmed its request, then the value of Iv,p(j) is uncertain in our

model. Furthermore, the value of Id(i),p(j) may not be decided with certainty even if both of the customers i

and j have confirmed their requests by tact, since it depends on when the vehicle, which is supposed to serve

both i and j, completes i. We give full details in Section 4.5.

For the sake of simpler computations, we assume that the feasibility indicators are independent.

The arc costs are redefined as follows. The cost of each arc (α, p(j)) is redefined as h·distα,p(j)−P (Iα,p(j) =

1) · profit j
1, i.e., we subtract the expected profit of serving customer j from the routing cost from α to the

1This form of using the probabilities was suggested by a referee. Our original formula was P (Iα,p(j) = 1)·(h·distα,p(j)−profitj),
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pickup location p(j) of customer j. Further on, for each arc (v, t) we also redefine the cost using the updated

distv,t values. The cost of all other arcs remain as defined for the static, deterministic problem.

After setting the arc costs in the modified network, a minimum cost flow problem is solved. The next

statement is about the interpretation of the solution.

Proposition 1. The minimum cost flow problem always admits an optimal integral (0/1) solution. Further-

more, the arcs with flow value 1 induce |V | (internally) node disjoint s− t paths and possibly isolated directed

cycles comprising only customer nodes.

Proof. Since arc capacities are uniformly 1, and the network admits |V | arc disjoint s− t paths through the

vehicle nodes, there always exists an optimal, integral (0/1), minimum cost s − t flow in the network, see

e.g., Ahuja et al. (1993). Furthermore, any feasible, integral s − t flow can be decomposed into a set of |V |

internally node disjoint s − t paths, and possibly to some isolated cycles consisting of only customer nodes

p(i) and d(i), because from each node p(i) there is a single outgoing arc (to node d(i)) of unit capacity. This

decomposition immediately provides the tours of the vehicles. Notice that an integral optimal solution cannot

contain s− t walks with loops, i.e., a sequence of consecutive edges from s to t with unit flow on each arc of

the sequence that passes through an arc at least twice, because such a walk should contain an arc (p(i), d(i))

at least twice for some customer i, which is impossible, because then the inflow at node p(i) would be at least

two, while the outflow can only be 1 due to the unit capacity of the arc (p(i), d(i)).

Using the proposition, it is easy to determine the next action of each vehicle, we only have to find

the outgoing arc from each vehicle node v with unit flow. To sum up, we present a pseudo code of the

reoptimization algorithm:

Subroutine Opt

Input: actual time tact, actual positions and states of the vehicles, confirmed information from each customer

i with ci ≤ tact, preannounced information from each customer with ai ≤ tact.

Output: new actions for the vehicles

1. Build a minimum cost flow problem with respect to tact.

2. Search an optimal (0/1) solution.

3. Determine |V | (internally) node disjoint s− t paths from the arcs with flow value 1 in the solution.

4. Determine the next action for each vehicle (according to the node that follows the vehicle node in a

path).

but the new formula improved the computational results in terms of average costs by 1-2% points.
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It remains to determine the probabilities P (Iα,p(j) = 1), which is the topic of the next section.

4.5. Probabilities

In this section, we set up a probabilistic model for computing the probabilities P (Iα,p(j) = 1), where

α ∈ V ∪ {d(i) | i ∈ Jact}, and j ∈ Jact. In order to simplify notation, for each vehicle v and customer i, let τvi

denote the total time needed for vehicle v to arrive to the pickup location of customer i, i.e., τvi := distv,p(i)/σ.

Furthermore, let τij := τd(i),p(j) for each pair of customers i 6= j.

In order to define a probabilistic model for computing P (Iα,p(j) = 1), we introduce two random variables,

Xi and Yi, for each i ∈ Jact. Xi represents the completion time of serving customer i, that is, the time point

when a vehicle completes the request of customer i. Yi represents `i, the end of the desired time window of i.

Now we determine the domain of Xi and Yi, respectively.

As for Xi, if customer i has already confirmed its request by time tact, then the earliest finish time of

serving i is efi = max{ei, tact} + τi, and the latest possible time to finish i is lfi = `i + τi, where τi is the

travel time from the pickup location to the drop-off location of customer i. Otherwise, if i has only made the

preannouncement by tact, then efi = max{tact + Li, êi − ∆} + τi, and lfi = ˆ̀
i + ∆ + τi. In either case, we

assume, for the sake of simple modeling, that Xi is uniformly distributed in the interval [efi, lfi].

Concerning Yi, if customer i has confirmed its request by time tact, then `i is known at time tact, and the

earliest, and latest time point when the pickup time window of i may end is epi = lpi := `i, and Yi = lpi

with probability 1. Otherwise, if i has only made the preannouncement by tact, then epi = max{tact + Li +

TWi, ˆ̀
i −∆}, and lpi = ˆ̀

i + ∆, and Yi is uniformly distributed in the interval [epi, lpi].

Now we are ready to determine the probabilities P (Iα,p(j) = 1). We distinguish two cases. If α = v for

some v ∈ V , then

Iv,p(j) =

 1, if tact + τvj ≤ Yj

0, otherwise.

Therefore, P (Iv,p(j) = 1) := P (tact + τvj ≤ Yj). Now we can determine P (tact + τvj ≤ Yj) easily:

P (tact + τvj ≤ Yj) :=


1, if tact + τvj ≤ epj ≤ lpj
lpj−tact−τvj
lpj−epj , if epj < tact + τvj ≤ lpj

0, otherwise, i.e., max{tact + τvj , epj} > lpj

Now suppose α = d(i) for some i ∈ Jact. Then we have

Id(i),p(j) =

 1, if Xi + τij ≤ Yj

0, otherwise.
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Therefore, P (Id(i),p(j) = 1) := P (Xi + τij ≤ Yj), and we have

P (Xi + τij ≤ Yj) =


1, if lfi + τij ≤ epj

0, if efi + τij > lpj
lfi∫
efi

fXi(x)P (Yj ≥ x+ τij)dx, otherwise

(8)

where fXi(x) is the probability density function of Xi, i.e., fXi(x) = 1/(lfi − efi) for x ∈ [efi, lfi], and 0

otherwise. To compute (8), we define some quantities. Let p := P (Xi ≤ lpj − τij), p̃ := P (Xi ≤ epj − τij),

q := P (Yj ≥ efi + τij), and q̃ := P (Yj ≥ lfi + τij). Then, we distinguish four cases:

P (Xi + τij ≤ Yj) =



pq/2 if p < 1 and q < 1

(q + q̃)/2 if p = 1 and q < 1

(p+ p̃)/2 if p < 1 and q = 1

1− (1− p̃)(1− q̃)/2 if p = q = 1.

(9)

Now we provide a numerical example.

Example 1. In this example, we have two customers and we want to determine the probability that a vehicle

can serve both customers 1 and 2 in this order. Customer 1 wants to go from location (1, 0) to (2, 0), while

customer 2 from location (4, 0) to (5, 0). The preannounced time window of customer 1 is [ê1, ˆ̀
1] = [10, 12],

and [ê2, ˆ̀
2] = [12, 14] for customer 2, and suppose ∆ = 2. This means that a vehicle with unit speed can start

serving customer 1 in the time window [8, 14] = [ê1 − ∆, ˆ̀
1 + ∆], thus it arrives to the drop-off location of

customer 1 in the time interval [9, 15] and to the pickup location (4, 0) of customer 2 in [11, 17] (see Fig. 4

(a)). On the other hand, the latest pickup time (`2) of customer 2 is in the time interval [12, 16] (see the upper

part of Fig. 4 (a)). The dotted area in Fig. 4 (b) depicts the possible realizations of `2 (horizontal axis), and

the completion time of the request of customer 1 by the same vehicle (vertical axis) enabling serving customer

2 as well.

Since the probabilities are uniform and the dotted area is exactly the half of the area of the rectangle in

Fig. 4 (b), the probability sought is 1/2.

Now suppose that customer 1 confirms its desired time window [e1, `1] = [12, 14]. It means that if a vehicle

with unit speed serves customer 1, it will arrive to the drop-off location in the time interval [13, 15], and to

the pickup location of customer 2 in the time interval [15, 17]. This information largely decreases the chance

of serving customer 2 after customer 1 by the same vehicle, because then the searched probability is 1/16.

Finally, customer 2 also confirms its desired time window [e2, `2] = [14, 16]. Since the desired time win-

dow finishes later than the preannounced one, the chance of serving customer 2 after customer 1 increases.

Formally, a vehicle can serve customer 2 after customer 1 only if it arrives to the pickup location of customer
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Figure 4: Illustration for Example 1: possible realizations of serving customer 1 and arrival to customer 2 by the same vehicle

with the possible realization of [e2, `2] (a), the possibility of serving customer 2 after customer 1 in the different realizations (b).

2 before `2 = 16. The corresponding probability is 1/2, since the vehicle will arrive to the pickup location of

customer 2 in the time interval [15, 17] (with uniform distribution).

5. Test data

We have evaluated our method on two datasets. The first one is from Srour et al. (2016). The data files are

freely available at https://sites.google.com/site/pdptwinstances/, accessed on March 31, 2017. These

instances help compare the results of our method with a recently published one. Since all the instances of

Srour et al. comprise only 20 customer requests, we have also generated larger ones containing 100 customer

requests each.

Note that the data files include all the necessary information: the parameter ∆, and for each customer

the coordinates of the pickup and drop-off locations, the preannouncement time ai, the preannounced time

window [êi, ˆ̀
i] (and from these, we know TWi = ˆ̀

i − êi), the announcement lead time Li, and also the

confirmation time ci, the desired time window [ei, `i], where ci + Li = ei, and `i = ei + TWi. It is important

that our method uses the preannounced information (ai, êi, ˆ̀
i, TWi and Li, and the coordinates) only after

ai, and the desired time window [ei, `i] along with the value of ci, only after ci, for each customer i.

5.1. Test data of Srour et al.

The test instances of Srour et al. (2016) are based on transportation requests from a dial-a-chauffeur

service in The Netherlands. The parameters that determine the total cost of the service are the same in each

case: f = 6, g = 2.7 and h = 0.3 (cf. Section 3). There are 9 vehicles and 20 customers in each instance. The
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pickup and the drop-off locations are in a 100 × 100 area and the depot is located at a corner of this area.

The vehicles can travel in a straight line between any two points at unit speed. This latter assumption means

that travel time (in minutes) and distance travelled have the same nominal values.

The test data contains instances with different geographies, announcement lead times, time windows and

parameters ∆ (recall that ei is uniformly distributed in [êi −∆, êi + ∆]). The preannounced earliest pickup

times, êi, are drawn from a uniform distribution spanning a 6 hour period of operation, while the confirmation

times ci are derived from the randomly generated desired earliest pickup times ei using the announcement

lead times Li, i.e. ci := ei − Li. The preannounced information is known from the beginning.

The default setting is the following: each announcement lead time as well as the length of the time

windows is 5 minutes, i.e., Li = TWi = 5 for each i ∈ J , while the value of ∆ is 60. The geography of the

customer requests is based on the concept of a center region like a city center: 4 customers want to go from

the perimeter to the center, 6 customers in the opposite direction, and the last 10 customers have random

pickup and drop-off locations (geography BUS).

Srour et al. developed several datasets, each comprising 100 data files. The datasets were obtained by

varying only one of the problem parameters, while keeping the others at the default values. Notice that in

all data files in the same test set, all customers have the same Li, and TWi values, respectively, and the

pickup and drop-off location of the customers do not vary over the instances in the same dataset. There

are test cases with modified announcement lead times (Li ∈ {0, 15, 30, 60}), modified time window lengths

(TWi ∈ {10, 15, 30, 60}), modified ∆ values (30, 45, 90 and 120), and modified geographies (IO20, where each

customer wants to go out from the center and RR20, where each customer has random pickup and drop-off

locations). For each setting they generated 100 different data files.

5.2. New test data

We have created new, much bigger test cases to assess the performance of our method. The parameters

f, g and h are the same as in the data of Srour et al., as well as the speed of the vehicles. The main differences

are in the number of customers, which we have increased to 100, and in the number of vehicles, we have

examined fleets with 20 and 40 vehicles.

Similar to the test data of Srour et al., there are instances with different geographies, announcement lead

times, time windows, and parameters ∆. Due to the bigger instances, we also examined cases, where the

preannounced, and the desired pickup times are drawn from a longer, 12 hours of operation (distributed

uniformly). The preannounced time windows are known from the beginning, the confirmation times are

determined by ci := ei − Li, like before.

We did not change the default setting (Li = TWi = 5, ∆ = 60, geography BUS) and the modified test

cases are generated similarly to those of Srour et al. In geography BUS, there are 20 customers who want
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to go to the center from the perimeter, 30 customers who want to go out from the center, and 50 customers

with random pickup and drop-off locations. The other examined geographies are IO100, where each of the

100 customers wants to go out from the center, and RR100, where each customer has randomly generated

pickup and drop-off locations. The examined announcement lead times, time windows, and parameters ∆ are

the same as in the test data of Srour et al. (2016).

For each setting, we generated 100 data files, but in contrast to Srout et al., in each data file, we generated

not only new time parameters, but also new pickup and drop-off locations for each customer in each data file

in a set. The new test instances are available at (Györgyi and Kis, 2017).

6. Computational results

In this section, we give some details of the computer implementation of our solver, information about the

running time of our method, and summarize our results in case of both set of instances. The presentation of

the results closely follow that of Srour et al. (2016) to get a fair comparison. We will also compare our results

to the optimal solution of the static, deterministic problem with perfect information (PI for short). In the

sequel, optimal solution will always mean that of the latter problem.

6.1. Implementation

To assess the performance of our method for solving the dynamic, and stochastic problem, we have

implemented a simple simulation environment in C++. For solving the minimum cost flow problems, we have

used Google Optimization Tools of Google Inc. (2016). Further on, at each decision point, a single run of

the minimum cost flow algorithm suffices. For computing the arc costs, we have used the formula (9). The

threshold value for the probability of picking an arc has been set to 0.01. By default, we run our method with

γ = 0, i.e., the vehicles approach the pickup location of unconfirmed customers to a distance of Li. When

applying the method of Section 4.3, we set parameter ε to 0.1.

We have mentioned in Section 4 that the structure of the network permits cycles in the solution (con-

sisting of arcs with unit flow) containing only customer nodes. We have developed a variant of our baseline

implementation in which if a cycle is detected in a solution, then we eliminate one arc from each strongly

connected component of the directed graph consisting of the arcs with positive flow values. The method was

still very fast, in 2-3 iterations we got a solution without any cycles, but this extra work had insignificant

impact on the entire simulation run.

The results of our method on the new test files have been compared to the optimal solutions, which we

have determined by solving the integer program of Section 3.1 by CPLEX 12.6.3 of IBM Inc. (2016).
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6.2. Results on the instances of Srour et al.

This section summarizes the computational results on the instances of Srour et al. The main goal of this

section is to compare our method to the best method MTS-seq of Srour et al., see the Appendix.

6.2.1. Running times

Our simulation runs were very fast, the entire run took only a fraction of a second on a modern notebook

computer, so computational times are not provided. The large computation speed is due to the efficient

solvability of minimum cost flow problems, see e.g., Ahuja et al. (1993). On the other hand, the MTS-seq

method of Srour et al. (2016) solves several integer programs at each decision point, thus the running time of

that method is obviously larger. Unfortunately, we do not have the exact running time of their method.

6.2.2. Results with varying ∆

In this set of experiments, we consider datasets with varying ∆ values (100 instances for each ∆), and with

Li = TWi = 5, and geography = BUS (the default values). In Table 2, we compare our results to those of

Srour et al. (2016). The table is divided into 6 sections. The first line is obtained by using perfect information,

i.e., using the time windows [ei, `i], and solving the entire static and deterministic problem by a MIP solver

exactly. Then there are 5 additional sections corresponding to the results with the given ∆ values. The rows

MTS-seq depict the best results of Srour et al., and the rows ’our’ indicate the corresponding results obtained

by our method.

The main performance measure used by Srour et al. in Table 3 of their paper, and which we will also use

to compare the various methods, is the

Average Cost = 100 ·
(

cost(method)

cost(PI)
− 1

)
,

where cost(method) =
∑

I cost(method, I)/100 is the average cost of a method (MTS-seq, our,PI) over the

100 instances of a class. Furthermore, we will use the average relative deviation (Avg. dev), which is computed

by the formula

Average deviation = 100 ·
∑
I

(
cost(method, I)

cost(PI, I)
− 1

)
,

and the minimum and the maximum relative deviation, respectively, of each method for each ∆. The minimum

is computed as

Minimum Cost = 100 ·
(

min
I

cost(method, I)

cost(PI, I)
− 1

)
,

and the maximum is analogous. The minimum (maximum) relative deviation corresponds to the performance

of a method on the instance with best (worst) performance of the class.

In the first 4 columns of Table 2, we can see these 4 statistical indicators in this order. The last four

columns provide the average rejection cost (lost profit), the average number of rejections, the number of
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instances without any rejections (out of 100 instances), and the average deadhead distance (over served

jobs), respectively. Obviously, larger ∆ values imply weaker predictions of the desired time windows of the

customers, and thus the relative deviation of the costs of the methods from PI increases. Observe that

our method constantly provides significantly better results in most aspects, except the minimum and the

deadhead costs, where our method is sometimes slightly worse than the MTS-seq. Notice that the main

difference between the MTS-seq and our method is due to the rejection costs, and this is the cost factor that

increases significantly with ∆.

Further on, the average rejection cost (fourth column) of our method is less than the half of the rejection

cost of MTS-seq for every ∆ value, while the average total cost of our method (first column) is almost half-way

between the average total cost of MTS-seq and the average total cost of the perfect information case. All in

all, we can say that the results are very similar for each ∆: our method clearly outperforms MTS-seq.

This is likely due to the fact that the method of Srour et al. considers only very few (60) scenarios (because

for each sample, an NP-hard problem has to be solved, which requires some time). Note that, even if there

were only two options for the desired time window of any customer, then for 20 customers, say, there would

be 220 ≈ 1 million possibilities for the distinct realizations of the customers’ requests. In contrast, our method

makes a better use of the probabilistic information and its change over time.

Table 2: Impact of varying ∆ on the instances of Srour et al., averages are taken over 100 instances.

Relative deviation from PI

Avg.

Cost

Avg.

dev.

Min.

Cost

Max.

Cost

Avg.

Rejection

Cost

Avg.

num. of

Rejections

Num. Inst

with no

Rejections

Empty

Dist. per

Job Served

PI 0.0 0.0 0.0 0.0 13 0.2 82 68.8

Range60 MTS-seq 24.0 24.5 1.2 102.3 77.2 0.7 42 77.0

(∆ = 30) our 14.5 14.9 0.2 49.7 32.2 0.5 62 76.9

Range90 MTS-seq 32.9 33.5 0.0 99.5 109.2 1.0 36 79.0

(∆ = 45) our 20.8 21.3 0.3 67.9 48.9 0.7 54 79.5

Range120 MTS-seq 44.0 44.5 2.3 136.9 158.5 1.4 25 80.4

(∆ = 60) our 24.9 25.3 2.0 65.5 60.8 0.9 43 81.0

Range180 MTS-seq 60.5 61.3 7.8 183.8 226.8 1.9 9 82.7

(∆ = 90) our 36.6 36.7 7.5 93.3 112.1 1.4 24 83.2

Range240 MTS-seq 88.0 89.4 10.1 221.0 349.5 2.8 1 85.9

(∆ = 120) our 46.3 46.6 10.9 116.1 158.3 1.9 12 84.6
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6.2.3. Results with varying Li

In this section, results on instances with different announcement lead times Li ∈ {0, 5, 15, 30, 60} are

compared to those of Srour et al., see Fig. 5(a). The results are obtained using the datasets with TWi = 5,

∆ = 60, and geography = BUS (the default values). Each point represents the average total cost of 100

instances with a given method. In the figure, the baseline is obtained by using perfect information, and we

compare the performance of MTS-seq and that of our method. As Srour et al. noted, bigger announcement

lead times imply that the methods learn the desired time windows [ei, `i] earlier, thus the results are better

on instances with larger announcement lead times for both methods. In the perfect information case, the

time windows [ei, `i] are known in advance, thus changing the announcement lead times does not influence the

results. Observe that the average total cost of our method is roughly halfway between the average total cost

of PI, and that of MTS-seq for all Li values, thus our method evenly outperforms MTS-seq on these instances.

Our method can provide even better results with the partial execution strategy, see Section 6.2.7.
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Figure 5: Comparison of the methods on the instances of Srour et al. for (a) varying announcement lead times, (b) time window

lengths, and (c) time window length and range. Each point represents the average total cost over 100 instances.

6.2.4. Results with varying TWi

In Fig. 5(b), the impact of varying the length of the time windows TWi on the performance of various

methods is depicted. The results are obtained using the datasets with Li = 5, ∆ = 60, and geography =

BUS (the default values). In this figure, we present again the average total cost of 100 instances for each

TWi ∈ {5, 15, 30, 60} (each customer request has the same time window length among the 100 instances for

each TWi value). Clearly, the perfect information case also benefits from larger time windows, so its cost

curve decreases as the length of the time windows increases. In contrast with the previous set of instances, the

differences between the results obtained by our method and by MTS-seq are strongly depend on the length

of the time windows. Our method strongly dominates MTS-seq for short time windows (TWi ∈ {5, 15}), it
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has similar performance for TWi = 30, and it gives worse results than MTS-seq for TWi = 60. As Srour et

al. noted, larger TWi yields more flexibility in the assignment of jobs to vehicles. They have also observed

that the greater freedom decreases the costs and this is consistent with the literature. Though our method

achieves lower costs on instances with longer time windows, the difference between the average total cost of

PI, and that of our method does not decrease as the lengths of the time windows increase. This is due to

the relatively high routing costs of our method, but we were able to refine it with partial execution, and the

results with this heuristic are significantly better in case of large TWi values (see Sect. 6.2.7).

6.2.5. Results with varying ∆ and TWi

Like Srour et al., we have also made experiments with varying ∆ and TWi parameters. In Fig. 5(c), we

compare our method to MTS-seq on 2 × 5 datasets, i.e., one series with datasets such that TWi = 5 and

∆ ∈ {30, 45, 60, 90, 120} (solid lines), and another with TWi = 30 and ∆ from the same set (dashed lines).

Notice that the range in the figure is just 2 ×∆, and our figure has content similar to Fig. 7 of Srour et al.

(2016). Also note that the results with TWi = 5 are already summarized in Table 2, although in that table

we compare the performance of the methods to the perfect information case. Observe that on both series

of datasets, our algorithm provides superior results to MTS-seq, and in fact as the range (∆) increases, the

difference between the performance of the two methods increases as well.

6.2.6. Results with varying geography

Now Li = TWi = 5, ∆ = 60 (the default values), but the geography of the pickup and drop-off locations is

varied. Fig. 6(a) shows the routing costs of the different methods on instances with the different geographies

(100 instances for each geography). The method PI stands for the perfect information case (solved by a MIP

solver), and our refers to our method and MTS-seq is that of Srour et al. In each case, the figure depicts

the routing cost of the instance with the lowest, the 25th, the 50th, the 75th and highest (100th) routing

cost, thus we can see roughly the distribution of the routing costs. E.g. the first column shows that there

are 25 BUS instances, where the routing cost is between 313 and 370 in case of perfect information, 25 other

instances, where it is between 370 and 409, etc. In Fig. 6(b), we can see the distribution of the rejection

costs. Observe that while the routing costs of the solution found by our method and MTS-seq are similar,

our method produces significantly lower rejection costs than MTS-seq for each geography.

6.2.7. The impact of partial execution

In this section, we summarize the results of the method described in Section 4.2. Briefly, the method

modifies the results significantly only if the announcement lead times or the time windows of the instance

are relatively long. This is due to the fact that on other instances, the value of Li + γTWi is small, thus the

vehicles cannot reduce the routing costs considerably. Apart from the default setting (Li = TWi = 5, ∆ = 60,
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(b) Rejection Costs

Figure 6: Comparison of the methods perfect information (PI), our, and MTS-seq of Srour et al. on different geographies.

Minimum, 1st quartile, median, 3rd quartile, and maximum routing costs (a), and rejection costs (b).

Table 3: Results with full and partial execution strategies on the instances of Srour et al. Averages are taken over 100 instances.

our method MTS-seq

full execution γ = 0 γ = 0.3 γ = 0.9

Li = TWi = 5 (default setting) 530.3 525.0 530.9 537.6 605.9

Li = 60, TWi = 5 487.3 456.7 455.9 455.8 486.5

Li = 5, TWi = 60 456.1 454.8 435.9 417.8 391.1

geography BUS), we considered 100-element datasets with Li = 60, and with TWi = 60, respectively, while

the other parameters were at default values, see Table 3. The first 4 columns depict results obtained by our

method with full and partial execution strategies (see Section 4.2), while the last column depicts the reference

data of MTS-seq. On the default dataset, the effect of partial execution is negligible. On the dataset with

Li = 60, full execution provides slightly weaker results than MTS-seq, and partial execution with γ = 0 or

γ = 0.3 is better than MTS-seq. On the dataset with TWi = 60, our method provides the best results with

γ = 0.9, which is still weaker than MTS-seq. This is the only dataset where our method gives weaker results

than MTS-seq.

6.3. Results on large instances

Recall that there are 100 customers and fleets with 20 or 40 vehicles in our new instances. We have made

experiments similar to those reported in Section 6.2, and we also tested the heuristic of Section 4.3 to adjust
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the number of vehicles. However, now we focus on only a few aspects of the results, because they confirm our

most important perceptions. Since solving the corresponding large MIPs takes a significant time, there is no

chance to compare our method to MTS-seq on large instances (see the next section about the running times),

and we compared our results only with the optimal solution of the static, deterministic problem (with perfect

information).

6.3.1. Running times

The entire simulation run on any new instance file took less than a second, thus our method is still very

fast on large instances. To assess the quality of the solutions, the integer program using perfect information

was solved using CPLEX 12.6.3. In most cases, this integer program is solvable within a few seconds, however

instances with larger time windows require significantly more time. For TWi = 60, there are instances that

CPLEX could not solve even within 20 minutes, thus we do not present any results for these instances. Note

that, the heuristic of Section 4.3 for reducing the number of vehicles based on preannounced information also

requires the solution of an integer program, thus the subroutine is not applicable if solving the integer program

requires too much time.

6.3.2. Results with varying ∆

Similarly to Section 6.2.2, we give detailed results for ∆ ∈ {30, 45, 60, 90, 120}, where for each ∆ we have

100 different instances with parameters Li = TWi = 5 and with the BUS geography.

We will assess the performance of our method on 100 customer instances, while varying the fleet size and

the hours of operation. The results are summarized in Table 4 (6 hours of operation), and in Table 5 (12

hours of operation). The structure of these tables is quite similar to that of Table 2, but now we have results

for fleets with 20 and with 40 vehicles, respectively. Note that for a given fleet size and hours of operation,

we always compare our method to the corresponding optimal solution with the same parameters.

We have three mainly different cases: (i) when the number of vehicles is not enough to serve most of the

customers (20 vehicles for 6 hours of operation), (ii) when the number of vehicles is roughly sufficient (40

vehicles for 6 hours of operations and 20 vehicles for 12 hours of operation), and (iii) when we do not need all

of the vehicles to serve almost all of the customers (40 vehicles for 12 hours of operation). In the first case,

there are big rejection costs even in the optimal solutions. This implies even higher rejection costs for our

method, and these costs increase as ∆ increases, due to the higher uncertainty. The routing costs are similar

for the optimal solution and for our method. In case of (ii), the rejection costs in the optimal solutions are

very small. For smaller ∆ values, the rejection cost of our method is low, however, it produces a higher routing

cost than the optimal solution. For larger ∆ values the rejection costs are also larger, though they are not as

large as in case of (i). If we have 12 hours of operation and 40 vehicles (case (iii)), then the rejection costs are
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negligible for both methods. One drawback of our method is that if there are much more vehicles than needed

to serve all the customers, then, since it tries to give some work to all the vehicles, the total routing costs can

be significantly higher than in the optimum. This is so, because then all the vehicles leave and return to the

depot, which contributes largely to the total deadhead travel. In the next section, we empirically confirm the

effectiveness of the heuristic of Section 4.3 to reduce the routing costs.

Recall that these instance files differ not only in the ∆ values, since they are generated separately with

the same parameters (TWi, Li and geography). However, since the statistics are taken over 100 instances,

this does not cause significant differences in the main instance characteristics (e.g., the average optimal total

cost on instances with 40 vehicles and 6 hours of operation is always between 1454 and 1490).

Table 4: Impact of varying ∆ on instances with 100 customers within 6 hours, and 20 or 40 vehicles. Averages are taken over 100

instances.

Relative deviation from PI

Avg.

dev.

Min.

Cost

Max.

Cost

Avg.

Total

Cost

Avg.

Rej.

Cost

Avg.

Rout.

Cost

Avg.

Num. of

Rej.

Num.

Inst. with

no Rej.

R
a
n
g
e
6
0

(∆
=

3
0
)

Perfect Inf. (20 veh.) 0 0 0 2424.3 1191.2 1233.1 12.8 0

our (20 veh.) 41.0 19.9 78.6 3393.2 2192.0 1201.2 22.7 0

Perfect Inf. (40 veh.) 0 0 0 1471.5 1.6 1469.9 0.1 92

our (40 veh.) 24.9 11.4 35.5 1835.0 10.6 1824.4 0.2 86

R
a
n
g
e
9
0

(∆
=

4
5
)

Perfect Inf. (20 veh.) 0 0 0 2174.2 936.2 1238.0 11.7 0

our (20 veh.) 61.0 29.8 99.7 3473.5 2288.3 1185.2 26.3 0

Perfect Inf. (40 veh.) 0 0 0 1454.6 6.2 1448.4 0.3 77

our (40 veh.) 35.1 16.0 49.8 1960.8 19.0 1941.8 0.4 69

R
a
n
g
e
1
2
0

(∆
=

6
0
)

Perfect Inf. (20 veh.) 0 0 0 2251.2 980.1 1271.1 12.0 0

our (20 veh.) 67.8 36.8 127.7 3742.2 2545.7 1196.5 28.1 0

Perfect Inf. (40 veh.) 0 0 0 1490.0 7.5 1482.5 0.2 84

our (40 veh.) 38.3 20.7 56.6 2057.5 45.0 2012.5 0.8 48

R
a
n
g
e
1
8
0

(∆
=

9
0
)

Perfect Inf. (20 veh.) 0 0 0 2362.4 1109.1 1253.3 12.6 0

our (20 veh.) 87.8 38.4 144.8 4381.4 3223.8 1157.6 31.7 0

Perfect Inf. (40 veh.) 0 0 0 1473.5 3.0 1470.5 0.2 84

our (40 veh.) 49.1 26.4 84.2 2194.3 186.5 2007.8 2.5 9

R
a
n
g
e
2
4
0

(∆
=

1
2
0
) Perfect Inf. (20 veh.) 0 0 0 2314.0 1058.6 1255.4 12.1 0

our (20 veh.) 104.7 53.8 174.1 4658.6 3516.6 1142.0 33.2 0

Perfect Inf. (40 veh.) 0 0 0 1462.2 3.8 1458.4 0.2 84

our (40 veh.) 61.0 38.3 92.5 2348.0 346.6 2001.4 4.2 1
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Table 5: Impact of varying ∆ on instances with 100 customers within 12 hours, and 20 or 40 vehicles. Averages are taken over

100 instances.

Relative deviation from PI

Avg.

dev.

Min.

Cost

Max.

Cost

Avg.

Total

Cost

Avg.

Rej.

Cost

Avg.

Rout.

Cost

Avg.

Num. of

Rej.

Num.

Inst. with

no Rej.

R
a
n
g
e
6
0

(∆
=

3
0
)

Perfect Inf. (20 veh.) 0 0 0 1122.1 5.3 1116.8 0.1 94

our (20 veh.) 18.7 9.3 44.2 1331.9 59.7 1272.2 0.9 50

Perfect Inf. (40 veh.) 0 0 0 1119.3 0.7 1118.6 0.0 97

our (40 veh.) 19.7 11.1 42.2 1338.7 2.9 1335.8 0.0 97

R
a
n
g
e
9
0

(∆
=

4
5
)

Perfect Inf. (20 veh.) 0 0 0 1102.1 2.4 1099.7 0.0 97

our (20 veh.) 28.4 15.0 59.4 1414.2 121.0 1293.2 1.6 20

Perfect Inf. (40 veh.) 0 0 0 1100.8 0.3 1100.5 0.0 99

our (40 veh.) 29.3 18.6 42.9 1421.4 1.2 1420.2 0.0 98

R
a
n
g
e
1
2
0

(∆
=

6
0
)

Perfect Inf. (20 veh.) 0 0 0 1109.8 6.1 1103.7 0.2 88

our (20 veh.) 37.6 17.6 69.8 1526.9 224.7 1302.2 3.4 6

Perfect Inf. (40 veh.) 0 0 0 1107.9 2.1 1105.8 0.1 92

our (40 veh.) 36.7 21.3 52.3 1512.6 2.9 1509.7 0.1 88

R
a
n
g
e
1
8
0

(∆
=

9
0
)

Perfect Inf. (20 veh.) 0 0 0 1098.5 5.7 1092.8 0.1 87

our (20 veh.) 67.4 30.9 160.3 1836.8 527.9 1308.9 7.4 0

Perfect Inf. (40 veh.) 0 0 0 1096.4 2.1 1094.3 0.1 91

our (40 veh.) 53.5 37.6 74.7 1679.3 8.5 1670.8 0.3 77

R
a
n
g
e
2
4
0

(∆
=

1
2
0
) Perfect Inf. (20 veh.) 0 0 0 1110.7 4.3 1106.4 0.1 92

our (20 veh.) 94.6 37.9 166.4 2159.4 862.6 1296.8 10.1 0

Perfect Inf. (40 veh.) 0 0 0 1109.5 1.5 1108.0 0.1 95

our (40 veh.) 67.8 41.0 91.8 1857.9 8.1 1849.8 0.2 84

6.3.3. Results with varying Li and TWi

Table 6 summarizes the differences between our method and the optimal solution for different announce-

ment lead times with TWi = 5, and for different time window lengths with Li = 5 (in both cases ∆ = 60 and

geography = BUS). Unfortunately, on instances with TWi = 60, it was too time consuming to compute the

optimal solution, thus we abandon this case. We summarize results for a period of operation of 6 and 12 hours,

respectively. We considered fleet sizes of 20 and 40 vehicles, and for 40 vehicles we also used the heuristic of

Section 4.3 to reduce the fleet size, the corresponding results are in the row 40*. For 20 vehicles the heuristic

returned 20 vehicles in the vast majority of cases. Each entry represents the average cost over 100 instances.

Observe that for large announcement lead times and for large time windows, the results with 40* vehicles

are much better than with 40 vehicles, since with large announcement lead times or with large time windows
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Table 6: Average relative deviation from PI for different lead times and time window lengths. * denotes the usage of the heuristic

of Section 4.3. Each table entry represents the average relative deviation of 100 instances.

period of op. vehicles Li = 0 Li = 5 Li = 15 Li = 30 Li = 60 TWi = 5 TWi = 15 TWi = 30

TWi = 5 Li = 5

20 88.6 67.8 44.7 23.5 9.1 67.8 66.9 57.9

6 hours 40 43.1 38.3 33.1 26.3 21.2 38.3 45.1 58.3

40* 70.4 48.9 28.8 14.9 7.9 48.9 40.4 33.0

20 49.3 37.6 24.7 14.5 9.6 37.6 30.3 33.0

12 hours 40 40.5 36.7 32.6 26.1 21.6 36.7 42.0 51.0

40* 53.7 42.7 27.4 14.6 9.3 42.7 35.0 31.4

it is possible to serve most of the customers with fewer vehicles, while fewer vehicles incur smaller routing

costs. Further on, for Li = 60, the presented results are outstanding: the average relative deviation from the

corresponding optimal solution is around 10% both in case of 20, and 40* vehicles, which is well beyond our

expectations. Also notice that with 20 vehicles we get much better results with 12 hours of operation than

with 6 hours of operation, since in the latter case the vehicles have a much denser schedule. This effect is

much reduced with 40 vehicles, where the results with 6 and with 12 hours of operation are very similar.

7. Conclusions

In this paper, we have studied a stochastic pickup and delivery problem proposed recently by Srour et al.

(2016). In this problem, the job locations are known in advance, but we do not have precise information about

the desired pickup time windows. The customers first preannounce their transportation requests by giving the

distribution of the desired pickup time windows, and the exact time parameters become known only shortly

before the service can actually start. We demonstrate that a simple algorithm may outperform a more heavy

scenario-based approach on several classes of problem instances. The average cost of the solutions found by

our method was significantly smaller than that of the MTS-seq method of Srour et al. in almost every type

of instances that was proposed by Srour et al. Our method has weaker performance on instances with large

time windows, but we have presented an additional strategy that improves the results on these instances. Our

method is outstanding on instances where the importance of the rejection costs is high: as the uncertainty

increases, the length of the announcement lead times or that of the time windows decreases, the advantage

of our method increases. Furthermore, the running time of our method is negligible, since it solves a single

minimum cost flow problems at each decision point. Tests on new, larger instances show similar behavior, so

it scales up well with the size of the instances.

We think that the MTS-seq method of Srour et al. (for details, see the Appendix) performs well in terms of

routing costs, because their MIP finds an optimal routing for each scenario, and their route synthesis also does
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a good job. However, as we have mentioned, their method examines only 60 scenarios due to high running

time, which is quite few if we compare this with ratio of the length of a desired time window and the length

of the interval, where this time window is located before the customer finalize its request. Our method makes

a better use of the probabilistic information and its change over time. The results of Section 6 show that the

advantage of our method mainly comes from the low rejection costs.

Our findings open up a number of further directions. For instance, for the specific problem, can we

make better routing decisions in order to improve the results when large time windows allow more room for

optimization? Can a similarly simple approach be effective in other dynamic and stochastic vehicle routing

problems?

Appendix A. The method of Srour et al. (2016)

In their method, Srour et al. maintain a set of 60 scenarios. Each scenario consists of a presumed time

window [ēi, ¯̀
i] for each customer i (the authors assume that all customers make a preannouncement before

route planning starts). The basic idea is that until a customer confirms its request, the presumed time window

is obtained by shifting the preannounced time window by a random number ξi drawn from [−∆,+∆], i.e.,

[ēi, ¯̀
i] = [êi + ξ, ˆ̀

i + ξ], and after confirmation, it becomes the desired time window [ei, `i], (for notation see

Section 3.2). After setting up the 60 scenarios, an optimal routing of the vehicles is determined for each

scenario by solving a mixed integer program where the time windows of the customers is set to the presumed

ones (one MIP is solved for each scenario). The result is 60 routing plans from which a sophisticated procedure

synthesizes a routing plan to be executed by the vehicles. Let tact be a time point when some decision is to

be made (when some customer confirms its request, or some vehicle completes serving a customer). Then in

each scenario, the time windows are revised as follows. If a customer confirms its request at time tact, then

its presumed time window becomes [ei, `i]. For unconfirmed customers, if the presumed earliest pickup time

is passed, i.e., ēi < tact + Li, a new presumed time window is drawn from the distribution while making sure

that ēi > tact + Li. Based on the updated time windows, the vehicles’ departure times are updated for each

plan, and it is checked whether the plan is still feasible. If a plan becomes unfeasible, then a MIP is solved

for the corresponding scenario of (updated) time windows, and finally, a new plan is synthesized out of the

routing plans for the scenarios to be executed by the vehicles.

Appendix B. Sample run of our algorithm

We illustrate our algorithm on a small example with 1 vehicle and 3 customers. Table 7 summarizes the

data. Suppose that the speed of the vehicle is 1.

29



Table 7: Data for the example.

customer preann. time est. time window pickup loc. drop-off loc. calltime time window

ai [êi, ˆ̀
i] ci [ei, `i]

0 1 [22 23] (3, 1) (1, 2) 2 [27, 28]

1 1 [18, 19] (0, 3) (1, 1) 1 [18, 19]

2 2 [20, 21] (2, 5) (4, 1) 3 [20, 21]

j0s

j0e

[ê0, ˆ̀
0] = [22, 23]

j1s

j1e

[e1, `1] = [18, 19]

hgjg

s v1

p(1) d(1)

p(0) d(0)

t

Figure 7: Left: known information at t = 1; the vehicle is at the red point (at (0, 0)). Right: the network flow problem at t = 1;

the edges with flow value 1 in the optimal solution are red.

The first event, when some information becomes known about the customers is at t = 1, which is the

preannoucement time of customer 0 and the call time of customer 1. Note that, at t = 1 we do not know

anything about customer 2. According to Algorithm Event loop, we have to invoke Subroutine Opt with the

information shown on the left side of Fig. 7 (the pickup and the drop-off locations of customers 0 and 1, the

estimated time window of customer 1 and the preannounced time window of customer 0). The right-hand-side

of the same figure shows the corresponding network flow problem. The red arrows indicate the arcs with flow

value 1 in the optimal solution. This solution implies that the vehicle has to depart towards customer 1 (the

dashed line on the left of Fig. 7 indicates the planned routing of the vehicle according to the solution of the

network flow problem). After that, the next event occurs at t = 2, which is the call time of customer 0 and

the preannouncement of customer 2. By this time, the vehicle is at (0,1), see the left-hand-side of Fig. 8 for

the actual situation. Subroutine Opt builds a new network, see the middle picture of the same figure. Again,

the red arrows indicate the optimal solution, thus the vehicle has to change its target. It has to set off towards

customer 2, since by serving customer 2 and then possibly customer 0 the expected total cost is smaller. The

later events do not change the important parts of the network, thus the vehicle will serve customer 2 and then

customer 0. Note that, in an optimal solution (which we can calculate if each time window [ei, `i] is known

from the beginning), the vehicle would go straight to customer 2 and then to customer 0, thus it avoids the

by-pass towards customer 1. The right-hand-side of Fig. 8 depicts by a red curve the routing of the vehicle

in the dynamic and stochastic model, and by a blue curve the optimal solution of the static, deterministic

model.
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j0s

j0e

[e0, `0] = [27, 28]

j1s

j1e

[e1, `1] = [18, 19]

j2s

j2e

[ê2, ˆ̀
2] = [20, 21]

hgjg

s v1

p(1) d(1)

p(0) d(0)

p(2) d(2)
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j0s

j0e

j1s

j1e
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Figure 8: Left and middle: the current situation and the corresponding network flow problem at t = 2. Right: the solution of the

algorithm (red) and the optimal solution in case of perfect information (dashed-blue).
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