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Abstract

Pastoral dairy farmers make sequential decisions in the face of long-term environmental uncer-

tainty and price volatility. Decisions made early in the season, such as the number of cows to

stock per hectare, can have significant effects later in the season if the farmer is forced to import

additional feed to meet the cows’ energy demands during a drought. In this paper, we present

POWDer: the milk Production Optimizer incorporating Weather Dynamics. POWDer is a novel

multi-stage stochastic program that divides the dairy farming season into weeks and links these

weeks by a system of linear dynamics. By applying POWDer to a case farm in New Zealand,

we demonstrate POWDer’s promise as a tool that can help participants in the New Zealand dairy

industry understand and plan for the challenge of farming in a stochastic world.

Keywords: OR in agriculture, stochastic dual dynamic program, multi-stage, stochastic

programming, dairy

1. Introduction

Uncertainty in the agricultural supply sector has received increasing attention from researchers

and practitioners in recent years (Borodin et al., 2016). This is not surprising, given the inher-

ent uncertainty in all steps of the agricultural supply chain. In this paper, we focus on the first

step of the supply chain for dairy products; namely the dairy farmer. Dairy farmers face supply

uncertainty from bad weather and price uncertainty from international markets. Ignoring these

uncertain effects can lead to poor farming decisions. In addition, farms may be located in dis-

parate geographic locations, and even farms that are located in the same local area may have
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differences in topography and soil type. Therefore, it is necessary to model conditions on an

individual-farm basis in order to produce meaningful results for the farmer. Although our mod-

els are generally applicable to a wide-class of outdoor, pastoral farms, for this paper we calibrate

and test them in a New Zealand setting.

In New Zealand, dairy farming forms a large part of the economy. In the 2016 season dairy

farming was responsible for 29% of New Zealand’s export earnings (down from 35% in 2014)

(Ballingal & Pambudi, 2017). In addition, despite producing only 3% of the total global pro-

duction volume, New Zealand exports 96% of its domestic production. As a consequence, it is

the largest player in the international dairy commodity market with around 28% of international

exports (Shadbolt & Apparo, 2016). These factors make the operation of New Zealand dairy

farms a critical component in the global dairy supply chain.

Established farmers in New Zealand largely rely on experience, low-debt, efficiency, and

a financial buffer to help them survive economic downturns (Singh, 2015). However, as dairy

markets liberalize, and new environmentally focused domestic regulations (such as a proposed

charge on the commercial use of water (Cann, 2017)) are introduced, relying on previous expe-

rience may result in sub-optimal decision-making.

There have been a number of efforts to develop decision-support models for dairy farmers.

In addition to “rule of thumb” recommendations, such as those by Dairy NZ (2012b), consid-

erable work has been undertaken to develop simulation models of dairy cows and whole-farm

ecosystems in order to answer “what-if” type questions. Review papers by Bryant & Snow

(2008), Feola et al. (2012), and Snow et al. (2014) give a comprehensive overview of the current

mathematical simulation models. Only a few of the models explored in the reviews incorpo-

rated optimization, and those that did usually implemented some form of an evolutionary search

algorithm (Hart et al., 1998; Neal et al., 2005; Aryal et al., 2008; Groot et al., 2012).

One notable exception to this is the Integrated Dairy Enterprise Analysis (IDEA) (Doole

et al., 2013), a nonlinear, non-convex optimization model of a New Zealand dairy farm, which

we consider to be the current state-of-the-art. The model divides the dairy farming season into

fortnightly blocks and optimizes operating profit. Decision variables in IDEA include a number

of operational decisions (such as the type and quantity of supplementary feed to buy each fort-

night), as well as some strategic decisions such as stocking rate (the number of cows per hectare).

A detailed description of the model is given in Doole et al. (2012). IDEA has been used to in-
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vestigate various management strategies on New Zealand dairy farms including supplementary

feeding (Doole, 2014a), reducing greenhouse gas emissions (Doole, 2014b; Adler et al., 2015),

stocking rates (Doole & Romera, 2013; Romera & Doole, 2015, 2016), and general profitability

(Doole, 2015). Although IDEA has been demonstrated to be a useful tool to investigate optimal

management strategies, the use of non-convex optimization makes it difficult to claim that the

solutions it produces are globally optimal. Furthermore, it is not able to capture the stochastic

nature of dairy farming, in that it does not incorporate weather or price risk.

IDEA shows how we can model the farming season as a sequential decision-making process.

When uncertainty is incorporated, such problems are known as multi-stage stochastic programs.

(We direct the reader to the following works for an introduction to this class of problems: (Puter-

man, 1994; Shapiro et al., 2009; Powell, 2011).) In a recent review paper, Borodin et al. (2016)

lay out the state-of-the-art in handling uncertainty in agricultural supply chain management.

They conducted a comprehensive survey of papers and a number of stochastic programming

approaches were identified in the literature. Most were two-stage models and only a few were

concerned with dairy (Flaten & Lien, 2007; Heikkinen & Pietola, 2009; Guan & Philpott, 2011;

Relund Nielsen et al., 2011). The paper of Guan & Philpott (2011) is notable in that it formu-

lates, and solves, a large multi-stage stochastic optimization problem. However, it concerns the

operations of a large dairy processing company, rather than an individual farmer. To the best

of our knowledge, our work is the first detailed multi-stage stochastic optimization model of a

single dairy farm.

Borodin et al. (2016) note that “multi-stage stochastic programs, in general, are intractable”,

and that “even if the use of [multi-stage stochastic programming] is showing increasing promise,

there are still very few real-world implementations ... in the agricultural area.” However, multi-

stage stochastic programming has been widely applied to real-world problems in the electricity

sector with considerable success (for example, in Brazil (Maceira et al., 2008)). A key con-

tributor to this has been the development (Pereira & Pinto, 1991; Philpott & Guan, 2008) and

improvement (Philpott & de Matos, 2012; de Matos et al., 2015) of the stochastic dual dynamic

programming (SDDP) algorithm.

SDDP is a dynamic programming-inspired algorithm. It decomposes the multi-stage stochas-

tic optimization problem in time into a sequence of subproblems. Each subproblem (i.e. each set

of decisions to be made in some interval in time) is an optimization problem that chooses an
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action in order to minimize the cost associated with the current decision plus the cost-to-go of

the remaining stages given the action taken. Dynamic programming (Bellman, 1957) estimates

the cost-to-go function (also called the Bellman function) at a set of discretized points. However,

because of this discretization, the method is limited to low-dimensional problems (dynamic pro-

gramming’s “curse of dimensionality”). Instead of evaluating the function at a set of discretized

points, SDDP approximates the Bellman function with a set of piecewise linear functions called

cuts. When the problem instance has a specific form (stagewise independence of the noise,

convexity of the Bellman function, and continuous state variables), the SDDP algorithm can effi-

ciently find an approximately optimal policy. In this paper we focus on the model and the results,

rather than the solution method. Readers are directed to the following works for a more in-depth

discussion of SDDP: (Pereira & Pinto, 1991; Philpott & Guan, 2008; Shapiro, 2011).

The key contributions of this paper are to develop a multi-stage stochastic programming

model of a pastoral dairy farm that incorporates environmental and economic uncertainty and

to solve it using SDDP. Such a model represents a significant step forward in the ability to

gain insight into the interrelationships that weather and price uncertainty have on the decision-

making of dairy farmers. We call the resulting model POWDer – the milk Production Optimizer

incorporating Weather Dynamics.

2. Model Description

In this section we formulate POWDer as a discrete-time stochastic optimal control problem

over 52 weekly stages, t = 1, 2, . . . , 52. We call the sequence of 52 weeks a season. POWDer

is a combination of three separate models: a grass growth model, an animal model, and a milk

price model. Before we detail the specifics of the model, we provide an overall schematic of

the system in Figure 1 to aid the reader’s understanding of the various interactions between the

model components in one week. States (denoted below by uppercase letters) are in square boxes.

Random inputs are shown by wavy arcs. Actions that can be chosen by the farmer are denoted

by double-lines with a bold arrow head. Response variables that cannot be chosen by the farmer

are denoted by straight arrows with a single line. In the following description of the model, all

of the variables we refer to are contained in Figure 1.

The reader should note that without loss of generality, we normalize all values in the follow-

ing to a per hectare figure. We now describe the model in detail, beginning with the grass growth
4
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rt: rainfall (mm) ept : potential evapotranspiration (mm)

it: irrigation (mm) Wt: soil moisture (mm)

et: evapotranspiration (mm) Pt: pasture cover (kg/ha)

ht: quantity of pasture to harvest (kg/ha) Qt: quantity of grass in storage (kg/ha)

fp
t : grass from pasture to feed (kg/ha) fq

t : grass from storage to feed (kg/ha)

Ct: number of cows lactating (cows/ha) st: palm kernel to feed (kg/ha)

ut: cows to dry-off (cows/ha) mt: energy for milk production (MJ/ha)

Mt: milk solids produced (kg/ha) pt: forecast end-of-season milk price ($/kg)

Figure 1: Schematic of interactions during one week (stage t) of the POWDer model.

model.

2.1. Grass Growth Model

The basis for any whole-farm model in a pastoral farming context is a model for grass

growth. For New Zealand conditions, there is a large literature on different modelling approaches

(Rickard et al., 1986; Moir et al., 2000; Bryant & Snow, 2008; Johnson et al., 2012; FARMAX,

2016). However, many of these models are highly detailed and nonlinear. Therefore, the techni-

cal requirements of SDDP prevent us from using these models. In this section, we introduce two

previously published models of grass growth. The first relates grass growth to the total quantity

of grass on the farm (since if there is no grass, none can grow), but excludes any weather effects
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such as drought. The second relates grass growth to the weather (via evapotranspiration1) but ex-

cludes the total quantity of grass on the farm. Therefore, we propose a new model that assumes

that the two models act independently to limit grass growth.

The first model (derived from (Garcia, 2000; Baudracco et al., 2012)) assumes that grass

growth is related to the current pasture cover (kilograms2 of grass per hectare). The model uses

a logistic growth function so that:

Pt+1 − Pt = 4
∆Pmax

Pmax
× Pt

(
1 −

Pt

Pmax

)
, (1)

where Pt is the pasture cover (kg/ha) at the start of week t, the constant Pmax is the maximum pos-

sible pasture cover (the point at which the senescence rate approaches the growth rate (Baudracco

et al., 2012)), and the constant ∆Pmax is the maximum possible rate of pasture growth.

In contrast to the logistic growth function, Moir et al. (Moir et al., 2000) propose that grass

growth is proportional to the evapotranspiration rate such that:

Pt+1 − Pt = κt × et, (2)

where Pt is the pasture cover (kg/ha) at the start of week t, et is the evapotranspiration (mm)

during week t and κt is a constant (kg/mm) that can be interpreted as an index of soil fertility.

One weakness of this model is that it ignores the impact that the current pasture cover has on

the growth rate. Evapotranspiration depends on a number of factors. Firstly, there must be

sufficient water in the soil for evapotranspiration to occur. Secondly, more water will evaporate

and transpire on a hot, sunny day than a cold, cloudy day. Therefore, the evapotranspiration rate,

et, during week t is:

et = min
{
ep

t , Wt + rt

}
, (3)

where ep
t is the potential evapotranspiration (Priestley & Taylor, 1972) during week t (mm) as

determined by the weather during week t, Wt is the plant-available water stored in the root zone

of the soil at the start of week t (mm) and rt is the incident rainfall during week t (mm). Both the

evapotranspiration rate ep
t and the incident rainfall rt are random variables in week t.

1Evapotranspiration is the sum of both direct evaporation (from soil to atmosphere) and plant transpiration (where the

water moves from the soil through the plant and evaporates from the parts exposed to the atmosphere such as the leaves).
2When discussing pasture cover, we mean kilograms of dry-matter (i.e. pasture with the water content removed).

Other authors denote this as kgDM. However, for simplicity, we shall just refer to it as kg.
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In reality, farmers sub-divide their farms into a number of individual fenced units called

paddocks. The herd is rotated around the paddocks at a rate of one to two paddocks per day,

depending on growth rate of the grass. This leaves each paddock with a different pasture cover

(which therefore grow at different rates). In this paper, we make the simplifying assumption

that all the paddocks are identical. Therefore, Pt represents the average pasture cover across the

entire farm.

One extra feature of pasture is that it can be harvested to form silage3 or hay. This can be

stored until later in the season when the pasture cover is low. We denote the quantity of grass

that is in storage at the start of week t by Qt (kg/ha). Therefore:

Qt+1 = Qt + βht − f q
t , (4)

where ht is the quantity of pasture harvested in week t (kg/ha) and f q
t is the quantity (in kg/ha)

of the grass from storage fed to the herd in week t (discussed in Section 2.2). β is a conversion

factor between pasture and feed in storage. This accounts for spoilage and wastage.

To incorporate the two models of pasture growth (Eq. 1 and Eq. 2), we assume that both

models act independently to limit grass growth. Thus, our final dynamical model for pasture

cover is:

Pt+1 = Pt + min
{
κ × et, 4

∆Pmax

Pmax
× Pt

(
1 −

Pt

Pmax

)}
− ht − f p

t , (5)

where f p
t is the quantity (kg/ha) of grass from pasture fed to the herd in week t. We discuss this

further in Section 2.2.

We choose this model so that when the actual evapotranspiration et is high, grass growth

is limited by the current pasture cover Pt, and when evapotranspiration is low, grass growth is

limited by the actual evapotranspiration. A plot showing how the grass growth rate is determined

using this model is shown in Figure 2.

In addition to proposing that grass growth is proportional to evapotranspiration, Moir et al.

(2000) also give some simple water balance equations to describe how the water in the soil

changes over time. First, there is some maximum quantity of water that can be stored in the soil

(and available to the plant):

Wt ≤ W̄, (6)

3A fermented, high-moisture alternative to hay.
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Figure 2: Plot of grass growth against the pasture cover for low and high levels of actual evapotranspiration et . Solid line

is the logistic growth model given by Eq. (1). Dotted lines are the evapotranspiration growth model given by Eq. (2) for

two rates of actual evapotranspiration. Actual grass growth is the minimum of the solid and dotted lines given a pasture

cover Pt and actual evapotranspiration rate et .

where W̄ is a constant equal to the maximum available water content of the soil. Any excess water

is assumed to drain away. Second, the change in soil moisture Wt from the start of week t to the

start of week t+1 is limited by the quantity of rainfall rt, plus irrigation it, less evapotranspiration

et:

Wt+1 ≤ Wt + rt − et + it. (7)

There are also some domain constraints on the state and control variables:

Pt,Qt,Wt, f p
t , f q

t , ht, it ≥ 0, ∀t. (8)

Stochastic Process. For simplicity, we assume that the rainfall rt, and potential evapotranspi-

ration ep
t , can be modelled by a stagewise-independent joint stochastic process that empirically

samples with replacement from historical readings in week t. We call a single sequence of 52

observations (one for each week) of the random weather variables, rt and ep
t , a weather scenario.

The stochastic process can include some stagewise dependence with an increase in complexity

of the solution process. (See Morton & Infanger (1996) and Shapiro (2011) for different ap-

proaches to this.) However, we choose to model the process using stagewise independence as it

is a commonly used assumption in the SDDP literature (Pereira & Pinto, 1991; Philpott, 2017).

2.2. Animal Model

Animal models are another critical component of any whole-farm model and are well studied

in the literature (Baudracco et al., 2011; Gregorini et al., 2013; Johnson, 2013). However, like

the grass growth models mentioned earlier, these are complicated nonlinear models that account
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for a large number of variables. Due to a desire to maintain tractability of the model with the

inclusion of stochasticity, we seek a simplified version of these models.

The first decision a farmer faces is their stocking rate (number of cows per hectare). In this

model, we assume this is fixed a priori over the season and denote it by C̄. The season begins

with the cow giving birth to a calf and starting lactation. We assume that the cost of raising the

calves is a fixed cost and so it is not modelled directly in POWDer. At some point during the

season, the farmer can choose to dry-off a cow (stop its lactation). This reduces the required

energy intake for the cow (since it is no longer producing milk). However, once the cow is dried-

off, it cannot restart its lactation. Therefore, the farmer faces a stopping problem, where they

have to trade-off the decision to keep milking the cow (and earning money) against managing

feed reserves for the next season. In New Zealand, the average lactation length is around 276

days (Dairy NZ & LIC, 2016). We denote the number of lactating cows per hectare in week t as

Ct. Each week, the farmer can choose to dry-off ut cows/ha, so that:

Ct+1 = Ct − ut. (9)

In addition, Ct ≥ 0, ut ≥ 0, and C1 = C̄.

Now that we have the concept of a herd (as measured by the stocking rate) and the idea

that cows must be in one of two states (lactating or dried-off), we create a simple model of a

single cow. To do this, we consider an energy balance: energy consumed by a cow in the form of

pasture, or supplement such as hay, silage, or corn, must equal the energy spent on maintenance4,

changes in body mass, pregnancy, and milk production. To simplify the model, we ignore other

factors like nutrition.

Energy Requirements. To calculate the energy required by the cow for maintenance, pregnancy,

and changes in body mass, we draw from multiple published models in the literature. It is

sufficient for general readers to understand that, as a result of the model, we can calculate the net

energy required during week t by a cow (excluding milk production) that is lactating (which we

denote by εlac
t ) and dried-off (which we denote by εdry

t ). These are set as constants in POWDer.

For more detail, we refer readers to Appendix A.

4Maintenance is the energy required to run the cow’s core bodily functions. This can be considered a fixed cost of

keeping the cow alive.
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Milk Production. If a lactating cow consumes more energy than the total required εlac
t , then milk

will be produced. Dairy NZ (2012b) assume that there is a linear relationship between this extra

energy intake, which we denote mt, and the quantity of milk produced. However, cows have a

biological maximum milk production capacity that varies over the season. Therefore, following

the approach taken by Baudracco et al. (2011), we use the alveolar model of Vetharaniam et al.

(2003) to approximate the maximum production (in MJ/week), as well as the net energy content

of milk as a function of the fat and protein composition based on the work of Freer et al. (2007).

However, for simplicity, we retain the linear relationship between energy input and milk produc-

tion. This is then scaled by the number of cows lactating so that the quantity of milk produced

by the herd in week t (kg/week)5 from the mt MJ of extra energy intake is mt/η
m
t kg, where ηm

t

is the net energy content of milk (MJ/kg) that is set as a constant in the model. In addition, we

impose bounds on the total energy mt that can be used by the herd for milk production so that:

ν Ct ≤ mt ≤ νt Ct, (10)

where νt is the maximum biological rate of milk production (MJ/week) for a single lactating cow

that is set as a constant in the model and ν is the minimum biological rate of milk production

(MJ/week) for a single lactating cow that is also set as a constant in the model. A rate of milk

production lower than ν can lead to lower milk quality and poor animal health (Dairy NZ, 2012a),

and so this is not allowed.

Supplementation. Palm kernel is a by-product of the production of palm oil (Dairy NZ, 2008). It

is commonly used as a supplementary feed (food that is fed in addition to grass) on New Zealand

farms since it has a high energy content, is easily obtained (typically arriving on-farm within a

day or two of ordering), and is relatively inexpensive. In this model we assume that the farmer

orders a quantity st (kg/ha) of palm kernel on the spot-market and feeds it to their cows during

week t. For simplicity, we ignore the ability of the farmer to store palm kernel and engage in

forward contracting programs. Moreover, we do not consider other supplementary feeds such as

maize.

5When discussing the mass of milk, we mean the mass of milksolids (milkfat + protein), not the mass of liquid milk.

Milksolids are usually denoted kgMS; however, we drop this notation to avoid confusing readers unfamiliar with the

dairy industry.
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Energy Intake. Recall that in week t, the farmer feeds their herd f p
t kg/ha of grass from pasture

and f q
t kg/ha of grass from storage. In addition, let ηp be the metabolizable energy content of

pasture (both consumed from the paddock directly and stored), and let ηs be the metabolizable

energy content of palm kernel. The total energy consumed by the herd in week t is therefore

ηp ×
(

f p
t + f q

t

)
+ ηs × st.

Finally, we enforce an energy balance constraint for the entire herd so that:

ηp ×
(

f p
t + f q

t

)
+ ηs × st︸                         ︷︷                         ︸

Energy Intake

= Ct × ε
lac
t︸   ︷︷   ︸

Lactating Requirements

+ (C̄ −Ct) × ε
dry
t︸            ︷︷            ︸

Dry Requirements

+ mt.︸︷︷︸
Milk Energy

(11)

In the energy balance equation, the actions of the farmer are the quantities (in kg/ha) of

grass from pasture f p
t , grass from storage f q

t , and palm kernel st to feed. In response, the cows

apportion mt MJ to milk production. The reader should note that as a combination of Eq. 10 and

Eq. 11, the actions of the farmer are constrained so that they must provide sufficient energy input

to meet the minimum demand of the cow (εdry
t if the cow is dry, εlac

t + ν if the cow is lactating),

but no more than the maximum energy demand of the cow (εdry
t if the cow is dry, εlac

t + νt if the

cow is lactating).

In the next section we describe the milk price model within POWDer.

2.3. Milk Price Model

The contemporary New Zealand milk processing sector is dominated by Fonterra, a large pro-

cessing co-operative that collects 84% of the milk produced in New Zealand (Taylor & Atherfold,

2017). Members of the co-operative are dairy farmers who share in the co-operative profits based

on the number of kilograms of milk supplied during the season. The milk price is determined

ex-post at the end of each year-long season. Therefore, during the season, farmers are uncertain

about the price they will receive for milk they produce. Fonterra publish a forecast of the milk

price at least every quarter, but these forecasts have large uncertainties of up to ±50% near the

beginning of the season, with these forecasts becoming more accurate as the season progresses

(Woodford, 2016b,a). We model this in POWDer as follows.

At the start of each week t = 1, 2, . . . , 52, farmers observe a forecast milk price pt, provided

by Fonterra, of the end-of-season milk price p53. We assume that the first week’s forecast is

p1 = $6/kg (the long-run average end-of-season milk price (Fonterra, 2018)). In the week after

the end of the season (i.e. week 53), each farmer is paid the end-of-season milk price p53 for each
11



kg of milk that they produced during the season. For simplicity, we shall model the sequence

of forecast milk prices using nine equally likely scenarios. In each scenario, the forecast does

not change until the start of week 26, when we assume new information emerges leading to an

update. No further updates are made until the final week when the end-of-season milk price

p53 is realized. This process can be represented by a scenario tree which branches prior to

the beginning of weeks 26 and 53 as shown in Figure 3. This approach was chosen for two

main reasons. First, this reduces the computational complexity of the model. Secondly, other

approaches (like modelling the price process as an auto-regressive process) violate some of the

technical assumptions required by SDDP. We call a single sequence of 53 observations of pt (one

forecast for each week of the season, plus the end-of-season milk price) a price scenario.

t = 53t = 52t = 27 . . . 51t = 26t = 25t = 2 . . . 24t = 1

$8

$7

$6

$5

$4

Figure 3: Scenario tree of the stochastic process for milk price. t = 1 corresponds to week 1.

As discussed above, we assume that the farmer sells all their milk in the final stage at the

price associated with the leaf node in the scenario tree. This necessitates the introduction of a

new variable to keep track of the quantity of milk produced to date:

Mt+1 = Mt + mt/η
m
t , (12)

where Mt is the quantity of milk (kg/ha) produced to date at the start of week t.

We now describe the formulation of the multi-stage optimization model that utilizes the three

sub-models previously described.
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2.4. Optimization Model

We formulate POWDer as a finite-horizon, discrete-time, stochastic optimal control problem

over a single year (season). We decompose the season into a sequence of 53 weekly blocks

(called stages) and link these blocks together by state variables (information that is necessary to

communicate the status of the farm between stages).

Each weekly block t = 1, 2, . . . , 52 has two inputs (the value of the state variables at the

start of the week and a realization of the random variables) and an output (the value of the state

variables at the end of the week). There are five state variables in the model: the soil moisture

Wt (mm), the pasture cover Pt (kg/ha), the quantity of grass in storage Qt (kg/ha), the number of

cows milking Ct (cows/ha), and the quantity of milk produced to date Mt (kg/ha). These state

variables are illustrated by the five rectangular boxes in Figure 1. The transition of the state

variables from their value at the start of the week to their value the end of the week is governed

by the series of constraints and relationships that we have detailed in the above section (i.e., Eqs.

(3)–(12)). We briefly summarize the main points below.

At the beginning of each week t = 1, 2, . . . , 52, the farmer observes the potential evapotran-

spiration ep
t (mm), the quantity of rainfall rt (mm), and the milk price forecast pt ($/kg). This

makes the model a Hazard-Decision or Wait-and-See model. We assume that the farmer can

observe these random variables at the start of the week, which loses little generality since short-

term weather forecasts are reasonably accurate. The random variables are illustrated by the three

wavy lines in Figure 1.

After the farmer has observed the state of the farm and the current realization of the random

variables, the farmer needs to decide the quantity of irrigation to apply it (mm/ha), the quantity

of pasture to harvest ht (kg/ha), the number of cows to dry-off ut (cows/ha), and the quantities

(kg/ha) of grass (from pasture f p
t and storage f q

t ) and palm kernel st to feed the cows. These

control variables are illustrated by the double-lines with a bold arrow head in Figure 1.

There are also two auxiliary variables that are consequences of the states, controls, and ran-

dom variables. These are the actual evapotranspiration et (mm/week) (which differs from the

potential evapotranspiration ep
t ), and the quantity of milk mt (kg/ha) produced by the herd during

week t. These variables are illustrated by the single lines in Figure 1.

After the end-of-season milk price is realized at the start of week t = 53, the farmer sells the

total quantity of milk produced over the season M53 at the end-of-season milk price p53.
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Objective. In POWDer, we assume the farmer is risk-neutral. The objective of the farmer is to

choose actions at each stage to maximize, in expectation, the total profit from selling milk, less

the cost of purchasing palm kernel, harvesting pasture, and applying irrigation:

max Eω

pω53Mω
53 −

52∑
t=1

(
cssωt + chhωt + ciiωt

) , (13)

where the sample space of ω is the Cartesian product over stages of the weather and price scenar-

ios. Variables with the superscript ω refer to the value of that variable in stage t and scenario ω.

There are three costs which appear as constants in the model: cs is the cost of palm kernel ($/kg),

ch is the cost of harvesting ($/kg/ha), and ci is the cost of irrigation ($/mm). This optimization

problem can be formulated as a dynamic programming recursion where the value-to-go in stage

t, Vt, is the maximum expected future profit from stage t + 1 until the final stage, assuming that

the farmer takes the optimal action in each stage (given the current state). For t = 1, 2, . . . , 52, Vt

can be expressed as follows:

Vt(xt, e
p
t , rt, pt) = max Eep

t+1, rt+1, pt+1

[
Vt+1(xt+1, e

p
t+1, rt+1, pt+1)

]︸                                             ︷︷                                             ︸
Future Profit

−
(
csst + chht + ciit

)︸                 ︷︷                 ︸
Week t cost

s.t. Eq. (3) − (12)

where xt denotes the vector of state variables (Wt, Pt, Qt, Ct, Mt) evaluated at the start of stage t.

In the final stage t = 53, the formulation is different since the season has ended, and all that

occurs is the final payment of milk:

V53(x53, e
p
53, r53, p53) = p53M53︸  ︷︷  ︸

Milk Payment

.

The objective of the farmer is to maximize the expectation of the first-stage objective:

max Eep
1 , r1

[V1(x1, e
p
1 , r1, p1)], (14)

where x1 specifies the initial state of the farm, and p1 = $6/kg as defined earlier. Below, we

outline two further enhancements to the model to improve its realism.

Pasture Cover Penalty. Although POWDer is a single-season model, dairy farming is a multi-

year endeavor. Therefore, we need to ensure that the farm is in an equal (or better) condition at
14



the end of the season than it was at the start, in order to ensure that the next season’s performance

is not negatively affected by this season’s actions. Therefore, we convert the final stage problem

to an optimization problem and add an artificial penalty variable ∆p ≥ 0 to measure the amount

by which the final pasture cover is less than the initial pasture cover:

P53 + ∆p ≥ P1.

Then we penalize ∆p by a large coefficient (arbitrarily chosen to be 1000) in the objective

function of the final stage:

V53(x53, p53) = max p53M53 − 1000∆p

s.t. P53 + ∆p ≥ P1.

Fat Evaluation Index Penalty. Feeding palm kernel as a supplement to lactating cows changes

the amount and the ratio of fatty acids in the milkfat produced by the cows. When fed palm kernel

at high levels, the milkfat produced by a cow becomes difficult to process and meet customer

requirements for products (Dairy NZ, 2017b). To quantify this, a Fat Evaluation Index has been

developed by a collaboration of industry groups. Beginning June 1, 2018, New Zealand dairy

farmers will have their milk graded into four Fat Evaluation Index grades: A, B, C, and D. An

A grade is given to milk that is acceptable for processing. A B grade is given to milk that is

approaching the acceptable limit for processing. A C grade is given to milk that exceeds the

acceptable limit by a small amount. A D grade is given to milk that exceeds the limit by a large

amount. Milk that is graded as a C or D will incur (currently unspecified) financial penalties.

Current information released by the industry suggests that as a rule of thumb, three kilograms of

palm kernel per cow per day is approximately the upper limit for maintaining an A or B grade

(Dairy NZ, 2017b). To model the penalties associated with the excess intake of palm kernel, we

introduce a penalty based on the quantity of palm kernel fed per cow per day (Figure 4). If the

farmer feeds less than 3 kg/cow/day, the penalty is zero. Between 3 and 4 kg/cow/day, the penalty

increases at a rate of $0.25/kg/cow/day. Between 4 and 5 kg/cow/day, the penalty increases at a

rate of $0.5/kg/cow/day. Above 5 kg/cow/day, the penalty increases at a rate of $1/kg/cow/day.

At the time of this research penalties for exceeding the Fat Evaluation Index threshold have

not yet been decided and are likely to be based on the total milk produced, rather than palm kernel
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Figure 4: Fat Evaluation Index Penalty for differing levels of intake. Shaded vertical bands represent different Fat

Evaluation Index grades: A in green, B in orange, and C in red (D not shown).

fed. Our approximation as a convex cost on palm kernel fed, preserves the convexity necessary

for optimization using SDDP.

Summary. POWDer models the decision process as follows. (The reader may find it helpful

to view Figure 1 in conjunction with this summary.) At the beginning of week t, the farmer

measures the five state variables in the model: the soil moisture Wt (mm), the pasture cover Pt

(kg/ha), the quantity of feed in storage Qt (kg/ha), the number of cows milking Ct (cows/ha),

and the quantity of milk produced to date Mt (kg/ha). Before choosing an action, the farmer

observes the realization of the three random variables: the potential evapotranspiration ep
t (mm),

the quantity of rainfall rt (mm), and the forecast milk price pt ($/kg). Taking into account the

current state and the observation of the random variables, the farmer decides the quantity of

irrigation to apply it (mm), the quantity of pasture to harvest ht (kg/ha), the number of cows per

hectare to dry-off ut (cows/ha), and the quantities (kg/ha) of grass (from pasture f p
t and storage

f q
t ) and palm kernel st to feed the herd. As a result of these actions, the actual evapotranspiration

et (mm) and energy apportioned for milk production mt (MJ/ha) are observed, and the system

transitions to a new state that will serve as the incoming state in the next week. In addition, the

farmer will incur the cost of purchasing palm kernel, harvesting pasture, and applying irrigation.

In the 53rd week, the farmer sells the milk produced during the season M53 at the end-of-season

milk price p53.
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3. Case Study

In this section we investigate the application of POWDer to a working dairy farm in the Bay

of Plenty region of New Zealand. In the following, we refer to it as the case farm.

3.1. Calibration

We begin by describing how POWDer was calibrated to the case farm. The case farm is

not irrigated, so it was set to 0 for all stages. In addition, the farmer estimated the cost of

harvesting ch at $275/t, and the metabolizable energy content of pasture ηp and palm kernel

ηs to both be 11 MJ/kg. Furthermore, a maximum lactation length of 44 weeks was set (so

that Ct = 0, t = 45, . . . , 52) as the farmer considered lactation lengths longer than this to be

impractical. The minimum quantity of energy for milk production ν was set to 500 MJ/cow/week

based on the value reported by (Dairy NZ, 2012a). We also scaled the net energy content of milk

ηm
t predicted by the model of Freer et al. (2007) by 1.2 so that it matched the value (≈80 MJ/kg)

reported by Dairy NZ (2012a). The farmer confirmed that, given the quantity of feed consumed

by the herd, the simulated milk production in the results below was representative of the case

farm.

DairyBase. DairyBase (Dairy NZ, 2017a) is a voluntary database of financial and physical key

performance indicators for New Zealand dairy farmers. It provides a standardized reporting

mechanism that can be used to benchmark a farm’s performance. The owner of the case farm

provided us with access to their DairyBase data for the 2013/14 and 2014/15 production seasons.

The data included information such as the total milk production per hectare, the quantity of

pasture and palm kernel eaten, and the lactation length. It also included a detailed break-down

of operating expenditure. We provide a summary of the data in Table 1. We draw the reader’s

attention to two items: first, the palm kernel cost is not the price per tonne from the supplier

(typically $275/t – $350/t for palm kernel (Dairy NZ, 2016)) but includes the additional costs of

storage, as well as wastage and spoilage; and second, the line item Fixed Expenses accounts for

all costs excluding the cost of palm kernel. This allows us to standardize the operating profit per

hectare to account for changes in milk price and palm kernel costs.

Based on the DairyBase data, the stocking rate C̄ was set at 3 cows/ha and the cost of palm

kernel cs was set at $500/t.
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2013/14 2014/15 Average

Stocking Rate (cows/ha) 3 3 3

Milk Price ($/kg) 8.40 4.40 6.40

Milk Production (kg/ha) 1240 1146 1193

Lactation Length (days) 275 256 266

Pasture Consumption (t/ha) 12.6 11.7 12.15

Palm Kernel Consumption (t/ha) 2.8 2.9 2.85

Palm Kernel Cost ($/t) 473 419 446

Fixed expenses ($/ha) 3512 3560 3536

Table 1: Summary data for the case farm over two seasons, and the average of these.

Weather Data. Historical data were obtained from the NIWA CliFlo database (NIWA, 2017) for

the incident rainfall rt and evapotranspiration potential ep
t from 1 January 1997 to 31 Decem-

ber 2016 for the three closest stations to the farm (Wharawhara Water Stn, Tauranga Aero Stn,

and Whakamaramara). Then, for each week in the dataset, we averaged the data from all three

stations. This resulted in 20 historical readings for each week of the year for both the evapotran-

spiration potential ep
t and incident rainfall rt. Plots showing the historical distributions of rainfall

and evapotranspiration potential by week are given in Figure 5.
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Figure 5: Historical distributions for rainfall (a) and evapotranspiration (b). In order of increasing darkness, shaded bands

correspond to 0-100, 10-90, and 25-75 percentiles. The dark single line represents the 50th percentile for each week.

We construct a stagewise-independent stochastic process for the weather by empirically sam-

pling with replacement from historical readings that occurred during that week. There are 20
18



readings in each week. This gives a total of 2052 possible different weather scenarios for the

stochastic weather process. When coupled with the nine possible price scenarios from the milk

price model, there are a total of 9 × 2052 possible outcomes in the sample space ω in Eq. 13.

Grass Model Parameters. The maximum rate of pasture growth ∆Pmax was assumed to be 65

kg/ha/day, and the maximum pasture cover Pmax was assumed to be 3500 kg/ha. These values are

regional averages obtained from Dairy NZ (2012b) and from an interview with the owner of the

case farm. The farmer was only able to supply cumulative annual growth data. Therefore, it was

difficult to calibrate the soil-fertility index κ. Instead, we calibrated κ, by dividing the monthly

average pasture growth of a nearby farm (chosen by the farmer from Dairy NZ (2012b)) with the

average weekly evapotranspiration readings for the case farm to obtain a weekly estimate for κt.

These weekly estimates were then scaled so that when κt was multiplied by the historical potential

evapotranspiration data for the 2013/14 and 2014/15 seasons, the annual pasture growth matched

the total grown on the farm during the 2013/14 and 2014/15 seasons. The farmer confirmed that

the predicted growth rates were representative of the case farm.

3.2. Solution Method

The POWDer model was implemented in the Julia (Bezanson et al., 2017) language using the

SDDP.jl (Dowson & Kapelevich, 2017) and JuMP (Lubin & Dunning, 2015) packages. Gurobi

(Gurobi Optimization, 2016) was used to solve the linear subproblems. The model was solved

for 1000 SDDP iterations to form an approximately optimal policy using the initial conditions

(W1, P1,Q1,C1,M1) = (150, 2500, 0, C̄, 0). The model converged to a first stage objective value

(Eq. 14) of $2226/ha. Then, 1000 Monte Carlo replications were conducted using the policy and

summary statistics were collected for each of these 1000 scenario realizations. Using a single

thread of an Intel i7-4770 CPU with 16GB of memory, the solution time is approximately eight

minutes. In total, the solution process involved solving over 2.3 million linear programs.

3.3. Results

In Table 2, we present a summarized set of statistics to compare the simulated results against

the historical average of what happened on the case farm during the 2013/14 and 2014/15 sea-

sons. In all simulations, the model consumed more palm kernel than the case-study farm. This

suggests that for the case farm, even at a cost of $500/t for palm kernel (which is larger than the
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average cost reported in the DairyBase data), feeding a low constant amount of 3 kg/cow/day of

palm kernel is profitable. In addition, due to the extra feed imports, the average lactation length

(i.e., the mean number of days milking for a cow in the herd) in almost all simulations was longer

than that of the case farm (a median of 44 weeks compared to 38.6 weeks). The extra feed and

lactation length increased the milk production per hectare from the historical average of 1193

kg/ha to a median value of 1360 kg/ha in the simulations (+14% increase). In turn, this increased

operating profit from $2197/ha to a median value of $2542/ha. However, in the worst simulated

case the operating profit was −$1608/ha. This coincided with a scenario with low rainfall and

low price.

In Figure 6 and Figure 7, we visualize 1000 Monte Carlo simulations across a range of differ-

ent dimensions. Both figures sampled the same weather scenarios but different price scenarios.

In Figure 6, we plot simulations that sampled the low milk price state during the second half of

the year (i.e. p26 = $5/kg), whereas in Figure 7, we plot simulations that sampled the high milk

price state during the second half of the year (i.e. p26 = $7/kg).
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Figure 6: Simulated seasons that sample a low milk price during the second half of the season using the optimal policy.

In each of the subplots, we plot the 0–100 percentiles of the distribution of the plotted variable

as a light shaded band. The dark shaded bands correspond to the 10–90th percentiles. The dotted

line corresponds to the 50th percentile. In addition, we highlight one randomly chosen scenario

out of the 1000 simulations with a thick solid line. The same weather scenario was chosen in

each plot to highlight how the farmer’s weekly decisions vary with different price forecasts.

The first half of each subplot is plotted in gray because both figures visualize the same 1000
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Simulation Percentiles Historical

0 25 50 75 100 Avg.

Milk Price ($/kg) 4 5 6 7 8 –

Palm Kernel Cost ($/t) 500 500 500 500 500 –

Avg. Lactation Length (weeks) 31.1 44.0 44.0 44.0 44.0 38.6

Milk Production (kg)

per Hectare 1006 1302 1360 1407 1511 1193

per Cow 335 434 453 469 504 398

Milk Revenue ($/ha) 4024 6827 8171 9600 11920 7158

Feed Consumed (t/ha)

Pasture 9.64 11.83 12.16 12.41 13.14 12.15

Palm Kernel 3.58 3.86 4.32 4.41 4.66 2.85

% Feed Imported 22.1 24.5 26.0 26.8 30.6 19

Palm Kernel Expense ($/ha) 1790 1929 2162 2203 2330 1425

Fixed Expense ($/ha) 3536 3536 3536 3536 3536 3536

Operating Profit ($/ha) −1608 1243 2542 3873 6157 2197

Fat Evaluation Index Penalty ($/ha) 96 146 264 297 427 –

Table 2: Summary results of 1000 simulations of one SDDP policy. Percentiles are calculated independently between

rows. Therefore, the simulation with the minimum average lactation length may not coincide with the scenario with the

minimum milk production. Historical operating profit was calculated using the average milk price and palm kernel cost

from the simulation. All other historical values are derived from the average of the case farm’s DairyBase data for the

2013/14 and 2014/15 seasons. Operating profit for the simulation percentiles excludes the Fat Evaluation Index penalty

for comparison with historical average.

weather scenarios, and the new price information is not revealed until week 25. Therefore, the

simulations for the first half of the year are identical between Figure 6 and Figure 7. All the

cows are kept milking (Figure 6a and Figure 7a), and they are fed 4 kg/cow/day of palm kernel

(Figure 6e and 7e). This level of feeding is at the upper end of the acceptable Fat Evaluation

Index grade scale. This suggests that the small penalty ($0.25/kg/cow/day) that is incurred is

less than the value of the additional milk that is produced. However, differences in rainfall and

evapotranspiration between individual simulated scenarios lead to different trajectories for soil

moisture (Figure 6c and Figure 7c) and pasture growth (Figure 6d and Figure 7d). Despite these
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Figure 7: Simulated seasons that sample a high milk price during the second half of the season using the optimal policy.

differences, the pasture cover follows a clearly observable trend. For the first two months, the

rate of grass growth is less than that fed to the cows. This causes the pasture cover to decrease.

However, in late September, the pasture growth begins to exceed the rate of consumption and the

pasture cover increases. Pasture growth peaks in late October before gradually declining over the

remainder of the season.

During the second half of the year, the optimal controls diverge depending on the forecast

milk price that is observed. In the high milk-price states (Figure 7), the optimal management

strategy is to keep the entire herd milking for as long as possible (Figure 7a) in almost all weather

scenarios. This is achieved by increasing the quantity of palm kernel fed to 5 kg/cow/day in

April (Figure 7e). This incurs an additional Fat Evaluation Index penalty. However, based on

the current price forecast, the expected value of the milk exceeds the cost of the Fat Evaluation

Index penalty.

In contrast, depending on the observed rainfall and evapotranspiration, the trajectories in the

low milk price states (Figure 6) begin drying off the herd in February. However, if weather

conditions are favourable for growing grass, the dry-off decision is delayed. In the trajectory

highlighted by the solid blue line, a drought during late February and March (Figure 6c) causes

the model to begin drying off cows during February (Figure 6a). As the drought progressively

worsens, more cows are dried off, and the total pasture cover (Figure 6b) declines. By April,

the drought breaks, and the pasture cover begins to increase. However, due to the low forecast

price, the model does not increase the rate of palm kernel intake (Figure 6e) to extend lactation.
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Instead, the rate of palm kernel intake is increased during June to avoid the penalty arising from

the final pasture cover (Figure 6b) being lower than the initial pasture cover.

The quantity of milk produced per day (Figure 6f and Figure 7f) tends to switch between

the maximum limit and the minimum limit (Eq. 10). This bang-bang behavior is a well-known

artifact of linear optimal control problems. This feature can also be observed in Figure 6e and

Figure 7e where, in most cases, the optimal quantity of palm kernel to feed is at one of the

break-points in the Fat Evaluation Index penalty function (Figure 4).

3.4. A Lower Stocking Rate

The 2015/16 season was characterized by very low international milk prices. As a result,

the end-of-season milk price was $3.90/kg. In order to reduce costs, the case farm reduced

its stocking rate from 3 cows/ha to 2.7 cows/ha. To investigate this decision, we re-solved the

POWDer model with C̄ set to 2.7 cows/ha. All other parameters were kept the same.

In Table 3, we present the same set of summarized statistics as Table 2. Compared with the

case where the stocking rate was 3 cows/ha, the median operating profit per hectare increases

from $2542/ha to $2846/ha (+12%). This is achieved by increasing per cow production from a

median of 453 kg/year to 502 kg/year despite the quantity of palm kernel imported decreasing

from a median of 4.32 t/ha to 3.62 t/ha (−16%) and a similar quantity of pasture being grown

(12.16 t/ha compared with 12.15 t/ha). One explanation for this is that by decreasing the stocking

rate, the quantity of feed needed to account for fixed costs (such as maintenance and pregnancy)

decreases. Therefore, for a similar quantity of feed, more milk can be produced (provided the

cows are not at their biological maximum).

In Figure 8 we plot the two distributions in operating profit for both stocking rates. The five

peaks in the density functions correspond to the five different milk prices that can be observed.

Variations around each peak correspond to the uncertainty associated with the weather. Under

every scenario, the simulated operating profit with 2.7 cows/ha was greater than the simulated op-

erating profit with 3 cows/ha, and the expected operating profit (Eq. 14) increased from $2270/ha

to $2646/ha (+17%).

Reducing the stocking rate has additional benefits for the farmer that the model does not

capture. Costs that are incurred on a per cow basis (which we amortized into a per hectare figure)

such as animal health and young stock management (animals that are too young to produce milk

and are grazed off-farm) will decrease. In addition, the environmental impact of the farming
23



Simulation Percentiles Historical

0 25 50 75 100 Avg.

Milk Price ($/kg) 4 5 6 7 8 –

Palm Kernel Cost ($/t) 500 500 500 500 500 –

Avg. Lactation Length (weeks) 34.6 44.0 44.0 44.0 44.0 38.6

Milk Production (kg)

per Hectare 1021 1297 1355 1398 1472 1193

per Cow 378 480 502 518 545 398

Milk Revenue ($/ha) 4103 6798 8128 9556 11702 7158

Feed Consumed (t/ha)

Pasture 9.64 11.81 12.15 12.39 12.94 12.15

Palm Kernel 2.98 3.23 3.62 3.71 3.98 2.85

% Feed Imported 19.0 21.4 22.8 23.6 28.0 19

Palm Kernel Expense ($/ha) 1489 1617 1812 1855 1989 1425

Fixed Expense ($/ha) 3536 3536 3536 3536 3536 3536

Operating Profit ($/ha) −1275 1551 2846 4162 6312 2197

Fat Evaluation Index Penalty ($/ha) 22 72 173 203 349 –

Table 3: Summary results of 1000 simulations of one SDDP policy with stocking rate of 2.7 cows/ha. Percentiles are

calculated independently between rows. Therefore, the simulation with the minimum average lactation length may not

coincide with the scenario with the minimum milk production. Historical operating profit was calculated using the

average milk price and palm kernel cost from the simulation. All other historical values are derived from the average

of the case farm’s DairyBase data for the 2013/14 and 2014/15 seasons. Operating profit for the simulation percentiles

excludes the Fat Evaluation Index penalty for comparison with historical average.

operation may decrease since there are fewer animals to produce greenhouse gas emissions and

nitrate leeching. Moreover, labour costs will decrease as the time spent performing manual tasks

such as milking will decrease. This suggests that we may have underestimated the financial

benefit of the reduced stocking rate since we assumed that the fixed cost per hectare was the

same for the two configurations.
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Figure 8: Smoothed density of operating profits ($/ha) under differing stocking rates. Vertical lines correspond to the

mean of each distribution. The five peaks in each distribution correspond to the five end-of-season milk prices p53: $4/kg,
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4. Discussion

Our current model only takes eight minutes to solve. This allows scope for a more detailed

model. In particular, the stochastic price model used in POWDer is a simplistic approximation

for the true price process. For simplicity, we have also chosen to ignore recent developments

such as the launch of the NZX6 Milk Price Futures (NZX, 2018) and more detailed milk price

forecast models that utilize the bi-monthly Global Dairy Trade auctions (AgriHQ, 2016). A more

detailed model could be created by extending the scenario tree approach taken in this paper and

allowing the farmer to sell milk within the season rather than just at the end.

One of the largest critiques of this model is the way in which we calculate the net energy

requirements of the cow (detailed in Appendix A). Readers familiar with cow biology may ques-

tion the assumption that the cow follows a predetermined body condition trajectory, with any

net energy contributing linearly to milk production. In reality, the cow will partition the energy

between lipid deposition and milk production. Attempts to model this partitioning have resulted

in non-convex relationships (e.g. (Baudracco et al., 2011)). This would create a non-convex

Bellman function, precluding the use of SDDP as a solution technique. We justify the approach

taken in this model by observing that variations from the typical body condition trajectory typi-

cally represent poor health outcomes for the animal (Roche et al., 2009).

6New Zealand Stock Exchange
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A second critique is that to simplify the model, we have assumed that the cows will consume

all of the energy provided by the farmer in the form of pasture and palm kernel. This ignores

consumption limits, as well as the substitution effect that supplementary feeding has upon pasture

intakes (Doole et al., 2012). However, when compared with the DairyBase data from the case

farm, POWDer produced realistic results that could be meaningfully interpreted.

A third critique is our approximation of the stochastic processes for rainfall and evapotran-

spiration potential. In this paper, we assume that they are stagewise-independent and drawn

from historical observations. Future work should be conducted to validate these assumptions

and explore alternative processes, such as an auto-regressive process.

Finally, in the introduction we outlined the IDEA (Integrated Dairy Enterprise Analysis)

model, which we consider to be the current state-of-the-art for a multi-stage optimization model

of a dairy farm. Although similar in many respects, IDEA and POWDer answer different ques-

tions. IDEA focuses on optimizing a detailed model of a farm under deterministic conditions. It

models many variables that POWDer does not, including, for example, the impact of stocking

rate on pasture utilization. In contrast, POWDer solves a simplified model of a farm that incor-

porates stochasticity. This trade-off is necessary in order to maintain tractability of the model.

In the future, it would be interesting to incorporate some of the features of IDEA into POWDer,

such as a heterogeneous herd. It would also be interesting to simulate the dry-off and feeding

decisions that arise from POWDer in IDEA, which is a higher fidelity model.

5. Conclusion

In this paper we have described a multi-stage stochastic linear optimization program of a

New Zealand dairy farm. In comparison to existing deterministic models, POWDer relies upon a

simpler farm-level model to provide insight into farm management practices under uncertainty.

We have shown that optimal management strategies for a case farm in the Bay of Plenty

region of New Zealand differ based on the combination of economic and weather uncertainties.

In particular, the model is able to decide the quantity of palm kernel to feed and when to dry

cows off, based on the forecast milk price and current pasture cover. We used the model to

analyze the impact of a reduction in stocking rate for the case farm. This found that the operating

profit improved in every scenario, even if we exclude the additional environmental and economic

benefits associated with a reduction in stocking numbers.
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Overall, this paper demonstrates that large multi-stage stochastic programs in an agricultural

context can be solved efficiently to generate meaningful insights for practitioners. We hope that

POWDer serves as a foundation upon which improvements, particularly around the milk price

process, can be made.

Supplementary Materials. All of Julia code to implement POWDer in SDDP.jl, as well as all

of the data needed to run the case-study and replicate the results in this paper are available as

supplementary materials at https://github.com/odow/MilkPOWDER.
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Appendix A. Description of Animal Model

As we outlined in Section 2.2, we model the cow by a simple energy balance. In addition

to milk production, we assume that the cow requires energy for three functions: maintenance,

pregnancy, and to change body condition. In this appendix, we provide the reader with more

detail about the literature we draw from to estimate these requirements and highlight some subtle

differences that we have made.

Body Condition. The Body Condition Score (BCS) is an assessment of the proportion of body

fat in a cow and is used by farmers as an important indicator of animal health (Roche et al., 2009).

In New Zealand, a ten-point scale is used, where 1 represents a severely emaciated cow and 10

represents a severely obese cow. Over a season, cows typically follow a genetically driven cycle

in their body condition score (although under or over feeding can cause the cow to deviate from

the typical trajectory). The cycle begins after the cow calves and starts with the mobilization of

body lipid into energy to contribute to the energetic cost of early lactation. This causes the BCS

to decrease. A few weeks after conception for the next season (100 – 120 days into the season),

the cow reverses this trend and begins to deposit body lipid in preparation for the next calving.

This causes the BCS to increase (Friggens et al., 2004).

In this model, we assume that the BCS trajectory is known a priori, and that the cow mod-

ifies its milk production to satisfy the energy balance, rather than a combination of both milk

production and BCS change. This is a reasonable assumption as deviating from the trajectory

typically represents a poor health outcome for the cow. However, it also reduces the number of

actions the farmer can take as underfeeding the cow is no longer feasible.

For the case study in this paper, we assume that the cow follows the body condition trajectory

as calculated by the Friggens model7 (Friggens et al., 2004) assuming an initial liveweight of

450kg and an initial BCS of 5.3 (in NZ Units (Roche et al., 2009)).

Next, we need to relate the change in BCS to the net energy requirements of the cow during

a week. To do this, we draw from Dairy NZ (2012b), who assume that a one unit change in BCS

corresponds to a change of 6.58% of the cow’s liveweight. Therefore, a one unit change in BCS

for a 450 kg cow is approximately a 30 kg change in liveweight. However, the energy required

7The “adjusted” parameter set (as it is called by Friggens et al. (2004)) was used as it demonstrated a slightly better

fit for their historical data.
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to increase liveweight by 1 kg is greater than the energy released by decreasing liveweight by 1

kg, and this amount of energy depends upon whether the cow is lactating or dry (see Table A.4).

Lactating Cows Dry Cows

Liveweight Gain 50 72

Liveweight Loss -37 -30

Table A.4: Energy required per change in liveweight (MJ/kg) for cows that are lactating and dried-off (Dairy NZ, 2012b).

However, with this information we can calculate a priori, the contribution to the cow’s energy

balance due to changes in BCS for each week.

Maintenance. Maintenance is the energy required to run the cow’s core bodily functions. This

can be considered a fixed cost of keeping the cow alive. In order to meet this requirement

when the cow is underfed, energy is mobilized from body lipids (decreasing the BCS) and milk

production is reduced. In this model, we consider the energy for maintenance to be constant,

and the farmer must provide sufficient energy input to meet this requirement. For a 450 kg cow,

Dairy NZ (2012b) assume the maintenance requirement to be 54 MJ/day.

Pregnancy. Dairy NZ (2012b) give very approximate energy requirements for pregnancy at the

2, 4, 8, and 12 weeks before calving, as well as an annual total. To obtain a better estimate,

we use the energy required for pregnancy equations of SCA (1990) (which were also used in

Baudracco et al. (2011)). However, it is our belief that this equation is over-fitted8. If we assume

W = 47 kg, we can fit, using simple linear regression, the exponential function:

energy for pregnancy = 0.2278e0.01989d, (A.1)

where d is the number of days since conception. The greatest absolute error between the fitted

curve and the original equation is 0.46 MJ/day and, over a 284-day gestation, the simplified

model predicts that the cow will require 6.5 MJ in additional energy for pregnancy. That is

less than 1 kg of pasture over a season. In our view this small discrepancy does not justify the

additional terms in the equation of SCA (1990). This model also gives similar results to the data

8The full equation is given (in MJ/day) as 9.663 × 10−5 ×W2 × e−5.76×10−5d × 10151.665−151.64×e−5.75×10−5d
where d is

the number of days since conception and W is the birth weight of the calf (kg).
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given in Dairy NZ (2012b), which suggests that a Jersey-Friesian cross needs 3240 MJ/year for

pregnancy (compared to 3272 MJ/year from Eq. A.1) and 21 MJ/day eight weeks before calving

(compared to 21.2 MJ/day from Eq. A.1). Using Eq. A.1, we can calculate the energy (MJ/day)

required by the cow for a given week t.

Total Energy Requirements. If Figure A.9, we plot the energy required by the cow over time

when it is lactating and dried-off. Of the total required energy, the fixed cost (54 MJ/day) of

maintenance represents a large proportion. Towards the end of the season, the energy required

for pregnancy also increases. The orange lines represent the net energy requirements for changes

in body condition (BCS). At the start of the season, the cow loses body condition, and so the

required energy is negative. After reaching nadir around conception, the cow begins gaining

body condition and the requirement is positive. Note that dry cows require more energy for

gaining body condition than lactating cows due to the values in Table A.4.
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Figure A.9: Energy required per week for lactating and dry cows.
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