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Abstract

Extreme events such as disasters cause partial or total disruption of basic services such as water,

energy, communication and transportation. In particular, roads can be damaged or blocked by

debris, thereby obstructing access to certain a�ected areas. Thus, restoration of the damaged

roads is necessary to evacuate victims and distribute emergency commodities to relief centers or

a�ected areas. The Crew Scheduling and Routing Problem (CSRP) addresses decisions in post-

disaster situations with the aim of minimizing the time that a�ected areas remain inaccessible.

The integration of crew scheduling and routing decisions makes this problem too complicated to

be e�ectively solved for practical instances using mixed integer programming (MIP) formulations

recently proposed in the literature. Therefore, we propose a branch-and-Benders-cut (BBC)

algorithm that decomposes the integrated problem into a master problem (MP) with scheduling

decisions and subproblems with routing decisions. Computational tests based on instances from

the literature show that the proposed exact method improves the results of MIP formulations

and other exact and metaheuristic methods proposed in literature. The BBC algorithm provides

feasible solutions and optimality gaps for instances that thus far have not been possible to solve

by exact methods in the literature.

Keywords: Combinatorial optimization, Benders decomposition, Branch-and-cut, Crew

scheduling and routing, Road restoration.

1. Introduction

Infrastructure systems that provide essential public services such as water, energy, telecommu-

nications, and transportation are commonly disrupted after extreme events. Floods, landslides,

and earthquakes are examples of natural hazards that might damage the overall network com-

posed by roads, bridges, and tunnels, thereby contributing to the interruption of services and

logistics activities. In this context, restoring transportation infrastructure is crucial to carry out

an e�ective short-term response, which includes the evacuation of victims from a�ected areas
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to temporary shelters and the distribution of relief aid. The restoration of transportation in-

frastructure after extreme events is referred to in the literature as the road restoration problem

(Tuzun Aksu and Ozdamar, 2014).

Road restoration involves certain decisions that must be taken quickly, such as the selection

of the roads to restore and the scheduling and routing of the crews that will perform the repair

activities. In this paper, we are particularly interested in a variant studied in Maya-Duque et al.

(2016) that explicitly considers the complex interdependence between scheduling and routing

decisions for a single crew, hereafter called the Crew Scheduling and Routing Problem (CSRP)

in road restoration. We consider that a damaged road can have one or more damaged points

(damaged nodes), as may occur in real cases, especially on long highways. The scheduling

decisions de�ne the sequence in which the damaged nodes in the network will be visited by the

crew. The routing decisions determine the paths/routes to be used by the crew to visit and

repair the damaged nodes. In this variant, a path is usually a sequence of nodes and arcs used

by the crew to travel from one damaged point to another, while a route is a sequence of paths

that ends at the depot after repairing all the damaged nodes. The objective is to restore the

damaged nodes in the network as soon as possible, because they are necessary to de�ne paths

connecting a source node to demand nodes that require humanitarian assistance.

The design of crew routes is challenging because damaged nodes can obstruct access to other

nodes of the network and also damaged roads are not traversable unless they are completely

repaired �rst. The traversable roads include those that were not damaged and the repaired

ones. Then, the number of paths that are feasible at a speci�c moment depends on which

nodes are damaged at that moment, which in turn depends on the scheduling decisions. In

addition, without considering routing decisions simultaneously, the damaged nodes that are

not accessible at a given moment might be selected �rst in the schedule, making the schedule

infeasible in practice. Furthermore, the shortest paths between damaged nodes, if they exist,

change dynamically during the restoration according to the schedule.

The integration of the main decisions that emerge in road restoration has been addressed by

other authors in the literature (Çelik, 2016). Particularly, the CSRP has been tackled recently via

the proposition of MIP and dynamic programming models (Maya-Duque et al., 2016). However,

such models have proven to be intractable and failed to solve even small instances. Hence, the

authors have devised heuristic methods (Maya-Duque et al., 2016) to obtain feasible solutions

for the instances of the CSRP. As usual, the main drawback of heuristic approaches is that

they do not provide optimality guarantees or any information on the quality of the solutions.

Furthermore, a heuristic can stagnate in locally sub-optimal solutions.

In this paper, we develop an exact algorithm based on Benders decomposition for the CSRP.

The algorithm exploits the fact that when the scheduling decisions are �xed, the routing decisions

become a set of shortest-path subproblems. To solve the subproblems, we propose specialized

algorithms based on Dijkstra's shortest-path algorithm. Hence, we consider a master problem

(MP) with scheduling decisions and subproblems with the remaining routing decisions. The

resulting MP obtained from the Benders decomposition is solved by a single search tree, exploring

the generation of cuts inside the tree. This strategy has been recently referred to as Branch-
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and-Benders-Cut (BBC) (Gendron et al., 2016; Errico et al., 2017) and has been shown to be

more e�ective than the standard Benders approach, which solves a mixed-integer MP at each

iteration. We are not aware of any other decomposition-based exact algorithm proposed for the

CSRP or related variants.

Due to the discrete subproblems, standard duality theory cannot be applied to derive cuts;

therefore, we propose di�erent types of lower-bounding functions and combinatorial Benders cuts

(Laporte and Louveaux, 1993) based on particular characteristics of the CSRP. Combinatorial

Benders cuts cut o� infeasible solutions in the MP, while lower-bounding functions set lower

bounds for the feasible solutions in the MP. We empirically compare di�erent BBC approaches

based on combinations of feasibility and optimality cuts. In addition, we add valid inequalities

to the MP, which helps to transfer information from the subproblems that is lost due to the

decomposition. Construction and local search heuristics are also used to provide good initial

solutions for the BBC.

The remainder of this paper is organized as follows. In Section 2, we describe the CSRP.

Section 3 shows the related literature. In Section 4, we present the BBC algorithm. We discuss

the computational results in Section 5. Finally, Section 6 presents �nal remarks and areas of

future research.

2. Problem description

The CSRP is de�ned on an undirected and connected graph G = (V, E), in which V is the

set of nodes and E is the set of edges (arcs). There are demand nodes (Vd ⊂ V) representing
the a�ected cities and damaged nodes (Vr ⊂ V) representing the damaged points in the net-

work. Demand nodes i ∈ Vd correspond to locations where some demand di for humanitarian

assistance exists. Furthermore, there may be transshipment (intersection) nodes, which repre-

sent the intersection of two or more edges. Figure 1(a) shows an example of a network before

being a�ected by extreme events (original network), while Figure 1(b) shows the corresponding

network considering damaged nodes in the points where the edges (roads) were damaged. Notice

that some edges can be damaged in more than one point. There is one depot (node 0) that is

a supply node to be connected with the demand nodes and from which the repair crew initially

departs to repair the damaged nodes. For each node i ∈ V, there is a set Ei ⊆ E representing the
edges incident to node i. A damaged node j ∈ Vr has a repair time δj that represents the time

the crew spends to repair the node j. A travel time τe and a length (distance) `e are de�ned for

each edge e ∈ E .
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Figure 1: Example of a graph representing the CSRP.
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We consider a single crew available to perform the restoration activities. The problem consists

of determining (i) the optimal crew scheduling to repair the damaged nodes, (ii) the paths that

must be followed by the crew between two successive damaged nodes in the schedule, and (iii)

the paths between the depot and the demand nodes. The damaged nodes must be repaired the

�rst time they are visited by the crew, incurring in the repair time. In subsequent visits, the crew

can use the already repaired damaged nodes without incurring in a repair time. Some damaged

nodes cannot be repaired before the restoration of other damaged nodes. For instance, node 9 in

Figure 1(b) cannot be repaired directly from the depot without the restoration of other damaged

node (7, 8 or 10).

The objective of the CSRP consists of minimizing the time that the demand nodes remain

inaccessible from the depot weighted by their corresponding demands. The accessibility of the

demand nodes in�uences the delivery of commodities and the evacuation of a�ected people, and

hence, it must be restored as soon as possible. A demand node i ∈ Vd is called accessible if

there exists a path that connects this node to the depot using only undamaged and/or repaired

nodes and that is not longer than a maximum distance li. The maximum distance li is based

on pre-disaster conditions and has to be greater than or equal to the shortest distance between

the depot and the demand node i. In Figure 1(a), for example, assuming a distance ` = 1 in

all the edges of the graph, the shortest distance from the depot to demand node 2 is 1. Then,

l2 ≥ 1. If l2 = 1, only path 0-2 can be used to connect the depot with demand node 2. On the

other hand, if l2 = 3, paths 0-2 and 0-3-1-2 can be used to connect the depot with demand node

2. Paths connecting the depot with the demand nodes can require the restoration of damaged

nodes. In Figure 1(b), for example, if path 0-3-4 is de�ned for connecting node 4 with the depot,

no damaged node must be repaired to make node 4 accessible. In this case, the time that demand

node 4 remain inaccessible from the depot is equal to zero, as no damaged node is used in the

path 0-3-4. On the other hand, if paths 0-2 and 0-5 are de�ned for connecting nodes 2 and 5 with

the depot, respectively, then damaged node 6 must be repaired for demand node 2 to become

accessible and damaged node 7 must be repaired for demand node 5 to become accessible. In this

case, the time that the demand nodes 2 and 5 remain inaccessible from the depot is equal to the

exact time at which nodes 6 and 7 are repaired, respectively. Furthermore, repairing damaged

nodes 8, 9 and 10 is not necessary for connecting the depot with the demand nodes. However,

these nodes also need to be repaired in the long term. To minimize the time that demand nodes

remain inaccessible from the depot, it is expected that the optimal solution to the problem in

Figure 1(b) considers �rst the restoration of damaged nodes 6 and 7 and then the restoration of

nodes 8, 9 and 10.

3. Literature review

The CSRP has been tackled recently in the literature using exact methods and heuristics.

Maya-Duque et al. (2016) developed a dynamic programming (DP) algorithm to optimally solve

the CSRP. This approach is based on the gradual addition of damaged nodes to a schedule

that starts in the depot, keeping a list of states with information about the elapsed time and

current location of the crew, the unrepaired damaged nodes, and the inaccessible demand nodes.
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However, the DP algorithm was able to solve to optimality only few (small) instances of the

problem. An MIP formulation was also developed by the same authors, but they claimed that

a direct implementation of the model in a commercial solver resulted in an intractable solution

method even for small instances. Hence, they did not report computational results of using the

model to solve the problem. Finally, because of the limitations regarding their exact approaches,

the authors developed a metaheuristic based on GRASP to solve medium and large instances.

Due to the heuristic nature of the method and the lack of lower bounds, the analysis of the

quality of the solutions is compromised.

Variants of the CSRP that integrate scheduling and routing decisions have also been studied

in the literature. Feng and Wang (2003) were the �rst authors to develop a mathematical

model integrating scheduling and routing decisions towards road restoration, focusing on highway

emergency rehabilitation after earthquakes. Di�erent from the CSRP, they presented a multi-

objective model to maximize both the total kilometers of roads repaired and the total number

of saved lives, while minimizing the risk of the restoration operations. This model does not

include the de�nition of paths between depots and the demand nodes. Furthermore, the dynamic

changes in the accessibility of the nodes along the network are not taken in account. This means

that the crew cannot visit some damaged nodes before the restoration of other damaged nodes.

To incorporate the network dynamics, Yan and Shih (2007) devised a time-space network MIP

model. This formulation considers copies i′ of an original node i to represent the state of this

node over the time horizon. The model minimizes the completion time of the restoration. They

did not consider the design of paths to reach the demand nodes. To �nd feasible solutions for

the problem, the authors proposed a heuristic algorithm that divides the originally damaged

network into several smaller networks. Each subnetwork was then solved using a commercial

solver. However, even the subproblems remain unsolvable in practical time. Therefore, in a

subsequent study (Yan and Shih, 2012), the same authors implemented an ant colony system-

based metaheuristic to solve practical instances of the problem.

Tang et al. (2009) used the same idea of time-space networks to model a stochastic version

of the problem presented in Yan and Shih (2007). They incorporated both stochastic travel and

repair times into the problem using a two-stage stochastic programming model. The �rst-stage

refers to the scheduling and routing decisions, whereas the second-stage considers alternative

routing decisions for each scenario. The model aims at minimizing the travel and repair times

plus an expected penalty value for the modi�cation of the routes. Small instances of the problem

were solved by a commercial optimization solver.

Yan and Shih (2009) integrated crew scheduling and routing with relief distribution in a

bi-objective model to minimize the completion time of the restoration, and the time due to

the relief distribution to all demand nodes. The bi-objective model was reduced to a single

objective via the evaluation of a weighted objective function, and thus was solved by a heuristic

analogously to Yan and Shih (2007). Similarly, Yan et al. (2014) incorporated rescheduling

repair decisions into the problem proposed by Yan and Shih (2007). Basically, they considered

that backup repair crews can be dispatched to support the regular crews when subsequent events

after the primary extreme event cause new damage nodes over the time horizon. An ant colony
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system-based metaheuristic was used to solve practical instances of the problem. Xu and Song

(2015) also proposed optimizing crew scheduling and routing with relief distribution but focused

on minimizing the time in which relief goods arrive at the demand nodes. The resulting problem

was solved by an ant colony system-based metaheuristic.

Pramudita et al. (2012) and Pramudita and Taniguchi (2014) integrated location decisions

with crew scheduling and routing decisions. They considered the problem as a variant of the

undirected capacitated arc routing problem (CARP), in which there exists a set of blocked arcs

that need to be unblocked. Additional constraints were added to the classical CARP to limit

access to some section of the network as a result of debris-blocked arcs. Di�erent from the CSRP,

the objective is to minimize the cost of collecting the debris in all the damaged arcs. Furthermore,

the de�nition of paths to reach the demand nodes was not considered by the authors. Pramudita

and Taniguchi (2014) studied the same problem by transforming the CARP into the capacitated

vehicle routing problem (CVRP). The transformation associates blocked arcs with two nodes

that must be visited in sequence. Pramudita et al. (2012) and Pramudita and Taniguchi (2014)

used a tabu search metaheuristic to solve practical instances of the problem.

Özdamar et al. (2014) proposed a multi-objective non-linear recursive model to minimize

both the network inaccessibility and the completion time of the restoration operations. In their

model, schedule decisions are generated for a �eet of dozers that perform the task of debris

cleanup from blocked arcs. The authors developed heuristics based on priority selection rules to

solve the problem. Akbari and Salman (2017b) introduced the multi-vehicle synchronized arc

routing problem. The model optimally determines the set of debris-blocked roads that need to be

repaired and the synchronized routes for the crews (vehicles) to clear these roads in the shortest

completion time. They proposed an MIP formulation and a relaxation-based heuristic in which

the routes of the crew might not be synchronized. Additionally, they developed a constructive

heuristic to obtain a feasible solution from the unsynchronized solution and a neighborhood search

algorithm to improve the feasible solutions. Finally, the same problem and its solution method

were addressed in Akbari and Salman (2017a) with a di�erent objective function consisting of

maximizing the network components connected to the depot node. This problem di�ers from the

CSRP in the sense that it considers di�erent objective functions and multiple crews. Furthermore,

it does not involve the design of paths to connect demand nodes with a central depot. Such paths

are, in practice, used to perform the distribution of supplies or the evacuation of victims.

Notice that several studies devise heuristic/metaheuristic algorithms to address the CSRP

or related problems. On the other hand, the literature on exact methods is still scarce. Despite

the fact some authors rely on mathematical formulations and commercial solvers to solve small

instances, practical instances have not been addressed. The dynamic programming algorithm

proposed by Maya-Duque et al. (2016) is the only specialized exact method proposed for the

CSRP, but it fails to solve even small instances of the problem. We are not aware of any

decomposition-based exact algorithm proposed for the CSRP or its variants.

In this paper, we contribute to the literature on the CSRP by proposing a state-of-the-art

exact approach based on the Benders decomposition and the branch-and-cut algorithm, referred

to as the branch-and-Benders-cut (BBC) method. This is a challenging task, since the CSRP
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integrates two non-trivial combinatorial optimization problems. The components of the proposed

method are specialized and sharpened to take advantage of the mathematical structure of the

CSRP. For example, the method relies on combinatorial cuts and lower bound functions that are

able to cut o� and set lower bounds for multiple solutions simultaneously. We develop e�cient

specialized algorithms to solve the subproblems that emerge from the decomposition, instead of

solving their corresponding classic MIP formulations via commercial solvers. We also propose

valid inequalities that e�ectively accelerate the convergence of the BBC approach. Furthermore,

construction and local search heuristics are also used to �nd good initial solutions for the method.

As the proposed BBC approach is an exact algorithm, the solution quality can be assessed, which

is relevant not only from the theoretical perspective, but also in practice, as it can help decision-

makers to rely on solutions that are known to be optimal or near-optimal. We could verify

experimentally that our algorithm is e�cient to solve many practical-size instances. Moreover,

we show that reasonable solutions are obtained even for very large-scale instances that have never

been tackled before by exact methods.

4. Solution approach

In this section, we present a mathematical formulation and propose the BBC algorithm. Ba-

sically, this algorithm has three main components: an MIP master problem de�ned in Subsection

4.2, optimality and feasibility cuts de�ned in Subsection 4.3 and separation routines de�ned in

Subsection 4.4. The MP considers only scheduling decisions for the crew, while subproblems

determine the paths between pairs of damaged nodes and between the depot and the demand

nodes. The solutions of a MP are used to generate feasibility and optimality cuts that cut o�

solutions corresponding to infeasible schedules. A �owchart showing the interaction between the

main components of the proposed BBC algorithm is presented in Subsection 4.5. Additionally,

in Subsection 4.6, we derive valid inequalities to have stronger LP relaxations, and in Subsection

4.8, we develop construction and local search heuristics to �nd good feasible solutions.

4.1. Mathematical modeling

To formulate the CSRP, we closely follow the mathematical model mentioned in Maya-Duque

et al. (2016). The notation used to describe the model is as follows.

Sets

V Set of nodes.

Vd ⊂ V Set of demand nodes.

Vr ⊂ V Set of damaged nodes.

E Set of arcs.

Ei ⊆ E Set of arcs incident to node i ∈ V.
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Parameters

di Demand of node i ∈ Vd.
δi Repair time of node i ∈ Vr.
τe Travel time on arc e ∈ E .
`e Length (distance) of arc e ∈ E .
li Maximum distance allowed between the depot and the demand node i ∈ Vd.
M A su�ciently large number.

Decision variables

Xij =
{ 1, if node j ∈ Vr ∪ {0} is repaired immediately after node i ∈ Vr ∪ {0}.

0, otherwise.

Peij =
{1, if arc e ∈ E is used on the path from node i ∈ Vr ∪ {0} to node j ∈ Vr ∪ {0}.

0, otherwise.

Nkij =
{ 1, if node k ∈ V is used on the path from node i ∈ Vr ∪ {0} to node j ∈ Vr ∪ {0}.

0, otherwise.

Yej =
{ 1, if arc e ∈ E is used on the path from supply node 0 to node j ∈ Vd.

0, otherwise.

Vkj =
{1, if node k ∈ V is used on the path from supply node 0 to node j ∈ Vd.

0, otherwise.

Zri Exact time at which the damaged node i ∈ Vr is repaired.
Zdi Exact time at which the demand node i ∈ Vd becomes accessible. If node i is

accessible at time zero, this variable takes value zero.

Note that the variables Xij de�ne the schedule of the crew, i.e., the sequence of damaged

nodes to be repaired. They do not provide the route of the crew, as they are de�ned for damaged

nodes only. The full route is obtained from variables Peij and Nkij , which determine the arcs and

nodes, respectively, to be visited in a path between each two consecutive damaged nodes i − j
in the schedule of the crew. On the other hand, variables Yej and Vkj de�ne the arcs and nodes,

respectively, to be visited in the paths between the depot and each demand node j. These two

types of variables are not related to the crew.

The model is formulated as follows:

min
∑
i∈Vd

di · Zdi . (1)

s.t.
∑

j∈Vr∪{0}

Xij = 1, ∀ i ∈ Vr ∪ {0}, (2)

∑
i∈Vr∪{0}

Xij = 1, ∀ j ∈ Vr ∪ {0}, (3)

∑
e∈Ei

Peij = Xij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4)

∑
e∈Ej

Peij = Xij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (5)
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∑
e∈Ek

Peij = 2Nkij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, k ∈ V \ {i, j}, (6)

∑
e∈E0

Yej = 1, ∀ j ∈ Vd, (7)

∑
e∈Ej

Yej = 1, ∀ j ∈ Vd, (8)

∑
e∈Ek

Yej = 2Vkj , ∀ j ∈ Vd, k ∈ V \ {0, j}, (9)

∑
e∈E

Yej · `e ≤ lj , ∀ j ∈ Vd, (10)

Zrj ≥ Zri +
∑
e∈E

Peij · τe + δj − (1−Xij) ·M, ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (11)

Zrj ≥ Zrk + (Nkij − 1) ·M, ∀ i ∈ Vr ∪ {0}, j ∈ Vr, k ∈ Vr, (12)

Zdi ≥ Zrj + (Vji − 1) ·M, ∀ i ∈ Vd, j ∈ Vr, (13)

Xij ∈ {0, 1}, ∀ i ∈ Vr ∪ {0}, j ∈ Vr ∪ {0}, (14)

Peij , Nkij ∈ {0, 1}, ∀ i ∈ Vr ∪ {0}, j ∈ Vr, k ∈ V, e ∈ E , (15)

Yei, Vki ∈ {0, 1}, ∀ i ∈ Vd, k ∈ V, e ∈ E , (16)

Zri ≥ 0, ∀ i ∈ Vr ∪ {0}, (17)

Zdi ≥ 0, ∀ i ∈ Vd. (18)

The objective function (1) consists of minimizing the time that the demand nodes remain

inaccessible from the depot, weighted by their corresponding demands. A demand node j ∈ Vd is
called accessible if there exists a path that connects this node to the depot using only undamaged

and/or repaired nodes and that is not longer than a maximum distance lj � see constraints (10).

Thus, the accessibility time of a demand node depends on the damaged nodes in its path from

the depot and is computed in constraints (13). In Figure 1(b), for example, paths 0-6-2 and

0-7-5 can be de�ned for connecting nodes 2 and 5 with the depot, respectively. Thus, the times

that the demand nodes 2 and 5 remain inaccessible from the depot are equal to the exact times

at which nodes 6 and 7 are repaired, respectively. Constraints (2) and (3) specify that each

damaged node must be visited once during the schedule of the crew. Constraints (4), (5) and

(6) ensure the �ow conservation in the path of the crew between damaged nodes i and j. If

there is a path between damaged nodes i and j (Xij = 1), constraints (4) force the use of an arc

incident to node i in the path, while constraints (5) force the use of an arc incident to node j

in the path. Furthermore, for each node k in the path from i to j (Nkij = 1), there is one arc

leaving and one arc arriving at node k considered in the path, as imposed by constraints (6).

Similarly, constraints (7), (8) and (9) ensure the �ow conservation in the paths from the depot to

the demand nodes. Constraints (10) prohibit the use of paths with a distance greater than the

maximum distance allowed between the depot and the demand nodes. Notice that lj considers

the distances only, not travel or repair times. Constraints (11) de�ne the exact time at which the

damaged nodes are repaired. For a given node j, this is the result of adding the time at which

the predecessor node i is repaired plus the travel time of the path from node i to node j plus
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the time it takes to repair node j. These constraints also act as subtour elimination constraints

and are based on the Miller-Tucker-Zemlin (MTZ) formulation of the traveling salesman problem

(TSP) (Miller et al., 1960), which has a number of constraints that depends polynomially on the

number of nodes. They are di�erent from the subtour elimination constraints originally used in

the model cited by Maya-Duque et al. (2016), which are based on the Dantzig-Fulkerson-Johnson

(DFJ) formulation of the TSP (Dantzig et al., 1954) and lead to a number of constraints that is

exponential in terms of the number of nodes. To keep the model polynomial-sized, we decided

to use the MTZ-based constraints. Constraints (12) ensure that a node k in the path from node

i to node j must be repaired before node j; i.e., damaged unrepaired nodes cannot be used in a

path from node i to node j. Constraints (13) de�ne the exact time at which each demand node

i become accessible, which is based on the time when damaged nodes in the path connecting

i to the depot are repaired. Finally, constraints (14)-(18) impose the domain of the decision

variables. It is worth mentioning that variables Peij and Yej do not need to be de�ned as binary

variables in the computational implementation because they naturally assume binary values if

variables Nkij and Vkj are de�ned as binaries, respectively.

4.2. Benders decomposition

Benders decomposition is a variable partitioning technique whose goal is to tackle problems

with complicating variables (Benders, 1962; Costa, 2005; de Sá et al., 2013). Usually, a master

problem considering only the complicating variables is solved, then the complicating variables

are temporarily �xed, and one or more subproblems are solved. For the CSRP, we identi�ed

as complicating variables the Xij variables, which de�ne the schedule of the crew. When the

scheduling decisions (Xij) are �xed, the remaining problem becomes a set of shortest-path prob-

lems, which can be e�ciently solved by using specialized algorithms based on the well-known

Dijkstra's shortest-path algorithm (Dijkstra, 1959). The master problem is de�ned as follows:

(MP ) min Θ, (19)

s.t. Constraints (2), (3), (14), (20)

Rj ≥ Ri + 1− |Vr ∪ {0}| · (1−Xij), ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (21)

Θ ≥
∑
i∈Vd

di · θi, (22)

Θ, θi, Rj ≥ 0, ∀ i ∈ Vd, j ∈ Vr ∪ {0}. (23)

Model (19)-(23) still lacks the feasibility and optimality cuts to be de�ned in Subsection 4.3.

Notice that constraints (11), which act also as subtour elimination constraints in model (1)-(18),

do not remain in the MP (they go to the subproblems because of variables Zrj and Peij). Thus,

we add the new subtour elimination constraints (21) to the MP, together with the auxiliary

variables Rj . Variable θi computes the exact time at which the demand node i ∈ Vd becomes

accessible, and Θ computes the value of the objective function. Initially, the lower bound for the

Θ and θi variables is zero. When a solution is found for the MP, feasibility or optimality cuts

are added, and they are likely to increase the lower bound of the Θ and/or θi variables. We can

set a lower bound for variable Θ directly or by using the θi variables. Constraint (22) guarantees
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that the addition of optimality cuts setting a lower bound for the variables θi also sets a lower

bound for the variable Θ.

The MP determines a schedule for the crew. The feasibility of this schedule for the original

model (1)-(18) is veri�ed in subproblem SP1, which obtains a set of shortest paths between

consecutive nodes in the schedule of the crew:

(SP1) min
∑
i∈V r

Zri , (24)

s.t. Constraints (6), (12), (15), (17), (25)∑
e∈Ei

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (26)

∑
e∈Ej

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (27)

Zrj ≥ Zri +
∑
e∈E

Peij · τe + (X̂ij − 1) ·M + δj , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (28)

in which X̂ij is a solution for the MP. For each pair of consecutive nodes i − j with X̂ij = 1 in

the schedule de�ned by the MP, SP1 determines the shortest path with arcs and nodes de�ned

by variables Peij and Nkij , respectively. Indeed, for this pair i− j, constraints (28) become

Zrj ≥ Zri +
∑
e∈E

Peij · τe + δj

and hence, the objective function becomes a summation of the repair times and travel times on

the traversed arcs.

SP1 may be infeasible if there is no path between two nodes i− j that uses only undamaged

and/or repaired nodes. In such a case, the schedule X̂ij provided by the MP is infeasible in the

original problem (1)-(18), and feasibility cuts must be added to the MP (see Subsection 4.3).

Otherwise, the values of the variables Zri are used to calculate the total cost of the schedule in

subproblem SP2, which determines the shortest paths between the depot and the demand nodes.

It can be de�ned as follows:

(SP2) min
∑
i∈Vd

di · Zdi , (29)

s.t. Constraints (7), (8), (9), (10), (16), (18), (30)

Zdi ≥ Ẑrk + (Vki − 1) ·M, ∀ i ∈ Vd, k ∈ Vr, (31)

where parameter Ẑrk is obtained from a solution of subproblem SP1. Subproblem SP2 determines

the shortest paths from the depot to each demand node i ∈ Vd with a distance length less than or
equal to the maximum distance li. Each path is composed of arcs and nodes de�ned by variables

Yej and Vkj , respectively. The exact time at which the demand node i ∈ Vd becomes accessible
is used to generate optimality cuts for the MP, as de�ned in the next section. From subproblem

SP2, we derive only optimality cuts. If subproblem SP2 is infeasible, then the original problem

(1)-(18) is also infeasible because there is no path between the depot and some demand node
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i with a distance length less than or equal to the maximum distance li (it considers only the

distance of each arc, not the travel times or the repair times).

Therefore, we have decomposed the decisions of the CSRP into three parts: the MP, which

determines the crew schedule; SP1, which checks whether this schedule is feasible and, if it

is, obtains crew paths between each pair of damaged nodes; and SP2, which determines the

paths between the depot and each demand node and the corresponding objective costs. Note

that we could have de�ned a single subproblem by gathering subproblems SP1 and SP2 and

hence evaluated both the feasibility and cost of the MP solutions simultaneously. However,

having separate subproblems allows us to design e�cient specialized algorithms, as presented in

Subsection 4.4.

4.3. Combinatorial Benders cuts and lower-bounding functions

Every time an integer solution is found by the BBC algorithm, separation procedures based

on specialized solution methods for subproblems SP1 and SP2 seek violated feasibility or optimal-

ity cuts, and the corresponding combinatorial Benders cuts (feasibility cuts) or lower-bounding

functions (optimality cuts) are added to the MP. We rely on feasibility and optimality cuts based

on particular characteristics of the problem and on inequalities proposed for related problems

in the literature (Hjorring and Holt, 1999; Laporte et al., 2014). Proposition 1 states feasibility

cuts for the MP.

Proposition 1. Let K = (v0, v1, ..., v(h−1), vh, ..., vp, ..., v|Vr|) be an infeasible schedule for the

crew, where vi is the ith damaged node to be repaired and v0 = 0. Assume that K is obtained by

solving the MP and corresponds to the solution X̂v(i−1)vi = 1, ∀i = 1, ..., |Vr|. For a given index

h > 0, let Sh = {v0, v1, ..., v(h−1), vh}, and assume that K is infeasible because there exists no

path from node v(h−1) to node vh without using at least one damaged node not yet repaired vp,

with p > h. Hence, the following feasibility cuts are violated and can be added to the MP:∑
i∈Sh\{vh}

∑
j∈Sh\{v0}:

i 6=j

Xij ≤ |Sh| − 2, (32)

∑
i∈Sh

∑
j∈Sh:

X̂ij=1

Xij ≤ |Sh| − 2. (33)

Proof. Assume that there is no feasible path from node v(h−1) to node vh. Hence, there is at

least one damaged node vp, with p > h, that must be repaired before node vh (otherwise, vh

cannot be reached). Let S̄h be any permutation of elements of set Sh \ {v0, vh}. Every schedule

containing any partial sequence K̄ = (v0, S̄h, vh) is infeasible because the node vp is not repaired

before node vh. Then, all the schedules that contain any partial sequence K̄ must be avoided.

Every partial sequence K̄ can be represented in the MP by binary variables in the left-hand

side of (32), where |Sh| − 1 of them takes a value of 1. Therefore, to avoid any sequence K̄, it

is necessary to restrict the left-hand side of (32) to be strictly smaller than |Sh| − 1. The cut

de�ned in (33) is a particular case of cut (32) to avoid any schedule with the sequence K̄ = Sh.

To illustrate Proposition 1, consider the schedule K = {v0, v1, v2, v3, v4, v5} = {0, 3, 1, 2, 4, 5}
that is assumed to be infeasible because there is no path from node 1 to node 2 without using
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node 5. Then, vh = v3 = 2 and Sh = S3 = {0, 3, 1, 2}. The possible permutations of set

Sh \ {v0, vh} are S̄1
h = {3, 1} and S̄2

h = {1, 3}. Thus, all the schedules that contain the partial

sequences K̄1 = {0, 3, 1, 2} and K̄2 = {0, 1, 3, 2} must be avoided. The feasibility cut (32) is

X03 +X01 +X02 +X13 +X12 +X23 +X21 +X31 +X32 ≤ 2, where sequence K̄1 is represented by

variablesX03, X31, andX12 and sequence K̄2 is represented by variablesX01, X13, andX12. Each

sequence is represented by three binary variables taking a value of 1, so to avoid the schedules

with the infeasible sequences K̄1 and K̄2, we need to force these variables to sum to less than 3.

The feasibility cut (33) considering only the sequence Sh is X03 +X31 +X12 ≤ 2.

Note that the cut de�ned in (32) avoids all schedules with a partial sequence starting at node

v0, ending at node vh, and containing nodes from set Sh\{v0, vh} (in any order). Thus, it cuts o�
every schedule with any partial sequence K̄ = (v0, S̄h, vh). Equation (33) is a cut to avoid every

schedule with a partial sequence starting at node v0, ending at node vh, and containing nodes

from set Sh (in the original order), cutting o� every schedule with a partial sequence K̄ = Sh.

Only one of them, (32) or (33), is necessary to cut o� the solution corresponding to K. However,

the number of solutions cut o� by (32) is greater than or equal to the number of solutions cut

o� by (33).

When a solution of the MP is feasible for the original model (1)-(18), optimality cuts must

be added to properly set the corresponding cost. Proposition 2 de�nes optimality cuts for the

variable Θ of the MP.

Proposition 2. Let L = (v0, v1, ...v(h−1), vh) be a feasible partial sequence of damaged nodes

repaired by the crew corresponding to the MP solution X̂v(i−1)vi = 1, ∀i = 1, ..., h, where v0 = 0

and vh is the last node to be repaired to make all the demand nodes in the set Vd accessible. An

optimality cut to be added to the MP is:

Θ ≥ Θ̂ · (
h∑
i=1

Xv(i−1)vi − (h− 1)), (34)

where Θ̂ is the total cost computed in subproblem SP2.

Proof. All the demand nodes become accessible when node vh in the partial sequence L is re-

paired, with a corresponding total cost Θ̂. Hence, every schedule containing the sequence L must

have a cost Θ̂. The sequence L is represented by binary variables in the right-hand side of (34)

when those h binary variables take value 1. Then, if the partial sequence L is considered in the

schedule, the summation is equal to h, and we have the lower bound Θ̂ for variable Θ activated

in the MP, as Θ ≥ Θ̂ · (h − (h − 1)). Otherwise, if the partial sequence L is not considered in

the schedule, there are p < h variables taking a value of 1 in the right-hand side of (34), and the

lower bound Θ̂ cannot be activated in the MP, as we have Θ ≥ Θ̂(p− (h− 1)) with p < h.

Cut (34) sets a lower bound for variable Θ only. Proposition 3 de�nes optimality cuts based

on variables θi, ∀i ∈ Vd.

Proposition 3. Let Lk = (vk0 , v
k
1 , ..., v

k
(h−1), v

k
h) be a feasible partial sequence of damaged nodes

repaired by the crew corresponding to the MP solution X̂vk
(i−1)

vki
= 1, ∀i = 1, . . . , h, where vk0 =
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0 and vkh is the last node repaired to make the demand node k ∈ Vd accessible. Let P kh =

{vk1 , ..., vk(h−1)}. Let P̄ kh be any permutation of elements of set P kh and L̄k = (vk0 , P̄
k
h , v

k
h). Then,

the following optimality multi-cuts can be added to the MP:

θk ≥ θ̃k ·

∑
i∈Pk

h

(X0i +Xi(vkh)) +
∑
i∈Pk

h

∑
j∈Pk

h :
i 6=j

Xij − |P kh |

 , ∀ k ∈ Vd, (35)

θk ≥ θ̂k ·

X0v1 +X(vkh−1)(vkh) +
∑
i∈Pk

h

∑
j∈Pk

h :

X̂ij=1

Xij − |P kh |

 , ∀ k ∈ Vd, (36)

where θ̂k = Ẑdk , ∀ k ∈ Vd, is computed in subproblem SP2 and θ̃k is a lower bound for variable

θk when any partial sequence L̄k is considered in the schedule. θ̃k can be computed as:

θ̃k =
∑

j∈Pk
h∪{v

k
h}

δj +
∑

j∈Pk
h∪{v

k
h}

t∗j , (37)

t∗j = min
i∈Pk

h∪{v0}:
i 6=j

{tij}, ∀ j ∈ P kh ∪ {vkh}, (38)

where δj is the repair time of node j and tij is the cost of the shortest path from node i to node

j considering that all nodes are repaired.

Proof. Cut (36) is a particular case of (35) to set the cost θ̂k for variables θk corresponding

to the original schedule Lk. For every partial sequence L̄k = (vk0 , P̄
k
h , v

k
h), the demand node k

becomes accessible when node vkh is repaired. For a given L̄k, we do not have the actual cost

for variables θk. Instead, we have a valid lower bound θ̃k. In the calculation of θ̃k, we consider

that in any sequence L̄k, all the nodes of set P kh must be repaired, and then the total repair

time (
∑

j∈Pk
h∪{v

k
h}
δj) must be computed. Additionally, the crew must arrive at all the damaged

nodes in the sequence L̄k, and then we compute a lower bound using the minimum travel time

to arrive at each node j ∈ L̄k from any other node i ∈ L̄k (
∑

j∈Pk
h∪{v

k
h}
t∗j ). As a result, θ̃k must

be less than or equal to the actual accessibility time θ̂k.

The optimality cut (34) sets a lower bound (actual cost) for the total cost Θ for any schedule

with the partial sequence L. Cut (36) is similar to (34) but sets a lower bound (actual cost)

for variables θk, ∀k ∈ Vd, which in turn sets a lower bound for the total cost Θ. Only one of

them, either (34) or (36), is necessary to set the actual total cost for every schedule with partial

sequence L. Cut (35) sets a valid (underestimated) lower bound for any schedule with any partial

sequences L̄k, ∀k ∈ Vd, so it sets a lower bound for more solutions in the MP than cuts (34) and

(36).
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4.4. Separation procedures

Both subproblems SP1 and SP2 can be e�ciently solved via specialized methods based on

Dijkstra's shortest-path algorithm (Dijkstra, 1959) instead of using the models (24)-(28) and (29)-

(31), respectively. A pseudo-code of the method proposed to solve SP1 is outlined in Algorithm

1. The graph G = (V, E), a schedule K = (v0, v1, ..., vi, ..., v|Vr|), the repair times δj , ∀j ∈ Vr,
and the travel times τe, ∀e ∈ E are used as the input of the algorithm. If SP1 is feasible for

the schedule K, then the output of the algorithm is given by the optimal values for variables

Zri , ∀i ∈ Vr. Otherwise, the algorithm indicates that the subproblem is infeasible.

Algorithm 1 Algorithm for solving SP1.
Input:

Graph G = (V, E);
Scheduling solution K = (v0, v1, ..., vj , ..., v|Vr|);
Parameters δj , ∀j ∈ Vr, and τe, ∀e ∈ E ;
Output:

If SP1 is feasible, return �Feasible SP1� and save optimal values Ẑr
j , ∀j ∈ Vr;

If SP1 is infeasible, return �Infeasible SP1�;

1: Ce := τe, ∀e ∈ E ;
2: Ce :=∞, ∀e ∈ Ej , j ∈ Vr;

3: Ẑr
j := 0, ∀j ∈ Vr;

4: for j = 1 to |Vr| do
5: Ce := τe + δvj , ∀e ∈ Evj ;
6: Find the cost C of the shortest path from node vj−1 to vj ;
7: if C < ∞ then

8: Ẑr
vj := Ẑr

vj−1
+ C;

9: Ce := τe, ∀e ∈ Evj : e /∈
⋃|Vr|

i=j+1
Evi ;

10: Ce :=∞, ∀e ∈ Evj : e ∈
⋃|Vr|

i=j+1
Evi ;

11: else

12: return �Infeasible SP1�;
13: end if

14: end for

15: return �Feasible SP1�;

Algorithm 1 starts by setting the cost Ce of each arc in the network as ∞ if the arc e is

incident to a damaged node; otherwise, this cost is set as τe (lines 1 and 2). Then, iteratively

and for each damaged node vj ∈ K \ {v0}, the cost Ce of each arc e ∈ Evj (i.e., incident to vj)

is reset as τe + δvj (line 5), and Dijkstra's algorithm is used to �nd the shortest path between

nodes vj−1 and vj (line 6). If a path between nodes vj−1 and vj exists without using a damaged

node (that was not repaired yet), the cost C of the path must be less than ∞, and the value of

variable Zrvj is updated (line 8). The cost Ce of each arc incident to the damaged node vj is also

updated, as this node has been repaired (line 9).

It is important to emphasize that the arcs incident to damaged nodes not yet repaired have

cost ∞. Thus, if an arc incident to node vj is also incident to another damaged node not yet

repaired, then that arc must continue with cost ∞ (line 10). If there is no path between nodes

vj−1 and vj without using a not yet repaired damaged node (i.e. C = ∞), then the algorithm

terminates and returns that SP1 is infeasible (line 12).

Figure 2 shows an example of the variation in the cost Ce in Algorithm 1 for a network with

two damaged nodes, crew schedule K = (v0, v1, v2), τe = 1 and δj = 2, for all e ∈ E and i ∈ Vr.
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Initially, the cost Ce of each arc incident to damaged nodes v1 and v2 is equal to ∞. In the �rst

iteration, the cost of each arc incident to node v1 is then reset to Ce = τe + δv1 = 3 and the

Dijkstra's algorithm �nds the shortest path between nodes v0 and v1. Once node v1 is repaired,

the cost of each arc incident to node v1 is updated to Ce = τe = 1. In the second iteration,

the cost of each arc incident to node v2 becomes Ce = τe + δvj = 3 and Dijkstra's algorithm is

now used to �nd the shortest path between nodes v1 and v2. Finally, after all nodes have been

repaired, the cost of each arc becomes Ce = τe = 1.
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Figure 2: Example of the variation in arc costs in Algorithm 1.

An iterative solution approach based on solving a sequence of shortest-path problems can be

used for solving subproblem SP2 as well. Recall that the goal of this subproblem is to determine

the time at which a�ected areas become accessible. A node is accessible if there is a path from

the depot to this node using only undamaged and/or repaired nodes and if the length of this

path is no longer than a maximum distance li. If it is possible to access a demand node i ∈ Vd

without using only undamaged nodes, then it becomes accessible at time Ẑdi = 0. Otherwise, let

j ∈ Vr be the last damaged node that was repaired before i becomes accessible at exact time

Ẑrj . Then, Ẑdi = Ẑrj . Notice that in subproblem SP2, given any two demand nodes i1, i2, the

shortest path determined from the depot to i1 is independent of the path determined from the

depot to i2. Hence, SP2 can be decomposed into |Vd| independent subproblems.
Algorithm 2 presents the pseudo-code of the proposed approach. The graph G = (V, E), a

schedule K = (v0, v1, ..., vi, ..., v|Vr|), the corresponding values of variables Zri provided by the

SP1, and the parameters `e, ∀e ∈ E ; li, ∀i ∈ Vd; and di, ∀i ∈ Vd are considered the input of the

algorithm. Initially, the cost Ce of each arc in the network is set as `e (line 1), the actual length

(distance) of the arc. Iteratively, for each damaged node vj ∈ K \ {v0}, the algorithm sets the

cost of each arc incident to vj as ∞ (line 4) starting with the last damaged node (v|Vr|) in the

schedule K. Then, for each demand node i ∈ Vd (line 5), Dijkstra's algorithm is used to �nd the

shortest path from the depot to this node (line 6). If the cost Ci to reach this demand node is

larger than the maximum allowed distance li (line 7), then the node vj is necessary to �nd a path

with cost smaller than the maximum distance li, and hence, the time instant Ẑdi in which the

demand node i becomes accessible is set as Ẑrvj (line 8). Note that we update Ẑ
d
i only if it was

not updated in previous iterations; thus, Ẑdi is equal to the largest repair time of the damaged

nodes visited in the path from the depot to node i. Finally, the total cost Θ̂ is computed (line
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12). Recall that subproblem SP2 is always feasible if the original problem (1)-(18) is feasible.

Algorithm 2 Algorithm for solving the SP2.
Input:

Graph G = (V, E);
Scheduling solution K = (v0, v1, ..., vj , ..., v|Vr|);

Time Ẑr
i at which damaged node i ∈ Vr is repaired;

Parameters `e, ∀e ∈ E , li, ∀i ∈ Vd and di,∀i ∈ Vd;
Output:

Time Ẑd
i at which the demand node i ∈ Vd becomes accessible;

Total cost Θ̂;

1: Ce := `e, ∀e ∈ E ;
2: Ẑd

i := 0, ∀i ∈ Vd;
3: for j = |Vr| to 1 do

4: Ce :=∞, ∀e ∈ Evj ;
5: for i = 1 to |Vd| do
6: Find the cost Ci of the shortest path from the depot to the demand node i;
7: if Ci > li and Ẑ

d
i = 0 then

8: Ẑd
i := Ẑr

vj ;
9: end if

10: end for

11: end for

12: Compute total cost Θ̂ :=
∑

i∈Vd di · Ẑd
i ;

Figure 3 shows an example of the variation in cost Ce in Algorithm 2 for a network with two

damaged nodes, K = (v0, v1, v2) and `e = 1, ∀e ∈ E . In the �rst iteration, the cost of each arc

incident to the last damaged node v2 in the schedule is set to Ce =∞, and Dijkstra's algorithm

�nds the shortest paths between node v0 and each demand node i ∈ Vd. If the cost Ci of the
path between v0 and the demand node i is larger than li, then the node v2 is necessary to �nd

a path with length smaller than li, and Ẑdi = Ẑrv2
. In the second iteration, the cost of each arc

incident to the damaged node v1 is updated with Ce =∞, and the shortest paths between node

v0 and demand nodes i ∈ Vd are found again. In this case, if it is not possible to �nd a path for

a demand node i with a cost Ci less than li, it needs either the node v1 or v2 in the path. Then,

the time of accessibility Ẑdi is equal to Ẑ
r
v1
if this was not updated in the past iteration with Ẑrv2

.
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Figure 3: Example of the variation in arc costs in Algorithm 2.

4.5. Branch-and-Benders-cut

In the classical Benders decomposition, the MP and the subproblems are solved iteratively

in an alternating sequence. At each iteration, the MP is solved to optimality by an MIP solver,

and a considerable time may be spent revisiting candidate solutions that have been eliminated

in previous iterations (Rahmaniani et al., 2017). On the other hand, in the BBC algorithm, a
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single search tree is built instead, and the cuts are generated inside the tree using separation

routines that seek violated feasibility or optimality cuts (Errico et al., 2017).

Figure 4 shows a �owchart of the BBC method focusing on how the separation routines are

used at each node of the branch-and-bound tree. At each node i, we solve the linear relaxation of

the current MP, denoted by LPi. If the LPi is infeasible or the objective value of the LPi solution

(OFi) is higher than or equal to the objective value of the current incumbent solution, then node

i is pruned. Otherwise, integrality constraints are checked, and if the LPi solution is not integer

feasible, then branching is performed. Every time the LPi solution is integer feasible, we call

the separation routines of the subproblem. First, we solve SP1 and, if SP1 is infeasible, add

new feasibility cuts to the MP. If no feasibility cut is obtained, then we solve SP2 to obtain an

optimality cut for the MP. If no feasibility or optimality cuts are obtained, then the LPi solution

is feasible for the original problem (1)-(18) and is set as the new incumbent solution. Otherwise,

the MP has been modi�ed, LPi must be resolved, and the described steps are applied again. It

is worth mentioning that automatized cuts (for example, Gomory's cuts) and/or heuristics (for

example, the relaxation induced neighborhood search (RINS) heuristic) available in commercial

solvers can be used at each node of the branch-and-bound tree as well, although they are not

included in Figure 4.
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Figure 4: Flowchart illustrating how the separation routines are used in a given node i of the BBC method.

4.6. Valid inequalities

The proposed BBC method also relies on valid inequalities, which are added to the MP and

help improve the lower bounds provided by its linear relaxation. The �rst set of inequalities
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partially adds information regarding the relation between variables θi and Rj . To de�ne the

valid inequalities, we �rst determine the shortest path between the depot and each demand node

i ∈ Vd. For each demand node i, we identify the damaged nodes that are used in a shortest

path from the depot to this node. Then, we forbid the use of such damaged nodes in the paths

and look for a new shortest path from the depot to the same node i again. If a damaged node

j is forbidden and a path with distance less than li cannot be found for node i, then we have

identi�ed that the damaged node j is necessary to connect the demand node i with the depot.

In such case, the accessibility time of node i depends on the repair time of node j and hence we

obtain the following valid inequality:

θi ≥ Rj , ∀ i ∈ Vd, j ∈ Qi, (39)

in which Qi is the set of damaged nodes that must be used to access the demand node i with a

distance less than li. Recall that Rj was de�ned as a decision variable of the MP and denotes

a lower bound for the exact time at which the node j is repaired in the schedule de�ned by the

variables Xij . Hence, we replace constraints (21) with:

Rj ≥ Ri + tij + δj −M · (1−Xij), ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (40)

where tij is the minimum time to travel from node i to node j when no nodes are damaged,

which is easily computed using Dijkstra's algorithm.

Let P ⊂ Vr be the subset of damaged nodes that cannot be repaired directly from the depot

because they are not accessible without the restoration of other nodes. Using this set, we can

de�ne the following valid inequality: ∑
j∈P

X0j ≤ 0. (41)

It is also possible to identify the demand nodes that need the repair of at least one damaged

node to become accessible. For each demand node, the lower bound for the time instant that it

becomes accessible is the travel time plus the repair time of the �rst node repaired by the crew

from the depot. Then, the valid inequality is given by:

θi ≥
∑
j∈Vr

(t0j + δj) ·X0j , ∀ i ∈ S, (42)

where S is the subset of demand nodes that require the restoration of at least one damaged node

to guarantee they become accessible.

We also propose valid inequalities based on the reduction of the original damaged network

of the problem. Let L ⊆ Vr be a subset of the damaged nodes and F ⊆ Vd be a subset of the

demand nodes in the original graph G. We de�ne GLF as the subgraph obtained from G by

deleting all the damaged nodes that are not in L and transforming all the demand nodes that do

not belong to F into transshipment nodes . For instance, consider the graph G represented in

Figure 1(b) with Vr = {6, 7, 8, 9, 10} and Vd = {2, 4, 5}. For L = {6, 9, 10} and F = {2, 5}, the
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graph GLF is represented in Figure 5(a). To obtain GLF , we removed all the damaged nodes in

Vr \ L from G and transformed the demand nodes in Vd \ F into transshipment nodes.

We can further reduce the number of nodes in GLF by removing transshipment nodes that

are not directly connected to damaged nodes. For each node i removed from GLF , we delete the

arcs adjacent to this node and create new arcs connecting each pair of nodes j and k that were

neighbors of i in GLF , such that j 6= k. The cost cjk of the new arc j− k is set as cjk = cji + cik.

The resulting graph, denoted by ḠLF , is hereafter called as the LF -reduction of G. Figure 5(b)

illustrates the graph ḠLF obtained from the LF -reduction of graph G given in Figure 1(b). After

obtaining the subgraph GLF presented in Figure 5(a), we obtain ḠLF by deleting node 1 from

GLF , as it was not directly connected to any damaged node. Then, we deleted arcs A1, A2 and

A3, as they were adjacent to node 1, and created arcs A5, A6, and A7. Notice that either arc

A4 or A7 is redundant and hence we can delete the one with the largest cost.
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Depot

1 3 4

502

1 3 4

50 6 7

8

9
10

Damaged nodes

Transshipment 
nodes

Demand nodes

Route:  0-->6-->0-->7-->5-->10-->4-->3-->8-->9-->5-->7-->0
 

1 3 4

502 6 7

8

9
10

Schedule: (0, 6, 7, 10, 8, 9)
 

Path from 10 to 8: 10-->4-->3-->8

1 3 4

502 6 7

8

9
10

Path 1 from 10 to 8 (       )  = 10-->4-->3-->8
Path 2 from 10 to 8 (       )  = 10-->5-->7-->0-->3-->8
Path 3 from 10 to 8 (       )  = 10-->5-->9-->8

Schedule: (0, 6, 7, 10, 8, 9) 
Repaired nodes

Depot

Damaged nodes

Transshipment 
nodes

Demand nodes

Depot

Damaged nodes

Transshipment 
nodes

Demand nodes

Route of the crew

1 3 4

502

Paths from the depot to the demand nodes

2

Paths from the depot to the demand nodes

Depot

1 3 4

502 6 7

8

9
10

Damaged nodes

Transshipment 
nodes

Demand nodes

1 3 4

502

Depot

1 3 4

502 6 7

8

9
10

Damaged nodes

Transshipment 
nodes

Demand nodes

Figure 5: Example of a reduction of a damaged network.

From a feasible solution of the CSRP de�ned using ḠLF , we can derive valid inequalities for

the original problem, as pointed out in Proposition 4.

Proposition 4. Given L ⊆ Vr and F ⊆ Vd, let KḠLF
be an optimal solution of the CSRP

de�ned using the LF -reduction ḠLF of the original graph G. Let Θ̂ḠLF
be the optimal value and

θ̂Ḡ
LF

i be the value of the variable Zdi in the optimal solution KḠLF
, for all i ∈ F . Then, the

following inequalities are valid for the MP of the original CSRP de�ned using the graph G:∑
i∈F : di·θ̂Ḡ

LF

i >0

di · θi ≥ Θ̂ḠLF
, (43)

Θ ≥ Θ̂ḠLF
+

∑
i∈F : di·θ̂Ḡ

LF

i =0

di · θi +
∑

i∈Vd\F

di · θi. (44)

Proof. Valid inequality (43) is proved by contradiction. Assume that there is a solution KG of

the original CSRP (i.e., using the original graph G) such that∑
i∈F : di·θ̂Ḡ

LF

i >0

di · θ̂Gi < Θ̂ḠLF
,

where θ̂Gi is the value of variable Zdi in the solution KG. Since L ⊆ Vr, graph ḠLF have the

same or less damaged nodes than graph G. Hence, a solution for the CSRP de�ned using ḠLF
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exists with θ̂Ḡ
LF

i ≤ θ̂Gi , ∀ i ∈ F . Then,∑
i∈F : di·θ̂Ḡ

LF

i >0

di · θ̂Ḡ
LF

i ≤
∑

i∈F : di·θ̂Ḡ
LF

i >0

di · θ̂Gi < Θ̂ḠLF
,

which is a contradiction because Θ̂ḠLF
is the value of an optimal solution of the CSRP de�ned

using ḠLF . Notice that valid inequality (43) remains valid if Θ̂ḠLF
is a lower bound for the value

of the optimal solution related to graph ḠLF .

For inequality (44), notice that from constraint (22) of the MP, we have

Θ ≥
∑
i∈Vd

di ·θi =
∑
i∈F

di ·θi+
∑

i∈Vd\F

di ·θi =
∑

i∈F : di·θ̂G
LF

i >0

di ·θi+
∑

i∈F : di·θ̂G
LF

i =0

di ·θi+
∑

i∈Vd\F

di ·θi.

Then, using valid inequality (43), we obtain

Θ ≥
∑
i∈Vd

di · θi ≥ Θ̂GLF
+

∑
i∈F : di·θ̂G

LF

i =0

di · θi +
∑

i∈Vd\F

di · θi,

which proves the valid inequality (44).

Valid inequalities (43) and (44) can be useful when the value (or a lower bound for the value)

of the optimal solution of the CSRP de�ned using the LF -reduction ḠLF is trivial or can be

easily derived. The separation procedure of these valid inequalities is detailed in the following

subsection.

4.7. Graph reduction (GR) strategy

Based on Proposition 4, we propose a Graph Reduction (GR) strategy to obtain the LF -

reduction of a graph G, as outlined in Algorithm 3. Basically, we create subgraphs ḠLF using

a feasible solution of the original CSRP (i.e., using graph G). This feasible solution can be

quickly obtained using a heuristic, for example (see Section 4.8). Then, we determine the LF -

reduction ḠLF , solve the CSRP de�ned using this subgraph and check if there are violated valid

inequalities of type (43) and (44) to be added to the MP of the original CSRP. The idea is to

generate su�ciently small subgraphs ḠLF , so that the corresponding (reduced) CSRP can be

quickly solved.

Let L = (v0, . . . , vi, . . . , vh) be a feasible partial sequence of damaged nodes repaired by

the crew, where vi is the ith damaged node repaired by the crew and vh is the last damaged

node repaired in order to make all the demand nodes in the set Vd accessible. For a given

positive integer number n1 ≤ h, we partition the set of nodes in the partial schedule L into P1 =

1+
⌊
h−1
n1

⌋
sets. The sets are labeled from 0 to P1−1, where Lp = {v(1+n1·p), . . . , v(n1+n1·p)} ,∀ p =

0, . . . , P1 − 2, and LP1−1 = {v(1+n1·(P1−1)), . . . , vh}. Similarly, let F = (u0, . . . , ui, . . . , u|Vd|) be

the sequence of demand nodes connected to the depot when the damaged nodes are repaired

according to sequence L, where ui is the ith demand node that becomes accessible. Given a

positive integer number n2 ≤ |Vd|, we create a partition of the nodes in F given by P2 = 1 +⌊
|Vd|−1
n2

⌋
sets. The sets are labeled from 0 to P2−1, where Ff = {u(1+n2·f), . . . , u(n2+n2·f)} , ∀ f =
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0, . . . , P2 − 2, and FP2−1 = {v(1+n2·(P2−1)), . . . , v|Vd|}. Then, for each p = 0, . . . , P1 − 1 and

f = 0, . . . , P2 − 1 we use sets Lp and Lf to obtain the LF -reduction ḠLpFf and solve the

corresponding (reduced) CSRP to generate valid inequalities (43) and (44).

Algorithm 3 Graph reduction strategy to derive valid inequalities (43) and (44).
Input:

Graph G = (V, E);
Sequences L = (v0, . . . , vi, . . . , vh) and F = (u0, . . . , ui, . . . , u|Vd|);

Positive integer numbers n1 ≤ h and n2 ≤ |Vd|;
Output:

Valid inequalities of type (43), (44);

1: for p = 0 to P1 − 1 do

2: for f = 0 to P2 − 1 do

3: Generate subgraph ḠLpFf ;
4: Solve the CSRP de�ned using subgraph ḠLpFf ;
5: Derive the valid inequalities (43), (44) from the solution obtained using ḠLpFf ;
6: end for

7: end for

8: Add the valid inequalities (43),(44) to the MP.

Notice that we are not using an arbitrary selection of damaged nodes to generate the sub-

graphs ḠLpFf , but a feasible sequence L. This sequence can be obtained, for example, by using a

heuristic able to quickly de�ne a good sequence of damaged nodes to be repaired. This way, we

group in a same subgraph, the damaged nodes that are likely to be repaired sequentially in the

solution of the original problem (associated with graph G). Also, notice that we do not consider

all the damaged nodes but only those enough to make the demand nodes accessible. Similarly,

we group in a same subgraph, the demand nodes that are likely to require the restoration of

common damaged nodes to become connected to the depot.

4.8. Construction and local search heuristics

In this section, we use a construction heuristic and two local search heuristics with the aim of

�nding good feasible solutions of the CSRP. The feasible solutions are used as initial incumbent

solutions in the BBC algorithm.

4.8.1. Construction heuristic

The crew scheduling decision can be modeled as a traveling salesman problem (TSP) in which

the cities to be visited are the damaged nodes. A simple construction heuristic for this problem

is a greedy algorithm that makes a locally optimal choice at each iteration in an attempt to �nd

a global optimum. The proposed method starts at the depot and, at each iteration, inserts at

the end of the schedule a node that is not in the schedule yet and has the minimum travel time

(when no nodes are damaged) to the last inserted node. A node insertion is feasible if this node

can be visited without using a node that was not already repaired. Only feasible insertions can

be selected at each iteration, and as a consequence, it always generates a feasible schedule. The

construction heuristic can also generate feasible random solutions if we insert at the end of the

schedule a randomly selected node and not the one with the minimum travel time to the last

inserted node.
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4.8.2. Local search heuristics

We propose two local search operators with the aim of improving a feasible schedule gener-

ated by the construction heuristic. The �rst local search operator (swap) exchanges the positions

of two damaged nodes in the schedule. The second local search operator is a pairwise exchange

(2-opt) that involves removing two edges and replacing them with two di�erent edges that re-

connect the fragments created. Let Wn
K be the set of all possible solutions (neighbors) obtained

by applying the operator n in the schedule K, where n ∈ {swap, 2-opt}. Let ΘK be the cost of

the schedule K. Let K̂i be the ith element of set Wn
K . The local search heuristic based on the

two operators is outlined in Algorithm 4. We have a feasible schedule as the input and a locally

optimal solution provided by the heuristic as the output. We use subproblems SP1 and SP2 to

evaluate the feasibility (line 10) and cost (line 12) of the schedule created when the operators

are applied. When a solution better than the current one is found, the local search process is

restarted. Furthermore, when a set Wn
K is fully explored, we restart the algorithm from a

random solution (line 28). The algorithm terminates when no improvement is found for the last

randomly generated solution.

5. Computational experiments

In this section, we evaluate the performance of the proposed solution approach using instances

from the literature. All the algorithms were implemented in C++ programming language. The

BBC method was implemented on top of the IBM CPLEX Optimization Solver 12.7 using the

Concert Technology library. We implemented the specialized algorithms to solve subproblems

SP1 and SP2 and the heuristics according to their descriptions in Sections 4.4 and 4.8. All

cuts and valid inequalities are added to problem using the Callback procedures available in the

Concert Technology library. The experiments were run on a Linux PC with a CPU Intel Core

i7 3.4 GHz and 16.0 GB of memory using a single thread. The stopping criteria was either the

elapsed time exceeding the time limit of 3,600 seconds or the optimality gap being smaller than

10−4. All the remaining parameters of CPLEX were kept at their default values.

5.1. Instance description

We carried out computational experiments using two types of theoretical instances: S1, which

is composed of small instances, and S2, which is composed of medium and large instances, as

presented by Maya-Duque et al. (2016). As described by the authors, they generated networks

with di�erent numbers of nodes and arcs based on the instance generator proposed by Klingman

et al. (1974). Table 1 shows the characteristics of the set of instances. The type (S1 or S2),

network name (class), number of demand nodes, and the total number of nodes and arcs in the

original network can be seen in columns 1 to 5 of Table 1, respectively. For each original network,

one class of instances was generated by varying two parameters, namely, α and β. Parameter

α de�nes the percentage of damaged arcs in the network. Parameter β speci�es the maximum

tolerable percentage by which the paths connecting demand nodes to the depot can increase

in relation to the shortest paths in the network when no damaged node exists. For example,

α = 50% indicates that half of the arcs of the original network were damaged, and β = 50%
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Algorithm 4 Local search heuristic using the operator n ∈ {swap, 2-opt}.
Input:

Schedule K = (v0, v1, ..., vj , ..., v|Vr|); Cost ΘK of scheduling K;
Output:

Schedule K∗ = (v∗0 , v
∗
1 , ..., v

∗
j , ..., v

∗
|Vr|);

1: ΘK∗ := ΘK̂i ; K∗ := K;
2: Determine set Wn

K ;
3: improvement_global := 1;
4: while improvement_global = 1 do

5: improvement_global := 0; improvement_local := 1;
6: while improvement_local = 1 do

7: i := 1;
8: improvement_local := 0;
9: while i ≤ |Wn

K | do
10: Evaluate feasibility of schedule K̂i by solving subproblem SP1;
11: if schedule K̂i is feasible then
12: Calculate cost ΘK̂i of schedule K̂i by solving subproblem SP2;

13: if ΘK̂i < ΘK
then

14: ΘK := ΘK̂i ; K := K̂i;
15: i := |Wn

K |+ 1;
16: Determine new set Wn

K ;
17: improvement_local := 1;

18: if ΘK̂ < ΘK∗
then

19: ΘK∗ := ΘK̂ ; K∗ := K;
20: improvement_global := 1;
21: end if

22: end if

23: end if

24: i := i+ 1;
25: end while

26: end while

27: if improvement_global = 1 then

28: Find a new random solution K with the construction heuristic;
29: Determine the new set Wn

K ;
30: end if

31: end while

indicates that the maximum distance li for the paths between the depot and the demand node i

is 1.5 times the length of the shortest path between the depot and the node i when no damaged

node exists. Columns 6 and 7 of Table 1 show the values of α and β, respectively.

For each damaged arc in the original network, one or more damaged nodes are added in the

middle of the arc. Therefore, the total numbers of nodes and arcs in the instance depend on

the parameter α. For example, the original network in Figure 1(a) with 6 nodes and 9 arcs is

transformed into the damaged network in Figure 1(b) with 10 nodes and 14 arcs. In the table,

original network 1 with 25 nodes and 40 arcs is transformed into a damaged network with 27

nodes and 42 arcs when α = 5% (the 2 damaged arcs are converted into 2 damaged nodes) and

into a damaged network with 45 nodes and 60 arcs when α = 50% (20 new damaged nodes).

Thus, damaged networks generated from original network 1 have 27 to 45 nodes and 40 to 60

arcs. Columns 8 and 9 show the total number of nodes and arcs in the damaged networks. By

combining the values of α and β for original network 1, for example, 20 instances were generated.

For original network 16, the values of α = 5%, 25%, 50% were combined with β = 5%, 10% to
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form 6 instances, while the values of α = 10%, 30% were combined with β = 25%, 50% to form 4

instances. For networks 1-15, the number of instances generated is 20. For networks 16-39, the

number of instances generated is 10.

It is worth mentioning that some of the large instances in group S2 are actually much larger

than the practical instances we typically �nd in real-world situations. Feng and Wang (2003),

for example, considered a real network with 10 damaged points and less than 100 total nodes.

Yan and Shih (2007) and Yan and Shih (2009) also considered real networks with less than

100 nodes but with 24 damaged points. Similarly, Xu and Song (2015) considered a real case

with 36 damaged nodes and not more than 100 total nodes. Pramudita and Taniguchi (2014)

considered a larger real damaged network with 98 damaged points (blocked arcs) and 198 total

nodes. Finally, Akbari and Salman (2017a) considered one of the largest practical cases in the

literature, involving networks with 240 damaged points, 349 nodes and 689 arcs. Note that we

are considering instances with up to 312 damaged nodes, 712 total nodes and 937 total arcs.

Table 1: Set of instances.
Network Demand Original network Damaged network Total

Type (class) nodes nodes arcs Values for α (%) Values for β (%) nodes arcs instances
S1 1 19 25 40 5, 10, 25, 30, 50 5, 10, 25, 50 27 to 45 42 to 60 20
S1 2 19 25 37 5, 10, 25, 30, 50 5, 10, 25, 50 26 to 43 38 to 55 20
S1 3 19 25 39 5, 10, 25, 30, 50 5, 10, 25, 50 26 to 44 40 to 58 20
S1 4 24 30 83 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 71 87 to 124 20
S1 5 24 30 89 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 74 93 to 133 20
S1 6 24 30 84 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 72 88 to 126 20
S1 7 28 35 118 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 94 123 to 177 20
S1 8 28 35 115 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 92 120 to 172 20
S1 9 28 35 113 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 91 118 to 169 20
S1 10 15 20 39 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 39 40 to 58 20
S1 11 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 38 38 to 55 20
S1 12 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 38 38 to 55 20
S1 13 35 40 146 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 113 153 to 219 20
S1 14 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 111 150 to 214 20
S1 15 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 111 150 to 214 20
S2 16 50 60 191 5, 25, 50 | 10, 30 05, 10 | 25, 50 69 to 155 200 to 286 6 | 4
S2 17 50 60 197 5, 25, 50 | 10, 30 25, 50 | 05, 10 69 to 158 206 to 295 6 | 4
S2 18 50 60 196 5, 25, 50 | 10, 30 05, 10 | 25, 50 69 to 158 205 to 294 6 | 4
S2 19 70 80 247 5, 25, 50 | 10, 30 25, 50 | 05, 10 92 to 203 259 to 370 6 | 4
S2 20 70 80 245 5, 25, 50 | 10, 30 05, 10 | 25, 50 92 to 202 257 to 367 6 | 4
S2 21 70 80 248 5, 25, 50 | 10, 30 25, 50 | 05, 10 92 to 204 260 to 372 6 | 4
S2 22 90 100 274 5, 25, 50 | 10, 30 05, 10 | 25, 50 113 to 237 287 to 411 6 | 4
S2 23 90 100 271 5, 25, 50 | 10, 30 25, 50 | 05, 10 113 to 235 284 to 406 6 | 4
S2 24 90 100 273 5, 25, 50 | 10, 30 05, 10 | 25, 50 113 to 236 286 to 409 6 | 4
S2 25 125 140 324 5, 25, 50 | 10, 30 25, 50 | 05, 10 156 to 302 340 to 486 6 | 4
S2 26 125 140 323 5, 25, 50 | 10, 30 05, 10 | 25, 50 156 to 301 339 to 484 6 | 4
S2 27 125 140 322 5, 25, 50 | 10, 30 25, 50 | 05, 10 156 to 301 338 to 483 6 | 4
S2 28 140 170 398 5, 25, 50 | 10, 30 05, 10 | 25, 50 189 to 369 417 to 597 6 | 4
S2 29 140 170 399 5, 25, 50 | 10, 30 25, 50 | 05, 10 189 to 369 418 to 598 6 | 4
S2 30 140 170 396 5, 25, 50 | 10, 30 05, 10 | 25, 50 189 to 368 415 to 594 6 | 4
S2 31 200 200 447 5, 25, 50 | 10, 30 25, 50 | 05, 10 222 to 423 469 to 670 6 | 4
S2 32 200 200 449 5, 25, 50 | 10, 30 05, 10 | 25, 50 222 to 424 471 to 673 6 | 4
S2 33 200 200 449 5, 25, 50 | 10, 30 25, 50 | 05, 10 222 to 424 471 to 673 6 | 4
S2 34 300 300 524 5, 25, 50 | 10, 30 05, 10 | 25, 50 326 to 562 550 to 786 6 | 4
S2 35 300 300 525 5, 25, 50 | 10, 30 25, 50 | 05, 10 326 to 562 551 to 787 6 | 4
S2 36 300 300 525 5, 25, 50 | 10, 30 05, 10 | 25, 50 326 to 562 551 to 787 6 | 4
S2 37 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431 to 712 656 to 937 6 | 4
S2 38 400 400 625 5, 25, 50 | 10, 30 05, 10 | 25, 50 431 to 712 656 to 937 6 | 4
S2 39 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431 to 712 656 to 937 6 | 4

Total 540

5.2. Description of experiments

In this section, we present a description of the computational experiments. Table 2 presents

the combination and stopping criteria of eleven proposed solution strategies, in which ET refers

to elapsed time and TL to the total time limit. For instance, H3 is the heuristic strategy that

uses �rst the construction heuristic, then the local search 2opt, and �nally the local search swap,
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either with stopping criteria given by time limit or a locally optimal solution found. The �rst

four solution strategies (H1-H4) use only the construction and local search heuristics presented in

Section 4.8. The following �ve strategies (BBC1-BBC5) are variants of the Branch-and-Benders-

Cut (BBC) algorithm that use di�erent combinations of the cuts presented in Section 4.3 and

some of the valid inequalities presented in Section 4.6. The same separation algorithms are used

in all the BBC strategies to identify the feasibility and cost of a scheduling solution of the MP.

Then, we enumerate and add inequalities to the MP according to the type of cuts used in each

BBC strategy. The algorithm BBC6 relies on the best heuristic method to provide a good feasible

initial solution to the best BBC method. The best solution found with the heuristic is set as

the incumbent solution of the MP. In the GR-BBC6 method, the algorithm BBC6 is combined

with the Graph Reduction (GR) strategy presented in Section 4.7 to derive valid inequalities

(39)-(44). BBC6 is used to solve the reduced CSRP de�ned using the subgraphs ḠLpFf , which

are generated using solutions provided by the heuristic H3, considering sets of n1 = 20 damaged

nodes and n2 = |Vd| demand nodes (see Algorithm 4). The time limit to solve the reduced CSRP

is 60 seconds. If the reduced CSRP for a given subgraph ḠLpFf is not solved to optimality within

this time limit, we reduce this subgraph by removing only the �rst �ve nodes of sets Lp and Ff

and then we solve the corresponding reduced CSRP again. Finally, the MIP model presented in

Section 4.1 is used to solve the problem.

Table 2: Characteristic of the solution methods.
Solution strategy Combination (stopping criteria)1

H1 Construction heuristic + 2opt (ET > TL or locally optimal).
H2 Construction heuristic + swap (ET > TL or locally optimal).

H3 Construction heuristic + 2opt (ET > 1
2
TL or locally optimal) + swap (ET > TL or locally

optimal).

H4 Construction heuristic + swap (ET > 1
2
TL or locally optimal) + 2opt (ET > TL or locally

optimal).
BBC1 BBC algorithm with valid inequalities (39) - (42), feasibility cut (33) and optimality multi-cuts

(35) and (36) (ET > TL or gap = 0).
BBC2 BBC algorithm with valid inequalities (39) - (42), feasibility cut (32) and optimality cut (34)

(ET > TL or gap = 0).
BBC3 BBC algorithm with valid inequalities (39) - (42), feasibility cut (32) and optimality multi-cuts

(36) (ET > TL or gap = 0).
BBC4 BBC algorithm with valid inequalities (39) - (42), feasibility cut (32) and optimality multi-cuts

(35) and (36) (ET > TL or gap = 0).
BBC5 BBC algorithm without valid inequalities (39) - (42), feasibility cut (32) and optimality multi-cuts

(35) and (36) (ET > TL or gap = 0).

BBC6 H3 (ET > 1
6
TL or locally optimal) + BBC4 (ET > TL or gap = 0).

GR-BBC6 H3 (ET > 1
6
TL or locally optimal) + GR (ET > 1

60
TL each subproblem or optimality of the

subproblems) + BBC4 with additional valid inequalities (43) - (44) (ET > TL or gap = 0).
MIP model Model (1)-(18) (ET > TL or gap = 0)

1 Let TL be the total time limit and ET be the elapsed time.

The solution methods were evaluated using performance pro�les as proposed by Dolan and

Moré (2002). Given a set P of instances and a set F of solution methods, performance pro�les

are based on the cumulative distribution function P (f, q), which indicates the probability of a

strategy f with a log2 performance ratio being within a factor q ∈ R of the best possible ratio.

The function P (f, q) is de�ned as:

P (f, q) =
|{p ∈ P : log2(v(p, f)) ≤ q}|

|P|
, q ≥ 0, (45)
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with v(p, f) =
TCpf

min{TCpf : f ∈ F}
, (46)

where |P| is the total number of instances and TCpf is the performance measure (objective

function cost, gap or elapsed time) of problem p when solved by method f . Values of P (f, q)

when q = 0 indicate the fraction of instances for which the strategy reached the best solution.

For q > 0, P (f, q) is the fraction of instances for which strategy f obtained solutions with a

quality within a factor of 2q of the best solutions. Values of q when P (f, q) = 1 indicate that

quality of the solutions obtained by strategy f for all instances are within a factor of 2q of the

best solutions.

5.3. Computational performance of the proposed approaches

To evaluate the performance of the heuristic approaches, we use the objective value of the

solutions found within a time limit of 3,600 seconds. The heuristic algorithms do not provide

a lower bound for the objective value, so we cannot calculate the optimality gap. On the other

hand, the BBC approaches provide upper- and lower-bound values, so we use the optimality gap

provided by the algorithms within a time limit of 3,600 seconds as well to compare the BBC

approaches. The optimality gap is computed as:

gap =
ZU − ZL

ZU
, (47)

in which ZU is the upper bound or best integer solution and ZL is the lower bound. The opti-

mality gap is a good indicator of the quality of the methods because it considers simultaneously

the upper and lower bound of the solutions. However, we also compared the upper bounds of the

BBC strategies, and the overall results were similar to those obtained with the optimality gaps.

Figure 6 shows the performance pro�les for the heuristic strategies (H1-H4) using the objec-

tive value. The results indicate that the two strategies that combine the local search heuristics

swap and 2opt, H3 and H4, yield a more stable performance than the others. Strategy H3

(H4) found the smallest objective function cost for 80.18% (74.44%) of the instances, and in

the remaining instances, H3 (H4) provides a solution with cost within a factor of 20.61 ≈ 1.53

(20.78 ≈ 1.72) of the lowest cost found. Due to this behavior, H3 was selected as the best heuristic

strategy.

Figure 7 presents the performance pro�les for the BBC algorithms (BBC1-BBC5) based

on the optimality gap. Table 3 shows the extreme values of the performance pro�les for the

BBC strategies. The performance pro�les reveal that the majority of the strategies have similar

results in 90% (P (f, q) = 0.9) of the instances. As expected, strategy BBC5, which does not use

any valid inequalities, presents the worst performance. In most instances, the valid inequalities

improved the lower bound, thus accelerating the convergence of the algorithms. In fact, while

BBC5 found the best gap only for 35.5% of the instances, BBC4 found the best gap for 64.8%

of the instances, which represents a substantial improvement of 82%. Furthermore, for instances

in which the best gap is not achieved, BBC4 provides solutions with a gap within a factor of

23.45 ≈ 11 of the best gap, while for the BBC5 algorithm, the factor is 27.66 ≈ 202.
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Figure 6: Performance pro�les of the heuristic methods based on the objective value.
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Figure 7: Performance pro�les of the BBC algorithms based on the optimality gap.

Table 3: Extreme values of the performance pro�les for the BBC strategies.
BBC strategy P (f, q)1 q2

BBC1 0.5842 7.6582
BBC2 0.6237 5.7664
BBC3 0.6411 4.0752
BBC4 0.6474 3.4558
BBC5 0.3553 7.6582

1 Values of P (f, q) when q = 0.
2 Values of q when P (f, q) = 1.
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By comparing the performance pro�les of algorithms BBC1 and BBC4, it is possible to

see that using feasibility cut (32) is better than using feasibility cut (33). This result was

also expected because equation (32) cuts o� a larger number of infeasible solutions when it is

used. Using multiple lower bound functions as optimality cuts appears to be more e�cient than

using single cuts, which can be deduced from the comparison among algorithms BBC2, BBC3

and BBC4. Notice that the optimality multi-cut approaches (BBC3 and BBC4) are faster and

more stable than the optimality single-cut approach (BBC2). Finally, from the comparison of

algorithms BBC3 and BBC4, we can conclude that the use of cut (35) improves the convergence of

the method. Optimality multi-cut (35) helps set a lower bound for a greater number of solutions

than multi-cut (36) individually. Therefore, the algorithm BBC4 is selected as the best strategy,

which provides the smallest gap for 64.73% of the instances and, in the remaining instances,

provides solutions with a gap within a factor of 23.45 ≈ 11 of the best gap obtained.

Approach BBC6 combines the best heuristic and BBC strategies, H3 and BBC4, respectively.

GR-BBC6 combines BBC6 with the GR strategy. We build performance pro�les based on the

gap provided by the algorithms within the time limit of 3,600 seconds to compare BBC4, BBC6,

GR-BBC6, and the MIP model. As we can see in Figure 8, not surprisingly, the BBC algorithms

outperform the MIP model. In fact, the mathematical model found feasible solutions for only

45.8% of the instances. BBC6 shows a more stable performance than the BBC4 algorithm. Thus,

starting the BBC with an initial solution provided by heuristic H3 improves the performance of

the BBC algorithm. By comparing GR-BBC6 and BBC6, we can infer that the valid inequalities

(43)−(44) derived by the GR strategy are e�ective to improve the convergence of the method.

GR-BBC6 (BBC6) achieved the best gap in 96.1% (50.78%) of the instances and, for the instances

it was not achieved, the solution gap was within a factor of 24.68 ≈ 25.63(26.12 ≈ 69.55) of the

best gap obtained.

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

MIP BBC4                               BBC6                 GR-BBC6                     
𝑞

Figure 8: Performance pro�les of the best BBC strategies and the MIP model based on the optimality gap.
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5.4. Performance of the best strategy

Table 4 shows the average upper bound, gap and elapsed time of the best strategy proposed

in this paper for solving the instances of group S1 and S2. For all instances, the GR-BBC6

method provided feasible solutions within 3,600 seconds. The average total elapsed time was

2,361 seconds, and the average time that GR-BBC6 spent to �nd the best upper bound was

797.3 seconds, 66.24% smaller than the elapsed time. Thus, GR-BBC6 �nds feasible solutions

relatively quickly, and most of the elapsed time is consumed to improve the lower-bound val-

ues. The average gap considering all instances was 38.82%. For instances S1, the average gap

was 9.32%, while for instances S2, the average gap was 57.26%. As expected, worse gaps are

obtained for instances with a large number of nodes and arcs. If we consider only practical size

instances (according to most of the real-world cases presented in the literature) we could limit

our experiments to the �rst 24 class of instances, obtaining an average gap of 18.17%. Therefore,

the GR-BBC6 algorithm is e�ective to solve practical size instances with good quality solutions.

Table 4: Average results of the GR-BBC6 strategy.
Network Avg. upper Avg. gap Avg. elapsed Avg. best1

Type (Class) bound (%) time (sec.) time (sec.)
S1 1 9,744.98 2.36 720.02 0.06
S1 2 34,088.95 5.04 1,039.29 0.05
S1 3 49,862.45 2.47 844.10 427.62
S1 4 18,037.43 8.24 1,440.08 2.51
S1 5 18,484.94 8.76 1,440.36 518.32
S1 6 20,917.01 12.51 1,618.59 260.78
S1 7 36,511.03 6.71 2,177.40 14.25
S1 8 26,048.79 13.94 1,956.36 66.38
S1 9 33,953.25 21.84 1,580.71 21.32
S1 10 48,459.97 2.42 725.84 487.55
S1 11 38,538.07 3.61 798.72 0.09
S1 12 28,036.81 1.76 723.84 6.21
S1 13 23,566.08 9.64 2,139.00 19.63
S1 14 81,031.99 20.28 2,119.10 351.12
S1 15 52,200.77 20.21 2,138.85 8.85
S2 16 38,737.05 18.09 2,074.49 628.29
S2 17 30,448.01 16.56 2,259.61 391.54
S2 18 97,476.41 21.39 2,092.61 569.09
S2 19 65,092.84 33.02 2,160.52 1,186.22
S2 20 71,172.82 38.95 2,550.34 697.30
S2 21 75,602.30 40.20 2,520.80 1,190.12
S2 22 211,486.51 41.05 2,883.30 1,522.30
S2 23 98,827.21 41.49 2,880.07 1,129.43
S2 24 209,434.98 45.56 2,880.88 1,975.86
S2 25 155,240.79 49.76 2,880.24 1,127.12
S2 26 274,847.22 62.94 2,961.89 1,756.10
S2 27 163,429.50 53.77 2,880.10 1,267.61
S2 28 435,199.83 58.23 2,881.21 1,495.73
S2 29 247,954.95 65.94 2,880.62 1,311.75
S2 30 468,494.13 57.76 3,252.19 1,643.45
S2 31 314,909.80 70.55 2,880.80 1,232.92
S2 32 337,827.97 61.12 2,881.92 1,224.98
S2 33 275,998.35 65.94 3,240.33 912.47
S2 34 481,122.55 88.49 3,600.03 1,097.02
S2 35 472,126.95 84.17 3,600.05 1,704.58
S2 36 497,125.76 86.16 3,600.03 1,311.96
S2 37 532,181.82 91.50 3,600.16 988.37
S2 38 697,781.81 91.87 3,600.05 1,433.22
S2 39 553,372.93 89.66 3,600.05 1,112.55

Avg. All 187,830.13 38.82 2,361.66 797.30
Avg. S1 34,632.17 9.32 1,430.82 145.65
Avg. S2 283,578.85 57.26 2,943.43 1,204.58
1 Time that GR-BBC6 spent to �nd the best upper bound.
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We also performed additional experiments increasing the time limit of the GR-BBC6 algo-

rithm to 24 hours. We considered the classes of instances 12 and 38, which present the smallest

and the largest optimality gaps according to Table 4. The results reveal that the gap is re-

duced from 1.76% to 1.21% (31.25%) in class 12, and from 91.87% to 86.89% (5.42%) in class

38. Thus, our approach can be more e�ective for longer computational times, although the gap

improvement can be rather negligible from the practical point of view.

Table 5 shows the average gap of the GR-BBC6 method according to di�erent values of

α and β. For example, the value 16.65 in bold in the table indicates the average gap for all

instances with α = 10% and β = 5%. Note that the instances become more challenging when

the percentage of damage (α) increases, as expected. In fact, more damaged nodes lead to

(possibly) more crew schedules to be evaluated in the MP, slowing down the convergence of the

method. More nodes in the network also makes the resolution of the subproblems even harder.

The GR-BBC6 strategy found solutions with an average gap of 7.76% for the instances with

α = 5%, and an average gap of 55.55% for instances with α = 50%. Similarly, the di�culty

of the instances decreases (on average) when the maximum tolerable percentage (β) increases.

Higher values of β make it easier for subproblem SP2 to �nd a feasible path between the depot

and the demand nodes. The average gap for instances with β = 5% is 31.92%, while the average

gap for instances with β = 50% is 29.10%. It is worth mentioning that, in most of the practical

situations, no more than α = 30% of the roads are considered as damaged roads. For instance,

Akbari and Salman (2017a), which addressed one of the largest practical cases in the literature,

considered 33% of the roads as damaged.

Table 5: Average gap for each value of α and β.
α (%)

5 10 25 30 50 Avg.

β (%)

5 8.51 16.65 38.10 39.72 56.64 31.92
10 7.59 16.33 34.11 40.85 53.85 30.55
25 7.58 15.63 35.92 39.44 55.84 30.88
50 7.34 12.32 32.64 37.36 55.83 29.10
Avg. 7.76 15.23 35.19 39.34 55.55 30.61

5.5. Comparison with other results from the literature

This section compares the results obtained by the GR-BBC6 strategy with the results of

other approaches available in the literature, namely, the dynamic programming (DP) algorithm

and the iterated greedy-randomized constructive procedure (IGRCP) metaheuristic, both of

which were proposed by Maya-Duque et al. (2016). While the DP approach is also an exact

method analogous to our GR-BBC6 method, the IGCRP is a metaheuristic and hence has no

guarantee of optimality. This metaheuristic is based on the greedy randomized adaptive search

procedure (GRASP) and consists of two phases: the construction of a feasible solution and an

improvement in the constructed solution, including multiple runs of the construction phase after

the improvement routine. Our BBC algorithm is the �rst exact method proposed in literature

able to �nd a lower bound for all the considered instances. Thus, it is not possible to perform

any comparison of lower bounds using other approaches from the literature. This way, we only

compare the solution costs (upper bounds) provided by the BBC with the costs delivered by the

31



other approaches. We emphasize that the purpose is not to compare the methods, but to verify

the quality of the solutions provided by the GR-BBC6 method. We show the results only for

instances in group S1 (small instances) because the DP strategy proposed in Maya-Duque et al.

(2016) is not able to solve medium and large instances. The IGRCP metaheuristic, on the other

hand, was used to solve S2 instances in Maya-Duque et al. (2016), but we did not have access to

those solutions until the submission of the paper.

Table 6 shows the average upper bound and elapsed time of the three approaches for instances

in group S1. The character ��� indicates that no solution was obtained for one or more instances

of the class. The last column �ratio� shows the ratio of the upper bound of IGRCP in relation

to the upper bound of GR-BBC6. Ratios smaller than 1 indicate that the GR-BBC6 strategy

improves the upper bound found by the IGRCP metaheuristic. The columns �# optimal� show

the number of optimal solutions found by each exact method. The DP algorithm solved all the

instances to optimality for classes of instances corresponding to networks 1, 2 and 10. For the

other classes, the DP algorithm did not solve some of the instances within a time limit of 24

hours, especially those with α = 50. For instances of classes corresponding to networks 1, 2

and 10, the solutions of the GR-BBC6 method were equal to the solutions of the DP strategy,

indicating that these solutions are optimal, although there is a nonzero gap related to the lower

bound computed with the GR-BBC6 method.

The BBC is able to prove optimality in (181) 60.33% of the small instances, while the best

exact approach available so far in the literature proved optimality for (160) 53.33% of the small

instances. Furthermore, our BBC algorithm solves to optimality 18.33% of the medium and

large instances, while medium and large instances were not solved with the DP. In terms of

computational times, the DP strategy was slower than the GR-BBC6 strategy for instances in

classes 1, 2 and 10.

Table 6: Average result of the solution methods for small instances.
Avg. upper bound # optimal Avg. elapsed time (sec.) Avg. best4

Class IGRCP1 DP2 GR-BBC63 DP GR-BBC6 IGRCP DP GR-BBC6 time (sec.) Ratio
1 9,744.98 9,744.98 9,744.98 20 16 1.09 2,945.31 720.02 0.06 1.000
2 34,088.95 34,092.54 34,088.95 20 16 1.43 8,733.50 1,039.29 0.05 1.000
3 49,987.07 � 49,862.45 17 16 1.60 � 844.10 427.62 0.998
4 18,246.59 � 18,037.43 16 11 7.04 � 1,440.08 2.51 0.989
5 18,151.81 � 18,484.94 12 11 14.10 � 1,440.36 518.32 1.018
6 21,253.39 � 20,917.01 1 11 17.98 � 1,618.59 260.78 0.984
7 36,873.30 � 36,511.03 0 8 11.77 � 2,177.40 14.25 0.990
8 26,382.27 � 26,048.79 0 9 38.37 � 1,956.36 66.38 0.987
9 35,223.52 � 33,953.25 0 11 20.26 � 1,580.71 21.32 0.964
10 48,545.84 48,460.28 48,459.97 20 16 0.91 16,663.44 725.84 487.55 0.998
11 39,212.63 � 38,538.07 17 16 1.59 � 798.72 0.09 0.983
12 28,876.04 � 28,036.81 16 16 0.87 � 723.84 6.21 0.971
13 23,535.63 � 23,566.08 8 8 7.83 � 2,139.00 19.63 1.001
14 87,163.33 � 81,031.99 8 8 91.47 � 2,119.10 351.12 0.930
15 52,085.29 � 52,200.77 5 8 53.51 � 2,138.85 8.85 1.002

Average 35,291.38 � 34,632.17 10.67 12.07 17.99 � 1,430.82 145.65 0.988
1 Metaheuristic based on GRASP proposed in Maya-Duque et al. (2016)
2 Exact dynamic programming algorithm proposed in Maya-Duque et al. (2016)
3 Best BBC strategy (1 hour time limit).
4 Time that GR-BBC6 spent to �nd the best upper bound.

On average, the solutions provided by the BBC approach GR-BBC6 are better than the

solutions provided by the IGRCP heuristic. Additionally, the BBC6 method provided a lower

bound and an optimality gap for all the solutions within a time limit of 3,600 seconds. Thus,
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the BBC can obtain a valid lower bound for all the instances without deteriorate the cost (upper

bound) of the solutions or even at improving the upper bound of the solutions. As expected,

the IGRCP metaheuristic was the fastest method but gave no guarantee of optimality, as it

corresponds to a heuristic method. Note that most of the time spent by the BBC strategy is to

improve the lower bound. In fact, the average time spent by GGR-BBC6 to �nd the best upper

bound is 145.65 seconds, 10 times smaller than the average elapsed time.

6. Conclusions and future research

This paper explored branch-and-Benders-cut (BBC) approaches to solve the crew scheduling

and routing problem (CSRP), in the context of road restoration. As a key contribution, it devel-

oped the �rst exact solution approach that is able to obtain feasible solutions and lower bounds

for all instances from the literature, including very large-scale instances. The addressed prob-

lem is typically found in post-disaster situations where the damaged network must be repaired

as quickly as possible to promote an e�ective response. The joint presence of scheduling and

routing decisions explains the complexity of solving such problems, for which commercial solvers

cannot be e�ciently used. Thus, we have devised approaches based on the Benders decompo-

sition, applied to a MIP formulation that determines a fair and e�cient road restoration plan.

We employed feasibility cuts, multiple optimality cuts, and specialized valid inequalities, which

have enhanced the performance of the BBC approaches. The use of simple heuristics to provide

initial incumbent solutions for the master problem was also an important strategy to accelerate

the convergence of the methods. The proposed BBC strategies have improved the results of

exact and heuristic methods proposed so far in the literature. In fact, our best approach has

proven the optimality of 41.67% of the instances, and for 100% of the instances, it obtained

valid lower bounds for the �rst time. It is worth noting that we have not found any other com-

putational study that considers so many nodes and arcs for any variant of the CSRP in road

restoration. The major remaining obstacle, though, is to provide the optimality certi�cate for

some large-scale instances. In this sense, we would like to investigate particular properties and

characteristics of the problem to derive new valid inequalities and di�erent ways for decomposing

the MIP formulation. Finally, it would be of interest to improve the lower bounds of the current

solutions and to develop hybrid methods combining exact and metaheuristic strategies to obtain

tighter solutions.
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