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Abstract

The Min-q-Multiset Multicover problem presented in this paper is a
special version of the Multiset Multicover problem. For a fixed positive
integer q, we are given a finite ground set J , an integral demand for
each element in J and a collection of subsets of J . The task is to
choose sets of the collection (multiple choices are allowed) such that
each element in J is covered at least as many times as specified by the
demand of the element. In contrast to Multiset Multicover, in Min-q-
Multiset Multicover each of the chosen subsets may only cover up to q
of its elements with multiple choices being allowed.

Our main focus is a robust version of Min-q-Multiset Multicover,
called Robust Min-q-Multiset Multicover, in which the demand of each
element in J may vary in a given interval with an additional budget
constraint bounding the sum of the demands. Again, the task is to
find a selection of subsets which is feasible for all admissible demands.

We show that the non-robust version is NP-complete for q greater
than two, whereas the robust version is strongly NP-hard for any posi-
tive q. Furthermore, we present two solution approaches based on con-
straint generation and investigate the corresponding separation prob-
lems.

We present computational results using randomly generated in-
stances as well as instances emerging from the problem of locating
emergency doctors.

1 Introduction

Covering problems arise in many real world applications. Therefore, there
has been a lot of research regarding this area of optimization. In the classical
Set Cover problem we are given a set U , a collection of subsets S ⊆ 2U

and a positive integer k. The decision version asks for the existence of a
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subcollection S ′ ⊆ S of size at most k, such that, for all u ∈ U , there is
some S ∈ S ′ with u ∈ S. This problem is well-known to be strongly NP-
complete, see [20]. In the Set Multicover problem each element u ∈ U is
given a demand du ∈ Z≥0 expressing the number of times the element u
has to be covered. Finally, considering the Multiset Multicover problem,
the subsets in the collection may be multisets, cf. [27]. These two variants
are clearly generalizations of Set Cover and therefore remain strongly NP-
complete. Furthermore, the problems above remain strongly NP-complete
if only subsets of a fixed size q ≥ 3 are regarded, cf. [20].

The notion of robustness has gained a lot of attention in operations
research. The core idea of robust optimization can be summarized as follows:
At the time of computation not all data of the instance may be known
exactly. Instead of fixed parameters we are given a set of scenarios U , the
uncertainty set, where each scenario defines n fixed parameters for some
n ∈ N. We assume that any of the scenarios contained in U may actually
occur, but we do not know the true scenario in advance. The aim is to
find a solution taking into account all scenarios. The work was pioneered
in [41] and become a major research area within the optimization community
with [5, 6, 7]. A thorough general introduction and overview of robust
optimization can be found in [3]. Furthermore, a recent overview is given
by [19].

We denote the scenarios by vectors ξ ∈ Rn where each entry corresponds
to some parameter of the instance. Several methods of defining uncertainty
sets have been proposed in current literature, cf. [9, 8, 30, 28] for a general
overview. One arising concept is that of discrete uncertainty where the
uncertainty sets may only contain a finite number of possible scenarios,
cf. [30, 29]. Further, when considering interval uncertainty the uncertainty
set can be described as

U = {ξ ∈ Rn : ξi ∈ [ai, bi], i = 1, . . . , n} ,

for some ai, bi ∈ R, cf. [30]. In this paper, we investigate discrete budgeted
uncertainty as a combination of the above concepts, i.e.,

U =

{
ξ ∈ Rn : ξi ∈ [ai, bi] ∩ Z, i = 1, . . . , n and

n∑
i=1

ξi ≤ Γ

}
,

for some ai, bi,Γ ∈ Z, cf. [9, 8]. Note that this definition of discrete budgeted
uncertainty set differs from other settings using the same expression, e.g.
[13, 10, 35]. Here we bound the total sum of the uncertainty values. In our
paper, the scenarios define parameters of the constraints and do not appear
in the objective function. We aim for a solution that fulfills the constraints
for all possible scenarios.

In [23], the authors studied robust versions of the classical Set Cover
problem where the possible scenarios are given by all demand-subsets of a
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certain fixed size. They provide approximation algorithms for robust two-
stage problems: Some of the sets may be selected in a first stage at lower
cost and in a second stage, after the scenario is known, the remaining sets
are chosen. Further, an approximation algorithm using the online algorithm
for Set Cover [2, 12] within an LP-rounding-based algorithm can be found
in [16]. The robust Set Cover problem was also studied from a polyhe-
dral point of view in [17], whereas new formulations for robust Set Cover
problems were given in [33].

In this paper we introduce for fixed q ∈ N the problem q-Multiset Mul-
ticover, which can be located between Set Cover by q-sets (cf. [20, SP2] for
the version with q = 3) and Multiset Multicover [26, 38] as we will see later.
In q-Multiset Multicover, the subsets have arbitrary size, but the number
of elements they may cover is bounded by q. In fact it is closely related to
Multiset Multicover by q-sets. However, this relation cannot be generalized
to the following robust version of this problem constituting the main focus
of this paper.

We investigate a robust version of q-Multiset Multicover with discrete
budgeted uncertainty where the scenarios correspond to demand vectors. Af-
ter analyzing the complexity of all introduced problems, we present different
solution approaches based on constraint generation and give computational
results for both random instances and instances inspired by a real world
problem.

To that end, we discuss an application of q-Multiset Multicover in the
healthcare sector which motivated the study of robust multicovers. In the
application we are asked to assign emergency doctors to facilities such that
occurring emergencies may be handled in a satisfactory manner. The num-
ber of emergencies are uncertain and are represented using the proposed
discrete budgeted uncertainty set where the total number of occurring emer-
gencies is budgeted to avoid unrealistic situations. This leads to a multicover
problem, where the elements are the regions in which the emergencies oc-
cur and the sets correspond to the subsets of regions which can be reached
within a guaranteed response time from the facility chosen.

The article is organized as follows: In Section 2, we introduce q-Multiset
Multicover, present possible integer programming formulations and prove
NP-completeness for q ≥ 3. Section 3 deals with the robust version of q-
Multiset Multicover. We discuss whether the introduced formulations can
be transferred and show that the problem is NP-hard for any q > 0. So-
lution approaches are presented in Section 4, while Section 5 displays the
corresponding computational results.
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2 Problem definition and classifications

Let G = (V,E) be an undirected graph. We denote by NG(v) the neigh-
borhood of v ∈ V in G, i.e., the set of all vertices adjacent to v. For a
subset S ⊆ V , NG(S) is the set of all nodes adjacent to some node in S.
For a directed graph G = (V,R) we indicate by N+

G (v) the set of succes-
sors of v ∈ V , i.e., the set of vertices w such that there is a directed arc
from v to w. Analogously, by N−G (v) we denote the set of predecessors of
v ∈ V . If the corresponding graph G is clear from the context, we omit the
subscript G. Now, we may formally define q-Multiset Multicover for a fixed
integer q ∈ Z>0:

Problem 1 (q-Multiset Multicover (q-MSMC)).
Instance: Finite ground set J , weights dj ∈ Z≥0 for all j ∈ J , a collection
of subsets J ⊆ 2J and a positive integer B ∈ Z>0.
Question: Are there integers xA ∈ Z≥0 for A ∈ J with

∑
A∈J xA ≤ B,

such that there exist integers yAj ∈ Z≥0 for A ∈ J , j ∈ J satisfying∑
A∈J : j∈A

yAj ≥ dj ∀j ∈ J and
∑
j∈A

yAj ≤ q · xA ∀A ∈ J ?

The interpretation of the problem is as described in the introduction:
Can we choose B subsets, with multiple choices being allowed since xA ∈
Z≥0, such that the demand of each element is covered, when each subset
may only cover up to q elements (again multiple choices are allowed since
yAj ∈ Z≥0). For a fixed subset A, the integer yAj in the problem definition
models the amount of demand of element j covered by the subset A.

Remark 2. If, instead of regarding the subsets A ∈ J , we regard all multi-
sets of cardinality q of A, we get an instance of Multiset Multicover, raising
the input size only by a polynomial factor as q is not part of the input.
Thereby, q-MSMC is in some sense a representation of certain Multiset Mul-
ticover instances, having smaller input size. This connection, however, is
lost when regarding the robust version of q-MSMC, cf. Section 3.

In the sequel, it will be useful to consider the following alternative defi-
nition of q-MSMC.

Problem 3 (q-Multiset Multicover (q-MSMC) - alternative definition).
Instance: Finite sets I, J with I ∩ J = ∅, weights dj ∈ Z≥0 for all j ∈ J , a
bipartite graph G = (I ∪ J,E) and a positive integer B ∈ Z>0.
Question: Are there integers xi ∈ Z≥0 for i ∈ I with

∑
i∈I xi ≤ B, such

that there exist integers yij ∈ Z≥0 for i ∈ I, j ∈ J satisfying∑
i∈N(j)

yij ≥ dj ∀j ∈ J and
∑
j∈N(i)

yij ≤ q · xi ∀i ∈ I?
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For an instance of q-MSMC, we call the set I locations and the set J
regions. Further, dj describes the number of clients or the demand in region
j ∈ J and xi denotes the number of suppliers in location i ∈ I. The number
q can be interpreted as the number of clients a single supplier may serve.
In the optimization version Min-q-Multiset Multicover (Min-q-MSMC) we
aim for a minimum number of suppliers. Identifying each location i with its
neighborhood NG(i) yields the equivalence of the two problem definitions.

It can readily be seen that the following integer program models Min-q-

MSMC for some demand vector d ∈ Z|J |≥0:

(MIP 1)(d) min
x, y

∑
i∈I

xi (1a)

s.t.
∑
i∈N(j)

yij ≥ dj ∀j ∈ J, (1b)

∑
j∈N(i)

yij ≤ q · xi ∀i ∈ I, (1c)

yij ≥ 0 ∀i ∈ I, j ∈ J, (1d)

xi ∈ Z≥0 ∀i ∈ I. (1e)

Note that the variables yij are not forced to be integral. Observation 5
argues why this is no restriction. Furthermore, in Lemma 4 we prove that
(IP 2)(d) is an alternative formulation to (MIP 1)(d).

(IP 2)(d) min
x

∑
i∈I

xi (2a)

s.t.
∑

i∈N(S)

q · xi ≥
∑
j∈S

dj ∀S ⊆ J, (2b)

xi ∈ Z≥0 ∀i ∈ I. (2c)

Lemma 4. For an instance of Min-q-Multiset Multicover it holds that x ∈
Z|I|≥0 is a feasible solution to (IP 2)(d) if and only if there exists y ∈ R|I||J |≥0

such that (x, y) is a feasible solution for (MIP 1)(d). In this case, the vari-
ables y can be chosen to be integral.

Proof. If (x, y) is a feasible solution for (MIP 1)(d) then x is also feasible
for (IP 2)(d), as for any S ⊆ J we have:

∑
i∈N(S)

q · xi ≥
∑

i∈N(S)

∑
j∈N(i)

yij =
∑

i∈N(S)

 ∑
j∈N(i)∩S

yij +
∑

j∈N(i)\S

yij


≥

∑
i∈N(S)

∑
j∈N(i)∩S

yij =
∑
j∈S

∑
i∈N(j)

yij ≥
∑
j∈S

dj .
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Figure 1: Flow network for the proof of Lemma 4. All thick arcs have infinite
capacity.

Now assume we are given a feasible solution x for (IP 2)(d). Let G be
the graph from the instance of Min-q-MSMC. We define a directed graph
H = (I ∪ J ∪ {s} ∪ {t}, R ∪ Rs ∪ Rt), where R contains all arcs in E(G)
directed from I to J , Rs = {(s, i) : i ∈ I} and Rt = {(j, t) : j ∈ J}, cf. Fig. 1.
We set the capacities of each arc r ∈ R(H) as

c(r) =


∞, r ∈ R,
q · xi, r ∈ Rs,
dj , r ∈ Rt.

We claim that the maximum s-t-flow in H has flow value
∑

j∈J dj . Note
that given an s-t-flow f with flow value

∑
j∈J dj , we can define a feasible

solution to (MIP 1)(d) by (x, y), where yij = f(i, j) for all (i, j) ∈ R.
Further, the flow value of any s-t-flow can never be larger than

∑
j∈J dj

(consider the s-t-cut with T = {t}). Thus, it suffices to show that a max-
imum s-t-flow in H has flow value no less than

∑
j∈J dj . To this end let

S, T ⊆ V (H) be any s-t-cut in H. Let J ′ = J \ S, possibly being the empty
set. If any location in the neighborhood of J ′ is contained in S, the cut
contains an arc with infinite capacity, so assume N−H (J ′) ∩ S = ∅ so that
N−H (J ′) ⊆ T . Since x is a feasible solution to (IP 2)(d) we obtain for any
subset Q ⊆ J ∑

i∈N−H (Q)

q · xi =
∑

i∈NG(Q)

q · xi ≥
∑
j∈Q

dj .

We get

c(S, T ) ≥
∑
j∈J∩S

dj +
∑

i∈N−H (J ′)

q · xi ≥
∑
j∈J∩S

dj +
∑
j∈J ′

dj =
∑
j∈J

dj .
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Thus, every s-t-cut has capacity larger or equal to
∑

j∈J dj and by the Max-
Flow-Min-Cut Theorem we obtain the desired result, cf. [1].

Observation 5. Note that the capacities of the arcs in Rs and Rt defined
in the proof of Lemma 4 are integral. Thus, there exists an integral flow f
in H if and only if there exists a continuous flow f ′ in H and the variable yij
can be interpreted as the number of clients in region j taken over by the
suppliers in location i, cf. [1].

In the following, we state our results on the complexity of q-MSMC.
Formal proofs of these claims can be found in A.

Observation 6. Min-1-Multiset Multicover is solvable in linear time.

Theorem 7. Min-2-Multiset Multicover can be solved in O(|I|5/2|J |5/2).

Theorem 8. For any fixed q ≥ 3, q-Multiset Multicover is NP-complete in
the strong sense.

Observation 9. There is a log(q)-approximation for Min-q-Multiset Mul-
ticover.

Now, we concentrate on a robust version of q-Multiset Multicover.

3 Problem definition and classification of the ro-
bust version

In this section, we extend the initial problem Min-q-Multiset Multicover to
include uncertainty in the number of clients dj of each region j ∈ J . We
apply concepts of robust optimization such as strict and adjustable robust-
ness and combine interval and budgeted uncertainty as mentioned in the
introduction, cf. [3, 4]. For each region j ∈ J , we consider two non-negative
integers aj and bj with aj ≤ bj , which respectively correspond to the mini-
mum and maximum number of clients in that region. Concerning the total
amount of clients in all regions, we additionally require this value not to ex-
ceed some given constant Γ ∈ Z≥0 to prevent the global worst case. Then,
a vector ξ ∈ Z|J | with ξj ∈ [aj , bj ] and

∑
j∈J ξj ≤ Γ is called a scenario and

we denote by U the set of all scenarios, i.e.,

U =

ξ ∈ Z|J | : ξj ∈ [aj , bj ] ∀j ∈ J,
∑
j∈J

ξj ≤ Γ

 .

The set U is also called the uncertainty set. Note that U is finite since we
only consider integral demands in our problem. For a vector x ∈ Rn and
some set F ⊆ {1 . . . n} we use the common notation x(F ) =

∑
i∈F xi.
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Assumption 1. In order to obtain a meaningful uncertainty set we assume
that

∑
j∈J aj ≤ Γ ≤∑j∈J bj implying U 6= ∅. Moreover, we assume without

loss of generality that Γ is chosen in such a way that bj +
∑

k 6=j ak ≤ Γ such
that, for each region j ∈ J , there exists a scenario ξ with ξj = bj . Otherwise
we could decrease the upper bound bj in the corresponding region.

The intuition of the robust version of Min-q-MSMC is to choose a mini-
mum number of suppliers, such that in any scenario of U all clients may be
served. In the following, we will see how to incorporate this intuition into
the models introduced in Section 2. We begin by robustifying (IP 2)(d).

Each scenario ξ ∈ U defines a single problem in the fashion of Problem 3
when denoting the amount of clients by dj = ξj for all j. Therefore, given a
fixed scenario ξ, we consider the integer linear program (IP 2)(ξ). In terms
of robust optimization, we obtain the uncertain integer linear program:{

min

{∑
i∈I

xi : x is feasible for (IP 2)(ξ)

}
: ξ ∈ U

}
. (3)

Our aim is to find xi ∈ Z≥0 for all i ∈ I, such that all clients can be
served independently of the actually occurring “true” scenario. Therefore,
we concentrate on the analysis of the following problem:

Problem 10 (Robust q-MSMC, set formulation).
Instance: Set of possible locations I, set of regions J , non-negative integers
aj , bj with aj ≤ bj for all j ∈ J , integer Γ satisfying Assumption 1, bipartite
graph G = (I ∪ J,E) and a positive integer B ∈ Z>0.
Question: Are there xi ∈ Z≥0 for all i ∈ I such that

∑
i∈I xi ≤ B and for

all subsets S ⊆ J and all scenarios ξ ∈ U we have∑
i∈N(S)

q · xi ≥
∑
j∈S

ξj?

The minimization problem corresponding to Robust q-MSMC, i.e. Ro-
bust Min-q-MSMC, can be formulated as the robust counterpart of (3):

(IP 4) min
x

∑
i∈I

xi (4a)

s.t.
∑

i∈N(S)

q · xi ≥
∑
j∈S

ξj ∀S ⊆ J, ∀ξ ∈ U , (4b)

xi ∈ Z≥0 ∀i ∈ I. (4c)

Note that the uncertain data only occurs on the right hand side of the above
constraints. Thus, this problem can be simplified by computing, for every
subset S ⊆ J , the maximum of

∑
j∈S ξj over the uncertainty set U . This

maximum is given by d̃S := min{b(S),Γ− a(J \ S)}:
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- If b(S) + a(J \ S) ≤ Γ, then max
ξ∈U

∑
j∈S ξj = b(S).

- If b(S) + a(J \ S) > Γ, then max
ξ∈U

∑
j∈S ξj = Γ − a(J \ S). (Since

b(S) > Γ− a(J \ S) and a(S) ≤ Γ− a(J \ S) a corresponding scenario
clearly exists.)

Consequently, we can replace
∑

j∈S ξj in line (4b) of (IP 4) by d̃S and
reformulate the question posed in Problem 10 as follows: Are there xi ∈ Z≥0

for all i ∈ I such that
∑

i∈I xi ≤ B and for all subsets S ⊆ J :∑
i∈N(S)

q · xi ≥ d̃S?

Observe that when using this formulation the problem is independent from
the uncertainty set U . But in comparison to the non-robust formulation of
Section 2, the value d̃S cannot be split into a sum of clients over the single
regions of S anymore.

As in Section 2, we aim to obtain an equivalent assignment formulation
for Problem 10. A first idea is to consider the robust counterpart of the
uncertain IP

{
min

{∑
i∈I

xi : (x, y) is feasible for (MIP 1)(ξ)

}
: ξ ∈ U

}
. (5)

Since (x, y) needs to be feasible for (MIP 1)(ξ) for any scenario ξ and
since for each region j ∈ J there exists a scenario with ξj = bj (cf. Assump-
tion 1), the solution vector (x, y) can be computed by solving the mixed
integer linear program (MIP 1)(b). In general,

∑
j∈S bj = b(S) = d̃S does

not hold for all S ⊆ J and we see that formulation (5) cannot be equivalent
to (3). Furthermore, the upper bound on the number of clients Γ is not
needed in (5). Eliminating the constraint

∑
j∈J ξj ≤ Γ in the definition of

the uncertainty set U would lead to d̃S = b(S). Only in this special case,
both formulations (5) and (3) are equivalent as shown in Section 2.

Actually, computing a global solution y is far too conservative and ap-
plying strict robustness is unrewarding. Moreover, (5) does not match the
intuition of Robust Min-q-MSMC as we have to fix the yij before the ac-
tual scenario is revealed. Recalling the interpretation of the variables yij
in Observation 5, it is meaningful to fix the variables yij only after the
realization of the true scenario ξ is known. Thus, we only need to settle
the decision over the xi, i ∈ I, before the realization becomes apparent,
while additionally ensuring the existence of an assignment y of suppliers to
clients. Therefore, we apply the concept of adjustable robustness [4] with x
containing the “here and now” variables and y corresponding to the “wait
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and see” variables. Then, our aim is to find xi ∈ Z≥0 for all i ∈ I, mini-
mizing

∑
i∈I xi, such that, for every ξ ∈ U , there exist y(ξ) with (x, y(ξ))

being feasible for (MIP 1)(ξ). This approach leads to the adjustable robust
counterpart of (5):

(MIP 6) min
x, y

∑
i∈I

xi (6a)

s.t.
∑
i∈N(j)

yij(ξ) ≥ ξj ∀j ∈ J, ξ ∈ U , (6b)

∑
j∈N(i)

yij(ξ) ≤ q · xi ∀i ∈ I, ξ ∈ U , (6c)

yij(ξ) ≥ 0 ∀i ∈ I, ∀j ∈ J, ξ ∈ U , (6d)

xi ∈ Z≥0 ∀i ∈ I. (6e)

The corresponding decision problem is defined as follows:

Problem 11 (Robust q-MSMC, assignment formulation).
Instance: Set of possible locations I, set of regions J , non-negative inte-
gers aj , bj with aj ≤ bj for all j ∈ J , integer Γ satisfying Assumption 1,
bipartite graph G = (I ∪ J,E) and a positive integer B ∈ Z>0.
Question: Are there xi ∈ Z≥0 for all i ∈ I, such that

∑
i∈I xi ≤ B and for

all scenarios ξ ∈ U there are yij(ξ) ∈ R≥0 for all i ∈ I, j ∈ J , such that∑
i∈N(j)

yij(ξ) ≥ ξj ∀j ∈ J and
∑
j∈N(i)

yij(ξ) ≤ q · xi ∀i ∈ I?

As in the non-robust version, the assignment variables yij(ξ) can be
chosen to be integral whenever there exists a solution (x, y) ∈ Z|I|×R|I||J ||U|
for Problem 11. Thus, we can interpret the variable yij(ξ) as the number
of clients in region j taken over by suppliers in location i in case scenario ξ
occurs. A similar problem is analyzed in [18], whereas a general approach
for adjustable robustness in the LP-case with right hand side uncertainty is
investigated in [34].

Now, we are able to prove the equivalence between the robust set for-
mulation defined in Problem 10 and the adjustable robust assignment for-
mulation defined in Problem 11.

Proposition 12. Problem 10 and Problem 11 are equivalent.

Proof. Since the objective functions are the same, it remains to be shown
that any solution (x, y) of (MIP 6) yields a solution x′ of (IP 4) with the
same objective value and vice versa. Thus, let (x, y) be feasible for (6) with
y = (y(ξ1), y(ξ2), . . .). Fix a scenario ξ ∈ U . Then (x, y(ξ)) is feasible for
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(MIP 1)(ξ). Due to the equivalence of the formulations in the non-robust
version, we get that x fulfills∑

i∈N(S)

q · xi ≥
∑
j∈S

ξj ∀S ⊆ J

Since this argument holds true for any fixed scenario ξ, we obtain that x is
feasible for (IP 4).

On the other hand, given a solution x of (IP 4), for any fixed scenario
ξ, there exists y(ξ) such that (x, y(ξ)) is feasible for (MIP 1)(ξ) due to the
results of Section 2. In total, we obtain that (x, y) with y = (y(ξ1), y(ξ2), . . .)
is feasible for (MIP 6).

At this point, we see that our initial link to Multiset Multicover by q-sets
is lost when including robustness, since the assignment variables y ∈ R|I||J ||U|
can be specified in a subsequent step when the “true” scenario is already
known. In the robust case the value xi has to be specified in advance so
that, for each possible scenario ξ, there exists a selection of xi sets for each
location i ∈ I satisfying the upcoming demand. Therefore, considering
robustness leads to a completely new problem in comparison to Section 2
which we investigate further in the following. Before we concentrate on the
complexity of Robust q-MSMC, we state some properties of the problem.

Observation 13. Let z be the optimal solution value of Robust Min-q-
MSMC. Then:

(a) z ≥
⌈

Γ
q

⌉
.

(b) Define x̄ ∈ Z|I| in the following way: For all j ∈ J , choose i ∈ N(j)

and increase x̄i by
⌈
bj
q

⌉
. Then, x̄ is feasible for (IP 4) and we get

z ≤∑j∈J

⌈
bj
q

⌉
.

(c) It suffices to consider all scenarios ξ ∈ U with
∑

j∈J ξj = Γ.

From part (a) and part (b) it follows that Robust Min-q-MSMC has a
finite optimal solution. Furthermore, from now on we restrict the problem
to scenarios whose demands sum up to Γ. We call such a scenario an extreme
scenario and denote by U ′ ⊆ U the set of all extreme scenarios.

In the following, we utilize the Dominating Set problem [20] to show NP-
hardness for Robust q-MSMC. In the former problem, given an undirected
graph G = (V,E) and a positive integer K ≤ |V |, the question is whether
there exists a subset V ′ ⊆ V with |V ′| ≤ K such that for all u ∈ V \ V ′
there is v ∈ V ′ for which {u, v} ∈ E. This problem is well-known to be
NP-complete.

Theorem 14. For fixed q ∈ Z>0, Robust q-MSMC is strongly NP-hard.
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Proof. We show that there exists a polynomial time reduction from Domi-
nating Set to Robust q-MSMC. To this end, let an undirected graph G =
(V,E) with V = {1, . . . , n} and an integer K ≤ n be given. To construct an
instance of Robust q-MSMC we set I = {1, . . . , n} and J = {n+ 1, . . . , 2n}.
For every edge {u, v} ∈ E, we add the edge {u, n+ v} and the edge {v, n+u}
to the bipartite graph G′ with vertex set I ∪ J and edge set E′. Addition-
ally, for every v ∈ V , the edge {v, n + v} is added to E′. Moreover, we
define aj = 0, bj = 1 for all j ∈ J , Γ = 1 and B = K. Thus, we have
d̃S = min {|S|, 1} = 1 for any non-empty subset S ⊆ J .

Let V ′ ⊆ V = I be a solution of Dominating Set such that |V ′| ≤ K.
Then, we set xi = 1 for all i ∈ V ′ and zero else so that

∑
i∈I xi ≤ B already

holds true. Fix an arbitrary subset S ⊆ J, S 6= ∅. We want to show that∑
i∈N(S)

q · xi ≥ 1.

Thus, we need to prove that at least one value xi for i ∈ N(S) is set to
one, i.e. N(S) ∩ V ′ 6= ∅. Choose an arbitrary element n + v ∈ S with
v ∈ {1, . . . , n}. V ′ is a dominating set, so we have v ∈ V ′ or there is u ∈ V ′
adjacent to v in G. In the former case, v ∈ N(S) since G′ contains the edge
{v, n+v}. In the latter case, u ∈ N(S) since G′ contains the edge {u, n+v}.
Thus,

∑
i∈N(S) q · xi ≥ 1 holds true in any case, so that x is a solution of

Robust q-MSMC.
Conversely, suppose that x is a solution of Robust q-MSMC such that∑
i∈I xi ≤ B. Since d̃S = 1 for all S ⊆ J, S 6= ∅, we can assume without

loss of generality that xi ≤ 1 for all i ∈ I. The set V ′ is defined to contain
all vertices v ∈ V such that xv = 1. Clearly, |V ′| ≤ B = K and we claim
that V ′ is a dominating set for G. To this end, choose a vertex u ∈ V − V ′
and consider the set S = {n+ u} ⊆ J . Since x is a feasible solution, there
is v ∈ N(S) with xv = 1, i.e. v ∈ V ′. Since v ∈ N(S), either u = v or
the vertices u and v are adjacent in G by construction of G′ yielding the
claim.

Note that we did not prove NP-completeness of Robust q-MSMC. In
the following section, we see that checking a given vector x for feasibility is
co-NP-complete.

4 Solving the Robust Min-q-Multiset Multicover

In the previous section we have shown that Robust Min-q-MSMC is an
NP-hard problem. As both formulations of the problem as (mixed) integer
linear programs contain a large number of constraints, it is reasonable to
apply constraint generation to obtain a solution, cf. [15, 22, 36, 42].

Thus, focusing on the set formulation, at any point in the constraint
generation process, a collection of subsets S ⊆ 2J is given and we solve the
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relaxed problem obtained by only considering the constraints corresponding
to sets S ∈ S in (IP 4). This problem is called restricted master problem.
In the separation step, given an optimal solution x̄ of the restricted master
problem, we are looking for a new subset S ⊆ J such that the constraint
induced by S is not fulfilled yet, i.e.,∑

i∈N(S)

q · x̄i < d̃S .

In the next iteration, S is updated by adding the newly found set S and
the restricted master problem is solved once more. If there exists no set
S fulfilling the above inequality, we know that x̄ is the optimal solution
for Robust Min-q-MSMC. Initially, S is the empty set yielding the optimal
solution x̄i = 0 for all locations i ∈ I in the restricted master problem.
Analogously, this procedure can be applied to the assignment formulation
(MIP 6) using an (initially empty) set U ′′ ⊆ U ′ of extreme scenarios. The
important step of these methods is an efficient way to solve the occurring
separation problems. These can be formulated as follows:

Problem 15 (Separation for Robust q-MSMC, set formulation).
Instance: Set of possible locations I, non-negative integers x̄i for all i ∈ I,
set of regions J , non-negative integers aj , bj with aj ≤ bj for all j ∈ J ,
integer Γ satisfying Assumption 1, bipartite graph G = (I ∪ J,E).
Question: Is there a subset S ⊆ J such that q · x̄(N(S)) < d̃S?

Problem 16 (Separation for Robust q-MSMC, assignment formulation).
Instance: See Problem 15.
Question: Is there an extreme scenario ξ ∈ U ′ such that there is no y ≥ 0
with ∑

i∈N(j)

yij ≥ ξj ∀j ∈ J and
∑
j∈N(i)

yij ≤ q · x̄i ∀i ∈ I? (7)

In the following, we concentrate on the analysis of these two problems.
Using Farkas’ Lemma (see e.g., [22, 39]), Problem 16 asks for an extreme
scenario ξ ∈ U ′ such that there are vectors µ, ν ≥ 0 with µi ≥ νj for all
regions j ∈ J and locations i ∈ N(j) and∑

i∈I
q · x̄i · µi <

∑
j∈J

ξj · νj .

Therefore, we can also solve Problem 16 by asking for an extreme scenario
ξ such that the optimal objective value of the problem

(LP 8) min
µ, ν

∑
i∈I

q · x̄i · µi −
∑
j∈J

ξj · νj (8a)

s.t. µi ≥ νj ∀j ∈ J, i ∈ N(j), (8b)

µi, νj ≥ 0 ∀i ∈ I, j ∈ J, (8c)
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is less than zero. Note that the zero vector is feasible here, so that the
optimal objective value never exceeds zero.

Definition 17. Let an instance of the separation problem be given. A
set S ⊆ J with q · x̄(N(S)) < d̃S is called violating subset. Analogously, an
extreme scenario ξ ∈ U ′ such that (LP 8) has a solution (µ, ν) with objective
value less than zero is called violating scenario.

The following Lemma 18 is an easy consequence from the equivalence
of the Problems 10 and 11. We will nevertheless give a constructive proof.
This will enable us to find a violating scenario in polynomial time if we are
given a violating subset and vice versa.

Lemma 18. Let an instance of the separation problem be given. Then, there
exists a violating scenario ξ ∈ U ′ if and only if there exists a violating subset
S ⊆ J .

Proof. Let ξ ∈ U ′ and (µ, ν) such that (µ, ν) is feasible for (LP 8) with
objective value

∑
i∈I q · x̄i · µi −

∑
j∈J ξj · νj < 0 be given. Since the corre-

sponding constraint matrix is totally unimodular, we can assume µ and ν to
only contain integral values. First of all, suppose ν? := max{νj : j ∈ J} > 1
and consider the index set J? := {j ∈ J : νj = ν?}. Then, µi ≥ ν? for all
i ∈ N(J?) and without loss of generality we can assume that even equality
holds. Now, we obtain

∑
i∈N(J?)

q · x̄i · µi −
∑
j∈J?

ξj · νj =

 ∑
i∈N(J?)

q · x̄i −
∑
j∈J?

ξj

 · ν? =: A · ν?.

If A < 0 we can choose S = J? and have found a solution for the separation
problem of the set formulation since

0 > A =
∑

i∈N(J?)

q · x̄i −
∑
j∈J?

ξj ≥
∑

i∈N(J?)

q · x̄i −min {b(J?),Γ− a(J \ J?)}

=
∑

i∈N(J?)

q · x̄i − d̃J? .

Otherwise, if A ≥ 0, we can decrease µi for all i ∈ N(J?) and νj for all j ∈ J?
by one and have found another feasible solution (µ′, ν ′) with objective value
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smaller than 0 since

0 >
∑
i∈I

q · x̄i · µi −
∑
j∈J

ξj · νj

=

 ∑
i∈N(J?)

q · x̄i −
∑
j∈J?

ξj

 · ν? +
∑

i/∈N(J?)

q · x̄i · µi −
∑
j /∈J?

ξj · νj

≥

 ∑
i∈N(J?)

q · x̄i −
∑
j∈J?

ξj

 · (ν? − 1) +
∑

i/∈N(J?)

q · x̄i · µi −
∑
j /∈J?

ξj · νj

=
∑
i∈I

q · x̄i · µ′i −
∑
j∈J

ξj · ν ′j .

Thus, repeating this argument, we either find the desired violating set S or
we end with a binary solution µi, νj ∈ {0, 1} for all i, j. In the latter case
set S = {j ∈ J : νj = 1}. Then, it holds true that µi ≥ 1 for all i ∈ N(S).
With no loss of generality, we can assume µi = 1 for i ∈ N(S) and µi = 0
else since the objective value only becomes smaller. This yields

0 >
∑
i∈I

q · x̄i · µi −
∑
j∈J

ξj · νj =
∑

i∈N(S)

q · x̄i −
∑
j∈S

ξj ≥
∑

i∈N(S)

q · x̄i − d̃S

and we have found the desired set S.
On the other hand, given S ⊆ J with

∑
i∈N(S) q · x̄i < d̃S , we choose an

extreme scenario ξ ∈ U ′ with
∑

j∈S ξj = d̃S :

- If b(S) + a(J \ S) ≤ Γ, we set ξj = bj for all j ∈ S. Since a(J \ S) ≤
Γ − b(S) and b(J \ S) ≥ Γ − b(S) we can choose the demands in the
remaining regions j ∈ J \ S so that

∑
j∈J ξj = Γ.

- If b(S) + a(J \ S) > Γ, we set ξj = aj for all j ∈ J \ S. Since
a(S) ≤ Γ − a(J \ S) and b(S) > Γ − a(J \ S) we can choose the
demands in the remaining regions j ∈ S so that

∑
j∈J ξj = Γ.

Finally, set νj = 1 for all j ∈ S as well as µi = 1 for all i ∈ N(S). All other
variables are set to zero. This yields the desired extreme scenario ξ and
the solution (µ, ν) for the separation problem in the assignment formulation
with objective value∑

i∈I
q · x̄i · µi −

∑
j∈J

ξj · νj =
∑

i∈N(S)

q · x̄i − d̃S < 0.

This completes the proof.

Lemma 18 allows to switch between both separation problems as the
proof reveals how to construct a violating scenario from a given violating
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subset and vice versa. Furthermore, concerning complexity the problems are
equally hard since the transformations can be computed in polynomial time.
Recall that the polyhedron of feasible solutions corresponding to (LP 8) is
integral, even if the constraints µi, νj ≤ 1 ∀i ∈ I, j ∈ J are added, since this
does not destroy total unimodularity.

In the following, we show that Problem 15 is NP-complete. To prove this
fact, we additionally need the definition of the Knapsack problem, cf. [20].
Here, we are given a finite set U , for each element u ∈ U a size s(u) ∈ Z>0

and a profit p(u) ∈ Z>0, and two positive integers B and K. The question
is whether there exists a subset U ′ ⊆ U such that

∑
u∈U ′ s(u) ≤ B as well

as
∑

u∈U ′ p(u) ≥ K. In the following we write s(U ′), respectively p(U ′), to
refer to the sum over the sizes/profits of the single elements in U ′.

Lemma 19. For fixed q ∈ Z>0, Problem 15 is NP-complete.

Proof. Clearly, Problem 15 is contained in NP since given any subset S ⊆ J
we can check in polynomial time whether the stated inequality is satisfied.

We show that Knapsack reduces to Problem 15 in polynomial time.
Let an arbitrary instance of Knapsack be given with a set U = {1, . . . , n},
sizes s(u) and profits p(u) associated with each element u ∈ U and two
integers B,K ∈ Z>0. We define a bipartite graph G = (I ∪ J,E) with
I = {1, . . . , n, 2n+ 1} = U ∪ {2n+ 1}, J = {n+ 1, . . . , 2n, 2n+ 2} and

E = {{u, n+ u}, {2n+ 1, n+ u}, {u, 2n+ 2} for u = 1, . . . , n}
∪ {{2n+ 1, 2n+ 2}} .

Furthermore, we set x̄(u) = s(u) and b(n + u) = q · (p(u) + s(u)) for all
u ∈ U . Further, we set x̄(2n+ 1) = K − 1, b(2n+ 2) = 0, Γ = q · (B +K).
Finally, we set a(j) = 0 for all j ∈ J .

Now given a solution U ′ ⊆ U ⊆ I of Knapsack with s(U ′) ≤ B and
p(U ′) ≥ K, we choose S = {n+u : u ∈ U ′} ⊆ J . Then, S is nonempty since
U ′ 6= ∅ and we have Γ/q − x̄(U ′) = B +K − s(U ′) ≥ B +K −B = K and

b(S)

q
− x̄(U ′) =

∑
u∈U ′

b(n+ u)

q
−
∑
u∈U ′

x̄(u) =
∑
u∈U ′

p(u) + s(u)−
∑
u∈U ′

s(u)

=
∑
u∈U ′

p(u) ≥ K,

yielding min {b(S)/q, Γ/q} − x̄(U ′) ≥ K. Subtracting K − 1 = x̄(2n + 1) on
both sides we obtain:

min {b(S)/q, Γ/q} − x̄(U ′)− x̄(2n+ 1) ≥ 1 > 0

⇔ min {b(S)/q, Γ/q} − x̄(N(S)) ≥ 1 > 0,

i.e. min {b(S),Γ} − q · x̄(N(S)) > 0. Thus, S is a solution for Problem 15.
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On the other hand, let S ⊆ J be a solution for Problem 15 with the
property min{b(S),Γ} > q · x̄(N(S)). Then, S must contain an element of
the form n + u for some u ∈ U , since if S = {2n + 2} the inequality is not
fulfilled. Set S′ = S \{2n+ 2} and U ′ = {u : n+u ∈ S′} ⊆ U . Our aim is to
show that U ′ is a solution for Knapsack. We have S′ 6= ∅ and N(S′) = U ′ ∪
{2n+1}. Moreover, it also holds true that min{b(S′),Γ} > q·x̄(N(S′)), since
b(2n+2) = 0, x̄(N(S′)) ≤ x̄(N(S)) and q > 0. Reformulating the right hand
side we get x̄(N(S′)) = x̄(U ′)+x̄(2n+1) = x̄(U ′)+K−1, so that in total we
have min{b(S′),Γ}−q · x̄(U ′) > q ·(K−1), i.e., min{b(S′)/q, Γ/q}− x̄(U ′) ≥ K.
When inserting the above definitions this expression becomes

min
{
p(U ′) + s(U ′), B +K

}
− s(U ′) ≥ K. (9)

Now, we need to differentiate between two cases: If p(U ′) + s(U ′) ≤ B +K,
(9) yields p(U ′) = p(U ′) + s(U ′)− s(U ′) ≥ K and s(U ′) ≤ B +K − p(U ′) ≤
B +K −K = B. If p(U ′) + s(U ′) > B +K, (9) yields B +K − s(U ′) ≥ K,
i.e., s(U ′) ≤ B. Furthermore, p(U ′) > B + K − s(U ′) ≥ B + K − B = K.
Thus, U ′ is a solution for Knapsack.

Corollary 20. Problem 16 is NP-complete.

Proof. Clearly the preceding Lemma 19 and Lemma 18 imply NP-hardness
for Problem 16. Furthermore, Problem 16 is contained in NP since we only
need to solve a linear program when given a scenario ξ as a certificate,
yielding NP-completeness in total.

Moreover, Lemma 19 reveals that checking whether a given vector x̄ is
feasible for a given instance of Robust q-MSMC is co-NP-complete: x̄ is
feasible if and only if the answer to the separation problem is “no”.

Therefore, we start with a BIP formulation for the set formulation to
solve the separation problem. Let zj be one if region j is contained in S
and zero otherwise. Furthermore, let yi be one if i ∈ N(S) and zero else.
It is easy to see that Problem 15 can be formulated as the following binary
program:

min
y, z, d

∑
i∈I

q · x̄i · yi − d (10a)

s.t. d ≤
∑
j∈J

bj · zj , (10b)

d ≤ Γ−
∑
j∈J

aj +
∑
j∈J

aj · zj , (10c)

yi ≥ zj ∀j ∈ J, i ∈ N(j), (10d)

yi, zj ∈ {0, 1} ∀i ∈ I, j ∈ J, (10e)

where x̄ is the given fixed vector which we wish to test for feasibility. This
program can be simplified by setting Γ′ := Γ−∑j∈J aj and letting k be the
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maximum number of regions a location can serve, i.e., the maximum degree
among the vertices I in the bipartite graph G = (I ∪J,E). Then, the above
formulation can be rewritten:

(MIP 11) min
y, z, d

∑
i∈I

q · x̄i · yi − d (11a)

s.t. d ≤
∑
j∈J

bj · zj , (11b)

d ≤ Γ′ +
∑
j∈J

aj · zj , (11c)

k · yi ≥
∑
j∈N(i)

zj ∀i ∈ I, (11d)

yi, zj ∈ {0, 1} ∀i ∈ I, j ∈ J. (11e)

Concerning the assignment formulation, we consider (MIP 12) obtained from
(LP 8) by including the constraints on ξ. Note that the objective becomes
now a quadratic and non-convex function since ξj has changed into a vari-
able.

(MIP 12) min
µ, ν, ξ

∑
i∈I

q · x̄i · µi −
∑
j∈J

ξj · νj (12a)

s.t. µi ≥ νj ∀i ∈ I, j ∈ N(i), (12b)

aj ≤ ξj ≤ bj ∀j ∈ J, (12c)∑
j∈J

ξj = Γ, (12d)

µi, νj ≥ 0 ∀i ∈ I, j ∈ J, (12e)

ξj ∈ Z ∀j ∈ J. (12f)

When forcing νj ∈ {0, 1} (which we can do without loss of generality, see
the proof of Lemma 18), we can use the Big-M method to regain a linear
objective. Once νj ∈ {0, 1}, the variables µi can be assumed to be in {0, 1}
without loss of generality. Then, the interpretation of the variables µi and
νj equals that of yi and zj and constraint (12b) can be simplified in the
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same manner as before. In total we obtain:

(IP 13) min
µ, ν, ω, ξ

∑
i∈I

q · x̄i · µi −
∑
j∈J

ωj (13a)

s.t. k · µi ≥
∑
j∈N(i)

νj ∀i ∈ I, (13b)

ωj ≤ ξj ∀j ∈ J, (13c)

ωj ≤ Γ · νj ∀j ∈ J, (13d)

aj ≤ ξj ≤ bj ∀j ∈ J, (13e)∑
j∈J

ξj = Γ, (13f)

µi, νj ∈ {0, 1} ∀i ∈ I, j ∈ J, (13g)

ξj ∈ Z ∀j ∈ J. (13h)

By Lemma 18 it suffices to solve (IP 13) since the optimal objective function
value of (MIP 12) is less than zero if and only if that of (IP 13) is less than
zero. In the optimal solution of (IP 13), the variables ξj will be chosen in
order to maximize the term

∑
j∈J ωj which is the same as d̃S using the new

interpretation of νj . Thus, the optimal objective function values of (MIP 11)
and (IP 13) coincide and we can also use the proof of Lemma 18 to solve
(IP 13): In the first step we solve (MIP 11) yielding the optimal solution
(y, z, d) with objective function value Θ. If Θ = 0, we obtain the optimal
solution of (IP 13) by setting µ = ν = 0 and choosing an arbitrary extreme
scenario ξ ∈ U ′ (which is also the optimal solution of (MIP 12)). If Θ < 0,
we set µ = y and ν = z and choose the extreme scenario ξ depending on
whether b(S)+a(J\S) exceeds Γ or not where S = {j ∈ J : zj = 1} (cf. proof
of Lemma 18). On the other hand, it is easy to see that a solution (µ, ν, ξ)
of (IP 13) translates to a solution (y, z, d) of (MIP 11).

5 Computational results

After having analyzed Robust Min-q-Multiset Multicover theoretically, in
this section we present some computational results with q being fixed to
three exemplarily. The results consist of two main parts: In the first part
randomly created instances are considered and analyzed, whereas in the
second part we model a real world problem as Robust Min-3-MSMC and
display computational results based on real world data. For all instances
of Robust Min-3-MSMC, we apply both solution approaches based on con-
straint generation as introduced in Section 4. The solution approach based
on the assignment formulation, cf. (MIP 6), is referred to as asf while the
approach using the set formulation, cf. (IP 4), is referred to as setf. For
the separation of asf we used (IP 13) and for the separation of setf we
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used (MIP 11). We also tested combining the separation approaches using
Lemma 18, but the difference of the running times was neglectably small.

To investigate the price of robustness, we compare the objective value
of a solution of Robust Min-3-MSMC to the objective value of an average
solution. We obtain the objective value of the average solution by randomly
choosing a fixed number of possible scenarios with total demand Γ, solv-
ing the corresponding non-robust version and determining the median of all
these objective values. Furthermore, we compare the robust solution to the
solution in which the worst case in all regions is assumed, i.e., the number
of clients in each region is set to the upper bound. We refer to this solution
by worst case solution. The objective value of the robust version will be sig-
nificantly smaller for most instances than the one of the worst case solution.
Although this comparison may seem irrelevant as the worst case scenario
does not even exist in the robust concept, the comparison does indeed give
insight: Fix for the moment one location i ∈ I. If the total demand of its
neighborhood N(i) is at most Γ, there exists a scenario (that needs to be
covered) in which the demand of each region in N(i) is at its upper bound.
If this situation holds for all locations i, it is possible that the worst case is
in some sense simulated by the constraints arising from such scenarios. As
an extreme example regard the case where the neighborhoods of all loca-
tions are disjoint. In this case it holds true that the robust solution value is
the same as the worst case solution value, whereas the average case solution
value may be significantly smaller. Additionally, we analyze the running
times of both approaches asf and setf.

To solve the integer linear and mixed integer linear programs, the Gurobi
Optimizer 8.01 [24] with the Python Interface (Python Software Foundation,
https://www.python.org) was used. All computations were done on a
machine with an Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz, 16 cores
and 192 GB main memory. The operation system is Ubuntu 64-Bit. We
permitted each solution approach to use four threads. Further, for the real-
world instances, we aborted (if not finished) the computation after 15 min
wall-clock time and for the random instances after 2 min. Computation
times are all processing times given in seconds. In the following two sections,
we explain the creation of the instances for the random case and the real
world case. Furthermore, we present and interpret some interesting results.

5.1 Random instances

Our random instances are created as follows: We fix the number of regions
to 100 and choose the number of locations from the set {10, 20, 30}. The
bipartite graph of the instance with edge probability p is then generated in
two steps. To avoid infeasible instances we first randomly choose a location
for each region, so that the demand of each region can be covered. In
a second step, we add each possible remaining edge independently with
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|I| 10, 20, 30
p 0.1, 0.2, 0.3

(k1, k2) (0, 1), (10, 10), (10, 50), (10, 100), (50, 50), (100, 100)
d 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Table 1: Choices of the parameters for the random instances.

probability |I|p−1
|I|−1 such that the expected number of edges in the created

graph is exactly |I||J |p. The lower bound aj for the number of clients in
each region is picked uniformly at random from the fixed discrete interval
[0, k1]. To obtain the corresponding upper bound bj a random integer taken
from the interval [1, k2] is added to aj in a second step. Furthermore, we
define the bound Γ to be

Γ =
∑
j∈J

aj +

d · (∑
j∈J

bj −
∑
j∈J

aj)


for d ∈ {i/10, 0 ≤ i ≤ 10}. Thus, for d = 0, the robust solution corresponds
to the best case solution since U =

{
(a1, . . . , a|J |)

}
and, for d = 1, it corre-

sponds to the worst case solution (U =
{

(b1, . . . , b|J |)
}

). In the sequel, we
refer to d as gamma factor.

Table 1 summarizes all choices of the parameters. Thus, for k := (k1, k2),
each combination of |I|, p, k, d defines the structure of an instance for which
we create 50 representatives I1(|I|, p, k, d), . . . , I50(|I|, p, k, d). To be able to
compare the impact of differing demand ranges or gamma factors, the under-
lying graph of instance Ir(|I|, p, k, d) equals that of Ir(|I|, p, k′, d′) for every r
and fixed values for |I| and p. Furthermore, we are interested in the relative
gap between the robust solution value and the worst case solution value,
respectively average case solution value, to analyze the extra cost of robust-
ness. For the random instances we choose ten extreme scenarios uniformly
at random to compute the average case solution as explained above. Inter-
estingly, the chosen median solution value of each instance Ir(|I|, p, k, d) is
close to dΓ/3e so that almost every doctor covers three demand points. Thus,
the average case solution value is always very close to the average over the
trivial lower bounds dΓ/3e.

In the following, we present some interesting findings during our analysis
of these random instances. Fig. 2 depicts the logarithmic (to the base of 10)
average relative gap between the objective values of the worst case solutions

(wcsvr) and the robust solutions (rsvr), i. e., log10

(
1/50

∑50
r=1

wcsvr/rsvr
)

(black), as well as the logarithmic average relative gap between the objective
values of the average case solutions and the robust solutions (cyan). As
a reference point the logarithmic average relative gap between the robust
solution and itself is drawn as a dashed horizontal line (magenta). Moreover,
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Figure 2: Logarithmic average relative gaps between the worst case and the
robust solution as well as between the average case solution and the robust
solution for 50 random instances with |J | = 100, k1 = 10 and varying other
parameters.

the average processing times (in seconds) of asf and setf are displayed in
Fig. 3, where we average only over the processing times for instances that
were actually solved to optimality. The markers in Fig. 3 are given an
alpha value determining their transparency where the alpha is computed by
dividing the number of solved instances by 50.

Focusing on Fig. 2 we first observe that for gamma factor 1.0 or 0.0 the
objective values of the robust solution and the average case solution coincide
as in these two cases there only exists one unique extreme scenario. Further,
we can see that with rising gamma factor the objective value of the worst
case solution gets closer to the objective value of the robust solution which
is also expected.

Regarding the upper three plots in Fig. 2 we can see that increasing the
density of the graph decreases the relative gap between the average case
solution values and the robust solution values and increases the relative
gap between the worst case solution values and the robust solution values.
This can be explained by the fact that in dense graphs suppliers have more
possibilities to serve clients and can therefore act more flexible than in sparse
graphs. An extreme example would be a location adjacent to all regions. We
could then simply put all suppliers in that location and get a solution that
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is as high as the trivial lower bound. Furthermore, the relative gap between
the worst case solution values and the robust solution values becomes larger
with increasing density. Looking at the data we can see that the worst
case solution and the average case solution do not change too much with
increasing density, it is in fact the robust solution that becomes cheaper. We
can conclude that in dense graphs we get robustness almost for free, whereas
in sparse graphs we have to pay quite a bit for turning the solution into a
robust one. Note that increasing the number of locations while keeping p
fixed improves the robust solution in a similar manner.

In the second row of Fig. 2 we see the impact of increasing the range
for the upper demand of the regions. With increasing k2 the relative gap
between both the worst case solution values and the robust solution values
as well as the average case solution values and the robust solution values
becomes larger. This behavior does not solely depend on the increased
value of k2 but rather on the relative difference of k1 and k2. For example,
on instances with k1 = k2 = 100, p = 0.1 and |I| = 30 we can see that
the robust solution values and the average solution values coincide in most
cases. We conclude that the price of robustness is especially cheap if k1 ≥ k2

and the graph is dense enough. A reason for this behavior could be that if
all regions have high lower bounds on their demand (in comparison to their
upper demand) the number of suppliers positioned in locations adjacent to
some fixed region is quite large in any average case solution. Therefore,
there are more possibilities for allocating them to the clients.

Overall the price of robustness is very low if the graph is dense or the
relative gap between k1 and k2 is low. For sparse graphs the price of ro-
bustness can become very large. For example in the instances with |I| = 10
and p = 0.1 the robust solution value coincides with the worst case solution
value quite often. Note that following the random graph construction given
above, in all these instances every region is adjacent to exactly one location.

Fig. 3 depicts the average running times of the two solution approaches
for 50 instances with |J | = 100, k1 = 10 and varying other parameters.
If the plot does not contain a point for some gamma factor it means the
corresponding solution approach did not finish computation in the given
time window of two minutes. We can see, that in most cases setf seems
to be the better choice. Taking a closer look, it becomes clear that asf
performs especially well when the robust solution value coincides with the
average case solution value. In these cases a very small number of extreme
scenarios (often even just one) needs to be added in order to get a robust
solution. With increasing number of required scenarios the running time for
asf explodes. The running time of setf does not seem to depend on this too
much. The only major impact on the running time of setf seems to be the
number of regions and locations.
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Figure 3: Average processing times in seconds of asf and setf for at most
50 random instances with |J | = 100, k1 = 10 and varying other parameters.
The transparency of the markers reflect the amount of solved instances.

5.2 Real world example: placing emergency doctors

As a real world application, we regard the problem of placing as few emer-
gency doctors as possible into given facilities such that the emergencies
happening in one shift can still be handled in a satisfactory way. In this
context, the uncertain demand of each region reflects the unknown number
of emergencies happening in that region during the considered shift. Thus,
the proposed discrete budgeted uncertainty set allows, for each region, vari-
ations in a given interval but the total number of emergencies is bounded.
The proposed model seems fitting for the application since all realistic sce-
narios should be covered equally well.

Using map data from OpenStreetMap [37], we construct a graph model-
ing the street network of some fixed part of the map. In our computations,
we considered the street network inside a bounding box enclosed in the fed-
eral state Rhineland-Palatinate in Germany. The size of the bounding box
is roughly 300km2 mostly consisting of rural areas. The GPS coordinates
of the south-west corner of the box are (7.2606, 49.1703) and the GPS coor-
dinates of the north-east corner of the box are (8.3890, 49.9537). Inside the
box there are currently 38 emergency facilities, cf. [11], which we choose as
locations of the instance denoted by the set I.
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In the street network the edge weight corresponds to the time needed for
a doctor to travel along this particular edge based on the maximum speed
allowed on the associated piece of road. To obtain the regions, for each
street node, we compute a list of locations from which the street node can
be reached within 15 min. In Rhineland-Palatinate, 15 min is the time at
which the first responder must be present at the emergency after he left the
facility. Now, we define all street nodes with the same list of facilities to be
in the same region and denote the set of all regions by J . With our bounding
box this results in a set of 426 regions and gives a straight forward way to
define the graph of the instance: Simply add edges between each region and
all locations of its list.

We further set aj = 0 and bj = 1 for all j ∈ J . The interpretation of
these bounds is that in any region there might or might not occur an accident
during the regarded shift. We do not allow more than one emergency in a
given region as our regions are rather small and we therefore deem the case
of more than one occurring emergency during one shift to be unrealistic.
The total number of emergencies Γ is then set to different values for the
tests. We assume that an emergency doctor is able to handle up to three
emergencies in one shift, i.e., q is fixed to three as in the random case above.
Clearly, this assumption is not exact since emergencies may overlap and one
doctor may not be able to attend to even two emergencies if they overlap.
Nevertheless, we are convinced that this approach is reasonable since adding
uncertainty to the value q as well would lead to overlapping uncertainties
rapidly increasing the conservativeness of the solution.

Note that our model does not forbid local worst cases: For any subset
of the regions of size at most Γ there is a scenario in which the demand
of each region in the subset is set to one. Thus, if the regarded part of
the map is too large, implicitly raising the assumed maximum number of
emergencies Γ, the solution to our model also covers scenarios in which
emergencies massively occur in very small parts of the entire map. Thus,
when using Robust Min-3-MSMC for this application, the regarded size of
the map should be reasonable.

Fig. 4 shows the comparison of the objective value of the robust model
to the median objective value of the average case. Due to larger input data
compared to the random instances, we choose five random extreme scenarios
for the average case solution. Fig. 5 depicts the running times of setf and
asf. Test runs were made for each Γ ∈ {3i : i = 0, . . . , 142}.

Taking a closer look at Fig. 4, we can see that the objective value of the
average case solution is always close to the trivial lower bound dΓ/3e. Thus,
almost all doctors cover three emergencies in the fixed average scenarios.
The behavior of the robust solution is somehow expected. The greatest
absolute deviation from the average solution is attained for Γ between 54
and 156, so roughly for Γ attaining a value between 1/10 and 1/40 of the
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Figure 4: On the left, the number of doctors needed in the real world in-
stances of the robust model, the average case and the worst case. On the
right, the logarithmic (to base 10) relative gaps between the average case
solution and the robust solution as well as between the worst case solution
and the robust solution.

total sum of the demands 426. The relative distance between the average
case solution value and the robust solution value decreases linearly. In the
regarded map area, fixing the number of emergencies between 20 and 40
seems adequate. The price of robustness for the application in this area
does seem quite low, given the fact that in the average case solutions not
even all regions have to be reachable by some doctor.

The running time of setf is acceptable for all regarded demand bounds
Γ. On the other hand, asf was not able to solve all instances within the
time limit of 15 min. Furthermore, the variance in the running time is much
higher than for setf. Interestingly, in some cases asf outperforms setf sig-
nificantly. Especially in the area where Γ is around 150. Thus, it seems
worthwhile to use both approaches in practice parallelly. If one is looking
for only one solution approach setf should be preferred because it seems
more reliable as the variance in the running times is smaller. Surprisingly,
for random instances created as described in the previous section with pa-
rameters similar to this application (|I| = 38, |J | = 426, aj = 0, bj = 1,
p = 0.07), the running times of both solution approaches increase rapidly,
where the given p roughly models the density of the graph arising from our
application. For example, setf took roughly 20 h of computation for solving
instances with Γ = 45. For larger Γ, it did not finish solving the problem
after 48 h. asf was not able to finish any instance within the time limit of
48 hours. We think that this behavior is due to the planar-like structure
of the graph arising from the application. For future research, it might be
interesting to work on complexity results for instances with these planar-like
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structures.
We conclude that for map areas of the tested size Robust Min-3-MSMC

is of interest for the given practical application. Though, we think that
for a larger regarded map area, a model including some local condition on
the scenarios to prevent the described massive occurrences of emergencies
in comparably small map areas might suit the application even better. This
could be a direction of future research on the topic.

6 Conclusion

We have presented a novel problem called q-Multiset Multicover which we
have identified to be a special case of Multiset Multicover. We have shown
that it is NP-complete for fixed values of q ∈ N with q ≥ 3 but polynomial
time solvable for q = 1, 2. The main focus of this paper was the robust
version of q-Multiset Multicover, which we proved to be strongly NP-hard
for all q ∈ N. Further we have given two different integer programming
formulations of the problem and discussed their up- and downsides. We
presented strategies for solving the problems based on constraint genera-
tion. Our computational results based on random instances and instances
corresponding to a real world application are quite promising. They show
that the model and the robust approach can be of great use for practical
problems since it is able to hedge against uncertainty with fewer resources
compared to an all worst-case approach.
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[14] V. Chvátal. A greedy heuristic for the set-covering problem. Mathe-
matics of Operations Research, 4(3):233–235, 1979.

[15] G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors. Column
Generation. Springer, 2005.

[16] U. Feige, K. Jain, M. Mahdian, and V. Mirrokni. Robust combina-
torial optimization with exponential scenarios. In Proceedings of the
International Conference on Integer Programming and Combinatorial
Optimization, volume 4513 of Lecture Notes in Computer Science, pages
439–453. Springer, 2007.

[17] M. Fischetti. Cutting plane versus compact formulations for uncertain
(integer) linear programs. Mathematical Programming Computation,
4(3):293–273, 2012.

[18] V. Gabrel, M. Lacroix, C. Murat, and N. Remli. Robust location trans-
portation problems under uncertain demands. Discrete Applied Math-
ematics, 164:100–111, 2014. Combinatorial Optimization.

[19] Virginie Gabrel, Cécile Murat, and Aurélie Thiele. Recent advances
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A Complexity Results for q-MSMC

At this point we will give formal proofs for the statements concerning the
complexity of Min-q-MSMC in Section 2.

Observation 21. Min-1-Multiset Multicover is solvable in linear time.

Proof. If q = 1, given an instance for Min-q-MSMC, in any solution each
client needs to be assigned a unique supplier. This means, for each client in
some region j ∈ J we may put a single supplier in some location i ∈ N(j).
This will yield a feasible solution with

∑
i∈I di suppliers, which is clearly

optimal. We can find this solution in time linear in |I|+ |J |.

For q = 2 we can still solve Min-q-MSMC in polynomial time. We show
how to compute an optimal solution using an algorithm for the Edge Cover
problem. Recall that for a graph G = (V,E) an edge cover is a subset of the
edges E′ ⊆ E, such that each vertex v ∈ V is incident to at least one edge
e ∈ E′. Regard the following procedure: For a given instance of the problem,
duplicate each region j ∈ J exactly dj times yielding a set Vj for each j ∈ J .
We see that we may bound any dj by |I| in the proof of Theorem 7. Regard
the graph G = (V,E) with vertex set V =

⋃
j∈J Vj where the edge (u, v)

for u ∈ Vj1 , v ∈ Vj2 are in E if N(j1) ∩ N(j2) 6= ∅. Note that this implies
that the graph induced by some set Vj is the complete graph. Next compute
a minimum edge cover E′ in G and initially set xi = 0 for all i ∈ I. For
each edge (u, v) ∈ E′, with u ∈ Vj1 , v ∈ Vj2 we increase xi by 1 for some
i ∈ N(j1) ∩N(j2), meaning we add a supplier in location i who covers one
demand point in region j1 and one in region j2.

Theorem 22. The above procedure solves Min-2-Multiset Multicover and
can be implemented to run in time O(|I|5/2|J |5/2).

Proof. We first prove the correctness of the procedure. Let G = (V,E) be
the graph defined in the procedure. Let x be as defined by the procedure
above and let E′ be the minimum edge cover from the procedure. As we
have a node in G for every client and the nodes corresponding to the clients
are covered by the edges in E′ it is clear that x defines a feasible solution for
Min-q-MSMC. It remains to show, that given a solution x to Min-q-MSMC,
there is an edge cover with

∑
i∈I xi edges. By the equivalence of (IP 2) and

(MIP 1) we can find yij ∈ Z≥0 for all i ∈ I, j ∈ J fulfilling∑
i∈N(j)

yij ≥ dj ∀j ∈ J and
∑
j∈N(i)

yij ≤ 2xi ∀i ∈ I.

Clearly, we may assume equality in the second set of equations and can
thereby determine for each supplier the two clients he serves. We initially
set E′ to the empty set. If, for each supplier, we now select the edge between
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the two clients he serves and add it to E′, we get an edge cover of G with∑
i∈I xi edges. This proves the correctness of the procedure.
To see the running time, first note that we may bound the number of

clients dj in any region by the number of suppliers: Assume dj ≥ |I| + 1
for some j ∈ J in some instance. Then, in any solution of (MIP 1) there is
some i ∈ N(j) such that yij ≥ 2. Thus, given an optimal solution, choose
i such that yij ≥ 2. Removing one supplier from i now yields an optimal
solution to the same instance with the demand of region j being dj − 2. As
a consequence we may also solve this instance and then afterwards add a
supplier to any location connected to j to get an optimal solution of the
original problem. We can therefore decrease the demands of all j with
dj ≥ |I| + 1 to |I|, respectively |I| − 1 by adding d1/2 (dj − |I|)e doctors
to any location connected to j. This can be done in constant time for
any region j ∈ J . With this observation, it can readily be seen that the
constructed graph has at most N := |I| · |J | vertices whereas the number M
of edges is upper bounded by O(|I|2|J |2). A minimum edge cover in a graph
with N vertices and M edges can be obtained by first solving a maximum
matching problem in time O(

√
NM logN (N2/M)) [21] and then using O(M)

time to augment the matching [40, 32, 20]. This gives the claimed running
time.

It is fairly easy to see that q-Multiset Multicover is a generalization of
Set Cover by q-sets, i.e., the restriction of Set Cover where all sets are of
size exactly q. Since this is an NP-complete problem, the next result is not
surprising. For the sake of completeness we will nevertheless give a formal
proof.

Theorem 23. For any fixed q ≥ 3, q-Multiset Multicover is NP-complete
in the strong sense.

Proof. Let q ∈ N with q ≥ 3. As a consequence of Lemma 4, for a given
instance of q-MSMC, we may test if a given solution x is feasible by one
Max-Flow computation. Therefore, q-MSMC is contained in NP.

To see that the problem is NP-hard in the strong sense we illustrate a
reduction from Exact Cover by 3-sets, which is known to be NP-hard in
the strong sense, cf. [20]. Let X be a set and S be a collection of subsets
of X where |S| = 3 for all S ∈ S. We create an instance of q-MSMC in
the following way. Due to legibility, assume the subsets S ∈ S have unique
indices iS . Let I := {iS : S ∈ S}, J := X and define the graph of the
instance via N(iS) = S for all S ∈ S. Further, let dj = 1 for all j ∈ X
and B = |X|/3. Now, let S ′ be a solution to the instance of Exact Cover by
3-sets. Clearly, setting xS to one if and only if S ∈ S ′ and zero else yields a
feasible solution to q-MSMC with

∑
S∈S xiS = B. On the other hand, note

that in any solution x to q-MSMC xiS ≤ 1 for all S ∈ S. Furthermore, since
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|N(iS)| = 3 the actual value of q is of no further interest as long as q ≥ 3.
Thus, S ′ = {S : xS > 0} is a solution to Exact Cover by 3-sets.

Remark 2 reveals q-MSMC to be a special case of Multiset Multicover.
It is well known that Multiset Multicover can be approximated within a
factor of log(s) where s is the size of the largest multiset of an instance, see
e.g. [25, 31, 14]. If we regard Min-q-MSMC as Multiset Multicover problem,
all multisets have fixed size q. We therefore automatically get a log(q)
approximation for Min-q-MSMC:

Observation 24. There is a log(q) approximation for Min-q-Multiset Mul-
ticover.
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