
Profit Driven Decision Trees for Churn Prediction

Sebastiaan Höppnera, Eugen Striplingb, Bart Baesensb,c,∗, Seppe vanden Brouckeb, Tim Verdoncka

aKU Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Leuven, Belgium
bKU Leuven, Faculty of Economics and Business, Naamsestraat 69, 3000 Leuven, Belgium

cUniversity of Southampton, School of Management, Highfield Southampton, SO17 1BJ, United Kingdom

Abstract

Customer retention campaigns increasingly rely on predictive models to detect potential churners in a

vast customer base. From the perspective of machine learning, the task of predicting customer churn

can be presented as a binary classification problem. Using data on historic behavior, classification

algorithms are built with the purpose of accurately predicting the probability of a customer defecting.

The predictive churn models are then commonly selected based on accuracy related performance

measures such as the area under the ROC curve (AUC). However, these models are often not well

aligned with the core business requirement of profit maximization, in the sense that, the models

fail to take into account not only misclassification costs, but also the benefits originating from a

correct classification. Therefore, the aim is to construct churn prediction models that are profitable

and preferably interpretable too. The recently developed expected maximum profit measure for

customer churn (EMPC) has been proposed in order to select the most profitable churn model. We

present a new classifier that integrates the EMPC metric directly into the model construction. Our

technique, called ProfTree, uses an evolutionary algorithm for learning profit driven decision trees.

In a benchmark study with real-life datasets from various telecommunication service providers, we

show that ProfTree achieves significant profit improvements compared to classic accuracy driven

tree-based methods.

Keywords: Artificial intelligence, customer churn prediction, classification, evolutionary algorithm,

profit-based model evaluation

∗Corresponding author: Bart Baesens
Email addresses: sebastiaan.hoppner@kuleuven.be (Sebastiaan Höppner), eugen.stripling@kuleuven.be

(Eugen Stripling), bart.baesens@kuleuven.be (Bart Baesens), seppe.vandenbroucke@kuleuven.be (Seppe vanden
Broucke), tim.verdonck@kuleuven.be (Tim Verdonck)

Preprint submitted to European Journal of Operational Research December 4, 2018

1. Introduction

Companies operating in saturated markets are continuously challenged to retain their customers.

Besides spending resources on attracting new customers, they try to prevent existing customers

from defecting. To that end, customer retention campaigns aim to identify which customers intend

to switch to a competitor and present them with an incentive offer to remain with the company.

However, detecting potential churners out of typically millions of customers is a difficult task. For that

reason, companies increasingly rely on predictive churn models to remain competitive. Churn models

aim to predict a customer’s churning propensity by using behavioral and historical information.

Yet, these models often focus on achieving maximum prediction accuracy rather than aiming their

attention at the most important business requirement: profit maximization. For a retention campaign

to be successful, it is not only crucial to correctly identify would-be churners, but also to detect those

who are the most profitable to the business and thus worth retaining. The ideal churn prediction

model is therefore capable of effectively identifying churners and simultaneously taking profit concerns

of the business into account.

Traditionally, the performance of a churn model is evaluated using accuracy related measures,

which do not take profit maximization into concern. For instance, for binary classification problems,

a popular choice for selecting the winning model is the area under the ROC curve (AUC), because

of its simplicity and intuitive interpretation. However, it has been shown by Hand (2009) that the

AUC implicitly assumes that misclassification errors carry the same costs which also alter across

classifiers. Reasonably, the cost of misclassifying a non-churner as a churner is different from the cost

incurred when an actual churner is classified as a non-churner. Furthermore, misclassification costs

are ultimately a property of the classification problem, and should be independent of the applied

classifier. Besides taking costs into concern, it is also generally recommended to incorporate the

benefits of making a correct classification into the performance metric (Elkan, 2001).

For predictive churn models, Verbraken et al. (2013) proposed a profit-based performance metric,

called the expected maximum profit measure for customer churn (EMPC), which allows identifying

the most profitable churn model. Performance is measured based on the average classification profit in

which the specified costs and benefits are the ones associated with a retention campaign. Additionally,

the proposed cost benefit framework provides the expected profit maximizing fraction for customer

churn (ηempc) that determines the optimal fraction of the customer base to target in the retention

campaign. Verbraken et al. (2013) showed that there are great discrepancies between the EMPC and

AUC when assessing a model’s performance, and that the use of AUC as a model selection criterion

2

leads to suboptimal profits. For customer retention campaigns, it is therefore recommended to select

the winning model based on the EMPC in order to achieve maximum profit.

Although the EMPC enables a profit-based model evaluation, profit concerns are not directly

integrated into the model construction. Therefore, we propose a new profit maximizing classifier,

called ProfTree, that optimizes the EMPC directly in the construction process of a classification

tree. So far, profit measures have been used for post-construction tree evaluation. However, to

the best of our knowledge, profit driven measures have not been used within the tree construction

itself. In our approach, a classification tree method is utilized to estimate churn scores, that is,

the probability of a customer leaving the company. These scores are required for computing the

profit measure. We opt to use decision trees because they are typically easy to interpret and fast to

compute. This is especially useful in a churn prediction setting to understand why customers defect

and work out corresponding churn prevention strategies. The split rules of the decision tree are

optimized according to the EMPC metric using an evolutionary algorithm. The choice for the usage

of a global optimization method like an evolutionary algorithm is justified because classical forward-

search recursive partitioning methods, such as CART (Breiman et al., 1984) and C4.5 (Quilan, 1993),

will only yield locally optimal solutions.

This paper is organized as follows. Section 2 discusses the essential building blocks that are

relevant to ProfTree as well as related work. Section 3 outlines the detailed explanations of our re-

search contributions. Section 4 illustrates the usage of ProfTree on a real-life customer churn dataset

and compares our method with other well-known classifiers. Section 5 describes the experimental

setup and the results of an extensive benchmarking study. The empirical evaluation and comparison

with traditional measures using a unique collection of churn data sets illustrates the difference be-

tween profit versus impurity-based tree construction and the impact thereof. Finally, we give some

concluding remarks and potential directions for future research in Section 6.

2. Preliminaries

2.1. Customer Churn Prediction Formulated as a Classification Problem

Predicting customer churn can be formulated as a binary classification problem. The aim is to

assign instances (i.e. customers) to one of the two classes Y = {no churn, churn} based on their

observed features x ∈ X. A popular method for dealing with binary classification problems is a

decision tree because it is easy-to-use and offers high interpretability. Classification trees can also

cope with complex data structures like nonlinearities and can naturally handle categorical features.

3

A classification tree aims at modeling the binary response variable Y by a vector of p predictor

variables X = (X1, . . . , Xp). Throughout the text, we encode “churn” as 1 and “no churn” as 0,

so {no churn, churn} becomes {0, 1}. Tree-based methods first partition the feature space X into

a set of M rectangular regions Rm (m = 1, . . . ,M) based on split rules, and then fit a (typically

simple) model within each region {Y |X ∈ Rm}, e.g. a constant like the mode. In this section, we will

closely follow the notation used by Grubinger et al. (2014) to describe the partitioning algorithm,

the parameter space and the optimization problem. As done by Grubinger et al. (2014), we only

consider tree models with two-way splits and with some maximum number of terminal nodes Mmax.

Throughout the text, we denote a classification tree with M terminal nodes by

θ = (v1, s1, . . . , vM−1, sM−1) . (1)

Note that if a tree model contains M terminal nodes, it consequently has M−1 internal splits. These

internal nodes r ∈ {1, . . . ,M − 1} consist of a splitting variable vr ∈ {1, . . . , p} and the associated

split rule (or point) sr. For ordered and numeric variables Xvr , the split rule sr involves a cutoff

and there are u − 1 possible splits if Xvr takes u distinct values. For a categorical variable with k

levels, the split rule contains a (non-empty) subset of {1, . . . , k} and there are 2k−1−1 possible splits.

Based on the split rules, observations are sent to either the first or second subset. The product of

these combinations forms all potential elements θ from ΘM , the space of conceivable trees with M

terminal nodes. The overall parameter space is then Θ =
⋃Mmax
M=1 ΘM .

Let {(xi, yi)}Ni=1 denote the N observed predictor-response pairs in the dataset, where yi ∈ {0, 1}

describes the response and xi = (xi1, . . . , xip)
t represents the p associated predictor variables of

instance i. For each customer, a probability estimate or score, s ∈ [0, 1], can be calculated based on

the observed features xi of the customer. In the churn context, the probability of an instance being

a churner is determined by a score function s (X, θ) which is based on all explanatory variables X

and the chosen tree structure θ from (1). The instances from class 0 (no churn) are assumed to have

a lower score than the instances from class 1 (churn). We define the score of instance i as

s(xi, θ) =

|θ|∑
m=1

p̂mI(xi ∈ Rm) (2)

where |θ| is the number of terminal nodes (i.e. regions Rm) and

p̂m =
1

Nm

∑
i:xi∈Rm

I(yi = 1) (3)

is the proportion of class 1 observations in node m which represents a region Rm with Nm observa-

tions. It is obvious from (2) and (3) that the churn scores lie between zero and one. Note that a

4

higher score indicates a higher likelihood of churning. These scores are often converted to predicted

classes ŷ ∈ {0, 1} by comparing them with a classification threshold t ∈ [0, 1]. All instances with a

score s smaller than t are classified as non-churners, i.e. s(xi, θ) ≤ t ⇒ ŷi = 0, whereas instances

with s larger than t are classified as churners, i.e. s(xi, θ) > t⇒ ŷi = 1.

2.2. General Fitness Function of Evolutionary Decision Trees

At the heart of most classification methods lies a fitness function that is optimized by the respec-

tive algorithm. In order to prevent that the estimated model is overfitted on the training sample, the

complexity of the tree is often included in the algorithm’s fitness function. As done by Breiman et al.

(1984) and Grubinger et al. (2014), we measure the complexity of a tree by a function of the number

of terminal nodes, |θ|, without further considering the depth or the shape of the tree. The aim of the

algorithm is then to find the classification tree which optimizes a given fitness function that describes

some tradeoff between prediction performance and complexity (Grubinger et al., 2014):

θ̂ = argmin
θ∈Θ

loss (Y, s (X, θ)) + comp(θ) (4)

where loss(·, ·) represents a suitable loss function for Y . Popular loss functions for classification

are the misclassification rate, deviance (i.e. cross-entropy) or Gini index. The function comp(·) is

monotonically non-decreasing in the number of terminal nodes |θ| = M of the tree θ. As a result,

more complex models are penalized in the tree selection process as they are less favorable. Note that

finding θ̂ requires a search over all spaces ΘM for M ∈ {1, . . . ,Mmax}. The classification algorithm

EvTree, implemented by Grubinger et al. (2014), measures the quality of a classification tree as a

function of its misclassification rate (MC) and the complexity of a tree by its number of terminal

nodes M , weighted by log N and a user-specified parameter α:

loss (Y, f (X, θ)) = 2 ·
N∑
i=1

I(yi 6= f(xi,θ)) = 2N ·MC (Y, f (X, θ))

comp(θ) = α ·M · logN

(5)

where f (X, θ) denotes the prediction function based on all explanatory variables X and the chosen

tree structure θ.

Even for medium sized problems with a relatively small number of observations and features,

it is clear that the complete parameter space Θ in (4) can become very large. In fact, Hyafil and

Rivest (1976) showed that building optimal binary decision trees, such that the expected number of

splits required to classify an unknown sample is minimized, is NP-complete. Instead of searching all

5

possible combinations in Θ simultaneously and measuring their fitness, classic recursive partitioning

algorithms, like CART (Breiman et al., 1984) and C4.5 (Quilan, 1993), only consider one split at

a time. This means that at each internal node r ∈ {1, . . . ,M − 1}, the split variable vr and the

corresponding split point sr are selected to locally minimize the loss function. Moreover, CART

and C4.5 employ an exhaustive search for the r-th split, jointly over (vr, sr). So-called unbiased

recursive partitioning techniques modify this search by first selecting the variable vr using statistical

significance tests and subsequently selecting the optimal split sr for that particular variable. This

approach is used in conditional inference trees (see (Hothorn et al., 2006), for references to other

algorithms) and avoids selecting variables with many potential splits more often than those with

fewer potential splits. Nevertheless, all of these forward-search recursive partitioning methods only

search each tuple (vr, sr) once without taking the subsequent split rules into account. Although it has

been shown that this approach is an efficient heuristic, it typically leads to a local optimal solution.

An alternative way to search over the parameter space of trees is to use global optimization methods

like an evolutionary algorithm as is done by Grubinger et al. (2014).

2.3. Profit-based Classification Performance Evaluation

The quality of a churn model is traditionally assessed as a binary classification model, using a

performance measure. Most performance metrics are extracted from a confusion matrix as shown

in Table 1. Depending on a given classification threshold t ∈ [0, 1], the confusion matrix tabulates

the numbers of correct and incorrect classifications based on the churn scores s produced by the

predictive model. If s ≤ t, the model assigns a “no churn” label to the instance, and if s > t,

the model assigns a “churn” label. The prior class probabilities of instances belonging to class 0

or 1 are represented by π0 and π1, respectively. Furthermore, f0(s) and f1(s) are the probability

density functions of the classification scores, whereas F0(s) and F1(s) are the cumulative distribution

Predicted class Actual class

Class 0 Class 1

Class 0 π0F0(t)N π1F1(t)N

[b0 = c(0 | 0)] [c1 = c(0 | 1)]

Class 1 π0(1− F0(t))N π1(1− F1(t))N

[c0 = c(1 | 0)] [b1 = c(1 | 1)]

Table 1: Confusion matrix with associated benefits (bk) and costs (ck), k ∈ {0, 1}, for a correct and incorrect classifi-

cation, respectively.

6

functions of the scores for class 0 and 1, respectively. Examples of some well accepted measures

for binary classification problems are Recall(t) = F0(t), Precision(t) = π0F0(t)/ (π0F0(t) + π1F1(t)),

F1-measure(t) = 2π0F0(t)/ (π0 + π0F0(t) + π1F1(t)), MER = min∀t{π0 (1− F0(t)) + π1F1(t)} and

AUC =
∫ +∞
−∞ F0(s)f1(s)ds.

Most of these performance measures are a function of the classification threshold. However, the

area under the ROC curve (AUC) and the minimum error rate (MER) do not require to specify the

classification threshold which makes them one of the most employed measures to objectively evaluate

the classification performance. The AUC of a classifier can be interpreted as being the probability

that a randomly chosen churner is predicted a higher score than a randomly chosen non-churner.

Therefore, a higher AUC indicates superior classification performance.

The outcome of a classification task is typically used as input to the retention campaign which

leads to costs for misclassifications and benefits for correct classifications. The cost or benefit related

to labeling an instance from class k as a class l instance is denoted with c(l|k), k, l ∈ {0, 1}. As

indicated in Table 1, correct classifications are rewarded with a benefit bk = c(l = k|k) while mis-

classifications are penalized and associated with costs ck = c(l 6= k|k). Profit is then computed by

offsetting the costs and benefits against each other. Note that Recall, Precision, F1-measure, MER

and AUC do not explicitly take classification costs or benefits into account. Therefore, they are only

valid if the gains of correct classifications and the severities of misclassifications are equal. Churn

prediction problems are typically dealing with high class imbalance where the minority class (i.e.

churners) is of primary interest, thus making the assumption of equal benefits and costs unrealistic.

Indeed, misclassifying an actual churner as a non-churner, also known as a false negative, results

in the loss of a customer, while misclassifying a non-churner as a churner, also known as a false

postive, leads to additional costs to the company (e.g. cost of contacting the customer and the cost

of an incentive offer) since those misclassified customers do not intend to leave. As a result, applying

accuracy-based performance measures for the evaluation and the selection of a classifier in churn

management is not recommended.

Verbraken et al. (2013) proposed the cost benefit analysis framework for customer churn, which

incorporates both the costs associated with a retention campaign and the benefits of retained cus-

tomers. The framework defines the average classification profit function as:

PC(t; γ,CLV, δ, φ) = CLV (γ(1− δ)− φ)π0F0(t)− CLV (δ + φ)π1F1(t), (6)

where t is the classification threshold and γ is the probability that a targeted would-be churner

accepts a special offer and remains a customer. CLV represents the constant customer lifetime value

7

per retained customer (e200). The two dimensionless parameters δ = d/CLV and φ = f/CLV are

derived from d, the constant cost of the retention offer (e10), and f , the constant cost of contacting

a customer (e1). It is assumed that all costs involved are strictly positive and CLV > d. The

values between brackets are the recommended default values for customer retention campaigns in the

telecommunication sector as suggested by Verbraken et al. (2013).

The cost benefit framework comprises a deterministic and a probabilistic profit-based performance

measure. The former is the maximum profit measure for customer churn (MPC):

MPC = max
∀t
{PC(t; γ,CLV, δ, φ)} (7)

The MPC is deterministic in the sense that all parameters related to costs and benefits (γ, CLV ,

δ and φ) are assumed to be known. In a retention campaign, most of these parameters can be

approximated with sufficient precision, except the probability γ that a customer will accept the offer.

This can be solved by assigning a probability density function to γ, denoted as h(γ), which yields

the expected maximum profit measure for customer churn (EMPC):

EMPC =

∫
γ
PC(topt(γ); γ,CLV, δ, φ)h(γ)dγ, (8)

where topt is the optimal classification threshold that maximizes the profit for given γ:

topt = argmax
∀t

{PC(t; γ,CLV, δ, φ)} (9)

Verbraken et al. (2013) decided to specify a beta distribution for h(γ) with the restrictions that its

parameters are α′ > 1 and β′ > 1. Furthermore, the authors propose to set α′ and β′ equal to 6

and 14, respectively. The EMPC follows a probabilistic approach that considers a range of γ values,

representing the uncertainty in that parameter. In this paper, we will focus on the EMPC because

this scenario is more likely to be encountered in practice. Yet, the most profitable classifier can be

identitief unambiguously by both profit measures.

Additionally, the proposed cost benefit framework provides the (expected) profit maximizing frac-

tion for customer churn, η (Verbraken et al., 2013), which gives practitioners an estimate of the

optimal fraction of the customer base which needs to be targeted in the retention campaign. Follow-

ing the deterministic approach, it becomes:

ηmpc = π0F0(topt) + π1F1(topt) (10)

whereas the profit maximizing fraction derived from the EMPC approach is defined as:

ηempc =

∫
γ

[π0F0(topt(γ)) + π1F1(topt(γ))]h(γ)dγ (11)

8

Making an arbitrary choice of taking, for example, the top 10% of predicted would-be churners, will

likely result in suboptimal profits. Instead, all customers are ranked according to their predicted

churn score and then ηempc indicates which top fraction of the predicted would-be churners should be

targeted in the campaign. The result is a customer list with the top would-be churners. Therefore,

the η estimates are appealing to practitioners since they help to determine how many customers

should be targeted in the retention campaign for attaining maximal profit.

Based on the customer list of top would-be churners, Stripling et al. (2018) introduced three

additional performance measures that are related to the notion of precision, recall, and the F1

measure, but they are independent of the classification threshold t. The η-precision or hit rate for

customer churn, ηp, is the proportion of correct identifications of would-be churners in the ηempc-

based customer list. The η-recall for customer churn, ηr, is the proportion of churners that is

included in the ηempc-based customer list. Precision and recall are often combined into the F1

measure, which represents the harmonic mean between the two measures. The F1 measure reaches

its best value at 1 and worst at 0. The η-based F1 measure for customer churn, ηF1
, is defined

as ηF1
= 2 · ηpηr/

(
ηp + ηr

)
. For all three measures, higher values indicate higher effectiveness of

the customer list and thus better performance of the classifier. However, since these measures only

calculate accuracy, the final model should be selected based on the EMPC as we aim for maximum

profit. Nevertheless, it is interesting to compare hit rates (ηp) among classifiers in order to assess

their effectiveness of correctly identifying churners.

2.4. Evolutionary algorithms

An evolutionary algorithm (EA) is a metaheuristic algorithm inspired by the biological process of

evolution to solve complex optimization problems (Eiben and Smith, 2015). Many different variants

of EA have been proposed with the most prominent techniques being genetic algorithms (Holland,

1992), evolutionary programming (Fogel et al., 1966) and genetic programming (Koza, 1992). Despite

the technical differences, the same fundamental idea is behind all evolutionary methods.

Within some defined environment, a population of individuals undergoes an evolution process that

is guided by some fitness function, a measure for judging the quality of an individual. The goal is to

find the fittest individual within that environment. In this evolution process, the population members

compete against each other for survival, where each individual represents a candidate solution to the

problem at hand. In the spirit of survival of the fittest, the evolutionary system is typically designed

such that individuals with a higher fitness have a higher chance to survive. The fittest individual

returned by the EA represents ultimately the final solution to the optimization problem.

9

At the start, one usually creates the population, the set of candidate solutions, in a random

fashion and then repeatedly applies genetic operators to evolve the population toward the optimal

solution. The most distinguished genetic operators are selection, crossover, and mutation. As the

name suggests, the selection operator chooses (either deterministically or stochastically) individuals

based on their fitness values that should undergo a genetic operation. Crossover is the recombination

operator that is applied to two or more selected candidates (the so-called parents), which as a result

produces one or more new candidates (the children). The inner values (called genes) of the parents

are thereby exchanged in a predefined manner. The mutation operator is another way of creating a

new candidate from one selected candidate, usually by randomly changing the genes. By repeatedly

applying the genetic operators and updating the population, the EA converges toward the optimal

solution from generation to generation, assuming it does not stop prematurely.

The immense flexibility of designing the building blocks of an EA system enables users to solve

highly complex optimization problems. Assuming the building blocks are properly defined and no

premature termination has occurred, EAs are capable of handling complex data structures such as

classification and regression trees and return globally optimal solutions (Grubinger et al., 2014). It

should therefore come as no surprised that thanks to this property EAs are often the preferred choice

and have been applied to a large variety of optimization and search problems (Freitas, 2003).

2.5. Related work

The extensive literature review given by Verbeke et al. (2011) shows that predictive classification

techniques for customer churn are increasingly researched. Various machine learning methods have

been set up for the task of predicting customer churn, including support vector machines (Chen et al.,

2012) and ensemble methodes (Van Wezel and Potharst, 2007). In saturated markets such as the

telephone service industry, the attraction of new customers is eminently challenging and costs much

more than preventing existing customers from churning. As a consequence, multiple data mining

techniques have been researched and applied within the telco industry (Verbeke et al., 2012).

The idea of directly integrating the EMPC as a profit measure into the model construction is

also considered by Stripling et al. (2015, 2018). Here, a classifier, called ProfLogit, is proposed

whose internal model structure resembles a lasso-regularized logistic model. The model parameters

of ProfLogit are described by a vector θ = (β0,β) ∈ Rp+1, consisting of the intercept β0 and the

regression coefficients β for each of the p predictor variables. A genetic algorithm (GA) is then used to

solve a real-parameter optimization problem and find the optimal parameter vector θ that maximizes

the EMPC directly in the training step. While a logistic regression model is fully characterized by its

10

parameter vector θ, whose size is fixed and known, a decision tree is made up of a more complex data

structure. A tree model consists of nodes and splits as described in (1), but the size and structure

of the model are not predetermined, except that the number of terminal nodes can not exceed the

number of cases in the training set. The goal of the evolutionary algorithm (EA) in ProfTree is to

find the optimal split rules that correspond to a maximum on the EMPC landscape. ProfTree is the

first classifier to use the EMPC measure directly in the tree construction process. Some papers have

used profit measures for ex-post tree evaluation. However, to the best of our knowledge, no papers

have used profit driven measures for tree construction. We believe this to be of great relevance to

both academics and practitioners focusing on profit, rather than traditional decision tree impurity

criteria (e.g. Gini index, cross-entropy). An advance of using ProfTree is that it allows modelling

nonlinear patterns which offers more flexibility than ProfLogit which in turn results in greater gains.

Besides the cost benefit framework of the EMPC, there are other frameworks that are used for

customer churn predictive modeling. The framework of the EMPC, as proposed by Verbraken et al.

(2013), allocates costs and benefits to each particular class. An alternative approach is to measure

classification costs at the level of individual customers. This means that distinct costs are set for each

respective customer which leads to a more detailed description of how costly a particular customer is.

The classification performance of a classifier can then be measured by the total cost as the sum of all

individual costs. This example-dependent cost-sensitive framework for churn is proposed by Bahnsen

et al. (2015b). Their framework is purely cost-based since it does not account for any benefits coming

from retained customers. For instance, unlike in the cost benefit framework of the EMPC, the CLV

is considered as a cost for effectively churned customers rather than a benefit of retained customers.

In Bahnsen et al. (2015a), the example-dependent cost-sensitive framework is introduced to decision

trees. Their algorithm is based on a recursive partitioning approach which builds a decision tree by

optimizing a cost based impurity measure that incorporates the different example-dependent costs

as well as cost based pruning criteria.

In Glady et al. (2009), the concept of a churner is defined as a function of the customer lifetime

value. More specifically, a churner is defined as a customer whose CLV is decreasing where CLV

is defined as the discounted value of future marginal earnings related to the customer’s activity.

Additionally, a new loss function is introduced to assess the misclassification cost of a customer that

is incurred by the decrease in CLV.

11

3. Profit Maximizing Classification Trees

In this section, we introduce our new ProfTree classification technique, which optimizes the

splitting variables and associated split rules according to the EMPC, aiming to produce the most

profitable classifier. An evolutionary algorithm is used to find the optimal tree model that corresponds

to a maximum on the EMPC landscape. In what follows we describe the building blocks of ProfTree.

3.1. Fitness Function of ProfTree

The fitness function represents the requirements to which the population of trees should adapt.

In general, these requirements are formulated by (4). ProfTree’s fitness function is defined by substi-

tuting the loss function in (4) with the EMPC measure (8) and measuring the complexity of a tree

as its number of terminal nodes, weighted by a user-specified parameter λ. This ultimately yields a

profit-sensitive classification model:

θ̂empc = argmax
θ∈Θ

EMPC(θ)− λ · |θ| (12)

where θ̂empc is the globally optimal classification tree according to the EMPC measure with minimized

complexity. Due to the complex optimization function, ProfTree uses an EMPC-modified version of

the EA, described in Grubinger et al. (2014), for learning globally optimal classification trees. Note,

however, that alternative tree-based EAs exist (see, e.g., Soak et al. (2006); Raidl and Julstrom

(2003); Palmer and Kershenbaum (1994, 1995); Jankowski and Jackowski (2014); Lin and Gen (2006);

Carrano et al. (2007)). ProfTree is implemented in R and it exploits the functionalitities available in

the evtree package (Grubinger et al., 2014).

3.2. The ProfTree algorithm

The pseudocode for the ProfTree algorithm is provided in Algorithm 1. The algorithm starts by

initializing a population of randomly created trees. Each initial tree of the population is generated

by adding a split rule to the root node in which both the splitting variable and corresponding split

point are selected randomly. These trees are considered to be the first generation.

Once the population is generated, each individual tree is evaluated by the fitness function

EMPC(θ) − λ · |θ| for a given value of the parameter λ. In order to improve the fitness of the

trees, each of them are altered via so-called variation operators. These operators cause the trees to

grow according to (12) in order to maximize their fitness. After evaluating each new solution and

comparing it with the previous version, the algorithm will select the fittest trees as the survivors

for the next generation. Once a new generation has been created from these survivors, the iteration

12

Algorithm 1: ProfTree: Profit Driven Decision Tree for Churn Prediction

Inputs: churn data set {(xi, yi)}Ni=1 with p predictors;

λ, regularization parameter;

|P|, number of trees in the population (default: 100);

minimum number of observations in each terminal node (default: 7);

minimum number of observations in each internal node (default: 20);

maximum tree depth (default: 9);

G, maximum number of iterations (default: 10,000);

probabilities for the five variation operators (default: 0.2 for each operator);

EMPC parameters: CLV (e200), d (e10), f (e1), α′ (6) and β′ (14);

Initialization of the evolutionary algorithm (EA)

Initialize: g ← 0 (generation index)

Create initial θ population, Pg, of size |P|. Each tree of the population is

initialized with a valid, randomly generated, split rule in the root node.

Evaluate: ∀θ ∈ Pg, evaluate the fitness of tree θ as EMPC(θ)− λ · |θ|

Main loop of the EA

while {g ≤ G and termination conditions (Section 3.4) are not satisfied} do

Select: each tree θ is selected once to be modified by one of the variation operators;

Modify: one of the following variation operators is randomly selected for each θ:

split, prune, major split rule mutation, minor split rule mutation, and crossover

Evaluate: ∀θ ∈ Pg, evaluate the fitness of the new tree θ as EMPC(θ)− λ · |θ|

Update: Pg to Pg+1 where each parent tree competes with its offspring for a place in

the population (Grubinger et al., 2014). The tree with lower fitness is rejected.

g ← g + 1

end while

return θ̂, the decision tree with the highest fitness in Pg

starts again by evaluating the quality of each new tree in the population. The overall fitness of the

population will increase by each iteration until a termination condition is met. The details of the

termination conditions are given below. The result of the ProfTree algorithm is the tree with the

highest fitness according to (12).

3.3. Variation operators

In each iteration, each tree in the population is modified by one of the variation operators which

consist of four types of mutation operators and one crossover operator. The details of these operators

13

are described by Grubinger et al. (2014). The split operator adds a randomly generated split rule

to a randomly selected terminal node. The prune operator prunes a random internal node, which

has two terminal nodes as successors, into a terminal node. The major split rule mutation operator

selects a random internal node and changes the entire split rule by altering both the corresponding

split variable and the split point. The minor split rule mutation operator is similar to the previous

one, except that it does not change the split variable; only the split point is slightly altered. Finally,

the crossover operator randomly choses two “parent” trees and exchanges randomly selected subtrees

between them. Due to this operator, some trees are selected more than once in each iteration as it

needs a second parent.

3.4. Termination criteria

The ProfTree algorithm executes a minimum of 1,000 iterations after which it terminates when

the quality of the best 5% of trees has not improved for 100 iterations. If this convergence criterium

is not met, the algorithm will terminate after a user-specified number of iterations, which is set at

10,000 by default. The algorithm returns the tree with the highest performance according to (12).

3.5. Control parameters

The implementation of ProfTree contains several parameters that control the evolutionary search.

The solution can be constrained to a minimum number of observations in each internal node, a

minimum number of observations in each terminal node, and a maximum tree depth. The parameter

λ controls the overall complexity (i.e. number of terminal nodes) of the trees in each generation. If

λ is increased, the number of terminal nodes will decrease and vice versa. The evolutionary search

can further be controlled by specifying the number of trees in the population (which is set at 100

by default) as well as the probabilities for the variation operators. In each modification step, one of

these variation operators is chosen at random for each tree. The probabilities by which the operators

are selected can be specified by the user. By default, each of the five variation operators are given a

20% probability of being selected.

3.6. Tuning the Regularization Parameter

The parameter λ governs the tradeoff between (expected) profit and tree size. In order to estimate

the optimal regularization parameter value, λopt, we generate a grid of λ values as follows:

Λ = {λ | λmin ≤ λ ≤ λmax}. (13)

14

Based on many preliminary studies on datasets with widely different dimensions, we found that the

optimal value λopt typically resides in the interval [0, 1]. Therefore, we specify λmax = 1. Any value

below λmax relaxes the penalization on the size of the tree. However, going down to λ = 0 will remove

the penalization which typically leads to the problem of overfitting the classification tree. For this

reason, we specify λmin = 0.01. For the case study in Section 4 and the benchmark comparison in

Section 5, the grid consists of the following |Λ| = 21 values:

Λ = {0.01, 0.05, 0.10, 0.15, . . . , 0.95, 1.00} (14)

The estimated optimal value λopt corresponds to the value on the grid with the highest EMPC

performance (8) on a hold-out sample. Note that |Λ| = 21 is an arbitrary choice, and one should

choose |Λ| large enough to create a dense grid. In order to confidently determine λopt, a reliable

performance estimate has to be obtained for each λ value of the grid. The underlying evolutionary

algorithm of ProfTree is intrinsicly stochastic in nature. This requires that the analysis has to be

repeated several times to obtain average performance estimates.

Therefore, we start by splitting the original dataset into a training set and test set, which are

stratified according to the churn indicator. The test set will be used exclusively to evaluate the

performance of the final model such that we obtain so-called out-of-sample estimates. Next, we

perform five replications of twofold cross-validation (5 × 2 cv) (Dietterich, 1998; Demšar, 2006) on

the training set in which each fold is stratified according to the churn indicator. In each replication,

ProfTree is trained with a given λ on each fold (i.e. one half of the training set), and its EMPC

performance is measured on the other fold (i.e. other half of the training set which functions as a

kind of validation set or hold-out sample). The EMPC measure is hereby used with its default values

as specified in Section 2.3. Next, the average of the 10 estimates becomes the associated performance

estimate for the given λ. This procedure is performed for all λ ∈ Λ, and λopt corresponds to the

λ value with the highest average EMPC performance. This aproach for tuning the regularization

parameter is used for both the case study in Section 4 and the experiments in Section 5.

To determine the final classification performance, ProfTree is trained 50 times with λopt on the

entire training set, and its final performance is evaluated based on the test set, which has previously

not been used for either training or finding λopt. According to this procedure, the tuning of the

regularization parameter and the final estimation of ProfTree’s classification performance requires

in total the construction of |Λ| × (5 × 2) + 50 = 260 models. Note that the approach explained

in this section also applies to EvTree (Grubinger et al., 2014) since the method also relies on an

evolutionary algorithm to build the tree which in turn requires a regularization parameter (5). This

15

Variable Description

churn Did the customer leave the telecom operator?

region Region where the customer lives.

prod_num Number that identifies the customer’s product.

active_months Time since the customer joined the operator (in months).

contract_period Length of the contract period.

revenue_avg Average revenue.

nonpay_period How long did the customer not pay the bills?

overdue_amt Amount that the customer is overdue.

count_disconnect Number of times the service was disconnected.

count_complaint Number of filed complaints.

autopay Did the customer use the automatic payment option?

Table 2: Variables of the South Korean telecom churn data.

will be explained in more detail in Section 5. Classification tree methods like CART and C4.5, on

the other hand, do not depend on a regularization parameter and are heuristic in nature.

4. Case study

In this section, we will illustrate the benefit of using the ProfTree classifier on a customer churn

dataset from a South Korean telecom operator. The dataset contains a sample of 889 customers

and 10 explanatory variables (see Table 2); 277 of these customers (i.e. 31.16%) were recorded as

churners. The goal is to build a model that predicts would-be churners while taking profitability

into account. Moreover, we want the model to be easily interpretable such that the results can be

communicated to the marketing department. For the purpose of this case study, we will therefore

build a tree model with a maximal depth of three levels of splits. Besides ProfTree, we use other

classification tree methods like EvTree, CART and CTree.

EvTree (Grubinger et al., 2014) uses an evolutionary algorithm for learning globally optimal

classification trees. CART (Breiman et al., 1984) is a commonly used classification tree algorithm

which uses a greedy heuristic approach, where split rules are selected in a forward stepwise search

for recursively partitioning the data into groups.

The CTree algorithm (Hothorn et al., 2006) builds a conditional inference tree. This is a non-

parametric class of decision trees which are embedded into a theory of conditional inference proce-

dures (Strasser and Weber, 1999). The CTree algorithm is a recursive partitioning algorithm that,

16

like CART and C4.5 (Quilan, 1993), searches for the best possible decision tree by considering one

split at a time. At each internal node, the split variable and the corresponding split point are selected

to locally minimize the loss function. While CART and C4.5 employ an exhaustive search to find

the next best split, CTree is an unbiased recursive partitioning technique which modifies this search

by first selecting the split variable using statistical significance tests and subsequently selecting the

optimal split point for that particular variable. This approach avoids selecting variables with many

potential splits more often than those with fewer potential splits. In summary, the CTree algorithm

works as follows: (1) Test the global null hypothesis of independence between any of the input

variables and the response. Stop if this hypothesis cannot be rejected. Otherwise select the input

variable with strongest association to the response. (2) Implement a binary split on the selected

input variable. (3) Recursively repeat steps 1) and 2).

ACTIVE_MONTHS

1

≥ 9.5 < 9.5

CONTRACT_PERIOD

2

< 4.984 ≥ 4.984

Node 3 (n = 144)

1
0

0
0.2
0.4
0.6
0.8
1

ACTIVE_MONTHS

4

≥ 15.5 < 15.5

Node 5 (n = 335)

1
0

0
0.2
0.4
0.6
0.8
1

Node 6 (n = 52)

1
0

0
0.2
0.4
0.6
0.8
1

ACTIVE_MONTHS

7

≥ 6.5 < 6.5

CONTRACT_PERIOD

8

< 2.677 ≥ 2.677

Node 9 (n = 16)

1
0

0
0.2
0.4
0.6
0.8
1

Node 10 (n = 21)

1
0

0
0.2
0.4
0.6
0.8
1

Node 11 (n = 55)

1
0

0
0.2
0.4
0.6
0.8
1

(a)

ACTIVE_MONTHS

p < 0.001

1

≤ 9 > 9

ACTIVE_MONTHS

p = 0.001

2

≤ 6 > 6

Node 3 (n = 55)

1
0

0
0.2
0.4
0.6
0.8
1

CONTRACT_PERIOD

p < 0.001

4

≤ 2.452 > 2.452

Node 5 (n = 16)

1
0

0
0.2
0.4
0.6
0.8
1

Node 6 (n = 21)

1
0

0
0.2
0.4
0.6
0.8
1

CONTRACT_PERIOD

p < 0.001

7

≤ 4.968 > 4.968

Node 8 (n = 144)

1
0

0
0.2
0.4
0.6
0.8
1

ACTIVE_MONTHS

p < 0.001

9

≤ 15 > 15

Node 10 (n = 52)

1
0

0
0.2
0.4
0.6
0.8
1

Node 11 (n = 335)

1
0

0
0.2
0.4
0.6
0.8
1

(b)

Figure 1: Trees for customer churn prediction constructed by CART (a) and CTree (b).

17

We randomly partition the dataset into a 70% training set (623 cases) and 30% test set (266 cases),

stratified according to the churn indicator to obtain similar churn distributions in the training and

test set as observed in the original dataset. All trees are constrained to have a minimum of 10

observations per terminal node, 20 observations per internal node, and a maximum tree depth of

3. Furthermore, the conditional inference tree is constructed with a significance level of 1% rather

than the default 5% level since it seems more appropriate for 623 observations. Another well-known

recursive partitioning method is C4.5 (Quilan, 1993). However, the results for C4.5 on this case

study are not reported because the tree depth cannot be restricted by the method’s implementation.

First, we grow the forward-search trees by applying CART and CTree on the training set (Figure

1). Although the dataset contains 10 explanatory variables, CART and CTree only use the variables

active_months and contract_period to predict the churning propensity of the customers. Inter-

estingly, CART and CTree come more or less to the same solution. Despite using slightly different

split points for the respective split variables, the six end nodes of both trees have the same churn

propensities. For example, according to CART (resp. CTree), a person who is a customer at the

telecom provider for less than 6 (resp. 6.5) months, has a churn propensity of 98% as can be seen in

Node 11 (resp. Node 3). Similarly, leaf Node 3 of CART corresponds with leaf Node 8 of CTree.

EvTree’s evolutionary algorithm contains a user-specified parameter α which plays the same role

as the parameter λ within ProfTree as it regulates the complexity of the trees that are grown. In

order to find the optimal value for α in EvTree, resp. λ in ProfTree, we apply a search over the

grid Λ = {0.01, 0.05, 0.10, 0.15, . . . , 0.95, 1.00} in combination with 5× 2-fold cross-validation on the

training set as described in Section 3.6. The EMPC criterion is hereby used with its default values

(as specified in Section 2.3) to select the optimal value for α, resp. λ. EvTree reaches the highest

average EMPC of 12.49 at αopt = 0.20 (Figure 2a) while ProfTree reaches its highest average EMPC

of 12.66 at λopt = 0.10 (Figure 2b).

Figure 3 shows the average time needed to train ProfTree on half the training set (i.e. one fold of

the 5×2 cross-validation) for the different λ values of the grid. For λ = 0.10, it requires approximately

33 seconds to fit ProfTree on a set with 312 observations and 10 predictor variables. As λ becomes

larger, the penalization on the size of the trees increases. This leads to smaller trees which in return

decreases the time to fit ProfTree.

Next, we apply both EvTree and ProfTree once on the entire training set with the respective

optimal value of their regularization parameter (Figure 4). EvTree uses the same two variables

(active_months and contract_period) as CART and CTree to predict churners, but each method

18

uses different cutoff values. On the other hand, ProfTree incorporates two additional variables

(revenue_avg and region) in its classification tree. Furthermore, EvTree’s first split variable is

contract_period while this variable only occurs in the third level of ProfTree’s solution and is only

applied on customers that are active between 11 and 20 months. When a customer stays with the

telecom operator for 20 months or more, ProfTree employs variables like average revenue and region

to determine the customer’s likelihood to churn since losing a long-time customer may cause a bigger

loss or profit than a recently joined customer.

All trees can easily be interpreted and communicated to the management professionals of the

retention campaign. However, we still need to compare their performance, especially their (expected)

profitability. The previously trained classification trees are therefore evaluated on the test set. Table

3 contains the results from the different classifiers for various performance measures.

Note that CART and CTree have the same performance on the test set because they predict

the same churn propensity for similar customers. ProfTree has the highest EMPC and MPC value

11.9
11.9

12.13
12.31

12.49

12.29 12.3

12.02 12.02
12.12 12.14

11.89 11.87 11.87 11.83 11.83 11.83 11.86 11.89 11.9 11.9

10

11

12

13

0.00 0.25 0.50 0.75 1.00
Regularization parameter α

E
M

P
C

(a)

12.55
12.55

12.66
12.58

12.44
12.36 12.36 12.4

12.32 12.29 12.3 12.28 12.27 12.28 12.28 12.26 12.26
12.17

12.26 12.22 12.22

12

13

0.00 0.25 0.50 0.75 1.00
Regularization parameter λ

E
M

P
C

(b)

Figure 2: Average EMPC performance (red dot) for various values of EvTree’s α (a) and ProfTree’s λ (b).

19

35.45

34.53

33.03 33.01

31.46
31.03

30.4 30.27
29.7 29.52

28.81 28.53 28.53 28.3 28.13 28.11 27.89 28.02 27.72 27.7 27.83

27

30

33

36

39

0.00 0.25 0.50 0.75 1.00
Regularization parameter λ

T
im

e
 (

s
e

c
.)

Figure 3: Average computation time (red dot) of ProfTree on half of the training set of the South Korean churn dataset

for different values of λ.

CONTRACT_PERIOD

1

< 2.581 ≥ 2.581

ACTIVE_MONTHS

2

< 8 ≥ 8

Node 3 (n = 44)

1
0

0
0.2
0.4
0.6
0.8
1

Node 4 (n = 106)

1
0

0
0.2
0.4
0.6
0.8
1

CONTRACT_PERIOD

5

< 6 ≥ 6

ACTIVE_MONTHS

6

< 11 ≥ 11

Node 7 (n = 36)

1
0

0
0.2
0.4
0.6
0.8
1

Node 8 (n = 63)

1
0

0
0.2
0.4
0.6
0.8
1

ACTIVE_MONTHS

9

< 17 ≥ 17

Node 10 (n = 61)
1

0

0
0.2
0.4
0.6
0.8
1

Node 11 (n = 313)

1
0

0
0.2
0.4
0.6
0.8
1

(a)

ACTIVE_MONTHS

1

< 20 ≥ 20

ACTIVE_MONTHS

2

< 11 ≥ 11

Node 3 (n = 109)

1
0

0
0.2
0.4
0.6
0.8
1

CONTRACT_PERIOD

4

< 6 ≥ 6

Node 5 (n = 153)

1
0

0
0.2
0.4
0.6
0.8
1

Node 6 (n = 99)

1
0

0
0.2
0.4
0.6
0.8
1

REVENUE_AVG

7

< 770220 ≥ 770220

REGION

8

Cn, Cp, Gw, Jj, Jp, KpB, Dg, Dj, Gy, I, Jn, Ka, Kn, S, U

Node 9 (n = 39)

1
0

0
0.2
0.4
0.6
0.8
1

Node 10 (n = 122)

1
0

0
0.2
0.4
0.6
0.8
1

REGION

11

B, Gw, Gy, KpCn, Cp, Dg, Dj, I, Jj, Jn, Jp, Ka, Kn, S, U

Node 12 (n = 35)

1
0

0
0.2
0.4
0.6
0.8
1

Node 13 (n = 66)

1
0

0
0.2
0.4
0.6
0.8
1

(b)

Figure 4: Trees for customer churn prediction constructed by EvTree (a) and ProfTree (b).

20

EMPC MPC ηp ηr ηF1
AUC MER

ProfTree 12.868 12.793 0.448 0.940 0.607 0.824 0.222

EvTree 12.637 12.553 0.431 0.976 0.598 0.831 0.173

CART 12.126 12.053 0.413 0.976 0.581 0.797 0.195

CTree 12.126 12.053 0.413 0.976 0.581 0.797 0.195

Table 3: Performances of various tree classifiers on the South Korean telecom churn dataset.

among all the tree classifiers. Compared to EvTree, it yields (expected) profit gains of 0.231 EUR

per customer. A telecommunication service provider has typically several thousands or even millions

of customers. Hence, the potential profit gain could be enormous. EvTree has built the tree with

the highest AUC and the lowest MER. However, as this case study shows, this does not imply that

EvTree’s solution is the most profitable. Furthermore, ProfTree exhibits the highest η-precision

(44.8%), meaning it most effectively identifies churners correctly. All tree classifiers have an η-recall

that is close to 1, meaning they are capable of detecting almost all churners, while ProfTree has

the highest η-based F1 measure (60.7%). In summary, this case study illustrates how ProfTree can

be employed to build a classification tree that balances profitability and complexity by searching a

larger space of potential trees.

It is worth mentioning that in this setup, several runs of the ProfTree algorithm with the same

parameters typically lead to the same tree. However, this may not always be the case due to the

stochastic nature of the search algorithm and the potential vast search space. As a result, trees

with different structures but similar fitness function values may be found by subsequent runs of

ProfTree. We alleviated this problem in the case study by restricting the maximal tree depth to 3,

8

10

12

14

0 250 500 750 1000
Iterations

F
it
n
e
s
s

average best−so−far fitness curve

individual best−so−far fitness curve

Figure 5: Fitness curve for each of 10 runs of ProfTree on the training set of the Korean churn dataset.

21

yielding a unique solution. Figure 5 shows the convergence pattern of 10 runs of ProfTree on the

training set (70%) of the South Korean churn dataset. At each iteration, the fitness of the fittest

tree in the population is shown where fitness is measured by (12). Each of the 10 fitness curves

reaches the maximum solution quite fast, since the performance stabilizes already after 250 iterations.

Furthermore, each run of ProfTree leads to a slightly different solution, but their corresponding fitness

functions are very similar.

5. Empirical evaluation

In this section, we compare ProfTree with EvTree, CART, C4.5 and CTree in a more rigorous

context. Both the CART and C4.5 algorithm have the option to include a final, global pruning

step to simplify the tree by snipping off the least important splits. We consider both CART and

C4.5 with and without this pruning step. We apply the classification algorithms to several real-life

churn datasets from various telecommunication service providers. These datasets are either publicly

available or have been provided to our research group from various telco operators, located around

the world (i.e., North and South America, East Asia, and Europe). The datasets are described in

Table 4. The performance of each classifier is evaluated by using EMPC, MPC, AUC, MER, ηp, ηr

and ηF1
. Hereby we apply EMPC’s default values as specified in Section 2.3. We begin by describing

the experimental setup, followed by presenting the results of the benchmark study, and a discussion.

5.1. Experimental setup of the benchmark study

Each dataset is randomly partitioned into a 70% training and 30% test set, stratified according

to the churn indicator to obtain similar churn distributions in the training and test set as observed in

the original dataset. Only the UCI training and test sets from the UCI machine learning repository

(Bache and Lichman, 2013) are already available from the source. When preprocessing the data, the

observations (i.e. customers) with missing values are removed before the analysis. No other data

preparation steps are applied because the tree-based methods do not require standardization of the

continuous predictor variables or transformation of the categorical predictors. Furthermore, we do not

have to remove strongly correlated features because multicollinearity among the predictors is not an

issue for classification tree methods. The benchmark datasets are described in Table 4. The sample

sizes of the training sets range from 623 instances (Korean1) to 45, 501 instances (Duke2). The

number of attributes varies between 9 (Duke1 and Belg3) and 48 (Duke2). The types of attributes

vary among datasets, and include datasets which have both categorical and numerical variables.

22

To find the optimal regularization parameters λ and α within ProfTree and EvTree, respectively,

we apply the procedure discussed in Section 3.6: five replications of 2-fold cross-validation on the

training set (Dietterich, 1998; Demšar, 2006). For each dataset, we fit each classifier on the training

set and evaluate it on the independent test set to obtain out-of-sample classification performance

estimates. Since both ProfTree and EvTree are stochastic in nature, they are trained 50 times on

the entire training set with their respective optimal penalization parameters λopt and αopt, and each

time their final performance is evaluated on the test set. As suggested by Grubinger et al. (2014),

ProfTree, EvTree, CART and CTree models are constrained to a minimum number of 20 observations

per internal node, 7 observations per terminal node, and a maximum tree depth of 9. Apart from

that, the default settings of the algorithms are used. C4.5 is only constrained to a minimum number

of 7 samples per terminal node, since other restrictions are available in this implementation. Both

CART and C4.5 models are considered with and without the pruning step. Note that we apply

EMPC’s default values as specified in Section 2.3.

5.2. Results of the experiment

Figure 6 shows the boxplot of the 50 EMPC values of ProfTree for each churn dataset. We

compare the average EMPC of ProfTree (�) with the one from the respective best competitive

classifier (N). In order to avoid overlapping labels and obscuring the view of the estimates, we only

show the result from the respective best competitive technique. When averaging the ranks over

the datasets, ProfTree has the overall best performance in terms of EMPC and MPC (Figure 7).

Our new method occupies the first place in six out of nine datasets in terms of EMPC, resulting in

ID Instances Churn rate [%] Attributes

Training set Test set Training set Test set Binary Nominal Metric

Belg1 40,678 17,433 13.96 13.96 1 10 13

Belg2 39,404 16,887 11.18 11.17 1 10 13

Belg3 2,589 1,109 13.29 13.26 1 - 8

Chile 4,940 2,116 29.15 29.11 2 - 35

Duke1 8,750 3,749 39.31 39.32 - 1 8

Duke2 45,501 19,501 49.56 49.56 1 - 47

Korean1 9,522 4,079 22.59 22.58 1 3 10

Korean2 623 266 31.14 31.20 1 2 7

UCI 3,333 1,667 14.49 13.44 2 2 15

Table 4: Description of the churn datasets: number of instances, churn rate, number of types of attributes.

23

an average rank of 1.56 on a scale from 1 to 7. ProfTree delivers in 6 out of 9 datasets the most

profitable churn model, and in 4 out of the 6 best cases the outperformance is significant. For the

other datasest, ProfTree falls closely behind the best competitive method. The profit gains range

from 0.01 to 0.18e per customer. In the case of the Belg2 dataset, ProfTree’s EMPC estimates range

from 0.89 to 1.08e per customer, and its average performance equals EMPC = 0.95 ± 0.04e. This

is on average 10.5% better than the respective best competitive model (CTree). In the worst case

(Chile), ProfTree’s EMPC estimates range from 9.07 to 9.46e, and its average performance equals

EMPC = 9.29± 0.10e. This is on average 1.4% worse than the respective best competitive classifier

(CTree). When measuring the MPC performance, ProfTree has an average rank of 1.44, being the

best churn model in 7 out of 9 datasets (Figure 7).

Furthermore, ProfTree exhibits the third highest η-precision (average rank: 3.44). It also has the

 (ProfTree) 1.94

 1.98 (CTree)

1.85

1.90

1.95

2.00

Belg1

E
M

P
C

Rank 2

 (ProfTree) 0.95

 0.86 (CTree)0.85

0.90

0.95

1.00

1.05

Belg2

Rank 1

 (ProfTree) 4.86

 4.81 (C4.5)

4.70

4.75

4.80

4.85

4.90

Belg3

Rank 1

 (ProfTree) 9.29

 9.42 (CTree)

9.1

9.2

9.3

9.4

Chile

E
M

P
C

Rank 4

 (ProfTree) 16.87

 16.76 (C4.5)
16.75

16.80

16.85

16.90

16.95

Duke1

Rank 1

 (ProfTree) 22.21

 22.21 (EvTree)

22.2106

22.2107

22.2108

22.2109

22.2110

Duke2

Rank 2

 (ProfTree) 8.31
 8.3 (C4.5)

8.2

8.4

8.6

Korean1

E
M

P
C

Rank 1

 (ProfTree) 12.61

 12.43 (C4.5)

12.2

12.4

12.6

12.8

Korean2

Rank 1

 (ProfTree) 5.42

 5.24 (CTree)5.25

5.50

5.75

UCI

Rank 1

Figure 6: The boxplots are based on 50 EMPC estimates of ProfTree measured on the test set. �: ProfTree; N: best

competitive classifier respective to the dataset.

24

a
ve

ra
g

e
 r

a
n

k

6

5

4

3

2

1

ProfTree C4.5 CTree C4.5 (pruned) EvTree CART CART (pruned)

EMPC

MPC
ηp

ηr

ηF1

AUC

MER

Figure 7: Average rank of the classifier over the different datasets for various performance metrics.

second highest average η-recall (average rank: 3.11), thus it is well capable of detecing the would-be

churners. When considering the η-based F1 measure, ProfTree is the third best performing classifier

with an average rank of 3.33, being the best churn model in three out of nine datasets. While

ProfTree has the best performances in terms of EMPC and MPC, ProfTree has the overall poorest

MER performance, having in six out of nine datasets a rank of 7 (average rank: 6.5). In contrast, the

MER performance for all other tree classifiers, except CTree, is better than the profit-based EMPC

measure. This illustrates that the best accuracy-based model is not necessarily the most profitable.

Because ProfTree maximizes EMPC, rather than minimizing the misclassification error, significant

discrepancies between these two measures were expected. Similarly, in the case of AUC performance,

ProfTree is ranked quite low with an average rank of 3.89.

Computational aspects

Table 5 shows the average time it took to train ProfTree and EvTree on each of the datasets.

The required sources were measured on an Intel core i5 with 2.7 GHz and 8 GB RAM. The smallest

of the datasets, Korean2, needed less than 1 minute of training time for both ProfTree and EvTree.

The longest time it took to fit ProfTee was 75 minutes on the dataset Belg1, while it took more than

4 hours to train EvTree on the largest dataset Duke2. Although ProfTree has a similar complexity as

the approach by Grubinger et al. (2014), we acknowledge that the training times of both evolutionary

algorithms (EA) are rather slow compared to other classification algorithms.

The recorded times to fit the EA depend heavily on the size of the trees that are built by the

EA. The size of the trees in each generation is regularized by the parameter λ in ProfTree, resp. α

in EvTree. A smaller value for the regularization parameter results in a softer penalty on the size of

25

the trees, which means that trees can grow larger. This increases the parameter space Θ in (4) which

makes it harder to find the tree with the highest fitness. Figure 3 illustrates how the regularization

parameter λ has an impact on the computation time.

Belg1 Belg2 Belg3 Chile Duke1 Duke2 Korean1 Korean2 UCI

T
im

e ProfTree 75.72 55.73 2.99 6.31 12.54 57.36 16.00 0.92 4.73

EvTree 28.16 15.83 3.38 3.94 63.02 373.69 25.36 0.54 6.82

Table 5: Average time (in minutes) to fit ProfTree and EvTree on the respective training set, based on 50 estimates.

5.3. Discussion

ProfTree achieves, on average, significant profit gains compared to the competitive techniques.

The benchmark study shows that ProfTree is the overall most profitable classifier in terms of EMPC

and MPC. The benchmark studies further illustrate that model selection purely based on accuracy

related performance measures, such as AUC and MER, likely results in considerable less profitable

models. This is clearly demonstrated by the fact that ProfTree, which maximizes profit in its con-

struction step, is the overall most profitable classifier but simultaneously has the worst MER values

(see Figure 7). Interestingly, ProfTree exhibits the third highest η-precision despite the fact that

the η-based performance measures (ηp, ηr and ηF1
) are related to the notion of accuracy. This is

a desirable property of ProfTree because, although a company’s primary objective is to maximize

profits, another important requirement is that the marketers have as many true would-be churners

on their target list as possible. In other words, ProfTree is an effective classifier to correctly identify

churners, which allows companies to not only focus their marketing resources on the customers that

intend to churn but also to focus on those who are the most profitable to the company. In addition to

high precision, ProfTee exhibits the second highest η-recall, meaning it can detect a large proportion

of would-be churners. Furthermore, all η-based performance metrics are optimized for maximum

profit, which means that churn management campaigns are able to focus their efforts primarily on

customers that are profitable to the company.

6. Conclusions and future work

In this paper, we presented a new churn classification method called ProfTree1 that uses an evolu-

tionary algorithm to directly optimize the EMPC (Verbraken et al., 2013) in the model construction

1R code implementation of ProfTree will be made available at github.com/SebastiaanHoppner/ProfTree

26

step of a decision tree. As a result, ProfTree aims to actively construct the most profitable model

for a customer retention campaign. We exploit an evolutionary algorithm for learning profit driven

decision trees according to the regularized EMPC fitness function (12). One major benefit of using

decision trees as the underlying classifier is that the model can be easily interpreted which helps to

understand why customers defect.

In our benchmark study, ProfTree is the overall most profitable model compared to 6 other

tree-based methods. The study consisted of applying the classifiers to 9 real-life churn datasets,

and evaluated their out-of-sample classification performance using accuracy, cost, and profit related

performance measures. We conclude that model selection based on accuracy, like MER or AUC,

leads to less profitable results. In almost all cases, ProfTree outperforms its competitors, leading to

significantly higher profits; whereas, in the worst case, its profit losses are relatively small compared

to the respective best competitive model.

Furthermore, the benchmark study shows that ProfTree has a high hit rate and recall rate,

which makes it an effective model to both correctly identify churners as well as to detect the largest

proportion of would-be churners. In this paper, we have shown that our proposed method aligns best

with the core business requirement of profit maximization. Moreover, ProfTree produces customer

lists with high η-precision which can be used in the retention campaign for targeting the most

profitable potential churners.

Concerning future research, we intend to combine the ProfTree algorithm with random forests

(Breiman, 2001). This method, called ProfForest, aims at further improving the profit maximizing

property by building a large collection of profit induced trees, and then aggregating them. An ex-

tensive empirical evaluation and comparison between the profit-based methods ProfTree, ProfForest

and the approach of Stripling et al. (2018) can then be conducted. Although ProfTree has a similar

complexity as the approach by Grubinger et al. (2014), we acknowledge that the training times of the

evolutionary algorithm (EA) are rather slow compared to other classification algorithms. As future

work, we intend to replace the EA with efficient heuristics like the ones used in CART Breiman

et al. (1984) and C4.5 Quilan (1993) in order to construct fast profit-based trees. Besides using

the ProfTree algorithm for churn prediction, it also has potential in other analytical tasks where

profit measures can be used (Elkan, 2001), such as credit scoring (Verbraken et al., 2014) and fraud

detection. The main adaptation of ProfTree to these tasks would consist of replacing the expected

maximum profit measure for customer churn (EMPC) by the appropriate metric.

27

Acknowledgements

This work was supported by the BNP Paribas Fortis Chair in Fraud Analytics and Internal Funds

KU Leuven under Grants C16/15/068 and C24/15/001.

References

Bache, K., Lichman, M., 2013. Uci machine learning repository (http://archive.ics.uci.edu/ml), uni-

versity of california, school of information and computer science. Irvine, CA.

Bahnsen, A. C., Aouada, D., Ottersten, B., 2015a. Example-dependent cost-sensitive decision trees.

Expert Systems with Applications 42 (19), 6609–6619.

Bahnsen, A. C., Aouada, D., Ottersten, B., 2015b. A novel cost-sensitive framework for customer

churn predictive modeling. Decision Analytics 2 (1), 1–15.

Breiman, L., 2001. Random forests. Machine learning 45 (1), 5–32.

Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., 1984. Classification and regression trees. CRC

press.

Carrano, E. G., Fonseca, C. M., Takahashi, R. H., Pimenta, L. C., Neto, O. M., 2007. A prelim-

inary comparison of tree encoding schemes for evolutionary algorithms. In: Systems, Man and

Cybernetics, 2007. ISIC. IEEE International Conference on. IEEE, pp. 1969–1974.

Chen, Z.-Y., Fan, Z.-P., Sun, M., 2012. A hierarchical multiple kernel support vector machine for

customer churn prediction using longitudinal behavioral data. European Journal of operational

research 223 (2), 461–472.

Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine

learning research 7 (Jan), 1–30.

Dietterich, T. G., 1998. Approximate statistical tests for comparing supervised classification learning

algorithms. Neural computation 10 (7), 1895–1923.

Eiben, A. E., Smith, J. E., 2015. Introduction to evolutionary computing, 2nd Edition. Springer.

Elkan, C., 2001. The foundations of cost-sensitive learning. In: International joint conference on

artificial intelligence. Vol. 17. Lawrence Erlbaum Associates Ltd, pp. 973–978.

28

Fogel, L. J., Owens, A. J., Walsh, M. J., 1966. Artifical Intelligence through simulated evolution.

John Wiley & Sons, New York.

Freitas, A. A., 2003. A survey of evolutionary algorithms for data mining and knowledge discovery.

In: Advances in Evolutionary Computing. Springer, pp. 819–845.

Glady, N., Baesens, B., Croux, C., 2009. Modeling churn using customer lifetime value. European

Journal of Operational Research 197 (1), 402–411.

Grubinger, T., Zeileis, A., Pfeiffer, K.-P., 2014. evtree: Evolutionary learning of globally optimal

classification and regression trees in R. Journal of Statistical Software 61 (1), 1–29.

Hand, D. J., 2009. Measuring classifier performance: a coherent alternative to the area under the roc

curve. Machine learning 77 (1), 103–123.

Holland, J. H., 1992. Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence. MIT press.

Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: A conditional inference

framework. Journal of Computational and Graphical statistics 15 (3), 651–674.

Hyafil, L., Rivest, R. L., 1976. Constructing optimal binary decision trees is np-complete. Information

processing letters 5 (1), 15–17.

Jankowski, D., Jackowski, K., 2014. Evolutionary algorithm for decision tree induction. In: IFIP

International Conference on Computer Information Systems and Industrial Management. Springer,

pp. 23–32.

Koza, J. R., 1992. Genetic Programming: On the programming of computers by means of natural

selection. MIT press, Cambridge.

Lin, L., Gen, M., 2006. Node-based genetic algorithm for communication spanning tree problem.

IEICE transactions on communications 89 (4), 1091–1098.

Palmer, C. C., Kershenbaum, A., 1994. Representing trees in genetic algorithms. In: Evolutionary

Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First

IEEE Conference on. IEEE, pp. 379–384.

Palmer, C. C., Kershenbaum, A., 1995. An approach to a problem in network design using genetic

algorithms. Networks 26 (3), 151–163.

29

Quilan, J. R., 1993. C4.5: Programs for machine learning. Morgan Kaufmann Publichers, San Mateo.

Raidl, G. R., Julstrom, B. A., 2003. Edge sets: an effective evolutionary coding of spanning trees.

IEEE Transactions on evolutionary computation 7 (3), 225–239.

Soak, S.-M., Corne, D. W., Ahn, B.-H., 2006. The edge-window-decoder representation for tree-based

problems. IEEE Transactions on Evolutionary Computation 10 (2), 124–144.

Strasser, H., Weber, C., 1999. On the asymptotic theory of permutation statistics. Mathematical

Methods of Statistics 8, 220–250.

Stripling, E., vanden Broucke, S., Antonio, K., Baesens, B., Snoeck, M., 2015. Profit maximizing

logistic regression modeling for customer churn prediction. IEEE International Conference on Data

Science and Advanced Analytics (DSAA’ 2015). Paris (France), 19-21 October 2015 (pp. 1-10).

Paris, France: IEEE.

Stripling, E., vanden Broucke, S., Antonio, K., Baesens, B., Snoeck, M., 2018. Profit maximizing

logistic model for customer churn prediction using genetic algorithms. Swarm and Evolutionary

Computation 40, 116–130.

Van Wezel, M., Potharst, R., 2007. Improved customer choice predictions using ensemble methods.

European Journal of Operational Research 181 (1), 436–452.

Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B., 2012. New insights into churn prediction

in the telecommunication sector: A profit driven data mining approach. European Journal of

Operational Research 218 (1), 211–229.

Verbeke, W., Martens, D., Mues, C., Baesens, B., 2011. Building comprehensible customer churn

prediction models with advanced rule induction techniques. Expert Systems with Applications

38 (3), 2354–2364.

Verbraken, T., Bravo, C., Weber, R., Baesens, B., 2014. Development and application of consumer

credit scoring models using profit-based classification measures. European Journal of Operational

Research 238 (2), 505–513.

Verbraken, T., Verbeke, W., Baesens, B., 2013. A novel profit maximizing metric for measuring

classification performance of customer churn prediction models. IEEE Transactions on Knowledge

and Data Engineering 25 (5), 961–973.

30

