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Abstract

Finding large “cliquish” subgraphs is a central topic in graph mining and community
detection. A popular clique relaxation are 2-clubs: instead of asking for subgraphs of diameter
one (these are cliques), one asks for subgraphs of diameter at most two (these are 2-clubs).
A drawback of the 2-club model is that it produces star-like hub-and-spoke structures as
maximum-cardinality solutions. Hence, we study 2-clubs with the additional constraint to
be well-connected. More specifically, we investigate the algorithmic complexity for three
variants of well-connected 2-clubs, all established in the literature: robust, hereditary, and
“connected” 2-clubs. Finding these more cohesive 2-clubs is NP-hard; nevertheless, we develop
an exact combinatorial algorithm, extensively using efficient data reduction rules. Besides
several theoretical insights we provide a number of empirical results based on an engineered
implementation of our exact algorithm. In particular, the algorithm significantly outperforms
existing algorithms on almost all (sparse) real-world graphs we considered.

1 Introduction

The s-club model, introduced by Mokken [28], is a well-established mathematical model for com-
munity mining in graphs [17]. An important special case is the 2-club model. In the corresponding
algorithmic problem, the task is to compute a largest 2-club, that is, a maximum-cardinality ver-
tex subset inducing a subgraph of diameter at most two. As a community model, 2-clubs have the
drawback that they often form hub-and-spoke structures, that is, they often consist of one vertex
that is adjacent to all other vertices of the community plus only few additional edges. Indeed,
previous experimental work revealed that most maximum-cardinality 2-clubs in real-world graphs
have exactly this hub-and-spoke structure and are thus fairly sparse [21]. This is essentially the
opposite of cliques which provide a subgraph model with maximal (edge) density. In this sense,
standard 2-clubs are far away from being cliquish. The drawback of cliques, however, is that
they are too demanding with respect to density in order to be meaningful in many applications
based on mining cohesive subgraphs [31, 24]. Hence, we study three 2-club models that exclude
the low degree of connectivity that 2-clubs may have while still providing meaningful community
abstractions.

∗Parts of this work are based on the last author’s master thesis [32]. Work started when all authors were with
TU Berlin.

†CK was partially supported by the DFG, project MAGZ (KO 3669/4-1).

1

http://arxiv.org/abs/1807.07516v2


u1

v1 u2

v2

u3v3

u1

v1 u2

v2

u3v3

Figure 1: A complete bipartite graph K3,3 where the three internally vertex-disjoint paths from u1

to v2 (left side) and u1 to u2 (right side) are highlighted. Note that two of the paths on the left
side are of length three. Thus, a K3,3 is a 1-robust 2-club but not a 2-robust 2-club. It is also
a 2-hereditary 2-club as deleting two vertices leaves either a K1,3 or a K2,2, both of which are
2-clubs. Finally, it is a 3-connected 2-club (the pictures above cover all cases up to symmetry).

Three 2-Club Models In the classic 2-club model, one relaxes the clique demand by allowing
that not all vertices of the community are adjacent but that they may also have distance two or,
equivalently, that every vertex pair is either adjacent or has a common neighbor. The problem
with this simple relaxation is that there may be only one vertex which is the common neighbor
of all nonadjacent vertices. Hence, removing this vertex may destroy connectivity of the 2-club.
Next, we describe three “well-connected” variants of 2-clubs that have been proposed in the
literature [31, 34]; these three variants will be the central subjects of our studies.

In the first variant of well-connected 2-clubs, one demands that every pair of adjacent vertices
has t− 1 common neighbors and every pair of nonadjacent vertices has t common neighbors.

Definition 1 ([34]). A vertex set S ⊆ V is a t-robust 2-club in a graph G = (V,E) if any pair of
vertices in S is connected in G[S] by t internally vertex-disjoint paths of length at most two.

In the second variant, one demands that the deletion of few vertices does not destroy the 2-club
property.

Definition 2 ([31]). A vertex set S ⊆ V is a t-hereditary 2-club in a graph G = (V,E) if G[S \U ]
is a 2-club for all U ⊂ S where |U | ≤ t.

In the third variant, one only demands that the deletion of few vertices does not destroy
connectivity.

Definition 3 ([31]). A vertex set S ⊆ V is a t-connected 2-club in a graph G = (V,E) if it
is a 2-club and G[S] is t-connected, that is, |S| > t and G[S \ U ] is connected for all U ⊆ S
where |U | < t.

Observe the difference of one in the sizes of the sets U in Definitions 2 and 3. Refer to Figure 1
for a comparison of the three variants of well-connected 2-clubs. Assuming 2-club sizes |S| ≥ t+2,
it is easy to see that a t-robust 2-club is a (t − 1)-hereditary 2-club which again is a t-connected
2-club. Clearly, for all three models, fulfilling the connectivity demands for some t implies that
they are also fulfilled for all t′ ≤ t. Hence, the size of maximum-cardinality 2-clubs is nonincreasing
with increasing t.

Our three central computational problems, formulated as decision problems (which is more
suitable for statements on computational complexity), are defined as follows.

t-Robust / t-Hereditary / t-Connected 2-Club
Input: An undirected graph G = (V,E) and nonnegative integers t and k.
Question: Does G contain a t-robust / t-hereditary / t-connected 2-club of size at
least k?
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For brevity, when making general statements holding for all three variants, then we refer to
them as t-well-connected 2-clubs.

Related Work Dense subgraph discovery or mining cohesive subgraphs is an active field in
graph mining research [26, 31, 24]. Algorithms, complexity studies, and experiments for finding
s-clubs and in particular 2-clubs play a significant role in this context [3, 7, 8, 9, 11, 20, 21, 22,
30, 33, 34, 36]. Veremyev and Boginski [34] introduced and motivated the concept of t-robustness
and performed experiments for t = 2 and t = 3, showing that the predicted communities for
these settings are much larger than maximum cliques. Pattillo et al. [31] discussed several further
variants of s-clubs.

For t-connected 2-clubs, the special case t = 2 demands that the 2-club is biconnected. This
case was studied by Yezerska et al. [36] who presented a branch-and-bound and a branch-and-cut
algorithm for the problem of finding biconnected 2-clubs. Moreover, Yezerska et al. [36] showed
that the problem of finding a largest biconnected 2-club is NP-hard.

Finally, Carvalho and Almeida [10] studied a variant of s-clubs where each vertex is demanded
to be part of at least one triangle.

There is a large body of previous work that considers the standard 2-club model. In particular,
several algorithmic approaches (heuristics, exact algorithms) have been proposed and examined for
the NP-hard computational task [7] to find maximum-cardinality 2-clubs [7, 6, 8, 11, 21, 30, 33].

Of particular importance to our work is an exact algorithm for 2-Club that uses the following
branching: If the graph contains two vertices u and v that have distance at least three, then branch
into the two cases to remove u or v from G. This algorithm was first proposed by Bourjolly et al. [7].
Later, it was shown that this branching gives a fixed-parameter algorithm for the parameter |V |−k
with running time O(2|V |−knm) [33] and an algorithm with running time O(αn) where α < 1.62
is the golden ratio [11]. A combination of this branching algorithm with data reduction and
pruning rules achieves the so far best performance on random networks and on sparse real-world
networks [21].

Our Contributions On a conceptual level, we provide an alternative characterization of t-
hereditary 2-clubs (see Lemma 1). Moreover, we present a “unifying view” on all three considered
models based on “compatible vertices” (Definition 4).

On the level of algorithm theory, to the best of our knowledge we provide the first (formal) NP-
hardness proofs for t-Robust 2-Club and t-Hereditary 2-Club for all t ≥ 1. The corresponding
reduction also yields an exponential running time lower bound based on the Strong Exponential
Time Hypothesis (SETH). Moreover, we generalize the NP-hardness result for t-Connected 2-
Club due to Yezerska et al. [36] by showing NP-hardness for all t ≥ 1 even when restricted to
split graphs. On the positive side, we generalize the above-mentioned fixed-parameter algorithm
for 2-Club parameterized by |V | − k [7, 11, 21, 33], to obtain a fixed-parameter algorithm for all
three problem variants.

On an algorithm engineering and empirical level, under heavy use of efficient and effective data
reduction rules and using the above-indicated “unified view” on the three problem variants, we
develop an implementation of our fixed-parameter algorithm that outperforms existing implemen-
tations on almost all (large and sparse) real-world graphs we experimented with. Only for random
graphs we are clearly beaten by previous implementations.

2 Preliminaries

We only consider simple undirected graphs G = (V,E) where V is the vertex set and E ⊆ {{u, v} |
u, v ∈ V } is the edge set. Throughout this work, we use n := |V | and m := |E| to denote the
number of vertices and the number of edges in the input graph G. A subgraph (V ′, E′) of a graph
G = (V,E) is a graph with V ′ ⊆ V and E′ ⊆ E such that all edges in E′ are between vertices
in V ′, i. e. a graph derived from G by deleting vertices and edges. For a graph G = (V,E) and a
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subset S ⊆ V of vertices, G[S] := (S, {{u, v} ∈ E | u, v ∈ S}) denotes the subgraph induced by S.
For v ∈ V we set G− v := G[V \ {v}]. For F ⊆ E we set G− F := (V,E \ F ).

A path is a sequence of vertices such that no vertex occurs twice and any two successive
vertices in the path are adjacent. The length of a path is the number of edges along it. The
distance d(u, v) between two vertices u and v is the length of a shortest path between these two
vertices. If there is a path between two vertices, then these vertices are said to be connected,
and disconnected otherwise. A graph is connected if every pair of its vertices is connected. A
connected component of a graph is a maximal set of vertices which are pairwise connected. Unless
stated otherwise, we assume that the input graphs are connected, as otherwise we can process each
connected component separately. The diameter of a graph is the length of the longest shortest
path in the graph, i. e. the maximum distance between any two vertices in the graph. The open
d-neighborhood Nd(v) of a vertex v is the set of all vertices within distance d of v except v itself.
The closed d-neighborhood Nd[v] is defined as Nd[v] := Nd(v) ∪ {v}. We set N(v) := N1(v).

The vertex connectivity of a graph is the minimum number of vertices that has to be removed
to disconnect the graph or make it trivial; edge connectivity is defined the same way over edges.
The edge density of a graph is m/

(

n
2

)

, that is, the fraction of present edges compared to the
maximum possible number of edges in a graph of n vertices. In the Clique problem we are given
an undirected graph G = (V,E) and an integer k, and we ask whether G contains a clique of
size k, that is, a set S ⊆ V of size k such that every pair of vertices in S is adjacent.

Somewhat abusing notation we will use the terms t-robust, t-hereditary, and t-connected 2-club
to refer to both the vertex sets and the subgraphs induced by them.

3 Structural Properties of Well-Connected 2-Clubs

Before studying the computational complexity of finding t-well-connected 2-clubs, we first derive
some structural properties of the respective t-well-connected 2-club models. We begin with a
simple characterization of t-hereditary 2-clubs.

Lemma 1. A vertex set S ⊆ V is a t-hereditary 2-club in a graph G = (V,E) if and only if each
nonadjacent pair of vertices of S has at least t + 1 common neighbors in G[S].

Proof. (⇒) We show the contraposition of this direction. Thus, assume that there are two non-
adjacent vertices u and v in S that have at most t common neighbors. Now let U := N(u)∩N(v)
and observe that |U | ≤ t by our assumption. The set S is not a 2-club in G[V \ U ] because u
and v are nonadjacent and have no common neighbors. Hence, S is not a t-hereditary 2-club.

(⇐) Assume that every pair of nonadjacent vertices in S has at least t+ 1 common neighbors.
Now, let U ⊆ V be any vertex set of size at most t. Consider the graph G[V \U ]. We show that S
is a 2-club in G[V \ U ]. Let u and v be two vertices of S \ U . If u and v are adjacent, then the
distance between them is one. Otherwise, the distance between them is two: u and v have at least
t + 1 common neighbors in G and one of them is not contained in U .

With this lemma at hand, we can now define the three variants of well-connected 2-clubs based
on a predicate over vertex pairs; these definitions are of central importance for specifying our
algorithms.

Definition 4. Two vertices v and w in a graph are called compatible

• for t-robust 2-clubs if they are adjacent and have at least t− 1 common neighbors, or if they
have at least t common neighbors,

• for t-hereditary 2-clubs if they are adjacent or if they have at least t + 1 common neighbors,

• for t-connected 2-clubs if they are at distance at most two and are connected by at least
t internally vertex-disjoint paths.
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u v

Figure 2: The two vertices u and v are compatible with respect to the 3-robust 2-club model
but the three other vertices are pairwise not compatible. Thus, there is no 3-robust 2-club in the
displayed graph.
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Figure 3: Left: A schematic graph where each of V1, V2, . . . , V6 represents a set of t vertices, for
some arbitrary t ≥ 1. Each edge {v, w} in the left graph represents a complete bipartite graph
with the partite sets represented by v and w. Right: The actual graph for t = 3. The left graph
is a 2-club since u is adjacent to all vertices. Furthermore, the graph is t-connected, that is, each
pair of vertices is connected via t internally vertex-disjoint paths. Thus the graph is a t-connected
2-club. Deleting u results in a graph of diameter three. Hence, the graph is not a 1-hereditary
2-club and not a 2-robust 2-club.

Note that if there are two compatible vertices u and v, then this does not necessarily mean
that in a graph G there is some t-well-connected 2-club S containing both u and v, see Figure 2
for an example. Definitions 1 to 4 and Lemma 1 imply the following.

Observation 1. A graph is a t-robust, t-hereditary, or t-connected 2-club if and only if every pair
of vertices in G is compatible.

Definition 4 and Observation 1 immediately give the following relation between the three con-
cepts. Observe that there is an offset of 1 in the correspondence between t-robust or t-connected
2-clubs and t-hereditary 2-clubs.

Observation 2. A t-robust 2-club is a (t − 1)-hereditary 2-club and a t-connected 2-club. A
t-hereditary 2-club of size at least t + 2 is a (t + 1)-connected 2-club.

In Figure 1 in Section 1, we can already see that a complete bipartite Kt,t is a (t−1)-hereditary
2-club but not even a 2-robust 2-club. Moreover, Figure 3 depicts a t-connected 2-club that is
neither a 2-robust nor a 1-hereditary 2-club. Thus, Observation 2 lists all relations between the
three t-well-connected 2-club models we study.

In our implementation, we use data reduction rules that remove vertices of low degree. The
rationale behind these rules is provided by the following observations.

Observation 3. 1. Neither a t-robust 2-club nor a t-connected 2-club can contain a vertex of
degree less than t.

2. A t-hereditary 2-club S containing a vertex of degree less than t + 1 is a clique.

Proof. First, consider t-robust and t-connected 2-clubs. Let S be a vertex set containing a vertex u
of degree less than t. The number of vertex-disjoint paths (of any length) between u and any other
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vertex in S is less than t since u has less than t neighbors. Hence, S is neither a t-robust 2-club
nor a t-connected 2-club.

We now show the claim for t-hereditary 2-clubs. Let S be a t-hereditary 2-club containing a
vertex u of degree less than t+1. It follows from Definition 4 and Observation 1 that u is adjacent
to all other vertices in S. Hence, |S| ≤ t + 1 and all vertices in S have also degree less than t + 1.
It follows from Definition 4 and Observation 1 that S is a clique.

Thus, for t-connected and t-robust 2-clubs one may remove all vertices of degree less than t.
Furthermore, to find t-hereditary 2-clubs containing vertices of degree less than t+1 it is sufficient
to solve Clique:

Observation 4. Every clique is a t-hereditary 2-club for all values of t.

Proof. Clearly, a clique K is a 2-club. Since K does not contain any nonadjacent vertices, Lemma 1
implies that K is a t-hereditary 2-club.

Observation 4 implies that the largest t-hereditary 2-club is at least as large as a maximum-
cardinality clique. In contrast, for every graph there are values of t such that the graph neither
contains a t-robust 2-club nor a t-connected 2-club. For example a clique of n vertices is not
n-robust and also not n-connected.

For t = n− 1, where n is the number of graph vertices, we always obtain the clique model as
the following observation implies.

Observation 5. A t-hereditary 2-club S with at most t + 2 vertices is a clique. A t-robust/t-
connected 2-club S with at most t + 1 vertices is a clique of size t + 1.

Proof. First consider a t-hereditary 2-club S with at most t + 2 vertices. For any pair of vertices
of S, there are only t further vertices in S which potentially can be common neighbors for both.
Therefore, by Definition 4, any two vertices in S can only be compatible if they are adjacent.
Thus, S is a clique.

For t-robust 2-club and t-connected 2-clubs the statement follows from Observation 3 and the
fact that the maximum degree in a graph on t + 1 vertices is at most t.

4 Complexity Classification and Exact Algorithms

In this section, we show that all three t-well-connected 2-club detection problems are NP-complete
for all fixed t. In the case of t-robust and t-hereditary 2-clubs, we observe that the NP-completeness
also holds for graphs that share properties with scale-free networks. The NP-hardness of the
problems motivates the development of fixed-parameter algorithms for them. Fixed-parameter
algorithms are exact algorithms whose running time is polynomial in the input size but usually
exponential in a problem-specific parameter [12, 14, 29, 15]. We will describe such an algorithm for
all three problems and show that, in the case of t-Robust 2-Club and t-Hereditary 2-Club,
it is likely to be optimal with respect to worst-case running time. Subsequently, we will show how
to solve all three problems by solving O(n) smaller instances of the problem. This, together with
the fixed-parameter algorithm, will serve as the basis for our implementation, providing an exact
combinatorial algorithm for finding well-connected 2-clubs.

4.1 Hardness Results

By a polynomial-time reduction from 2-Club, we show, for all values of t, the NP-hardness of
finding t-hereditary and t-robust 2-clubs.

Theorem 1. t-Robust 2-Club is NP-complete for every t ≥ 1. t-Hereditary 2-Club is
NP-complete for every t ≥ 0.
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Proof. Containment in NP is obvious. The NP-hardness of 1-Robust 2-Club and 0-Hereditary
2-Club is already known as these problems are exactly the 2-Club problem [7]. The NP-hardness
of both problems for the remaining values of t can be shown via simple polynomial-time reductions
from the 2-Club problem, which was shown to be NP-complete by Bourjolly et al. [7].

For any 2-Club instance (G, k) we construct an equivalent t-Hereditary 2-Club instance (G′, k+
t), t > 0, where G′ = (V ′, E′) is obtained from G by adding a set V ∗ = {v∗1 , . . . , v

∗
t } of t fur-

ther vertices and making them adjacent to all vertices of G and to each other. This can obviously
be done in polynomial time. It remains to be shown that G has a 2-club of size at least k if and
only if G′ has a t-hereditary 2-club of size at least k + t.

First, consider a 2-club S in G. Then, the set S∪V ∗ is a t-hereditary 2-club in G′: Only vertices
in S can be pairwise nonadjacent. Moreover, each pair of nonadjacent vertices in S has at least one
common neighbor in S and t common neighbors in V ∗. Thus, by Definition 4 and Observation 1,
S ∪ V ∗ is a t-hereditary 2-club.

Conversely, consider a t-hereditary 2-club S′ of size at least k + t in G′. Note that |V ∗| = t
and thus, by Definition 2, S′ \ V ∗ is a 2-club of size at least k in G.

For t-Robust 2-Club, t > 1, we adapt the construction by adding to G a set V ∗ = {v∗1 , . . . , v
∗
t−1}

of t− 1 further vertices and making them adjacent to all vertices of V ∪ V ∗.
If G has a 2-club S of size at least k, then S ∪ V ∗ is a t-robust 2-club of size at least k + t− 1

in G′: Every pair of vertices from S is connected by at least t internally vertex-disjoint paths of
length two in G′[S ∪ V ∗] since they have t − 1 such paths via the vertices in V ∗ and are either
adjacent or have a common neighbor in S.

Conversely, let S′ be a t-robust 2-club of size at least k + t − 1 in G′ and let S := S′ ∩ V .
Then, S is a 2-club of size at least k in G: Every pair of nonadjacent vertices in S is connected by
t vertex-disjoint paths of length two in G′[S′]. At least one of these paths contains only vertices
from S since |S′ \ S| ≤ t− 1. Hence, these nonadjacent vertices have a common neighbor in S.

Altogether we have polynomial-time reductions from 2-Club to t-Hereditary 2-Club for
every t ≥ 0 and from 2-Club to t-Robust 2-Club for every t ≥ 1.

The above reduction leaves the graph almost unchanged and thus many NP-hardness results
that were obtained for 2-Club transfer almost directly to t-Hereditary 2-Club and t-Robust
2-Club. We list here the hardness results for graphs with properties that are typical for certain
real-world networks. For instance, the class of split graphs finds applications in social networks in
the context of “core-periphery models” [5].

The graph classes mentioned in the subsequent corollary are defined as follows. A graph G =
(V,E) is a split graph if V can be partitioned into V1 and V2 such that G[V1] is a clique and G[V2]
is an independent set. A graph has domination number 1 if there is a vertex that is adjacent to
all other vertices. A graph G has degeneracy d if every subgraph of G contains a vertex of degree
at most d.

Corollary 1. t-Hereditary 2-Club and t-Robust 2-Club are NP-complete for t ≥ 1 on

(1) graphs with both diameter two and domination number one,

(2) connected graphs with average vertex degree at most α, for all α > 2,

(3) graphs with degeneracy 6 + t, and

(4) split graphs.

Proof. Regarding (1), note that the graph G′ constructed by the reduction in the proof of Theorem 1
has at least one vertex adjacent to all other vertices and thus diameter two and domination number
one.

Regarding (2), note that the statement is known for 1-robust 2-clubs, that is, standard 2-
clubs [22]. Thus, we discuss subsequently t-hereditary 2-clubs for t ≥ 1 and t-robust 2-clubs
for t ≥ 2. We add a long path to the graph obtained by the construction in the proof of Theorem 1
and add an edge from one endpoint of the path to an arbitrary vertex in the original graph. This
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decreases the average degree to any constant arbitrarily close to 2. No vertex of the path can be
contained in any t-hereditary (t ≥ 1) or t-robust (t ≥ 2) 2-club of size at least three. Since we can
assume that the solution size k is at least three, we obtain an equivalent instance with the desired
average degree. This adjusted reduction shows NP-hardness for any average degree greater than
two.

Regarding (3), note that 2-Club is NP-hard on graphs with degeneracy six [22]. Adding t
vertices that are adjacent to all other vertices increases the degeneracy by at most t, therefore
t-Hereditary 2-Club and t-Robust 2-Club are NP-hard on graphs with degeneracy 6 + t.

Regarding (4), observe that if the graph G in the 2-Club instance is a split graph, then also
the graph G′ constructed by the reduction in the proof of Theorem 1 is a split graph. This implies
the NP-hardness of t-Hereditary 2-Club and t-Robust 2-Club on split graphs since 2-Club
remains NP-hard on split graphs [2].

t-Connected 2-Club is known to be NP-hard for t ≤ 2 [4, 36]; for the sake of completeness,
we show hardness for all constant t. Observe in this context that the reduction in the proof of
Theorem 1 does not work for t-Connected 2-Club: Adding t − 1 common neighbors for all
vertices of G results in a t-connected graph of diameter two.

Theorem 2. t-Connected 2-Club is NP-complete, even on split graphs, for all t ≥ 1.

Proof. Containment in NP is obvious. To show NP-hardness, we use a known reduction from
Clique to 2-Club [4]. We assume, however, that in the Clique instance every vertex has
at least t neighbors; obviously, Clique remains NP-hard with this restriction. Given such an
instance (G = (V,E), k) of Clique, construct an instance G′ = (V ′, E′) of t-Connected 2-
Club as follows. The vertex set V ′ consists of V and one vertex for each edge of G. More
formally, V ′ := V ∪ VE where VE := {ve | e ∈ E}. Now construct the edge set E′: First, make VE

a clique. Second, for each v ∈ V and each edge e that is incident with v in G, add an edge
between v and ve. The graph G′ is a split graph and can obviously be constructed in polynomial
time. We conclude the proof by showing that G has a clique of size at least k if and only if G′ has
a t-connected 2-club of size at least k + |E|.

Let S be a clique in G. Then S ∪ VE is a t-connected 2-club of size at least k + |E| in G′:
t-connectivity follows from the fact that, by the assumption on the minimum degree in G, each
vertex of S has t neighbors in the large clique VE . The 2-club property follows from the fact that
each pair of vertices u, v ∈ S has a common neighbor in VE since u and v are adjacent in G.

Conversely, consider a t-connected 2-club S′ of size at least k+ |E| in G′. Consider S := S′∩V .
Clearly, |S| ≥ k. Moreover, S is a clique in G: every pair of vertices u and v in S has a common
neighbor in G′. This common neighbor represents an edge of G that is incident with u and v.

4.2 Fixed-Parameter Algorithm with Respect to the Dual Parameter

n-k

We now describe a fixed-parameter algorithm for all three problems which is the basis for our
implementation. The general idea—branching on vertices that are incompatible—was introduced
by Bourjolly et al. [7] for 2-Club. The analysis of the algorithm exploits the parameter ℓ := n−k,
that is, the number of vertices not contained in a largest t-well-connected 2-club.

Theorem 3. For ℓ := n − k, t-Hereditary 2-Club and t-Robust 2-Club can be solved in
O(2ℓ · nm) time and t-Connected 2-Club can be solved in O(2ℓ · t2nm) time.

Proof. The algorithm is a simple branching algorithm that, as long as two vertices are incompati-
ble, branches into deleting either of them; see Algorithm 1 for a pseudocode. This procedure leads
to a search tree with at most 2ℓ leaves. To determine in Line 3 whether the current graph already
fulfills the desired property, we check whether there are any incompatible vertices in the graph.
Thus, the only difference between the three algorithms is the definition of compatibility, that is,
in Lines 3 and 5 we need different algorithms to find incompatible vertices.

8



Algorithm 1: A fixed-parameter algorithm computing a maximum-size t-well-connected
2-club parameterized by ℓ := n− k.

Input: A graph G = (V,E) and positive integers t and ℓ.
Output: True if G contains t-well-connected 2-club of size at least n− ℓ, false otherwise.

1 branch(G, ℓ)

2 Function branch(G, ℓ)

3 if G is a t-well-connected 2-club then return true

4 if ℓ = 0 then return false

5 u, v ← two incompatible vertices
6 return branch(G − u, ℓ− 1) ∨ branch(G − v, ℓ− 1)

For t-Robust 2-Club and for t-Hereditary 2-Club, we first count for each vertex pair the
number of common neighbors. This can be done in O(nm) time by considering for each vertex
in G each pair of neighbors. An incompatible pair can now be found in O(n2) time by considering
each vertex pair and applying Definition 4.

For t-Connected 2-Club, we first determine in O(nm) time whether there is a vertex pair
that has distance at least three in G. If yes, then the two vertices are nonadjacent. Otherwise,
we apply the algorithm of Galil [18] that determines in O(t2nm) time whether the graph is t-
connected or to find a pair of vertices u and v that are in different t-connected components if this
is not the case.

We next prove that Algorithm 1 is likely to be asymptotically optimal for t-Robust 2-Club
and t-Hereditary 2-Club by showing that there can be no algorithm with running time (2 −
ǫ)ℓ · nO(1) for any ǫ > 0 for (2, t)-Club, unless the so-called Strong Exponential Time Hypothesis
(SETH) [23] fails.1 The SETH postulates that CNF-Sat, the satisfiability problem for boolean
formulas in conjunctive normal form, cannot be solved in time (2 − ǫ)N · |F |O(1) for any ǫ > 0,
where N is the number of variables in the given formula F and |F | is the formula size. The proof
is based on the reduction described in the proof of Theorem 1 and a similar known result for
2-Club [21].

Theorem 4. If the Strong Exponential Time Hypothesis (SETH) holds, then t-Robust 2-Club
and t-Hereditary 2-Club do not admit a (2 − ǫ)ℓ · nO(1)-time algorithm for any ǫ > 0.

Proof. The reduction presented in the proof of Theorem 1 transforms a 2-Club instance (G =
(V,E), k) into a t-Robust 2-Club or a t-Hereditary 2-Club instance (G′ = (V ′, E′), k′)
where |V |′ = |V | + t − 1 and k′ = k + t − 1 or |V |′ = |V | + t and k′ = k + t. Hence, the
dual parameters ℓ = |V |− k and ℓ′ = |V ′|− k′ are not changed by either reduction. Consequently,
any algorithm solving t-Robust 2-Club or t-Hereditary 2-Club in (2 − ǫ)ℓ · nO(1) time for
some ǫ > 0 implies an algorithm solving 2-Club in this time. This is impossible if the SETH is
true [21].

As a final note, as shown by Chang et al. [11] for 2-Club, Algorithm 1 has a worst-case running
time of αnnO(1), where α < 1.62 is the golden ratio.

Corollary 2. t-Robust 2-Club, t-Hereditary 2-Club, and t-Connected 2-Club can be
solved in O(1.62n) time.

Proof. Consider the search tree algorithm of Theorem 3. Whenever we branch over a pair of
incompatible vertices v and w, we can delete v in one branch and fix v (as contained in the sought
solution) in the other branch. The justification for fixing v is that the first branch already explores
all possible solutions that do not contain v, therefore v can be assumed to be in the solution in the
second branch. For any fixed vertex, we delete all vertices that are incompatible with v. Thus, in

1 The SETH is a well-accepted hypothesis in computational complexity theory and is used in several other
lower-bound results [27].
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the branch fixing v, we can delete w and, possibly, some further vertices. Branching continues until
either (a) the graph is t-well-connected 2-club or (b) all remaining vertices are fixed. In case (a)
we found a solution and in case (b) we fixed two incompatible vertices, leading to a contradiction.
Letting j denote the number of nonfixed vertices in G, the recursion for the number of leaves
in the search tree is T (j) = T (j − 1) + T (j − 2) and initially j = n. This is the recurrence for
Fibonacci numbers implying a search tree size of O(αn) where α < 1.62.

4.3 Turing Kernelization

In this section, we describe parameterized preprocessing rules for our three t-well-connected 2-club
detection problems. Herein, the parameter is the maximum degree ∆ of the input graph G. The
idea of a “Turing kernelization” is to solve the original problem instance by solving polynomially
many problem instances whose size is upper-bounded in the parameter value (cf. Kratsch [25]).
These problem instances are small if the parameter value is small. In our case, we need to solve n
problem instances, each consisting of O(∆2) vertices. An analogous result for 2-club was shown
by Schäfer et al. [33].

Theorem 5. t-Robust 2-Club, t-Hereditary 2-Club, t-Connected 2-Club can be solved
by solving O(n) instances of t-Robust 2-Club, t-Hereditary 2-Club, and t-Connected 2-
Club, respectively, where each instance contains at most ∆2 vertices.

Proof. By definition, every 2-club has diameter at most two and is therefore fully contained in the
closed 2-neighborhood of each of its vertices in the original input graph. To find the largest t-well-
connected 2-club in a graph G it is now sufficient to search in each of the n closed 2-neighborhoods
of G for a largest such 2-club and take the largest among all of them. In a graph with maximum
degree ∆ ≥ 2 the size of the closed 2-neighborhood of any vertex v is upper-bounded by ∆2 as v
can have at most ∆ neighbors which each can have at most ∆ − 1 other neighbors besides v.

While Theorem 5 is simple to show, it has important practical implications. It allows us to
decompose larger (and relatively sparse) graphs into a linear number of smaller graphs where the
problem can be solved efficiently. The smaller individual graphs are called Turing kernels. This
result has been used for 2-Club-implementations [21] and we use it as well in our implementation
as described in Section 5. As a corollary, we obtain the following running time bound employing
the parameter ∆. To this end, note that one can compute all Turing kernels in O(n∆2) time.

Corollary 3. t-Robust 2-Club, t-Hereditary 2-Club, and t-Connected 2-Club can be
solved in O(1.62∆

2

· n) time on graphs with maximum degree ∆.

5 Implemented Algorithm

In this section we describe our implementation for solving all three extensions of the 2-Club
model. Recall that we use the term t-well-connected 2-clubs to make statements that hold for
all three models. The pseudocode given in Algorithm 2 shows the general setup of the algorithm
which includes the Turing kernelization (Theorem 5) and the search tree (Theorem 3) combined
with data reduction rules inspired by Hartung et al. [21]. In addition, our algorithm uses data
structures for maintaining compatibility information (see Definition 4) for all vertices.

While the criterion for compatibility depends on the selected model, our algorithm mostly works
with the compatibility information. Thus, the major difference between the three models within
our algorithm is the test whether two vertices are compatible. For the t-robust 2-club and the
t-hereditary 2-club model, the compatibility of two vertices depends on whether they are adjacent
and how many common neighbors they have. It is thus relatively easy to maintain the compatibility
information for these two models as deleting a vertex can only affect the compatibilities of its
neighbors. For the t-connected 2-club model one needs to compute the number of (internally)
vertex-disjoint paths to determine whether two vertices at distance at most two are compatible. To
this end, we use a standard linear-time reduction to a maximum flow problem with unit capacities.
To compute the maximum flow, we use the classic algorithm of Ford and Fulkerson [16].
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Algorithm 2: Our algorithm for finding t-well-connected 2-clubs.

Input: A graph G = (V,E) and a positive integer t.
Output: A maximum-size t-well-connected 2-club.

1 ℓ← 0; S ← ∅ // ℓ: lower bound, S: best solution so far
2 if t = 1 then ℓ← ∆+ 1 // initialize lower bound
3 T ← Turing kernels sorted by size in nondecreasing order
4 foreach Turing kernel T ∈ T do

5 Apply data reduction rules on T // see Section 5.2
6 if size of T is larger than ℓ then

7 solution ← branch on T // using Algorithm 1; see Section 5.1
8 if solution size > ℓ then

9 ℓ← solution size; S ← solution

10 return S

5.1 The Search Tree Method and Turing Kernelization

The first step of the algorithm is to utilize Turing kernelization based on our observations from
Section 4.3. For each vertex v of the original graph, we construct a Turing kernel consisting of
the closed 2-neighborhood N2[v] of that vertex. We then run the search tree method described
in Section 4.2 on each of the generated Turing kernels. For each Turing kernel we initially mark
the vertex v from which we derived the kernel (marking means that we assume that v is part of
the t-well-connected 2-club). The marking is correct since every vertex is marked exactly once.
Additionally, after solving the Turing kernel for v we remove v from the graph and from all
subsequent Turing kernels because if v is part of an optimal solution, then we have found this
solution in the kernel for v. Also, we discard any Turing kernel not larger (in terms of number
of vertices) than the current lower bound. The largest t-well-connected 2-club of the input graph
then is simply the largest among the t-well-connected 2-clubs of each individual kernel.

As an initial lower bound, we use maximum degree plus one for t = 1 (t = 0 in the case of
t-hereditary 2-clubs). For t ≥ 2, we set the initial lower bound to zero. This is because we know of
no lower bounds which are easy to compute and sufficiently strong. Due to the absence of an initial
lower bound, we check the individual kernels of the graph in order of nondecreasing size. The idea
is to keep for all considered kernels the gap between the current solution size lower bound and
the size of the currently considered kernel as small as possible, as this gap constitutes an upper
bound on the depth of the search tree for any given kernel. To reduce overhead from re-evaluating
the size of each kernel after every vertex deletion, we sort the kernels of the graph once at the
beginning of the algorithm by the size of the 2-neighborhood of the respective vertices and stick to
this order throughout the run of the algorithm, even though some kernels might become smaller
than some of their predecessors due to vertex deletions. In our experiments we observed that this
worked quite well in the sense that on instances where the algorithm needs more than a minute,
less than 10% of the running time of our algorithm is spent on the branching.

5.2 Data Reduction Rules

To further improve the search tree method, we exhaustively apply various data reduction rules
to shrink the original graph as well as every Turing kernel. The data reduction rules we use are
mostly generalizations of known data reduction rules for 2-Club [21]. They are as follows:

Reduction Rule 1 (Marked Incompatible Rule). If at any time two vertices are both marked
and incompatible, then abort the branch.

Reduction Rule 2 (Incompatible Resolution). Remove all vertices which are incompatible with
any marked vertices.

The correctness of these two rules is obvious as a t-well-connected 2-club by definition cannot
contain incompatible vertices.
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Reduction Rule 3 (Low Degree Rule). Remove vertices of degree less than t (less than t + 1
for the t-hereditary 2-club model). For t = 1 (t = 0 for the t-hereditary 2-club model) delete all
vertices of degree one. If a marked vertex was deleted, then abort the branch.

This data reduction rule is not universally correct, so we need to make two exceptions.
First, deleting degree-one vertices for t = 1 (t = 0 for the t-hereditary 2-club model) is only

correct when initializing the algorithm with the closed 1-neighborhood of the maximum degree
vertex as initial solution. A 2-club containing a degree-one vertex can only consist of the closed
1-neighborhood of its neighbor. Hence, no solution better than the one obtained from the closed
1-neighborhood of the maximum degree vertex contains degree-one vertices.

Second, Observation 3 shows that for the t-hereditary 2-club model, deleting vertices of degree
less than t+ 1 is only correct if the solution is not a clique. However, cliques of size at most t are
by definition t-hereditary 2-clubs. Thus, we first assume that the t-hereditary 2-club has size at
least t + 1 which allows us to apply the Low Degree Rule. If we do not find a t-hereditary 2-club
under this assumption, then we use a standard Clique algorithm to find the largest clique and
return it. The running time of the Clique algorithm is, if it is invoked at all, much lower than the
running time for finding the t-hereditary 2-club of size at least t+ 1. We use the Low Degree Rule
extensively on the whole graph as well as on every kernel individually, both initially and whenever
the degree of a vertex falls below t due to vertex deletions.

Reduction Rule 4 (Low Compatibility Rule). Remove vertices whose number of compatible
vertices is lower than the current lower bound. If a marked vertex was deleted, then abort the
branch.

The correctness of this data reduction rule follows from the fact that a t-well-connected 2-club
containing some vertex v can only contain vertices which are compatible with v. Thus, if v has
less compatibilities than the current lower bound, then no t-well-connected 2-club containing v
contains more vertices than the current lower bound.

Our next data reduction rule uses the notion of vertex cover. A vertex cover in a graph G =
(V,E) is a vertex subset V ′ ⊆ V such that each edge in E is incident with at least one vertex
in V ′.

Reduction Rule 5 (Vertex Cover Rule). Let G = (V,E) be the current instance and let GC =
(V,E′) be the corresponding incompatibility graph, where {v, w} ∈ E′ if and only if v and w are
incompatible. Compute a lower bound b on the vertex cover size of GC . If |V | − b does not exceed
our current lower bound for the solution size, then abort the branch.

The correctness of the Vertex Cover Rule follows from the observation that the size of a
minimum vertex cover of GC is a lower bound on the number of vertices in G that still must be
deleted in order to obtain a t-well-connected 2-club. As a quickly-to-compute lower bound for the
vertex cover size we use the size of a maximal matching.

The Vertex Cover Rule (VCR) reduces the search space substantially, but it is costly in terms
of running time. We therefore use the following observations to cut down the number of necessary
applications of the VCR: Whenever we have created no new incompatibilities since the last appli-
cation of the VCR, the last result of the VCR is still a valid lower bound for the required number
of vertex deletions. Thus, we reuse the last lower bound b on the vertex cover when applying the
VCR rule. To further decrease the number of VCR applications, we remember the last vertex
cover of the incompatibility graph and only count as new those incompatibilities which are not
covered by this last vertex cover. If we have created x new conflicts since the last application of
the VCR, then a new application of the VCR will report at most x further required deletions over
the last result of the VCR. So if the last upper bound minus x is not enough to trigger the VCR,
then there is no need to check the VCR again.

Reduction Rule 6 (No Choice Rule). If at any time two nonadjacent marked vertices have
exactly x common neighbors, then mark all of their neighbors which are not marked yet. Here, x
is:
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• t for the t-robust 2-club model,

• t + 1 for the t-hereditary 2-club model, and

• 1 for the t-connected 2-club model.

The reason for having a much weaker bound for t-connected 2-clubs is that the t paths con-
necting two compatible vertices can have length more than two: For example, consider a cycle C5

on five vertices with exactly two nonadjacent vertices u and v being marked. In the cycle, u
and v have exactly one common neighbor. However, the C5 is a 2-connected 2-club. The graph
shown in Figure 3 in Section 3 “generalizes” the C5 example: The graph is a t-connected 2-club
is displayed where vertex pairs (e. g. a marked vertex in the set V1 and a marked vertex in the
set V4) have only one common neighbor. Thus, if two nonadjacent marked vertices have at least
two common neighbors, then one might still be able to delete one of the two vertices without
destroying t-connectedness.

We exhaustively apply all reduction rules except the Vertex Cover Rule on each constructed
Turing kernel. We use the Vertex Cover Rule only during the branching to prune the search tree.

5.3 Data Structures

To perform the data reduction rules quickly at all times, the following information about the
current Turing kernel is held up-to-date. To this end, recall that the current Turing kernel is a
vertex v ∈ V together with its 2-neighborhood and that the Turing kernels are processed one after
the other, see Lines 4 to 9 in Algorithm 2.

Common Neighbor Matrix A matrix storing for each pair of vertices in the current Tur-
ing kernel their number of common neighbors. This data structure is very important for the
t-hereditary 2-club and t-robust 2-club model. However, also in the t-connected 2-club model it is
useful to check in constant time whether two nonadjacent vertices have a common neighbor, that
is, whether they are at distance at most two.

Incompatibility Graph A graph over the same vertex set as in the Turing kernel where two
vertices are adjacent if and only if the two vertices are incompatible. Hence, for each edge {v, w}
in this graph at least one of the two vertices v or w must be deleted in order to obtain a t-well-
connected 2-club.

Compatibility Vector A vector containing for each vertex v of the current Turing kernel the
number of vertices that are compatible with v. Among other things this vector allows a fast (linear
in the number of vertices of the current Turing kernel) look-up of the vertex that is compatible
with the fewest other vertices; this vertex is used as the next branching candidate. When looking
for 2-clubs, the entries in the compatibility vector correspond to the size of the 2-neighborhood of
the respective vertex.

The initialization of these data structures requires O(m∆+n2) time for the t-hereditary 2-club
model and t-robust 2-club model, where n is the number of vertices in the kernel, m is the number
of edges in the kernel, and ∆ is the maximum vertex degree in the kernel. For the t-connected
2-club model we implemented the classical maximum flow algorithm of Ford and Fulkerson [16]
to determine whether two vertices are compatible. Thus, for t-connected 2-clubs there is an
additional O(tm) running time factor giving an overall initialization time of O(tn2m).

We first initialize the common neighbor matrix with zero values and then for each vertex v
of the kernel increase the entry of each pair of neighbors of v by one. Afterwards, for the t-
hereditary 2-club model and the t-robust 2-club model, a single pass over the common neighbor
matrix suffices to count the number of compatible vertices for each vertex and identifying every
initial incompatibility. For the t-connected 2-club model, we run the maximum flow algorithm for
every pair of vertices that are at distance at most two from each other. The initialization cost can
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be quite large for dense kernels with many vertices (more than 50% of the overall running time on
large social networks), so we apply all data reduction rules we can use without this information
first. If after this quick preprocessing the kernel has less vertices than the current lower bound,
then we discard the kernel before the initialization of the data structures. To keep the information
continuously up-to-date, for every vertex v that is deleted, we do the following.

1. Decrease the number of compatible vertices of all vertices not compatible with v by one; this
can be done in O(n) time, where n is the number of vertices in the current kernel.

2. Decrease the common neighbor counter for all pairs of neighbors of v by one; this can be
done in O(deg(v)2) time, where deg(v) is the degree of v.

3. Update the incompatibility graph:

• For t-robust 2-clubs and t-hereditary 2-clubs, we can quickly update the incompatibility
graph while updating the common neighbor counter (see Definition 4).

• For t-connected 2-clubs, we run the maximum flow algorithm between every pair of
vertices that were compatible before deleting v. If the two vertices have distance more
than two, then we set them incompatible without running the maximum flow algorithm.

For t-robust 2-clubs and t-hereditary 2-clubs, this leads to an O(n + deg(v)2)-time overhead
for every deletion of a vertex v to keep the information up-to-date. For t-connected 2-clubs, the
overhead is in the worst case O(tn2m). Overall, the overhead is quite significant but enables us
to perform our data reduction rules quickly and extensively whenever they apply and as soon as
they apply.

5.4 Integer Linear Programming Formulation for the t-Hereditary 2-

Club Problem

We want to utilize a state-of-the-art ILP solver (Gurobi) as benchmark for our algorithm on
instances with t ≥ 2. To this end, we now describe the ILP formulation for t-Hereditary 2-
Club which we will use in our performance tests in Section 6. Given a graph G = (V,E) and an
integer t, the t-Hereditary 2-Club problem can be solved with the following ILP:

Introduce a 0/1-variable xv for each vertex v of the graph G. Setting xv = 1 indicates v ∈ S,
where S is the solution set of vertices, that is, a set of vertices constituting a maximum t-hereditary
2-club. The ILP is

max
∑

v∈V

xv

s. t. (t + 1) · xu + (t + 1) · xw −
∑

v∈N(u)∩N(w)

xv ≤ (t + 1) ∀{u,w} /∈ E,

xv ∈ {0, 1} ∀v ∈ V.

For each nonadjacent pair of vertices u and w we have a constraint enforcing to either take at most
one of the two vertices u and w into the solution or add at least t+ 1 of their common neighbors,
too.

This formulation generalizes the ILP formulation for the 2-Club problem as first described
by Bourjolly et al. [7] and used several times afterwards [4, 9, 8]. Furthermore, we remark that
the ILP formulation of Veremyev and Boginski [34] for finding t-robust 2-clubs is very similar.

6 Computational Experiments

In this section, we provide an experimental evaluation of our implementation2 (see Section 5)
on random graphs as well as on real-world graphs from the 10th DIMACS challenge [13]. Our

2Available from http://fpt.akt.tu-berlin.de/software/well-connected-2-club/wc2club.jar.
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Table 1: Results on random graphs of density 0.15. All time measurements are the average over
100 instances with the described parameters. All running times are given in seconds. If a running
time is bold, then some of these 100 instances (the number is given in brackets) did not finish
within the time limit of one hour and the respective instance is accounted with one hour in the
average. Bold values are therefore just lower bounds on the real running times.

a b n WCC HKN CHLS ILP

0.0 0.3 140 3.50 1.27 1.00 3.61
150 5.71 1.71 1.82 4.48
160 6.84 1.99 2.64 5.03

0.05 0.25 140 19.34 6.11 7.37 38.67
150 39.54 11.98 18.00 63.23
160 72.35 18.33 30.54 95.04

0.1 0.2 140 70.09 24.34 29.99 246.20
150 183.04 59.41 85.94 605.76 [2]
160 557.92 178.16 306.51 1,115.38 [9]

0.15 0.15 140 105.68 39.85 48.62 612.50
150 322.70 118.77 168.91 1,508.00 [8]
160 1,132.05 [1] 384.38 611.65 [1] 2,594.98 [46]

implementation solves the optimization versions of the problems and finds t-well-connected 2-
clubs of maximum size. We refer to our implementation in the following as WCC (well-connected
2-club). For the special case of solving the basic 2-Club problem (see Section 6.1), we compare WCC
against the programs of Hartung et al. [21]3 (referred to as HKN) and Chang et al. [11]4 (referred
to as CHLS). Furthermore, in Section 6.2 we also compare against two programs of Yezerska et al.
[36]5 (one branch-and-bound algorithm, one ILP) for finding 2-connected 2-clubs. In Section 6.3
we analyze the performance of WCC for finding t-well-connected 2-clubs in social networks for t ≥ 1.
In all our experiments, we set the time limit to one hour. All time measurements include the time
to read the input graph.

We ran all our experiments on an Intel(R) Xeon(R) CPU E5-1620 3.60 GHz machine with
64 GB main memory under the Debian GNU/Linux 7.0 operating system. Our implementation
is in Java and runs under the OpenJDK runtime environment in version 1.7.0 65. The C++
implementation of Yezerska et al. [36] was compiled with g++ version 5.4.0.

6.1 Comparison with other 2-Club Algorithms

We may use our implementation (WCC) in three ways to find 2-clubs: by looking for 1-robust 2-clubs,
0-hereditary 2-clubs, or 1-connected 2-clubs. We report the running times for the setting where
we look for 0-hereditary 2-clubs since this is faster than the other two settings. The setting where
we look for 1-connected 2-clubs is particularly slow since our implementation uses a maximum
flow computation to verify that the graph is connected.

Random Graphs As in previous experimental evaluations [21, 11], we use the random graph
generator due to Gendreau et al. [19] where the density of the resulting graphs is controlled by
two parameters, 0 ≤ a ≤ b ≤ 1, and the expected density is (a + b)/2.

The results on random graphs give a clear picture: As our algorithm is not designed for random
graphs but large sparse real-world networks, the implementations of Hartung et al. [21] (HKN) and
Chang et al. [11] (CHLS) are both significantly faster than ours. However, WCC still outperforms
our ILP. Table 1 summarizes the results for random graphs with expected density 0.15, which
produces the hardest instances as already observed earlier [7, 21, 11].

3Available from http://fpt.akt.tu-berlin.de/two_club/.
4Available from https://sites.google.com/site/kdynamicneighborhoodproject/.
5Yezerska et al. [36] sent us the code of their two programs.
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Table 2: Our data set sorted by the number of edges. Here, n∗ is the number of vertices (excluding
isolated vertices that are discarded when reading the graph), m is the number of edges, density

is defined as m/
(

n∗

2

)

, ∆ is the maximum degree, and size is the number of vertices in a largest
2-club.

Graph n∗ m density avg. deg. ∆ size

karate 34 78 0.14 4.59 17 18
dolphins 62 159 8.41 · 10−2 5.13 12 13
adjnoun 112 425 6.84 · 10−2 7.59 49 50
polbooks 105 441 8.08 · 10−2 8.4 25 28
football 115 613 9.35 · 10−2 10.66 12 16

celegans-metabolic 453 2,025 1.98 · 10−2 8.94 237 238
jazz 198 2,742 0.14 27.7 100 103

netscience 1,461 2,742 2.57 · 10−3 3.75 34 35
email 1,133 5,451 8.5 · 10−3 9.62 71 72
power 4,941 6,594 5.4 · 10−4 2.67 19 20

uk 4,824 6,837 5.88 · 10−4 2.83 3 5
add20 2,395 7,462 2.6 · 10−3 6.23 123 124
add32 4,960 9,462 7.69 · 10−4 3.82 31 32
data 2,851 15,093 3.71 · 10−3 10.59 17 18

hep-th 7,610 15,751 5.44 · 10−4 4.14 50 51
polblogs 1,224 16,715 2.23 · 10−2 27.31 351 352

PGPgiantcompo 10,680 24,316 4.26 · 10−4 4.55 205 206
whitaker3 9,800 28,989 6.04 · 10−4 5.92 8 9

crack 10,240 30,380 5.8 · 10−4 5.93 9 10
cs4 22,499 43,858 1.73 · 10−4 3.9 4 6

coAuthorsCiteseer 2.3 · 105 8.1 · 105 3.15 · 10−5 7.16 1,372 1,373
coAuthorsDBLP 3 · 105 9.8 · 105 2.19 · 10−5 6.54 336 337
citationCiteseer 2.7 · 105 1.2 · 106 3.21 · 10−5 8.62 1,318 1,319
graph-thres-01 7.2 · 105 2.5 · 106 9.81 · 10−6 7.02 804 805
coPapersDBLP 5.4 · 105 1.5 · 107 1.04 · 10−4 56.42 3,299 3,300

coPapersCiteseer 4.3 · 105 1.6 · 107 1.7 · 10−4 73.89 1,188 1,189

The algorithm HKN could solve all random instances within the time limit of one hour. Our
algorithm WCC as well as the algorithm CHLS could solve all but one instance within this time limit.
Both WCC and CHLS fail to solve the same instance, which HKN could solve in 2,571 seconds. The
ILP, however, failed on 65 of the overall 1,200 instances.

On average, WCC is 3.1 times slower than HKN and 2.4 times slower than CHLS. If one considers
the accumulated running times over all instances, then WCC is 3 times slower than HKN and 1.9
times slower than CHLS. Compared to the ILP on instances where it found a solution within the
time limit, WCC is on average 2.4 times faster and considering the accumulated running times (with
unsolved instances counted with one hour), WCC is at least 2.7 times faster.

The reason for this relatively weak performance of WCC is the extensive usage of data reduction
rules. The algorithm tries to apply all data reduction rules, but on random data they seldom apply.
To improve the performance on random graphs, improving the efficiency of the data reduction rules
as well as investigating heuristic selection strategies concerning when to apply which rule could
be a promising approach for improvements.

Real-World Graphs We considered real-world graphs from the 10th DIMACS challenge [13].
We ran our algorithm on instances from the categories Clustering and Walshaw’s Graph Parti-
tioning Archive [13]; this is a standard benchmark for graph clustering and community detection
algorithms also used by Yezerska et al. [36] to evaluate their implementation for finding bicon-
nected 2-clubs. To test our algorithm on large scale social network graphs we ran it also on graphs
from the co-author and citation category [13] and a graph (graph-thres-01) mined from DBLP6 in
2012. Table 2 shows our test set of graphs and Table 3 overviews the results for the real-world
graphs.

6http://dblp.uni-trier.de/faq/Am+I+allowed+to+crawl+the+dblp+website.html
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Table 3: Results for 2-Club on real-world graphs with a time limit of one hour per instance.
Here, n∗ is the number of vertices with degree at least one, m is the number of edges, and size
is the number of vertices in a largest 2-club. Empty cells represent timeouts (for WCC or HKN) or
insufficient memory (for CHLS). All times are in seconds.

Graph n∗ m size WCC HKN CHLS

karate 34 78 18 0.14 0.16 0
dolphins 62 159 13 0.15 0.18 0
adjnoun 112 425 50 0.15 0.19 0
polbooks 105 441 28 0.19 0.24 0.01
football 115 613 16 0.21 0.33 0.08

celegans-metabolic 453 2,025 238 0.22 0.37 0.02
jazz 198 2,742 103 0.37 0.4 0.15

netscience 1,461 2,742 35 0.18 0.24 0.11
email 1,133 5,451 72 0.59 43.65 2.57
power 4,941 6,594 20 0.25 0.54 0.7

uk 4,824 6,837 5 0.23 113.2 17.6
add20 2,395 7,462 124 0.38 0.88 0.42
add32 4,960 9,462 32 0.24 0.79 0.73
data 2,851 15,093 18 0.46 2,664.71 7.88

hep-th 7,610 15,751 51 0.3 1.19 3.8
polblogs 1,224 16,715 352 3.81 7.55 16.14

PGPgiantcompo 10,680 24,316 206 0.45 1.57 3.64
whitaker3 9,800 28,989 9 0.62 93.1

crack 10,240 30,380 10 0.71 157.09
cs4 22,499 43,858 6 0.83 281.86

coAuthorsCiteseer 2.3 · 105 8.1 · 105 1,373 11.46 50.35
coAuthorsDBLP 3 · 105 9.8 · 105 337 15.76 78.51
citationCiteseer 2.7 · 105 1.2 · 106 1,319 21.46 83.9
graph-thres-01 7.2 · 105 2.5 · 106 805 75.14 279.29
coPapersDBLP 5.4 · 105 1.5 · 107 3,300 250.83 2,288.49

coPapersCiteseer 4.3 · 105 1.6 · 107

Similarly to the experiments on random graphs, CHLS was the fastest solver on small instances.
This is probably due to the fact that CHLS is written in C (WCC and HKN are written in Java) and
it uses an adjacency matrix as graph representation (WCC and HKN use adjacency lists). Due to
the usage of an adjacency matrix to store the graph, CHLS could not store and thus not solve any
large graph in the Co-author category.

WCC could solve all but one of the instances of the smaller graphs (less than 50,000 edges) within
one second; the exception, namely polblogs, needed less than four seconds. On medium-size and
large instances, WCC clearly outperformed the other algorithms. The only instance that WCC could
not solve within one hour is the largest graph coPapersCiteseer. A second run without time limit
shows a running time of 1.8 hours for this instance; the second-best solver HKN needs 8.6 days.
This good performance is mainly due to the extensive usage of data reduction rules—a feature
that slows down our algorithm on random graphs.

6.2 Comparison with other 2-Connected 2-Club Algorithms

We considered the same real-world instances as in Section 6.1 to compare against the two im-
plementations of Yezerska et al. [36]. Their first implementation, which we refer to as BB, is a
combinatorial branch-and-bound algorithm with some lower bound heuristics. Their second im-
plementation, which we refer to as BC, is a branch-and-cut algorithm that is based on an ILP
formulation. The results of the three algorithms are shown in Table 4.

WCC solved 21 out of the 26 instances within the time limit of one hour and all but one of the
smaller graphs with less than 50,000 edges within less than one minute. Only one instance, namely
polblogs, could not be solved within one hour. Moreover, WCC solved two larger graphs with more
than 800,000 edges within less than 10 minutes. As already discussed in Section 5, WCC is not as
efficient for the t-connected 2-club model as for the other two models. In fact, a closer inspection
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Table 4: Results for 2-Connected 2-Club on real-world graphs with a time limit of one hour
per instance. Here, n∗ is the number of vertices with degree at least one, m is the number of
edges, and size is the number of vertices in a largest 2-club. Empty cells represent timeouts. All
times are in seconds.

Graph n∗ m size WCC BB BC

karate 34 78 17 0.17 0.02 0.03
dolphins 62 159 12 0.26 0.07 0.13
adjnoun 112 425 48 1.39 0.58 0.26
polbooks 105 441 28 0.53 0.09 0.15
football 115 613 16 3.68 0.86 1.9

celegans-metabolic 453 2,025 222 28.6 95.03 16.11
jazz 198 2,742 103 22.3 9.39 0.43

netscience 1,461 2,742 25 0.27 198.47 76.67
email 1,133 5,451 69 39.76 290.84 35.24
power 4,941 6,594 14 0.28 2,577.7

uk 4,824 6,837 5 0.32
add20 2,395 7,462 124 8.01 128.84 106.98
add32 4,960 9,462 30 0.51
data 2,851 15,093 17 2 3,338.59 2,639.83

hep-th 7,610 15,751 45 1.12
polblogs 1,224 16,715 346 482.11

PGPgiantcompo 10,680 24,316 196 23.1
whitaker3 9,800 28,989 9 3.6

crack 10,240 30,380 10 7.03
cs4 22,499 43,858 6 1.61

coAuthorsCiteseer 2.3 · 105 8.1 · 105 484 359
coAuthorsDBLP 3 · 105 9.8 · 105 325 198.83
citationCiteseer 2.7 · 105 1.2 · 106

graph-thres-01 7.2 · 105 2.5 · 106

coPapersDBLP 5.4 · 105 1.5 · 107

coPapersCiteseer 4.3 · 105 1.6 · 107

of our implementation on the graph polblogs showed that more than 95% of the running time went
into the maximum flow-based connectivity check. Herein, the reduction to the maximum flow
instance, without the computation of the maximum flow itself, took more than half of the time.
Although this reduction can be performed in linear time, it is applied very often after branching
or after applying the data reduction rules.

BB solved 11 and BC solved 13 out of the 26 instances. Both of these solvers were faster on the
smallest instances and on a few medium size instances. In fact, the smaller graph polblogs that
WCC could not solve is solved by BC in around eight minutes. However, WCC solved three smaller
graphs (power, uk, add32) with less than 10,000 edges in less than a second each and both BB and
BC could not solve them in less than half an hour. Neither BB nor BC could solve any of the larger
graphs with more than 800,000 edges. In fact, the ILP-based solver BC did not even finish writing
all constraints within one hour for these large graphs.

Summarizing, WCC solved substantially more instances than BB and BC. Again, the good perfor-
mance is mainly due to the extensive usage of data reduction rules. Furthermore, as one can see
in the results for polblogs, if the data reductions are not effective enough, then WCC needs much
more time to solve the instance.

We did not perform tests on random graphs since we expect that the outcome is similar as in
Section 6.1: WCC will be outperformed by BB and BC.

6.3 Evaluation for t ≥ 1

Finally, we performed experiments for computing t-well-connected 2-clubs with t ≥ 1. For these
experiments, we compare the running times of WCC and ILP. Moreover, we compare our three well-
connected 2-club models with each other. Herein, we compare t-robust 2-clubs and t-connected
2-clubs with (t− 1)-hereditary 2-clubs. The reason is that the base case—2-clubs—is reached for
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Figure 4: Running time plots for finding t-well-connected 2-clubs for different values of t on
add20 (top left), coAuthorsCiteseer (top right), coAuthorsDBLP (bottom left), and coPapersCiteseer

(bottom right). All running times are in seconds. In all plots, black circles correspond to t-
connected 2-clubs, red triangles correspond to (t−1)-hereditary 2-clubs, and blue stars correspond
to t-robust 2-clubs. In the two plots on top, the instances could be solved for all t and all
three models. In the bottom-left plot, one black marker (for t = 7) is missing due a time out.
In the bottom-right plot several markers are missing due to time outs. Overall, smaller values
of t seem harder. However, there is no clear trend showing which concrete t-values lead to the
computationally hardest instances.

different t-values: A 2-club is a 1-robust 2-club, a 1-connected 2-club, and a 0-hereditary 2-club.
Furthermore, one can see many similar solutions when comparing t-robust 2-clubs against (t− 1)-
hereditary 2-clubs. We ran our implementation with values for t being 1, 2, 3, 4, 5, 7, 9, 10, 15,
20, 50, 100, and 1,000. The performance of our implementation varies for different values of t but
there seems to be no clear correlation between t and the performance.

In our tests WCC clearly outperformed ILP. Furthermore, ILP could solve only small real-world
graphs. Due to this one-sided result, we only discuss the results of WCC. We refer to A for a
complete list of the experiments on real-world graphs (including ILP). Comparing WCC on the
three models, unsurprisingly, the results for (t − 1)-hereditary 2-clubs and t-robust 2-clubs are
very similar (see Figure 4). In both variants, WCC solved the same 329 of the overall 338 instances
within one hour. On average, the t-robust 2-club could be computed 5% faster. Probably, this
is due to the fact that for computing (t − 1)-hereditary 2-clubs we run a clique-algorithm if the
(t − 1)-hereditary 2-club has size at most t (see Observation 5). Only in 20 of the 175 instances
that contain a t-robust 2-club the maximum (t− 1)-hereditary 2-club is larger than the maximum
t-robust 2-club (see also Figure 5). The largest relative difference in sizes (in cases where a t-robust
2-club exists) was observed in the graph adjnoun where the largest 4-robust 2-club has size six and
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Figure 5: The ordering of the respective maximum t-well-connected 2-clubs for different values
of t on the same graphs: add20 (top left), coAuthorsCiteseer (top right), coAuthorsDBLP (bottom
left), and coPapersCiteseer (bottom right). In all plots, black circles correspond to t-connected
2-clubs, red triangles correspond to (t − 1)-hereditary 2-clubs, and blue stars correspond to t-
robust 2-clubs. The instances are the same as in Figure 4 and the same markers are missing due
to time-outs. Again, the differences between (t − 1)-hereditary 2-clubs and t-robust 2-clubs are
minimal. Only if there is no t-robust 2-club and the largest (t − 1)-hereditary 2-club is a clique,
then there is a visible difference. The t-connected 2-club can be significantly larger than the other
2-clubs (see the two plots on the left side).

the largest 3-hereditary 2-club has size nine.
For citationCiteseer, coAuthorsCiteseer, coAuthorsDBLP, and graph-thres-01, WCC finds the largest

(t − 1)-hereditary 2-club and the largest t-robust 2-club relatively quickly (always within three
minutes). This is not the case for the two largest graphs coPapersCiteseer and coPapersDBLP. While
coPapersCiteseer could be solved within one hour for all values of t except 1 and 3, coPapersDBLP
could not be solved for t ranging from 2 to 10. However, experiments without time limit and with
further statistics collected during all stages of the implementation solved all instances within two
hours. Since computing and outputting these additional data affected the running time quite a
lot, we did not include the measured running times in the appendix.

WCC found the largest t-connected 2-club on many instances (290 of the 338 instances were
solved). While only one of the smaller graphs (polblogs) caused trouble for WCC, WCC struggled on
large graphs with more than 800,000 edges; only 39 of the 78 instances corresponding to these
large graphs could be solved within the time limit of one hour. On the instances WCC could deal
with it needed much more time than for finding the largest t-robust or (t − 1)-hereditary 2-club
(see also Figure 4). A good example here is the graph coAuthorsDBLP where finding the largest
9-connected 2-club was more than 100 times slower than finding the largest 8-hereditary 2-club.
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Detailed Running Time Analysis for (t − 1)-Hereditary and t-Robust 2-Club Model

A closer inspection of the coPapersDBLP graph shows that, for all t > 1, our implementation spent
around 75% of the time for constructing the Turing kernels and initializing the data structures
(common neighbor matrix, incompatibility graph, and compatibility vector; see Section 5). The
rest of the time is spent mostly on applying the data reduction rules; for each value of t, less than
30 seconds were spent on the actual branching. For t = 1, the maximum degree of 3,299 gives
a lower bound of 3,300 for the solution, which in this case is the solution size. Thus, all but six
Turing kernels can be dismissed due to too small size before initializing the data structures (see
discussion in Section 5.3). This explains why the implementation was that much faster for t = 1.

The coPapersCiteseer graph is quite different. This can be seen for example in the solution size:
For increasing t the size of the solution decreases only slightly (see Figure 5 bottom-right plot); this
is in stark contrast to the coPapersDBLP graph. Furthermore, for t = 1 on the coPapersCiteseer

graph, there were 3,175 Turing kernels that were all larger than the lower bound. The average
number of vertices in these Turing kernels was 1,389; the maximum was 2,022, the minimum
1,189. Recall that our data structures involve square matrices (the common neighbor matrix)
whose number of rows and columns is equal to the number of vertices in the respective Turing
kernel. This explains why the initialization of these data structures was the bottleneck in our
implementation.

6.4 Overall Conclusions from Experiments

We demonstrated the effectiveness of our general search-tree approach to find t-well-connected 2-
clubs in large sparse real-world networks. In particular, to the best of our knowledge, we provide
the first results for large sparse social networks with more than a million edges. The key ingredients
for our implementation are the extensive usage of Turing kernels and data reduction rules.

For finding t-connected 2-clubs there is room for improving our implementation. To this end,
the most obvious approach is to look for an efficient data structure that can quickly delete vertices
and answer connectivity queries. Finding good lower bounds is another approach to speed up our
implementation as we only use a lower bound for the base case of finding 2-clubs.

Our experiments also indicated that the common ILP formulations are not able to cope with the
large graphs we consider. The reason is simply that creating all constraints is too time consuming.7

Combining Turing-kernelization and data reduction rules with ILPs using row generation and other
sophisticated tricks might lead to a competitive program.

7 Outlook

We studied three established models for cohesive subgraphs, namely t-robust, t-hereditary, and
t-connected 2-clubs. These are considered to overcome the typical hub-and-spoke structure in the
solutions of classical 2-Club problem. We presented theoretical findings for these models which
provided the basis for our implementation of an exact algorithm for the problems. Our experiments
demonstrate the efficiency of the presented algorithm on large sparse real-world graphs.

We conclude with some challenges for future research:

• Our algorithmic result with respect to maximum degree (see Theorem 5) does not fully
explain the success of our implementation on our data set as the parameter value is too
large (see Table 2). Moreover, we have NP-hardness even if the smaller parameters average
degree and degeneracy are constant (see Corollary 1). Thus, finding the “right” structure
that explains the practically observed performance also in theory remains a task for future
research.

7To the best of our knowledge, ILP formulations for 2-Club and its variants have at least n2 −m constraints [8,
36, 34]. Even for the smallest graph from the co-author and citation category [13], this amounts to more than
5.2 · 1010 constraints which, on the hardware we used, could not be generated within one hour.
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• It is open to study the polynomial-time approximability of the different t-well connected
2-club variants. Notably, 2-Club has a factor-O(n1/2) approximation algorithm and is NP-
hard to approximate within a factor of O(n1/2−ε) [2].

• An extension of the algorithmic approach to 3-clubs and beyond is another challenge.
Almeida and Carvalho [1] presented an ILP formulation for t-robust 3-clubs and Veremyev
and Boginski [34] presented an ILP formulation for a relaxation of t-robust s-clubs with s > 2.
Solving the relaxed problems turned out to be computationally very hard; we are not aware
of experimental evaluations of the exact formulation for t-robust 3-clubs.

• Veremyev et al. [35] studied a variation of t-robust 2-clubs (called γ-relative-robust 2-clubs)
where essentially the constant t is replaced by a function in the size of the club. Our
algorithms do not work for this variant since we always assume that at most one of two
incompatible vertices (see Definition 4 in Section 3) can be in a t-well-connected 2-club.
This assumption does not hold for γ-relative-robust 2-clubs. Extending our work to this
model remains a task for future work.

• The combination of efficient data reduction rules with mathematical programming techniques
may lead to further accelerations in finding t-well-connected 2-clubs.
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A Full Experimental Results for t ≥ 1

Table 5: Results for the real-world graphs. The columns time and size denote
the running time and the size for the respective model: t-robust (r), (t − 1)-
hereditary (h & ILP; for WCC and our ILP), and t-connected (c) 2-clubs.

graph t size (r) time (r) size (h) time (h) time (ILP) size (c) time (c)

ka
ra
te

1 18 0.13 18 0.17 0.14 18 0.16
2 12 0.16 12 0.15 0.14 17 0.17
3 6 0.15 6 0.14 0.14 12 0.16
4 6 0.14 6 0.13 0.14 9 0.15
5 0 0.14 5 0.13 0.14 0 0.12
7 0 0.13 5 0.14 0.14 0 0.13
9 0 0.13 5 0.13 0.13 0 0.13

10 0 0.14 5 0.13 0.17 0 0.13
15 0 0.13 5 0.13 0.12 0 0.13
20 0 0.13 5 0.14 0.13 0 0.12
50 0 0.13 5 0.14 0.14 0 0.13

100 0 0.14 5 0.14 0.14 0 0.12
1,000 0 0.16 5 0.14 0.14 0 0.13

d
o
lp
h
in
s

1 13 0.16 13 0.15 0.25 13 0.17
2 9 0.16 9 0.15 0.2 12 0.26
3 7 0.15 7 0.17 0.18 12 0.37
4 6 0.16 6 0.14 0.19 11 0.18
5 0 0.14 5 0.15 0.2 0 0.13
7 0 0.14 5 0.14 0.2 0 0.12
9 0 0.13 5 0.13 0.19 0 0.13

10 0 0.13 5 0.15 0.19 0 0.13
15 0 0.15 5 0.14 0.19 0 0.13
20 0 0.13 5 0.18 0.2 0 0.13
50 0 0.14 5 0.14 0.19 0 0.13

100 0 0.13 5 0.14 0.19 0 0.13
1,000 0 0.14 5 0.13 0.19 0 0.12

a
d
jn
o
u
n

1 50 0.17 50 0.16 0.34 50 0.39
2 23 0.19 23 0.18 0.38 48 1.39
3 12 0.18 12 0.17 0.42 44 1.95
4 6 0.17 9 0.18 0.44 39 2.47
5 0 0.17 5 0.17 1.1 33 1.77
7 0 0.16 5 0.14 0.5 0 0.14
9 0 0.15 5 0.14 0.43 0 0.15

10 0 0.15 5 0.14 0.43 0 0.13
15 0 0.14 5 0.15 0.42 0 0.14
20 0 0.15 5 0.15 0.45 0 0.13
50 0 0.15 5 0.16 0.42 0 0.15

100 0 0.15 5 0.15 0.42 0 0.13
1,000 0 0.18 5 0.15 0.43 0 0.14

p
o
lb
o
o
k
s

1 28 0.18 28 0.17 0.25 28 0.22
2 20 0.19 20 0.17 0.3 28 0.53
3 15 0.18 15 0.17 0.37 28 0.61
4 12 0.17 13 0.17 0.33 27 0.5
5 10 0.17 11 0.16 0.45 26 0.43
7 0 0.15 6 0.15 0.65 0 0.14
9 0 0.14 6 0.15 0.49 0 0.14

10 0 0.15 6 0.15 0.37 0 0.14
15 0 0.13 6 0.15 0.37 0 0.14
20 0 0.15 6 0.15 0.37 0 0.13
50 0 0.15 6 0.15 0.36 0 0.14

100 0 0.15 6 0.15 0.36 0 0.14
1,000 0 0.14 6 0.16 0.36 0 0.14
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Table 5: Results for the real-world graphs. The columns time and size denote
the running time and the size for the respective model: t-robust (r), (t − 1)-
hereditary (h & ILP; for WCC and our ILP), and t-connected (c) 2-clubs.

graph t size (r) time (r) size (h) time (h) time (ILP) size (c) time (c)

fo
o
tb
a
ll

1 16 0.21 16 0.23 2 16 0.77
2 14 0.18 14 0.18 0.37 16 3.68
3 13 0.17 13 0.16 0.28 15 4.42
4 12 0.18 13 0.17 0.29 15 2.27
5 12 0.18 12 0.18 0.29 15 1.09
7 10 0.17 11 0.17 0.29 13 0.57
9 0 0.15 9 0.15 0.36 0 0.15

10 0 0.15 9 0.16 0.32 0 0.13
15 0 0.15 9 0.18 0.33 0 0.14
20 0 0.16 9 0.15 0.33 0 0.14
50 0 0.15 9 0.16 0.35 0 0.14

100 0 0.15 9 0.16 0.33 0 0.14
1,000 0 0.17 9 0.16 0.33 0 0.15

ce
le
g
a
n
s-
m
et
a
b
o
li
c

1 238 0.25 238 0.23 4.52 238 10.69
2 104 0.38 104 0.39 4.52 222 28.6
3 54 0.35 54 0.38 12.46 195 57.06
4 30 0.31 30 0.4 9.28 164 76.41
5 20 0.28 22 0.27 22.03 112 88.26
7 12 0.2 13 0.19 42.45 54 20.76
9 0 0.18 9 0.16 36.8 31 0.35

10 0 0.17 9 0.17 35.61 22 0.27
15 0 0.15 9 0.16 33.14 0 0.15
20 0 0.16 9 0.17 44.5 0 0.14
50 0 0.16 9 0.16 37.28 0 0.16

100 0 0.17 9 0.17 37.17 0 0.15
1,000 0 0.16 9 0.17 36.96 0 0.15

ja
zz

1 103 0.4 103 0.37 1.38 103 5.52
2 79 0.48 79 0.49 0.82 103 22.3
3 73 0.41 73 0.39 1.2 103 45.05
4 65 0.43 65 0.38 1.22 103 81.51
5 60 0.38 60 0.36 1.22 103 105.18
7 50 0.36 50 0.4 1.26 103 145.88
9 44 0.32 44 0.34 1.33 103 191.64

10 41 0.31 41 0.35 1.26 101 162.45
15 32 0.27 32 0.26 1.4 96 15.46
20 30 0.22 30 0.21 1.28 87 4.36
50 0 0.15 30 0.18 1.21 0 0.15

100 0 0.16 30 0.17 1.21 0 0.15
1,000 0 0.16 30 0.17 1.21 0 0.14

n
et
sc
ie
n
ce

1 35 0.19 35 0.19 22.29 35 0.27
2 22 0.2 22 0.22 35.14 25 0.27
3 21 0.18 21 0.18 35 21 0.27
4 20 0.19 20 0.18 35.13 20 0.24
5 20 0.18 20 0.18 31.25 20 0.23
7 20 0.17 20 0.18 31.52 20 0.23
9 20 0.19 20 0.17 31.42 20 0.24

10 20 0.18 20 0.17 31.62 20 0.22
15 20 0.18 20 0.18 31.49 20 0.22
20 0 0.15 20 0.17 31.49 0 0.16
50 0 0.16 20 0.17 32.19 0 0.16

100 0 0.17 20 0.18 31.57 0 0.16
1,000 0 0.17 20 0.18 31.43 0 0.16
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Table 5: Results for the real-world graphs. The columns time and size denote
the running time and the size for the respective model: t-robust (r), (t − 1)-
hereditary (h & ILP; for WCC and our ILP), and t-connected (c) 2-clubs.

graph t size (r) time (r) size (h) time (h) time (ILP) size (c) time (c)

em
a
il

1 72 0.72 72 0.7 21.8 72 2.15
2 27 0.55 27 0.69 435.28 69 39.76
3 23 0.53 23 0.46 159 65 81.57
4 19 0.44 20 0.42 148.12 60 181.97
5 16 0.38 16 0.44 130.6 48 427.81
7 13 0.3 13 0.3 129.18 35 183.52
9 12 0.24 12 0.22 162.75 28 1.63

10 12 0.18 12 0.18 127.74 12 0.19
15 0 0.17 12 0.18 122.98 0 0.16
20 0 0.18 12 0.18 62.57 0 0.17
50 0 0.17 12 0.22 62.5 0 0.17

100 0 0.17 12 0.2 62.62 0 0.17
1,000 0 0.17 12 0.19 62.55 0 0.16

p
ow

er

1 20 0.22 20 0.22 695.82 20 0.23
2 9 0.24 9 0.23 3,448.41 14 0.28
3 7 0.22 7 0.2 12 0.24
4 6 0.2 6 0.19 3,253.65 11 0.21
5 6 0.2 6 0.19 3,300.83 6 0.2
7 0 0.2 6 0.21 3,301.94 0 0.19
9 0 0.19 6 0.2 3,297.7 0 0.19

10 0 0.2 6 0.21 3,299.93 0 0.17
15 0 0.2 6 0.21 3,302.38 0 0.19
20 0 0.2 6 0.21 3,298.42 0 0.19
50 0 0.2 6 0.22 3,303 0 0.19

100 0 0.18 6 0.22 3,297.65 0 0.19
1,000 0 0.19 6 0.21 3,302.62 0 0.19

u
k

1 5 0.3 5 0.24 2,352.47 5 0.27
2 3 0.27 4 0.26 2,554.53 5 0.32
3 0 0.2 3 0.24 1,269.42 0 0.19
4 0 0.19 3 0.23 1,273.95 0 0.19
5 0 0.2 3 0.22 1,266.36 0 0.19
7 0 0.19 3 0.22 1,266.87 0 0.19
9 0 0.19 3 0.22 1,271.76 0 0.19

10 0 0.2 3 0.22 1,271.91 0 0.19
15 0 0.2 3 0.23 1,267.47 0 0.19
20 0 0.19 3 0.22 1,266.99 0 0.18
50 0 0.2 3 0.22 1,272.23 0 0.19

100 0 0.2 3 0.21 1,270.01 0 0.19
1,000 0 0.19 3 0.22 1,265.45 0 0.19

a
d
d
2
0

1 124 0.32 124 0.29 108.5 124 3.55
2 91 0.82 91 0.82 114.1 124 8.01
3 77 0.67 77 0.69 228.17 115 7.79
4 75 0.44 75 0.53 116.47 108 12.22
5 70 0.41 70 0.4 171.83 102 13.88
7 69 0.36 69 0.34 154.72 97 21.81
9 62 0.35 62 0.33 199.12 96 17.5

10 62 0.32 62 0.32 187.66 94 15.32
15 51 0.3 51 0.29 172.76 74 2.9
20 42 0.27 42 0.27 181.7 64 2.95
50 0 0.19 36 0.21 164.53 0 0.18

100 0 0.18 36 0.19 163.65 0 0.18
1,000 0 0.18 36 0.2 163.32 0 0.18
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Table 5: Results for the real-world graphs. The columns time and size denote
the running time and the size for the respective model: t-robust (r), (t − 1)-
hereditary (h & ILP; for WCC and our ILP), and t-connected (c) 2-clubs.

graph t size (r) time (r) size (h) time (h) time (ILP) size (c) time (c)

a
d
d
3
2

1 32 0.26 32 0.25 2,028.52 32 0.3
2 12 0.43 12 0.39 2,375.38 30 0.51
3 5 0.24 5 0.24 11 0.39
4 0 0.2 4 0.23 0 0.2
5 0 0.19 4 0.24 0 0.2
7 0 0.2 4 0.22 0 0.19
9 0 0.2 4 0.22 0 0.19

10 0 0.23 4 0.22 0 0.18
15 0 0.21 4 0.23 0 0.19
20 0 0.21 4 0.22 0 0.19
50 0 0.2 4 0.22 0 0.19

100 0 0.2 4 0.22 0 0.2
1,000 0 0.2 4 0.24 0 0.2

d
a
ta

1 18 0.51 18 0.49 1,838.74 18 0.57
2 14 0.65 14 0.56 2,382.05 17 2
3 12 0.44 12 0.42 1,909.82 17 6.27
4 8 0.56 9 0.47 1,338.3 17 7.73
5 8 0.43 8 0.41 1,667.46 17 6.32
7 0 0.33 6 0.37 1,741.07 0 2.3
9 0 0.21 6 0.24 1,753.34 0 0.19

10 0 0.21 6 0.25 1,746.32 0 0.2
15 0 0.2 6 0.25 1,755.95 0 0.23
20 0 0.19 6 0.25 1,753.3 0 0.2
50 0 0.2 6 0.25 1,750.11 0 0.19

100 0 0.2 6 0.25 1,794.5 0 0.19
1,000 0 0.2 6 0.25 1,751.18 0 0.19

h
ep

-t
h

1 51 0.35 51 0.31 804.54 51 0.5
2 33 0.43 33 0.39 3,343.04 45 1.12
3 24 0.33 24 0.37 3,010.08 40 1.92
4 24 0.33 24 0.33 2,706.02 31 3.9
5 24 0.29 24 0.3 3,203.32 28 1.47
7 24 0.31 24 0.28 2,961.67 24 0.34
9 24 0.26 24 0.25 3,426.85 24 0.32

10 24 0.25 24 0.24 3,407.74 24 0.33
15 24 0.25 24 0.24 2,947.59 24 0.32
20 24 0.27 24 0.24 2,961.09 24 0.33
50 0 0.25 24 0.26 3,407.03 0 0.23

100 0 0.22 24 0.25 3,420.78 0 0.23
1,000 0 0.24 24 0.26 3,027.49 0 0.22

p
o
lb
lo
g
s

1 352 4.47 352 4.69 88.81 352 164.57
2 232 5.96 232 6.5 97.18
3 182 6.94 182 7.44 1,552.44
4 158 6.11 159 5.79 1,091.47
5 146 3.96 147 3.95 1,168.24
7 124 3.12 124 3.91 1,167.79
9 108 2.69 108 3.04 1,173.24

10 104 2.48 104 2.46 1,029.84
15 79 1.77 81 1.82 897.59
20 62 1.38 64 1.36 2,371.7
50 0 0.2 20 0.41 3,053.38 0 0.19

100 0 0.2 20 0.44 2,933.52 0 0.19
1,000 0 0.2 20 0.4 2,854.28 0 0.19
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Table 5: Results for the real-world graphs. The columns time and size denote
the running time and the size for the respective model: t-robust (r), (t − 1)-
hereditary (h & ILP; for WCC and our ILP), and t-connected (c) 2-clubs.

graph t size (r) time (r) size (h) time (h) time (ILP) size (c) time (c)

P
G
P
g
ia
n
tc
o
m
p
o

1 206 0.51 206 0.46 3,319.96 206 14.12
2 96 1.18 96 0.94 196 23.1
3 71 0.86 71 0.86 188 36.16
4 64 0.79 64 0.78 177 57.6
5 57 0.75 57 0.74 159 133.66
7 47 0.58 47 0.59 146 136.57
9 46 0.5 46 0.49 96 51.12

10 45 0.44 45 0.44 85 14.26
15 45 0.37 45 0.37 46 2.74
20 43 0.38 43 0.38 45 1.52
50 0 0.28 25 0.35 0 0.27

100 0 0.28 25 0.33 0 0.28
1,000 0 0.27 25 0.35 0 0.26

w
h
it
a
k
er
3

1 9 0.64 9 0.62 9 0.75
2 6 0.69 6 0.61 9 3.6
3 0 0.66 5 0.62 9 3.43
4 0 0.29 3 0.38 0 0.3
5 0 0.26 3 0.34 0 0.25
7 0 0.27 3 0.35 0 0.26
9 0 0.27 3 0.35 0 0.26

10 0 0.26 3 0.35 0 0.26
15 0 0.28 3 0.36 0 0.26
20 0 0.27 3 0.36 0 0.26
50 0 0.26 3 0.36 0 0.25

100 0 0.26 3 0.36 0 0.26
1,000 0 0.27 3 0.36 0 0.25

cr
a
ck

1 10 0.8 10 0.75 10 1.05
2 6 0.74 6 0.73 10 7.03
3 0 0.85 5 0.61 9 14.58
4 0 0.44 3 0.52 0 1.08
5 0 0.28 3 0.37 0 0.26
7 0 0.28 3 0.38 0 0.26
9 0 0.27 3 0.37 0 0.27

10 0 0.28 3 0.38 0 0.28
15 0 0.29 3 0.38 0 0.28
20 0 0.28 3 0.38 0 0.26
50 0 0.28 3 0.38 0 0.27

100 0 0.28 3 0.38 0 0.27
1,000 0 0.28 3 0.38 0 0.27

cs
4

1 6 0.85 6 0.86 6 1.35
2 3 0.81 4 0.91 6 1.61
3 0 0.58 3 0.63 0 0.83
4 0 0.47 3 0.6 0 0.47
5 0 0.48 3 0.65 0 0.46
7 0 0.48 3 0.61 0 0.46
9 0 0.49 3 0.62 0 0.46

10 0 0.47 3 0.6 0 0.46
15 0 0.47 3 0.61 0 0.46
20 0 0.46 3 0.62 0 0.47
50 0 0.46 3 0.61 0 0.45

100 0 0.48 3 0.64 0 0.46
1,000 0 0.47 3 0.62 0 0.47
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Table 5: Results for the real-world graphs. The columns time and size denote
the running time and the size for the respective model: t-robust (r), (t − 1)-
hereditary (h & ILP; for WCC and our ILP), and t-connected (c) 2-clubs.

graph t size (r) time (r) size (h) time (h) time (ILP) size (c) time (c)

co
A
u
th
o
rs
C
it
es
ee
r

1 1,373 12.09 1,373 13.23 1,373 660.97
2 483 9.48 483 9.27 484 359
3 387 8.3 387 8.6 387 218.18
4 386 7.11 386 6.99 387 834.57
5 159 6.81 159 6.99 159 509.23
7 139 6.14 139 6.21 154 288.28
9 106 6.47 106 6.88 154 78.67

10 106 5.22 106 5.27 154 77.08
15 100 5.9 100 5.87 139 71.09
20 96 6.65 96 6.71 105 58.5
50 87 6.73 87 6.85 87 14.16

100 0 6.42 87 7.29 0 6.49
1,000 0 6.66 87 7.35 0 6.61

co
A
u
th
o
rs
D
B
L
P

1 337 18.11 337 20.19 337 87.17
2 216 16.04 216 15.93 325 198.83
3 160 18.05 160 17.86 306 505.8
4 155 15.09 155 14.88 283 785.56
5 152 16.7 152 16.78 239 2,314.15
7 152 9.73 152 9.69 219
9 152 5.98 152 6.08 195 804.74

10 146 5.49 146 5.66 158 864.34
15 145 7.29 145 7.33 152 47.58
20 145 9.72 145 9.65 147 47.08
50 116 10.25 116 10.11 116 24.12

100 115 15.57 115 15.83 115 28.49
1,000 0 15.1 115 16.32 0 15.34

ci
ta
ti
o
n
C
it
es
ee
r

1 1,319 24.99 1,319 25.61 1,319 987.46
2 268 86.8 268 71.34
3 94 86.5 120 86.03
4 55 72.79 57 71.14
5 45 57.11 45 58.49
7 31 33.41 37 31.92
9 27 16.87 31 17.51

10 27 12.12 27 12.15
15 0 10 13 13.74 50 12.95
20 0 10.43 13 13.8 0 10.27
50 0 15.5 13 19.48 0 15.65

100 0 16.03 13 19.65 0 15.85
1,000 0 16.11 13 19.79 0 16.07

g
ra
p
h
-t
h
re
s-
0
1

1 805 82.48 805 82.37 805 327.16
2 210 127.16 210 125.7
3 164 137.32 164 138.04
4 145 122.57 145 120.99
5 143 98.98 143 98.26
7 131 64.61 131 63.3
9 129 36.63 129 37.33

10 129 27.97 129 28.03
15 121 21.88 121 21.82 137 104.82
20 116 33.19 116 33.33 120 55.66
50 115 55.34 115 55.33 115 67.77

100 114 64.23 114 64.41 114 76.73
1,000 0 64.88 114 67.7 0 64.82
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Table 5: Results for the real-world graphs. The columns time and size denote
the running time and the size for the respective model: t-robust (r), (t − 1)-
hereditary (h & ILP; for WCC and our ILP), and t-connected (c) 2-clubs.

graph t size (r) time (r) size (h) time (h) time (ILP) size (c) time (c)

co
P
a
p
er
sD

B
L
P

1 3,300 293.77 3,300 293.87
2
3
4
5
7
9

10
15 763 3,521.23 763 3,401.8
20 763 3,218.27 763 3,228.87
50 459 1,703.99 459 1,698.03

100 350 504.11 351 503.8
1,000 0 75.46 337 86.38 0 74.94

co
P
a
p
er
sC

it
es
ee
r

1
2 1,162 3,462.18 1,162 3,438.11
3
4 1,101 3,279.47 1,101 3,257.03
5 1,065 2,827.55 1,065 2,877.37
7 1,065 2,112.45 1,065 2,132.17
9 1,004 2,423.17 1,004 2,429.75

10 1,004 2,131.84 1,004 2,140.5
15 1,004 1,593.92 1,004 1,588.68
20 943 1,465.43 943 1,471.35
50 943 984.1 943 964.82

100 861 512.88 861 518.99
1,000 0 39.14 845 55.93 0 39.22
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