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a b s t r a c t 

We study the asymptotic behavior of the loss from defaults of a large portfolio. Inspired by the work of 

Bassamboo, Juneja and Zeevi (2008), we consider a static structural model in which latent variables gov- 

erning individual defaults follow a mixture structure incorporating idiosyncratic risk, systematic risk, and 

common shock. In our setting, the portfolio effect, namely the decrease in overall risk due to the portfolio 

size increase, is taken into account by assuming that the individual default thresholds are proportional to 

a positive deterministic function diverging to infinity. Furthermore, the obligor-specific variables form a 

sequence of independent and identically distributed vectors, which still allows heterogeneity of the port- 

folio though. We derive sharp asymptotics for the tail probability of the portfolio loss as the portfolio size 

becomes large under the assumption, among others, that either the common shock variable or the sys- 

tematic risk factor has a regularly varying tail. Our main finding is that the occurrence of large losses can 

be attributed to either the common shock variable or the systematic risk factor, whichever has a heavier 

tail. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

We are concerned with the loss from defaults of a large credit

portfolio of defaultable obligors. As a lesson from the financial cri-

sis of 20 07–20 09, modeling credit portfolio losses must carefully

address extreme risks, which result from the marginal tails of and

the tail dependence between individual obligors. It is in general a

challenging task to model the intangible tail dependence because it

can hardly be perceived under usual economic conditions, but sud-

denly becomes apparent and constitutes a main cause for clustered

defaults as the economy deteriorates. In the current state of credit

risk management, obligors are assumed to be subject to multi-level

risks, roughly categorized as idiosyncratic risk, systematic risk, and

common shock. In particular, the common shock symbolizes cer-

tain external events, e.g., the collapse of Lehman Brothers, that

cause widespread failures and losses of financial institutions and

eventually endanger the stability of the financial system. For such

cases those Gaussian models become inadequate due to their fail-

ure to capture tail dependence resulting from the common shock. 

Bassamboo, Juneja, and Zeevi (2008) employ a static structural

model for portfolio losses in which each obligor is characterized by
� Area of review : Financial Engineering. 
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 latent variable governing its rating migration and default so that

he obligor defaults if the latent variable exceeds a given threshold.

otivated by the multivariate t structure, they propose a mixture

tructure for the latent variables, which effectively puts idiosyn-

ratic risk, systematic risk, and common shock together and can

asily incorporate extremes, extremal dependence, and asymmetry.

he individual thresholds are assumed to be proportional to a pos-

tive deterministic function diverging to infinity at a subexponen-

ial rate in the portfolio size. Under a further assumption, among

thers, that the common shock variable is regularly varying and

ominates the other risk factors, they derive sharp asymptotics, in

ontrast to existing logarithmic (hence, rough) asymptotics, for the

ail probability of portfolio losses. An implication of their result is

hat large portfolio losses occur primarily due to large values of

he common shock variable, while the systematic and idiosyncratic

isk factors play a relatively less important role. Nevertheless, as

he authors point out, there can be situations where the other risk

actors play a dominating role in causing large portfolio losses. 

Inspired by the work of Bassamboo et al. (2008) , we study the

symptotic behavior of the loss from defaults of a large portfolio.

e make some meaningful adjustments and extensions on their

odel, significantly refine and generalize their theoretical result,

nd, in particular, complement the asymptotic study by also con-

idering the opposite case that the systematic risk factor is regu-

arly varying and dominates the common shock variable. Our main

nding is that the occurrence of large losses can be attributed to

https://doi.org/10.1016/j.ejor.2019.01.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.01.025&domain=pdf
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mailto:qihe-tang@uiowa.edu
mailto:zhaofeng-tang@uiowa.edu
mailto:yangyangmath@163.com
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ither the common shock variable or the systematic risk factor,

hichever has a heavier tail. In particular, this implies that, under

ertain market conditions (e.g., during recessions), the systematic

isk inherent in the market may override the exogenous shock to

he market in causing credit risk deterioration, which is in sharp

ontrast to the main finding of Bassamboo et al. (2008) . 

First, as we target a large credit portfolio, the portfolio effect,

amely the decrease in overall risk due to the portfolio size in-

rease, becomes significant and must be appropriately addressed.

o feature this, we assume that the individual default thresholds

qual � i f n for i = 1 , . . . , n, where f n is a positive deterministic func-

ion diverging to ∞ and � i ’s are positive random variables ac-

ounting for variations in the portfolio effect on different oblig-

rs. Second, we allow those obligor-specific variables, namely the

isk exposures θ i , the idiosyncratic risk factors ηi , and the afore-

entioned variation factors � i , to be random and assume that they

orm a sequence of independent and identically distributed (i.i.d.)

ectors with a generic copy ( θ , η, � ). This amounts to identify-

ng a continuum to underlie a large number of obligors of differ-

nt risk types (hence, a potentially heterogeneous portfolio). For a

arge portfolio, the cardinality of ( θ , η, � ) as a continuum follows

rom the law of large numbers. 

The portfolio loss distribution is at the heart of credit risk man-

gement, and the asymptotic study has an immediate implication

or economic capital assessment, in particular under the current

rudent regulatory frameworks. When determining the economic

apital requirement, Basel II considers the Asymptotic Single Risk

actor (ASRF) model and stipulates that the economic capital is

stimated to guarantee the solvency of the bank over a one-year

orizon at a 99.9% confidence level. 1 In practice, many banks se-

ect an even more conservative confidence level between 99.96%

nd 99.98% in economic capital models. 2 Essentially, in assess-

ng the economic capital, high-level quantiles of the portfolio loss

re of considerable interest, for which case our sharp asymptotic

stimates become powerful. 

We end this section with a brief literature review on the

symptotic study of large portfolio losses. For conditionally inde-

endent credit risk models, either static or dynamic, either struc-

ural or reduced-form, a usual procedure in the literature is to

rst condition on common risk factors, then employ standard ap-

roaches in limit theory including the law of large numbers (LLN),

he central limit theorem (CLT), and the large deviation principle

LDP), and finally integrate out the conditioning risk factors. 

Among early works on this topic, Vasicek (1987, 1991) studies

he loss of a large homogeneous loan portfolio, implicitly assumes

 Gaussian copula between different borrowers, and derives a sim-

le closed-form limiting distribution for the loss. Lucas, Klaassen,

preij, and Straetmans (2001) and Gordy (2003) study the loss dis-

ribution of a large heterogeneous portfolio and obtain LLN-type

imiting distributions in the form of conditional expectation given

ommon factors. The former work also examines the portfolio size

equired to render the asymptotic loss distribution a good approxi-

ation to the actual loss distribution. Dembo, Deuschel, and Duffie

2004) employ the LDP approach to derive a precise approximation

or the portfolio loss of a static model in which the exposures and

efaults are independent conditional on a macro-environmental

ariable. Schloegl and O’Kane (2005) extend Vasicek’s work to the

ase of t copula, derive closed-form solutions for the portfolio
1 See, e.g., An Explanatory Note on the Basel II IRB Risk Weight Functions released 

n 2005 by the Bank for International Settlements (BIS) available at https://www.bis. 

rg/bcbs/irbriskweight.htm . 
2 See, e.g., Economic Capital and the Assessment of Capital Adequacy re- 

eased in 2004 by the Federal Deposit Insurance Corporation (FDIC) available 

t https://www.fdic.gov/regulations/examinations/supervisory/insights/siwin04/ 

iwinter04-article1.pdf . 
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oss distribution, and compare the Value-at-Risk implied by the

 copula to that by the Gaussian, Clayton, and Gumbel copulas.

lasserman, Kang, and Shahabuddin (2007) analyze the tail behav-

or of the portfolio loss in the Gaussian copula setting and estab-

ish logarithmic limits (hence, rough estimates) for the tail of the

oss distribution in two limiting regimes, namely the small default

robability regime and the large portfolio loss threshold regime.

ra, Runggaldier, Sartori, and Tolotti (2009) consider large homoge-

eous portfolios within the class of reduced-form models based on

nteracting intensities, and they conduct a comprehensive asymp-

otic study of portfolio losses by employing all of the LLN, CLT,

nd LDP approaches. Bush, Hambly, Haworth, Jin, and Reisinger

2011) consider a large portfolio in a structural model under a dy-

amic setting and study the loss function of the portfolio through

 stochastic partial differential equation. Cvitani ́c, Ma, and Zhang

2012) and Giesecke, Spiliopoulos, and Sowers (2013) ; Giesecke,

piliopoulos, Sowers, and Sirignano (2015) consider large portfolios

f interacting obligors in reduced-form models with a self-exciting

ommon factor, and establish LLN-type results for portfolio losses. 

As the portfolio size increases, the decrease in overall risk

akes large portfolio losses become rarer and, hence, more diffi-

ult to observe under the naive Monte Carlo method. In this re-

ard, importance sampling becomes a commonly used alternative

o increase the efficiency of simulation. A desired importance sam-

ling algorithm is the one under which the importance sampling

stimator possesses either bounded relative error or asymptotic

ptimality. Asymptotic tail estimates for portfolio losses can usu-

lly serve as a key input in constructing an importance sampling

istribution to fulfill the requirement. For general introductions to

mportance sampling and rare-event simulation, see Heidelberger

1995) ; Juneja and Shahabuddin (2006) , and Asmussen and Glynn

2007) . For applications of importance sampling to large port-

olio losses, see Bassamboo et al. (2008) ; Brereton, Kroese, and

han (2012) ; Chan and Kroese (2010) ; Glasserman, Kang, and Sha-

abuddin (2008) ; Glasserman and Li (2005) , and Liu (2015) , among

thers. 

The rest of the paper is organized as follows. Section 2 elabo-

ates on the modeling of large portfolio losses. Section 3 prepares

ome preliminaries including a primary observation on a simpli-

ed case where individual default thresholds do not vary with the

ortfolio size. Section 4 exhibits the main results for the cases of

 regularly varying common shock variable or a regularly varying

ystematic risk factor. Section 5 conducts some numerical studies

o check the accuracy of the obtained formulas and compute the

alue-at-Risk of the portfolio loss at high levels. Section 6 makes

ome concluding remarks. All proofs are relegated to Appendix. 

. Modeling large portfolio losses 

Consider a large credit portfolio of n defaultable obligors. For

ach obligor i , we introduce a latent variable Z i that summarizes

he determinants of the obligor’s rating migration and default. De-

ote by x n 
i 

the individual default threshold of obligor i , which can

e exogenously given and related to the portfolio size n . Similarly

o Bassamboo et al. (2008) , assume that 

 

n 
i = � i f n , i = 1 , . . . , n, 

here f n is a positive deterministic function diverging to ∞ as

 → ∞ and each variation factor � i is a positive random variable. 

As explained by Bassamboo et al. (2008) , introducing a di-

erging function f n to individual default thresholds ensures that

he probability of large portfolio losses diminishes as n increases,

hich is true for low-default portfolios. Moreover, such a specifi-

ation of individual default thresholds allows us to account for the

ortfolio effect, namely the decrease in overall risk as the port-

olio size increases. To explain this, assume that as the portfolio

https://www.bis.org/bcbs/irbriskweight.htm
https://www.fdic.gov/regulations/examinations/supervisory/insights/siwin04/siwinter04-article1.pdf
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expands each latent variable Z i is modified to 
Z i 

ιi f n 
, where the posi-

tive diverging function f n is used to reflect an overall improvement

on the credit quality, while a positive random variable ιi to reflect

a minor variation in portfolio effect on obligor i . Denote by a i > 0

the endogenously determined default threshold of obligor i , and

write � i = a i ιi . In this way, obligor i defaults if and only if 
Z i 

ιi f n 
> a i

if and only if Z i > � i f n . 

Confined to this static structural model, the loss given default

of obligor i is described as 

θi 1 ( Z i >� i f n ) , 

where θ i is a positive random variable denoting the risk exposure

at default and 1 A is the indicator function of an event A . Such a

loss model descends from Merton’s firm-value model and has been

commonly used in the literature. The exposure at default appearing

above is another key parameter in modeling portfolio losses; see

Hon and Bellotti (2016) ; Leow and Crook (2016) , and Tong, Mues,

Brown, and Thomas (2016) for recent discussions on its random-

ness. 

We follow the work of Bassamboo et al. (2008) to employ a

mixture model for the underlying latent variables: 

Z i = S 

(
ρξ + 

√ 

1 − ρ2 ηi 

)
, i = 1 , . . . , n, (2.1)

where each ηi is a real-valued random variable interpreted as an

idiosyncratic risk factor that affects obligor i only, ξ is a real-

valued random variable interpreted as a systematic risk factor in-

herent in the entire market, S is a positive random variable to cap-

ture a common shock, while 0 < ρ < 1 is a coefficient to adjust the

roles of the systematic and idiosyncratic risk factors. Thus, this is

a conditionally independent model in the sense that defaults of

obligors conditional on S and ξ are independent, consistent with

many existing works in credit risk modeling. See Frey and McNeil

(2003) and McNeil, Frey, and Embrechts (2015) for related discus-

sions and for a number of conditionally independent models that

are in spirit similar to (2.1) . The well-known Gaussian and t mod-

els can easily be retrieved from the mixture model (2.1) by suit-

ably specifying the distributions of these risk factors. Moreover, it

is straightforward to extend this model to the case of a vector ξ
so as to accommodate multiple systematic risk factors; see, e.g.,

Kostadinov (2005) , who conducts research under the multivariate

elliptical framework. 

In the mixture model (2.1) , the common shock variable S refers

to a stylized representation of unpredictable changes in certain ex-

ogenous factors that create an economy-wide shock on all obligors.

This is closely related to the concept of systemic risk, which has

become a hot topic of paramount importance for financial stability

in the post financial crisis era. For related discussions on this topic,

see Ang and Longstaff (2013) ; Elsinger, Lehar, and Summer (2006) ;

Giesecke and Kim (2011) ; Tarashev, Borio, and Tsatsaronis (2010) ,

and Acharya, Pedersen, Philippon, and Richardson (2017) , some of

whom argue coexistence of systematic risk and systemic risk under

extreme market conditions. Now that the common shock variable S

is introduced as a mixing variable in (2.1) , in certain circumstances

it may represent a main driving force for systemic risk. 

Collectively, the portfolio loss from defaults is modeled as 

L n = 

n ∑ 

i =1 

θi 1 

(
S 

(
ρξ+ 

√ 

1 −ρ2 ηi 

)
>� i f n 

). (2.2)

In this model, each individual loss contains five variables, θ i ,

S , ξ , ηi , and � i , among which those indexed by i are obligor-

specific variables while the other two impact on the whole port-

folio. We assume that ( θ i , ηi , � i ), i = 1 , . . . , n, form a sequence

of i.i.d. random vectors with a generic copy ( θ , η, � ), and that
 (θi , ηi , � i ) , i = 1 , . . . , n } , S , and ξ are mutually independent. Sub-

equently, the latent variables Z 1 , ..., Z n are identical to 

 = S 

(
ρξ + 

√ 

1 − ρ2 η
)
. 

ote that among the five random variables, θ , S , and � take values

rom R + = (0 , ∞ ) while ξ and η take values from R = (−∞ , ∞ ) . 

In their Assumption 1, Bassamboo et al. (2008) assume that the

equence { (θi , � i ) , i = 1 , . . . , n } is deterministic and takes values in

 finite set of elements and that the proportion of each element,

amely, the ratio of the number of pairs ( θ i , � i ) equal to the

lement over the portfolio size n , converges to a positive number.

his amounts to assuming that ( θ i , � i ), i = 1 , 2 , . . . , are i.i.d. ran-

om pairs with a common distribution over a finite set (hence, a

pecial case of ours). A similar assumption is made by Glasserman

t al. (2007) . Since we consider a large portfolio, our idea is to in-

roduce a continuum of obligors, which naturally follows from the

LN. Consider a special case that the cardinality of ( θ , η, � ), namely

he support set of its joint distribution, is a finite set. This becomes

imilar to, but is still more general than, the one considered by

assamboo et al. (2008) . Such a special case can be interpreted

s a heterogeneous credit portfolio consisting of a finite number

f homogeneous sub-portfolios, each comprising obligors of the

ame risk type. Therefore, even under the i.i.d. assumption we are

ealing with a large, potentially heterogeneous, portfolio. 

It is important to note that the risk embodied in the idiosyn-

ratic risk factors is subject to the diversification effect, but not the

isk embodied in the systematic risk factor and the common shock

ariable, as examined by Sicking, Guhr, and Schäfer (2018) in a nu-

erical study. This motivates us to take conditional expectation

iven S and ξ in establishing our main results. Following this pro-

edure, however, the impact of the idiosyncratic risk factors turns

ut to be neglected. 

Our main results are sharp asymptotics for the tail probability

f the portfolio loss L n as n → ∞ . For an arbitrarily fixed number

 ∈ (0, E θ ), under the assumption that the common shock variable

 has a regularly varying tail F S = 1 − F S dominating that of the

ystematic risk factor ξ , we establish a sharp asymptotic formula 

 ( L n > nb ) = ( C 1 + o(1) ) F S ( f n ) , 

hile under the assumption that ξ has a regularly varying tail

 ξ dominating that of S , we establish another sharp asymptotic

ormula 

 ( L n > nb ) = ( C 2 + o(1) ) F ξ ( f n ) , 

here C 1 and C 2 are two positive constants expressed in explicit

orms, and each o (1) stands for a function of n which tends to 0

s n → ∞ ; see Theorems 4.1 and 4.2 below. These results offer a

ew insight that the occurrence of large losses is determined by

hichever one of S and ξ has a heavier tail. Intuitively, in the mix-

ure model (2.1) , the idiosyncratic risk factor ηi vanishes when ap-

lying the LLN, leaving the common shock S and the systematic

isk factor ξ to roughly play a symmetric role. 

. Preliminaries 

.1. Notational conventions 

Throughout the paper, all limit relations without specifications

re according to n → ∞ . For any x, y ∈ R , write x ∨ y = max { x, y } ,
 ∧ y = min { x, y } , and x + = x ∨ 0 . Denote by F X the distribution of

 random variable X , by F X , Y the joint distribution of a random

ector ( X , Y ), and so on, letting the notation speak for itself. For

wo positive functions g 1 and g 2 , we write g 1 ∼ g 2 if lim g 1 /g 2 =
 , write g 1 � g 2 or g 2 � g 1 if lim sup g 1 /g 2 ≤ 1 , write g 1 = o(g 2 )

f lim g /g = 0 , and write g = O (g ) if lim sup g /g < ∞ . For a
1 2 1 2 1 2 
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t  
eal function g , we denote its left and right limits at x by g(x −)

nd g(x +) , respectively, which exist if g is monotone. For a non-

ecreasing function g : R → R , denote by g ← and g → its càglàd

nd c àdlàg inverses; that is, for y ∈ R , 

g ← (y ) = inf { x ∈ R : g(x ) ≥ y } , 
g → (y ) = sup { x ∈ R : g(x ) ≤ y } , 
here inf ∅ = ∞ and sup ∅ = −∞ by convention. In particular, if

he level y corresponds to the value of x at which g ( · ) strictly in-

reases, then the two inverses g ← and g → coincide, for which case

e record this unique inverse as g ← . 

.2. A primary observation 

To gain some hints for the study, we explore a simplified

ase with f n ≡ f > 0 being fixed. Due to the independence between

he sequence { (θi , ηi , � i ) , i = 1 , . . . , n } and the vector ( S , ξ ), by

onditioning on ( S , ξ ) we write 

 ( L n > nb ) = 

∫ ∫ 
R + ×R 

P 

(
L n 

n 

> b 

∣∣∣S = s, ξ = t 

)
P ( S ∈ ds, ξ ∈ dt ) . 

(3.1) 

nder P ( ·| S = s, ξ = t ) , by the LLN it holds that, almost surely, 

L n 

n 

= 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
>� i f 

)
→ E 

[
θ1 

(
s 

(
ρt+ 

√ 

1 −ρ2 η
)
>� f 

)]
= r 0 (s, t) , (3.2) 

here we assume E θ < ∞ . Thus, for any b ∈ (0, E θ ), it holds for ar-

itrarily fixed small ε, δ > 0 and all large n , say, n ≥ n 0 ( ε, δ, s , t ),

hat 

 ( r 0 (s,t) >b+ δ) − ε ≤ P 

(
L n 

n 

> b 

∣∣∣S = s, ξ = t 

)
≤ 1 ( r 0 (s,t) >b−δ) + ε. 

pplying Fatou’s lemma to the right-hand side of (3.1) , we obtain 

 ∫ 
r 0 (s,t) >b+ δ

P ( S ∈ ds, ξ ∈ dt ) − ε � P ( L n > nb ) 

� 

∫ ∫ 
r 0 (s,t) >b−δ

P ( S ∈ ds, ξ ∈ dt ) + ε. 

etting ε↓ 0 and δ↓ 0, it follows that: 
 ∫ 

r 0 (s,t) >b 

P ( S ∈ ds, ξ ∈ dt ) � P ( L n > nb ) 

� 

∫ ∫ 
r 0 (s,t) ≥b 

P ( S ∈ ds, ξ ∈ dt ) . (3.3) 

t is noteworthy that the derivation above does not require S and

to be independent. 

Clearly, if P ( r 0 (S, ξ ) = b ) = 0 , then both bounds in (3.3) coin-

ide, yielding a precise limit 

lim 

 →∞ 

P ( L n > nb ) = 

∫ ∫ 
r 0 (s,t) >b 

P ( S ∈ ds, ξ ∈ dt ) . (3.4) 

his condition holds under some additional mild assumptions. For

his purpose, first assume that ( S , ξ ) is jointly continuously dis-

ributed. Next, note that, since θ is strictly positive, the func-

ion r 0 ( s , t ) exhibits exactly the same positivity, continuity, and

onotonicity as the probability function 

p 0 (s, t) = P 

(
s 

(
ρt + 

√ 

1 − ρ2 η
)

> � f 

)
. (3.5)

efine the set 

 0 = { (s, t) ∈ R + × R : 0 < r 0 (s, t) < Eθ} 
= { (s, t) ∈ R + × R : 0 < p 0 (s, t) < 1 } , 
here the second equality is still due to the strict positivity of

. If D 0 = ∅ , which happens in case both η and � are degen-

rate, then P ( r 0 (S, ξ ) = b ) = 0 automatically holds. Now consider

 0 � = ∅ , for which case D 0 does not reduce to a singleton due to

he left-continuity of p 0 ( s , t ) in both s and t . Obviously, p 0 ( s , t ) is

on-decreasing in both s ∈ R + and t ∈ R . We strengthen it to that

 0 ( s , t ) strictly increases over the set D 0 in the sense that p 0 ( s 1 ,

 1 ) < p 0 ( s 2 , t 2 ) for all ( s 1 , t 1 ) and ( s 2 , t 2 ) from D 0 with s 1 < s 2 and

 1 < t 2 , and so does r 0 ( s , t ). This guarantees that r 0 (s, t) = b does

ot allow a rectangle for ( s , t ), and thus P ( r 0 (S, ξ ) = b ) = 0 . 

We conclude the following: 

roposition 3.1. Consider the portfolio loss (2.2) with f n ≡ f > 0 fixed

nd E θ < ∞ . Assume that ( S , ξ ) is jointly continuously distributed and

hat the function p 0 ( s , t ) defined by (3.5) strictly increases over the

et D 0 when D 0 � = ∅ . Then relation (3.4) holds for any fixed b ∈ (0, E θ ),

here the function r 0 ( s , t ) is defined by (3.2) . 

In this paper, however, we consider the case that f n diverges

o ∞ , which, as explained before, is to reflect the rarity of large

osses or to account for the portfolio effect. For this case, relation

3.4) becomes trivial since L n 
n under P ( ·| S = s, ξ = t ) converges to

 almost surely and, hence, the set ( r 0 ( s , t ) > b ) is empty. In or-

er to capture the sharp asymptotic behavior of the tail probabil-

ty P ( L n > nb ), we need to assume that either F S or F ξ is regularly

arying. 

.3. Regular variation 

Recall that a positive function g on R + is said to be regularly

arying at ∞ with index α ∈ R , written as g ∈ RV α , if 

lim 

 →∞ 

g(xy ) 

g(x ) 
= y α, y > 0 . 

hen α = 0 , this defines a slowly varying function at ∞ . See

ingham, Goldie, and Teugels (1987) and Resnick (1987) for text-

ook treatments of regular variation. Consider a real-valued ran-

om variable X having a regularly varying tail F X ∈ RV −α for some

> 0. Then F X (x ) is a power-like function in the sense that it dif-

ers from the power function x −α by up to a slowly varying func-

ion at ∞ . The regular variation of F X can be restated as follows:

here exists a Radon measure ν non-degenerate on R + such that

lim 

 →∞ 

P 
(

X 
x 

∈ A 

)
F X (x ) 

= ν(A ) (3.6) 

olds for every interval A ⊂ R + away from 0. This measure ν is

ctually given by 

(s, ∞ ) = s −α for s > 0 . (3.7)

As a typical example, let X be a random variable following the

areto distribution of type I, 

 X (x ) = 1 −
(

c 

x 

)α

, x > c, (3.8)

ith parameters α, c > 0 (hence, F X ∈ RV −α). Then we have 

P 
(

X 
x 

∈ ds 
)

F X (x ) 
= ν(ds ) over s > 

c 

x 
, (3.9)

hich is consistent with relation (3.6) . 

. Main results 

.1. Under a regularly varying common shock variable 

Let us first conduct a heuristic analysis on a special case that

he common shock variable S follows the Pareto distribution (3.8) ,
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and then rigorize the finding by establishing a theorem. Motivated

by the primary observation in Section 3.2 , we expand the proba-

bility P ( L n > nb ) for b ∈ (0, E θ ) by conditioning on 

(
S 
f n 

, ξ
)
, where

S is scaled by f n to make L n 
n conditionally have a proper limit.

Precisely, 

P ( L n > nb ) = 

∫ ∫ 
R + ×R 

P 

(
L n 

n 
> b 

∣∣∣ S 

f n 
= s, ξ = t 

)
P 

(
S 

f n 
∈ ds 

)
P ( ξ ∈ dt ) . 

Then by (3.9) , we have 

 ( L n > nb ) 

F S ( f n ) 
= 

∫ ∫ 
(

c 
f n 

, ∞ 

)
×R 

P 

(
L n 

n 

> b 

∣∣∣ S 

f n 
= s, ξ = t 

)
ν(d s ) P ( ξ ∈ d t ) .

(4.1)

For any s ∈ R + and t ∈ R , the conditional expectation of an

individual loss is 

r 1 (s, t) = E 

[ 
θ1 ( Z>� f n ) 

∣∣∣ S 

f n 
= s, ξ = t 

] 
= E 

[
θ1 

(
s 

(
ρt+ 

√ 

1 −ρ2 η
)
>� 

)], 
(4.2)

which takes values in [0, E θ ] and is non-decreasing in both s ∈
R + and t ∈ R . Similarly to the derivation in Section 3.2 , under

P 
(
·
∣∣∣ S 

f n 
= s,ξ= t 

)
, by the LLN it holds that, almost surely, 

L n 

n 

= 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
>� i 

) → r 1 (s, t) . 

This urges us to replace L n 
n by r 1 ( s , t ) in (4.1) . Then following the

analysis in Section 3.2 , it is plausible to obtain that ∫ ∫ 
r 1 (s,t) >b 

ν(d s ) P ( ξ ∈ d t ) � 

P ( L n > nb ) 

F S ( f n ) 

� 

∫ ∫ 
r 1 (s,t) ≥b 

ν(d s ) P ( ξ ∈ d t ) . (4.3)

We remark that this heuristics can be validated by applying Fatou’s

lemma subject to a suitable moment condition on ξ , but we omit

details here since we are going to establish a more general result

and give it a rigorous proof. 

Clearly, if ∫ ∫ 
r 1 (s,t)= b 

ν(d s ) P ( ξ ∈ d t ) = 0 , (4.4)

then both bounds in (4.3) coincide, yielding a precise limit relation

lim 

n →∞ 

P ( L n > nb ) 

F S ( f n ) 
= 

∫ ∫ 
r 1 (s,t) >b 

ν(d s ) P ( ξ ∈ d t ) . (4.5)

For this purpose, note that, as in Section 3.2 , the function r 1 ( s , t )

exhibits exactly the same positivity, continuity, and monotonicity

as the probability function 

p 1 (s, t) = P 

(
s 

(
ρt + 

√ 

1 − ρ2 η
)

> � 

)
. (4.6)

Then define the set 

D 1 = { (s, t) ∈ R + × R : 0 < r 1 (s, t) < Eθ} 
= { (s, t) ∈ R + × R : 0 < p 1 (s, t) < 1 } . 

If D 1 = ∅ , which happens in case both η and � are degenerate,

then r 1 (s, t) = b defines an empty set for ( s , t ) and thus relation

(4.4) holds. Now consider D 1 � = ∅ . Since ν( ds ) defined by (3.7) is

continuous over R + , for relation (4.4) to hold, it suffices to assume

that r 1 ( s , t ), or equivalently p 1 ( s , t ), strictly increases in s over the

set D 1 . For this purpose, Lemma A.1 below shows several sufficient

conditions on F η, � , which essentially encompass all cases of ( η, � )

of practical interest. 
Below is our first main result in which we consider the case

f a general regularly varying tail F S and show that, upon some

echnical conditions, relation (4.5) is indeed valid. 

heorem 4.1. Consider the portfolio loss (2.2) and assume the

ollowing: 

• F S ∈ RV −α for some α > 0 ; 

• Eξβ
+ < ∞ for some β > α; 

• x F θ (x ) = o 
(
F S (x ) 

)
as x → ∞ (hence, E θ < ∞ ); 

• p 1 ( s , t ) defined by (4.6) strictly increases in s over the set D 1 when

D 1 � = ∅ . 

Then relation (4.5) , with the right-hand side finite, holds for any

xed b ∈ (0, E θ ) and f n = O (n ) . 

The first two conditions together mean that the common shock

ariable has a heavier tail than the systematic risk factor; in other

ords, they describe the situation that, as during the financial cri-

is of 20 07–20 09, the exogenous shock to the market overrides the

ystematic risk inherent in the market. Thus, our Theorem 4.1 of-

ers the same insight as Theorem 1 of Bassamboo et al. (2008) into

he different roles of the three risk sources. Precisely, the tail be-

avior of the portfolio loss L n is approximated by that of the com-

on shock variable S , while the systematic and idiosyncratic risk

actors ξ and ηi contribute to the prefactor in the approximation

nly. It is noteworthy that, in order to gain this insight, Bassamboo

t al. (2008) assume, among others, that both F ξ and F η are

ounded by an exponentially decaying term and that η possesses

 probability density function. In establishing our Theorem 4.1 ,

uch technical assumptions are largely avoided or significantly

eakened. 

xample 4.1. Assume that F η has a support set to be a finite

r infinite interval and that � is degenerate at a positive con-

tant l , so that according to Lemma A.1 (a) the last condition

f Theorem 4.1 is fulfilled. This can also be verified directly by

bserving the function 

 1 (s, t) = E 

[
θ1 

(
ρt+ 

√ 

1 −ρ2 η> l s 

)], (s, t) ∈ R + × R . 

n particular, if further θ and η are independent then 

 1 (s, t) = Eθ · F η

( 

l 
s 
− ρt √ 

1 − ρ2 

) 

. 

e are going to convert the double integral on the right-hand side

f (4.5) into an iterated integral. Define 

˜ 
 1 (t) = r 1 (∞ , t) = Eθ · F η

( 

− ρt √ 

1 − ρ2 

) 

;

ee also relation (A.3) below. Then for any b ∈ (0, E θ ), the function

˜  1 (t) has a unique inverse 

(b) = −
√ 

1 − ρ2 

ρ
F ← 

η

(
1 − b 

Eθ

)
, 

here F ← 

η denotes the unique inverse of F η . Furthermore, for any

 ∈ (0, E θ ) and t > t ( b ), the function r 1 ( · , t ) has a unique inverse

s 

 t (b) = l 

(
ρt + 

√ 

1 − ρ2 F ← 

η

(
1 − b 

Eθ

))−1 

. 

o convert the double integral on the right-hand side of (4.5) into

n iterated integral, further assume that ξ is continuously

istributed. Then using (3.7) we obtain 



Q. Tang, Z. Tang and Y. Yang / European Journal of Operational Research 276 (2019) 710–722 715 

n

4

 

o  

t  

t  

P  

t  

h

P

T

W  

p

r  

w  

f

a

F  

∫

 

t  

t  

g

D

I  

t  

ρ

n
 

w  

a  

p  

P

D  

A  

F  

T  

f  

B  

e

r

T  

c  

(

n

B  

c

 

t  

s

T  

f

 

 

f  

w  

s  

s  

t  

t  

a  

t  

fi

E  

a  

d

r

w  

r

a

lim 

 →∞ 

P ( L n > nb ) 

F S ( f n ) 
= 

∫ ∞ 

t(b) 

∫ ∞ 

s t (b) 
ν(d s ) P ( ξ ∈ d t ) 

= 

1 

l α

∫ ∞ 

−
√ 

1 −ρ2 

ρ F ← η ( 1 − b 
Eθ ) 

(
ρt + 

√ 

1 − ρ2 F ← 

η

(
1 − b 

Eθ

))α

×P ( ξ ∈ dt ) . 

.2. Under a regularly varying systematic risk factor 

Similarly to Section 4.1 , let us first conduct a heuristic analysis

n another special case that the systematic risk factor ξ follows

he Pareto distribution (3.8) , and then rigorize the finding by es-

ablishing another theorem. In this case, we expand the probability

 ( L n > nb ) for b ∈ (0, E θ ) by conditioning on 

(
S, 

ξ
f n 

)
instead, where

he purpose of scaling ξ by f n is still to make L n 
n conditionally

ave a proper limit. Precisely, 

 ( L n > nb ) = 

∫ ∫ 
R + ×R 

P 

(
L n 

n 
> b 

∣∣∣S = s, 
ξ

f n 
= t 

)
P ( S ∈ ds ) P 

(
ξ

f n 
∈ dt 

)
. 

hen by (3.9) , we have 

P ( L n > nb ) 

F ξ ( f n ) 
= 

∫ ∫ 
R + ×

(
c 
f n 

, ∞ 

) P 

(
L n 

n 
> b 

∣∣∣S = s, 
ξ

f n 
= t 

)
P ( S ∈ ds ) ν(dt) . 

e are going to derive upper and lower bounds of the conditional

robability above. For this purpose, define the function 

 2 (u ) = E 
[
θ1 ( �<ρu ) 

]
, u ∈ R + , (4.7)

hich is left continuous. Under P 
(
·
∣∣∣S= s, ξ

f n 
= t 
)
, by the LLN, it holds

or any M > 0 and all large n that, almost surely, 

L n 

n 

= 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt+ 

√ 

1 −ρ2 ηi 
f n 

)
>� i 

)

≤ 1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt+ 

√ 

1 −ρ2 | ηi | 
M 

)
>� i 

)
→ E 

[
θ1 

(
s 

(
ρt+ 

√ 

1 −ρ2 | η| 
M 

)
>� 

)]
↓ r 2 (st+) as M ↑ ∞ , 

nd 

L n 

n 

≥ 1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt−

√ 

1 −ρ2 | ηi | 
M 

)
>� i 

)
→ E 

[
θ1 

(
s 

(
ρt−

√ 

1 −ρ2 | η| 
M 

)
>� 

)]
↑ r 2 (st) as M ↑ ∞ . 

ollowing the analysis in Section 3.2 , it is plausible to obtain that

 ∫ 
r 2 (st) >b 

P ( S ∈ ds ) ν(dt) � 

P ( L n > nb ) 

F ξ ( f n ) 
� 

∫ ∫ 
r 2 (st+) ≥b 

P ( S ∈ ds ) ν(dt) . 

(4.8) 

Indeed, subject to a suitable moment condition on S , this heuris-

ics can be validated by applying Fatou’s lemma, but we omit de-

ails here since we are going to establish a more general result and

ive it a rigorous proof. 

To pursue equality of both bounds in (4.8) , define the set 

 2 = { u ∈ R + : 0 < r 2 (u ) < Eθ} . 
f D 2 = ∅ , which happens in case � is degenerate at l > 0, say, then

he restrictions r 2 ( st ) > b and r 2 (st+) ≥ b in (4.8) are equivalent to

st > l and ρst ≥ l , respectively. Hence it follows from (4.8) that: 
lim 

 →∞ 

P ( L n > nb ) 

F ξ ( f n ) 
= 

∫ ∫ 
ρst≥l 

P ( S ∈ ds ) ν(dt) = 

(
ρ

l 

)α

ES α, (4.9)

here the last step is due to (3.7) . Now consider D 2 � = ∅ . Note that,

s in Sections 3.2 and 4.1 , the function r 2 ( u ) exhibits the same

ositivity, continuity, and monotonicity as the probability function

 ( � < ρu ). Also note that 

 2 = { u ∈ R + : 0 < P ( �< ρu ) <1 } = 

1 

ρ
{ u ∈ R + : 0 < F � (u −) <1 } .

ssume that F � ( u ) strictly increases in u over the set { u ∈ R + : 0 <
 � (u ) < 1 } , so does F � (u −) over the set { u ∈ R + : 0 < F � (u −) < 1 } .
hen P ( � < ρu ) and, hence, r 2 ( u ) strictly increase in u over D 2 . Thus

or any b ∈ (0, E θ ), the function r 2 ( u ) has a unique inverse r ← 

2 
(b) .

y the left continuity and strict monotonicity of r 2 ( u ) over D 2 , it is

asy to check the following: for b ∈ (0, E θ ), 

 2 (u ) > b ⇐⇒ u > r ← 

2 (b) , r 2 (u +) ≥ b ⇐⇒ u ≥ r ← 

2 (b) . 

hen rewrite the regions of the two double integrals in (4.8) and

onvert each double integral into an iterated integral. Using

3.7) we obtain 

lim 

 →∞ 

P ( L n > nb ) 

F ξ ( f n ) 
= 

ES α(
r ← 

2 
(b) 
)α . (4.10) 

y the way, this result actually allows a degenerate � as a special

ase because for this case relation (4.10) reduces to relation (4.9) . 

The following is our second main result in which we consider

he case of a general regularly varying tail F ξ and show that, upon

ome technical conditions, relation (4.10) is indeed valid. 

heorem 4.2. Consider the portfolio loss (2.2) and assume the

ollowing: 

• F ξ ∈ RV −α for some α > 0 ; 

• ES β < ∞ for some β > α; 
• x F θ (x ) = o 

(
F ξ (x ) 

)
as x → ∞ (hence, E θ < ∞ ); 

• F � ( u ) strictly increases in u over the set { u ∈ R + : 0 < F � (u ) < 1 }
if it is nonempty. 

Then relation (4.10) holds for any fixed b ∈ (0, E θ ) and f n = O (n ) . 

The first two conditions together mean that the systematic risk

actor has a heavier tail than the common shock variable; in other

ords, they describe the situation that, as during recessions, the

ystematic risk inherent in the market overrides the exogenous

hock to the market. Compared to Theorem 4.1, Theorem 4.2 shows

hat the tail behavior of the portfolio loss L n is approximated by

hat of the systematic risk factor ξ , while the common shock vari-

ble S contributes to the prefactor in the approximation only and

he idiosyncratic risk factors ηi even completely disappear. This

nding is in sharp contrast to that of Bassamboo et al. (2008) . 

xample 4.2. Assume � = le U σ , where l is a positive constant

nd U σ is a random variable independent of θ and uniformly

istributed over (−σ, σ ) for some σ > 0. We have 

 2 (u ) = Eθ ·
[ ( 

log 
(

ρu 
l 

)
+ σ

2 σ

) 

+ 

∧ 1 

] 

, u ∈ R + , 

hich strictly increases from 0 to E θ as u increases from 

l 
ρ e −σ to

l 
ρ e σ . Thus, for any b ∈ (0, E θ ), its unique inverse is 

 

← 

2 (b) = 

l 

ρ
exp 

{
2 σ

b 

Eθ
− σ

}
, 

nd relation (4.10) becomes 
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Table 1 

Sensitivity testing for VaR of L n on ρ and α using Theorem 4.1 . 

Model parameters ̂ VaR q (L n ) 

q = 99 . 4% q = 99 . 5% q = 99 . 6% 

% change in ρ +2% +0 . 6% +0 . 6% +0 . 5% 

+1% +0 . 3% +0 . 3% +0 . 3% 

(ρ = 0 . 6) (4.66 × 10 5 ) (5.70 × 10 5 ) (6.64 × 10 5 ) 

−1% −0 . 3% −0 . 3% −0 . 3% 

−2% −0 . 7% −0 . 6% −0 . 6% 

% change in α +2% −13 . 6% −9 . 8% −6 . 1% 

+1% −6 . 8% −4 . 8% −2 . 9% 

(α = 1 . 5) (4.66 × 10 5 ) (5.70 × 10 5 ) (6.64 × 10 5 ) 

−1% +6 . 7% +4 . 5% +2 . 7% 

−2% +13 . 2% +8 . 8% +5 . 0% 
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b

 

 

lim 

n →∞ 

P ( L n > nb ) 

F ξ ( f n ) 
= 

(
ρ

l 

)α

exp 

{
ασ − 2 ασ

b 

Eθ

}
ES α. 

By the way, letting σ↓ 0, which leads to the case that � is

degenerate at l , the relation above is further simplified to (4.9) . 

5. Numerical studies 

In this section, we perform numerical studies to check the accu-

racy of approximations given by formulas (4.5) and (4.10) by Monte

Carlo simulation and conduct a sensitivity analysis on the Value-

at-Risk of the portfolio loss to key model parameters including the

adjusting coefficient ρ and the regular variation index α. 

For simplicity, obligor-specific variables θ , η, and � are assumed

to be mutually independent, though this is not required by the

two theorems. Moreover, θ is specified to be an exponential ran-

dom variable with mean 800, the portfolio size n varies from 10 to

10 0 0, and the sample size for the simulation is set to N = 10 8 . 

5.1. A numerical study of Theorem 4.1 

We first check the accuracy of the approximation given by for-

mula (4.5) under a regularly varying common shock variable S .

Other model specifications for this numerical study are listed be-

low: 

• S follows a Pareto distribution of type II, with tail 

F S (s ) = 

(
1 

s + 1 

)1 . 5 

, s > 0 , 

so that F S ∈ RV −α with α = 1 . 5 ; 
• ξ and η are i.i.d. normal variables with mean 2 and variance 1;
• ρ = 0 . 6 ; 
• � follows a three-point distribution, with P (� = 2) = 0 . 1 , P (� =

2 . 75) = 0 . 5 , and P (� = 3 . 5) = 0 . 4 ; 
• f n = 10 + n 0 . 4 . 

Under these specifications, the individual default probability when

the portfolio size n equals 10, 100, 10 0 0 is computed to be

2.0%, 1.4%, 0.7%, respectively, each of which indicates a low-

default credit portfolio. It is easy to check that all condi-

tions required by Theorem 4.1 are fulfilled. For example, since

supp (F η,� ) = R × { 2 , 2 . 75 , 3 . 5 } , by Lemma A.1 (b), the last condition

of Theorem 4.1 holds. 

Recall the function r 1 ( s , t ) defined in (4.2) and its limit func-

tion ˜ r 1 (t) defined by (A.3) . Similarly to Example 4.1 , we convert

the double integral on the right-hand side of (4.5) into an iterated

integral as 

lim 

n →∞ 

P ( L n > nb ) 

F S ( f n ) 
= 

∫ ∞ 

t(b) 
(s t (b)) −αP (ξ ∈ dt) , (5.1)

where t ( b ) with b ∈ (0, E θ ) given denotes the unique solution to

the equation ˜ r 1 (t) = b, and s t ( b ) with b ∈ (0, E θ ) and t ∈ R given

denotes the unique solution to the equation r 1 (s, t) = b. The exis-

tence and uniqueness of the solutions to these equations can easily

be verified under the current model specifications. 

Fig. 1 compares the simulated 

P(L n >nb) 

F S ( f n ) 
with the limit given by

(5.1) on the left and shows their ratio on the right, where b varies

from 50 to 750. We observe that the simulated values converge

to the limit as n increases, and that when n = 10 0 0 the approx-

imation error is less than 5%. Although Theorem 4.1 claims that

the limit relation (4.5) holds for any b ∈ (0, 800), Fig. 1 shows that

the approximation error increases when b approaches 0 or 800.

The poor performance when b approaches 0 should be due to the

rarity of the event ( L n ≤ nb ), while the poor performance when b

approaches 800 should be due to the rarity of the event ( L n > nb ).
or these two extreme scenarios, special treatments such as deriv-

ng second-order asymptotics may help improve the quality of the

pproximation. 

Value-at-Risk (VaR) is one of the primary risk measures em-

loyed by financial institutions to determine the amount of eco-

omic capital for unexpected losses. We conduct a sensitivity anal-

sis on the VaR of the portfolio loss L n estimated from formula

5.1) with respect to the adjusting coefficient ρ and the regular

ariation index α. By (5.1) , for a given confidence level q ∈ (0, 1),

aR q (L n ) = n VaR q 

(
L n 
n 

)
can be approximated by ̂ aR q (L n ) = nb ∗(q ) , 

here b ∗( q ) denotes the unique solution to the equation 

 S ( f n ) 

∫ ∞ 

t(b) 
(s t (b)) −αP (ξ ∈ dt) = 1 − q. (5.2)

o see the existence and uniqueness of the solution to Eq. (5.2) , we

bserve that, under the model specifications above, the right-hand

ide of (4.5) is continuous and strictly decreasing in b , and so is

he left-hand side of Eq. (5.2) . 

For a fixed portfolio size n = 10 0 0 , Table 1 summarizes percent-

ge changes in 

̂ VaR q (L n ) with respect to percentage changes in ρ
nd α, for q = 99 . 4% , 99.5%, and 99.6%, respectively. It shows that̂ aR q (L n ) increases as ρ increases, which is anticipated because a

igher value of ρ means more systematic risk the portfolio is ex-

osed to, and hence higher likelihood of simultaneous defaults.

t also shows that ̂ VaR q (L n ) increases when α decreases, which

s also anticipated because a smaller value of α means a heav-

er tail of the common shock variable, and hence higher likelihood

f simultaneous defaults. We observe that ̂ VaR q (L n ) is much more

ensitive to α than to ρ , which is due to the dominance of the

ommon shock variable S over the whole portfolio. Moreover, as

he confidence level q increases, which indicates that the financial

nstitution becomes more prudent, the sensitivity of ̂ VaR q (L n ) to

decreases noticeably, while the sensitivity to ρ almost remains

nchanged. 

.2. A numerical study of Theorem 4.2 

We first check the accuracy of the approximation given by

ormula (4.10) under a regularly varying systematic risk factor

. Other model specifications for this numerical study are listed

elow: 

• S follows a Gamma(2,1) distribution with density se −s for s > 0;
• ξ and η are i.i.d. following a common Pareto distribution of

type II, with tail 

F ξ (t) = 

(
1 

t + 1 

)1 . 6 

, t > 0 , 

so that F ξ ∈ RV −α with α = 1 . 6 ; 
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• ρ = 0 . 85 ; 
• � = 0 . 5 + 6 B, where B follows a Beta (0.9,3) distribution with

density 

2 . 4795 x −0 . 1 (1 − x ) 2 , 0 < x < 1 ;
• f n = 10 log n . 

Under these specifications, the individual default probability

hen the portfolio size n equals 10, 100, 1000 is computed to

e 2.0%, 0.7%, 0.4%, respectively, which reflects a more significant

ortfolio effect than in Section 5.1 . It is easy to check that all con-

itions required by Theorem 4.2 are fulfilled. 

The accuracy of the approximation given by formula (4.10) is

xamined in Fig. 2 . Similarly to the previous numerical study in

ection 5.1 , for n = 10 0 0 and for intermediate values of b , the

imulated values for P(L n >nb) 

F ξ ( f n ) 
are within 3% of the limit, but as b

pproaches 0 or 800 the performance of the estimation becomes

oor. 

Again, we conduct a sensitivity analysis on the VaR of the port-

olio loss L n estimated from formula (4.10) with respect to ρ and
. By (4.10) , for a given confidence level q ∈ (0, 1), we have the

pproximation ̂ aR q (L n ) = nb ∗(q ) , 

here b ∗( q ) denotes the unique solution to the equation 

F ξ ( f n ) ES α(
r ← 

2 
(b) 
)α = 1 − q. 

nder the model specifications above, the solution b ∗( q ) assumes

n analytical expression 

 

∗(q ) = E θ · F � 

( 

ρ

(
F ξ ( f n ) E S α

1 − q 

) 1 
α

) 

. 

he same as the previous numerical study in Section 5.1 , for a fixed

ortfolio size n = 10 0 0 , Table 2 summarizes percentage changes

n 

̂ VaR q (L n ) with respect to percentage changes in ρ and α, for

 = 99 . 4% , 99.5%, and 99.6%, respectively. Similarly, it shows that̂ aR q (L n ) increases as ρ increases or as α decreases. However, the

ensitivity of ̂ VaR q (L n ) to ρ , though still much less than that to α,
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Table 2 

Sensitivity testing for VaR of L n on ρ and α using Theorem 4.2 . 

Model parameters ̂ VaR q (L n ) 

q = 99 . 4% q = 99 . 5% q = 99 . 6% 

% change in ρ +2% +6 . 7% +5 . 1% +3 . 9% 

+1% +3 . 4% +2 . 5% +2 . 0% 

(ρ = 0 . 85) (0.89 × 10 5 ) (1.24 × 10 5 ) (1.69 × 10 5 ) 

−1% −3 . 4% −2 . 5% −2 . 0% 

−2% −6 . 8% −5 . 1% −4 . 0% 

% change in α +2% −18 . 8% −14 . 7% −12 . 0% 

+1% −9 . 6% −7 . 5% −6 . 1% 

(α = 1 . 6) (0.89 × 10 5 ) (1.24 × 10 5 ) (1.69 × 10 5 ) 

−1% +9 . 9% +7 . 7% +6 . 3% 

−2% +20 . 1% +15 . 8% +12 . 9% 
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becomes much more significant than in Table 1 . This is anticipated

because in the current situation the systematic risk factor ξ plays

a more dominating role in the whole portfolio. Moreover, as the

confidence level q increases, the sensitivity of ̂ VaR q (L n ) to both ρ
and α decreases noticeably. 

6. Concluding remarks 

We study the loss from defaults of a large, potentially hetero-

geneous, portfolio in a static structural model in which the latent

variables governing individual defaults follow a mixture structure,

the portfolio effect is taken into account, and the obligor-specific

variables constitute a continuum. We derive sharp asymptotics for

the tail probability of the portfolio loss, showing that the occur-

rence of large losses can be attributed to either the common shock

variable or the systematic risk factor, whichever has a heavier tail. 

Several extensions of our work are worthy of pursuit in the fu-

ture. First, in our work we follow the usual procedure to condi-

tion on the common shock variable and the systematic risk fac-

tor and then employ the LLN approach. In doing so, the impact of

the idiosyncratic risk factors turns out to be neglected. However,

there can be situations where idiosyncratic risk plays a dominating

role in causing large portfolio losses; see, e.g., Ang and Longstaff

(2013) . Thus, it will be interesting to extend the asymptotic study

to such situations and capture the impact of idiosyncratic risk fac-

tors. Second, it is highly desirable to establish CLT and LDP-type

approximations for large portfolio losses in various situations, as

such approximations are anticipated to be more accurate than the

ones obtained through the LLN approach. Moreover, they may give

a clue on how to capture the impact of idiosyncratic risk factors

and, hence, answer the first question. Third, the use of the indi-

cator function in the portfolio loss model (2.2) indicates that once

an obligor defaults its loss rate is 100%, which is impractical. To

remedy this, we can follow Shi, Tang, and Yuan (2017) to intro-

duce a non-decreasing function taking values in [0,1] to link the

loss rate to the severity of default. Actually, there is a vast litera-

ture on modeling the loss rate; see, e.g., Betz, Kellner, and Rösch

(2018) ; Calabrese (2014) ; Calabrese and Zenga (2010) ; Yao, Crook,

and Andreeva (2015, 2017) , and Hurlin, Leymarie, and Patin (2018) .

Even more realistically, we can follow this literature to model the

exposure at default, the loss rate, and the default in an integrated

way that all of them share some common risk factors and each

has its own idiosyncratic risk factor. Finally, confined to the mix-

ture structure, the common shock, systematic risk, and idiosyn-

cratic risk play different roles in causing credit risk propagation

and deterioration. By virtue of the asymptotic study, it is possi-

ble to quantitatively analyze and distinguish the different roles of

these risk factors. Such a quantitative analysis is fascinating and

has important implications for credit risk management. 
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ppendix A. Proofs of the main results 

emmas 

We firstly construct technical conditions to guarantee the

onotonicity of the function p 1 ( s , t ) defined in (4.6) , as required

n proving that the two bounds in (4.3) are equal. 

Recall that the support set of a random vector X or its distribu-

ion function F X , denoted by supp( F X ), is the closure of the set of

ll possible values of X . In other words, x ∈ supp( F X ) if and only if

 ( X ∈ �( x )) > 0 for any neighborhood of x . It turns out to be crucial

or our purpose to assume that a support set is connected; that is,

t cannot be partitioned into two nonempty subsets such that each

ubset has no points in common with the closure of the other.

t is easy to see that F X is strictly increasing in every dimension

ver the interior of supp( F X ) if the interior is nonempty, but not

ecessarily continuous even if supp( F X ) is connected. 

Recall the probability function p 1 ( s , t ) defined in (4.6) : 

p 1 (s, t) = P 

(
s 

(
ρt + 

√ 

1 − ρ2 η
)

> � 

)
, (s, t) ∈ R + × R . 

e restrict it to the set D 1 = { (s, t) ∈ R + × R : 0 < p 1 (s, t) < 1 } . 
emma A.1. The probability function p 1 ( s , t ) strictly increases in s

ver the set D 1 under either of the following conditions: 

a) supp( F η, � ) is connected; 

b) supp (F η,� ) = R × supp (F � ) ; 

c) supp (F η,� ) = supp (F η) × R + . 

roof. Fix t ∈ R and denote by ˜ D 1 the cross section of the set D 1 

t t . Necessarily, 

 

(
ρt + 

√ 

1 − ρ2 η > 0 

)
> 0 (A.1)

ecause otherwise ˜ D 1 = ∅ . Then we need to prove that p 1 ( s , t )

trictly increases in s ∈ 

˜ D 1 . Define 

 = 

1 

� 

(
ρt + 

√ 

1 − ρ2 η
)

nd denote by y ∗ and y ∗ the infimum and supremum, respectively,

f 

upp (F Y ) = 

{ 
1 

l 

(
ρt + 

√ 

1 − ρ2 u 

)
: (u, l) ∈ supp (F η,� ) 

} 
. 

ince p 1 (s, t) = P ( sY > 1 ) , it suffices to prove that F Y strictly in-

reases at y = 

1 
s for every s ∈ 

˜ D 1 . Furthermore, for every s ∈ 

˜ D 1 ,

ince ( s , t ) ∈ D we have 0 < P 
(
Y > 

1 
s 

)
= p 1 (s, t) < 1 , which implies

hat y ∗ ≤ 1 
s ≤ y ∗. Thus, for a fixed y ∈ ( y ∗∨ 0, y ∗), it suffices to prove

hat F Y strictly increases at y . We are going to prove this in the

hree cases. 

https://doi.org/10.13039/501100008982
https://doi.org/10.13039/100008139
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004608
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(a) Since supp( F η, � ) is connected and y ∈ ( y ∗ , y ∗), we can always

find ( u , l ) ∈ supp( F η, � ) such that y = 

1 
l 

(
ρt+ 

√ 

1 −ρ2 u 
)
. Thus, 

( Y ∈ dy ) ⊃ ( η ∈ du, � ∈ dl ) , (A.2) 

which precisely means that, for any neighborhood �( y ) of

y , we can find a neighborhood �( u , l ) of ( u , l ) such that

( Y ∈ �( y )) ⊃ (( η, � ) ∈ �( u , l )). Thus, F Y strictly increases at y . 

(b) Arbitrarily choose l ∈ supp( F � ) and then let u = 

ly −ρt √ 

1 −ρ2 
∈ R ,

so that (A.2) still holds. Since supp (F η,� ) = R × supp (F � ) , we

have ( u , l ) ∈ supp( F η, � ) and hence F Y strictly increases at y . 

(c) By (A.1) , we can find u ∈ supp( F η) such that ρt + 

√ 

1 − ρ2 u >

0 . Then let l = 

ρt+ 
√ 

1 −ρ2 u 
y ∈ R + , so that (A.2) still holds.

Since supp (F η,� ) = supp (F η) × R + , we have ( u , l ) ∈ supp( F η, � )

and hence F Y strictly increases at y . �

We now prepare a series of lemmas for proving the two main

esults. The following is a restatement of Theorem 1.2 of Nagaev

1979) : 

emma A.2. Let X 1 , ..., X n be i.i.d. copies of a real-valued random
ariable X. Then for every 1 ≤ q ≤ 2, x > 0, and y > 0, it holds that 

 

( 

n ∑ 

i =1 

X i > x 

) 

≤ nP(X > y ) + exp 

{ 
x 

y 
−
(

x 

y 
− n 

y 
E 
[
X1 (| X|≤y ) 

]
+ 

n 

y q 
E 
[| X| q 1 (| X|≤y ) 

])
log 

( 

1 + 

xy q −1 

nE 
[| X| q 1 (| X|≤y ) 

]) } 

. 

Recall the function r 1 ( s , t ) defined in (4.2) , 

 1 (s, t) = E 

[
θ1 

(
s 

(
ρt+ 

√ 

1 −ρ2 η
)
>� 

)], (s, t) ∈ R + × R . 

pplying Lemma A.2 , we obtain the following inequality: 

emma A.3. If E θq < ∞ for some 1 < q ≤ 2, then for any 0 < ε < 1,
ny λ> 0, all sufficiently large n , and uniformly for all s ∈ R + and
 ∈ R , 

 

( 

∣∣∣∣∣1 

n 

n ∑ 

i =1 

θi 1 (
s 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
>� i 

) − r 1 (s, t) 

∣∣∣∣∣ > ε 

) 

≤ nP(θ > λn ) + Cn −
ε(q −1) 

2 λ , 

here C is a positive constant irrespective of n. 

roof. It is important to note that every step in this proof holds

niformly for all s ∈ R + and t ∈ R . For brevity, write 

 = θ1 

(
s 

(
ρt+ 

√ 

1 −ρ2 η
)
>� 

) and 

˜ X = X − EX = X − r 1 (s, t) , 

nd introduce ˜ X 1 , ..., ˜ X n to be i.i.d. copies of ˜ X . By Lemma A.2 , we

eal with the left-hand side, denoted by P n , of the inequality under

roof as 

 n = P 

( 

∣∣∣∣∣ n ∑ 

i =1 

˜ X i 

∣∣∣∣∣ > εn 

) 

≤ nP 
(

˜ X > λn 

)
+ nP 

(
− ˜ X > λn 

)
+2 exp 

{ 
ε 

λ
−
(

ε 

λ
− 1 

λ

∣∣∣E [ ˜ X 1 ( | ̃ X | ≤λn ) 

] ∣∣∣)
× log 

⎛ ⎝ 1 + 

ε(λn ) q −1 

E 

[ ∣∣ ˜ X 

∣∣q 1 ( | ̃ X | ≤λn ) 

] 
⎞ ⎠ 

⎫ ⎬ ⎭ 

. 

ince ˜ X ≥ X − Eθ ≥ −Eθ, the term nP (− ˜ X > λn ) vanishes for all

arge n . Since E ̃  X = 0 , we have E 
[

˜ X 1 
( | ̃ X | ≤λn ) 

]
→ 0 . In addition,

 

[| ̃ X | q 1 (| ̃ X |≤λn ) 

]
≤E (θ+ E θ ) q < ∞ . It follows that, for sufficiently large n , 
 n ≤ nP (θ > λn ) + 2 exp 

{
ε 

λ
− ε 

2 λ
log 

(
1 + 

ε(λn ) q −1 

E(θ + Eθ ) q 

)}
≤ nP (θ > λn ) + Cn 

− ε(q −1) 
2 λ . 

his ends the proof. �

Note that the function r 1 ( s , t ), which takes values in [0, E θ ], is

on-decreasing in t ∈ R and, under the last condition of Theorem

.1 , is strictly increasing in s over the range D 1 specified by 0 < r 1 ( s ,

 ) < E θ . Thus, for b ∈ (0, E θ ), the function r 1 ( s , t ) restricted to the

ange D 1 has a unique inverse with respect to s , denoted by s t ( b ).

urthermore, write 

˜ 
 1 (t) = r 1 (∞ , t) = E 

[
θ1 

(
ρt+ 

√ 

1 −ρ2 η> 0 

)]. (A.3)

learly, for any b ∈ (0, E θ ), both inverses ˜ r ← 

1 
(b) and ˜ r → 

1 
(b) are finite.

ince ˜ r 1 (t) is non-decreasing and left-continuous in t , it is easy to

ee the following: 

• ˜ r 1 ( ̃ r ← 

1 (b)) ≤ b, 

• ( ̃ r ← 

1 
(b) , ∞ ) ⊂ { t ∈ R : ̃  r 1 (t) ≥ b} ⊂ [ ̃ r ← 

1 
(b) , ∞ ) , 

• { t ∈ R : ̃  r 1 (t) > b} = ( ̃ r → 

1 
(b) , ∞ ) . 

emma A.4. Assume E θ < ∞ and the last condition of Theorem 4.1 .

hen for any fixed b ∈ (0, E θ ) and any small δ > 0, there exists some

mall ε > 0 such that, for all t > ̃  r ← 

1 (b) , 

 t (b) ≥ ε 

t − ˜ r ← 

1 
(b − δ) 

. 

roof. For the given b and δ, choose some small ε > 0 such that

 [ θ1 (0 < � ≤ ε) ] < δ. For any t > ̃  r ← 

1 
(b) , we derive 

 1 

(
ε 

t − ˜ r ← 

1 
(b − δ) 

, t 

)
= E 

[ 

θ1 

(
ε ( ρt+ 

√ 

1 −ρ2 η) 
( t−˜ r ← 

1 
(b−δ) ) � 

> 1 

)(1 (�>ε) + 1 (0 <� ≤ε) 

)]

< E 

[
θ1 

(
ρt+ 

√ 

1 −ρ2 η
t−˜ r ← 

1 
(b−δ) 

> 1 

)]+ δ

≤ E 

[
θ1 

(
ρ ˜ r ← 

1 
(b−δ)+ 

√ 

1 −ρ2 η> 0 

)]+ δ

= 

˜ r 1 ( ̃ r ← 

1 (b − δ)) + δ

≤ b. 

hus, the desired inequality follows. �

Recall the function r 2 ( u ) defined in (4.7) . For convenience, we

ntroduce a modified version as follows: for any u ∈ R + and any

mall h ∈ R , say | h | < 1, define 

 2 (u ; h ) = E 

[ 
θ1 ( ρu 

� 
+ h> 1 ) 

] 
. (A.4)

t is easy to verify that lim h ↓ 0 r 2 (u ; h ) = r 2 (u +) and

im h ↑ 0 r 2 (u ; h ) = r 2 (u ) . Similarly to Lemma A.3 , the following

emma considers the probability that the average 

n = 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 
� i 

(
ρt+ 

√ 

1 −ρ2 ηi 
f n 

)
> 1 

)
ositively deviates from r 2 ( st ; δ) or negatively deviates from

 2 (st; −δ) for any small δ > 0. In this lemma, by saying a property

olds uniformly for 0 < s � f n we mean that it holds uniformly for

 < s ≤ εn f n for any given positive sequence εn = o(1) . 

emma A.5. If E θq < ∞ for some 1 < q ≤ 2, then for any 0 < δ < ε,

ny λ> 0, all sufficiently large n , and uniformly for all 0 < s � f n and

 ∈ R , 
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P ( �n − r 2 (st; δ) > ε ) + P ( �n − r 2 (st;−δ) < −ε ) ≤ nP (θ > λn ) 

+ Cn 

− (ε−δ)(q −1) 
2 λ , 

where C is a positive constant irrespective of n. 

Proof. It is important to note that every step in this proof holds

uniformly for all 0 < s � f n and t ∈ R . For brevity, write 

X = θ1 

(
s 
� 

(
ρt+ 

√ 

1 −ρ2 η
f n 

)
> 1 

) and 

˜ X = X − EX, 

and introduce ˜ X 1 , ..., ˜ X n to be i.i.d. copies of ˜ X . For the given

0 < δ < ε, choose some large M such that E 
[
θ1 ( | η| 

� 
>M 

)]≤δ. Then it

holds for all large n that 

EX ≤ E 

[
θ1 

(
ρ st 

� 
+ 
√ 

1 −ρ2 s 
f n 

| η| 
� 

> 1 

)(1 

( | η| 
� 

≤M 

) + 1 

( | η| 
� 

>M 

))]
≤ E 

[
θ1 

(
ρ st 

� 
+ 
√ 

1 −ρ2 s 
f n 

M> 1 

)]+ E 

[ 
θ1 

( | η| 
� 

>M 

)] 
≤ r 2 (st; δ) + δ

and that 

EX ≥ E 

[
θ1 

(
ρ st 

� 
−
√ 

1 −ρ2 s 
f n 

| η| 
� 

> 1 

)1 

( | η| 
� 

≤M 

)]
≥ E 

[
θ1 

(
ρ st 

� 
−
√ 

1 −ρ2 s 
f n 

M> 1 

)]− E 

[ 
θ1 

( | η| 
� 

>M 

)] 
≥ r 2 (st;−δ) − δ. 

It follows that 

P ( �n − r 2 (st; δ) > ε ) + P ( �n − r 2 (st;−δ) < −ε ) 

≤ P 

( 

1 

n 

n ∑ 

i =1 

˜ X i > ε − δ

) 

+ P 

( 

1 

n 

n ∑ 

i =1 

(
− ˜ X i 

)
> ε − δ

) 

. 

We follow the proof of Lemma A.3 to derive similar upper bounds

for the last two probabilities above. Finally, putting these two

upper bounds together and keeping in mind that − ˜ X ≤ Eθ, we

conclude the proof. �

Proof of Theorem 4.1 

We aim to establish the two-sided inequality (4.3) . First we de-

rive the corresponding upper bound for P ( L n > nb ). For any small

δ > 0, in terms of r 1 ( s , t ) defined in (4.2) and ˜ r 1 (t) defined in (A.3) ,

we decompose it into three terms as 

P ( L n > nb ) = P ( L n > nb, ξ ≤ ˜ r ← 

1 (b − δ) ) 

+ P 

(
L n > nb, r 1 

(
S 

f n 
, ξ
)

< b − δ, ξ > 

˜ r ← 

1 (b − δ) 
)

+ P 

(
L n > nb, r 1 

(
S 

f n 
, ξ
)

≥ b − δ, ξ > 

˜ r ← 

1 (b − δ) 
)

= I 1 + I 2 + I 3 . 

Note that, for all s > 0 and t ≤ ˜ r ← 

1 
(b − δ) , 

r 1 (s, t) ≤ ˜ r 1 ( ̃ r ← 

1 (b − δ)) ≤ b − δ. (A.5)

Moreover, by the conditions on S and θ , we have E θ q < ∞ for 1 <

q < 1 + α. Thus, by inequality (A.5) and Lemma A.3 , it holds for

some small λ> 0 and some large C > 0 that 

I 1 ≤
∫ ∫ 

R + ×(−∞ , ˜ r ← 

1 
(b−δ)] 

P 

(
S 

f n 
∈ ds 

)
P ( ξ ∈ dt ) 

×P 

( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 
� i 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
> 1 

) − r 1 (s, t) > δ

) 

≤ nP (θ > λn ) + Cn 

− δ(q −1) 
2 λ . 
imilarly, 

 2 ≤ nP (θ > λn ) + Cn 

− δ(q −1) 
2 λ . 

hoose some small λ> 0 such that δ(q −1) 
2 λ

> α. Then by the condi-

ions on S , θ and the condition f n = O (n ) , we obtain 

 1 + I 2 = o 
(
F S (n ) 

)
= o 
(
F S ( f n ) 

)
. 

t remains to prove that 

im sup 

δ↓ 0 
lim sup 

n →∞ 

I 3 

F S ( f n ) 
≤
∫ ∫ 

r 1 (s,t) ≥b 

ν(d s ) P ( ξ ∈ d t ) . (A.6)

learly, for some large M > 0, 

 3 ≤ P 

(
r 1 

(
S 

f n 
, ξ
)

≥ b − δ, ξ > 

˜ r ← 

1 (b − δ) 
)

≤ P 

(
ξ > 

f n 

M 

)
+ 

∫ f n 
M 

˜ r ← 

1 
(b−δ) 

P 

(
r 1 

(
S 

f n 
, t 

)
≥ b − δ

)
P ( ξ ∈ dt ) 

= I 31 + I 32 . 

y the conditions on S and ξ , we have 

 31 = o 
(
F S ( f n ) 

)
. (A.7)

o deal with I 32 , for t ∈ R define A t = { s ∈ R + : r 1 ( s, t ) ≥ b − δ} ,
hich is a cross section of the set A =
 

(s, t) ∈ R + × R : r 1 ( s, t ) ≥ b − δ} . By Lemma A.4 , there is some

mall ε1 > 0 such that, for all ˜ r ← 

1 
(b − δ) < t ≤ f n 

M 

and all large n , 

f n s t (b − δ) ≥ ε 1 f n 
f n 
M 

− ˜ r ← 

1 
(b − 2 δ) 

∼ ε 1 M, 

hich can be sufficiently large by raising M . Thus, by Potter’s
ounds (see Proposition 2.2.3 of Bingham et al. (1987)), it holds for

ny small ε2 > 0, all large M , all ˜ r ← 

1 
(b − δ) < t ≤ f n 

M 

, and all large n

hat 

P 
(
r 1 
(

S 
f n 

, t 
)

≥ b − δ
)

F S ( f n ) 
≤

P 
(

S 
f n 

≥ s t (b − δ) 
)

F S ( f n ) 

≤ (1 + ε 2 ) 
(
( s t (b − δ) ) 

−α−ε 2 ∨ ( s t (b − δ) ) 
−α+ ε 2 )

≤ C 
(
( t − ˜ r ← 

1 (b − 2 δ) ) 
α+ ε 2 ∨ ( t − ˜ r ← 

1 (b − 2 δ) ) 
α−ε 2 
)
, 

ith C a positive constant irrespective of t , where the last step

s due to Lemma A.4 . Applying the dominated convergence theo-

em, which is justified by the inequality above and the moment

ondition on ξ , and then applying relation (3.6) , we obtain 

lim 

 →∞ 

I 32 

F S ( f n ) 
= 

∫ 
R 

lim 

n →∞ 

P 
(
r 1 
(

S 
f n 

, t 
)

≥ b − δ
)

F S ( f n ) 
1 

(
˜ r ← 

1 
(b−δ) <t≤ f n 

M 

)P ( ξ ∈ dt ) 

= 

∫ ∞ 

˜ r ← 

1 
(b−δ) 

ν( A t ) P (ξ ∈ dt) 

≤
∫ ∫ 

r 1 (s,t) ≥b−δ
ν(d s ) P ( ξ ∈ d t ) . (A.8)

utting (A .7) –(A .8) together gives (A.6) . 

Next we derive the corresponding lower bound for

 ( L n > nb ). For any small ε > 0, define the set ˜ A =
 

(s, t) ∈ R + × R : r 1 (s, t) > b + ε } . Then for t ∈ R , write its cross

ection as ˜ A t = { s ∈ R + : r 1 ( s, t ) > b + ε } . We derive 

 ( L n > nb ) ≥ P 

(
L n > nb, r 1 

(
S 

f n 
, ξ
)

> b + ε 
)

= 

∫ ∫ 
˜ A 

P 

( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
>� i 

) > b 

) 

× P 

(
S 

f n 
∈ ds 

)
P ( ξ ∈ dt ) . 
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a

ver ( s, t ) ∈ 

˜ A , the i.i.d. summands θi 1 
(

s 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
>� i 

) in the tail

robability above have a common mean r 1 (s, t) > b + ε. Applying

emma A.3 , it holds uniformly for ( s, t ) ∈ 

˜ A that 

 

( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
>� i 

) > b 

) 

≥ P 

( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 

(
ρt+ 

√ 

1 −ρ2 ηi 

)
>� i 

) − r 1 (s, t) > −ε 

) 

→ 1 . 

t follows that 

 ( L n > nb ) � 

∫ ∫ 
˜ A 

P 

(
S 

f n 
∈ ds 

)
P ( ξ ∈ dt ) 

= 

∫ ∞ 

˜ r → 

1 
(b+ ε) 

P 

(
S 

f n 
∈ 

˜ A t 

)
P ( ξ ∈ dt ) , (A.9) 

here the last step is due to the fact that ˜ r 1 (t) > b + ε if and only

f t > ̃  r → 

1 
(b + ε) . Moreover, from the definition of the function r 1 ( s ,

 ) in (4.2) it is easy to see that, for each fixed t , the cross section
˜ 
 t as an interval is away from 0. Thus, by F S ∈ RV −α, 

lim 

 →∞ 

P 
(

S 
f n 

∈ 

˜ A t 

)
F S ( f n ) 

= ν
(

˜ A t 

)
. (A.10) 

pplying Fatou’s lemma to the right-hand side of (A.9) and apply-

ng (A.10) , we obtain 

P (L n > nb) 

F S ( f n ) 
� 

∫ ∞ 

˜ r → 

1 
(b+ ε) 

ν
(

˜ A t 

)
P ( ξ ∈ dt ) 

= 

∫ ∫ 
r 1 (s,t) >b+ ε 

ν(d s ) P ( ξ ∈ d t ) . 

hus, the lower bound in (4.3) follows by letting ε↓ 0. 

roof of Theorem 4.2 

We aim to establish the two-sided inequality (4.8) . First we de-

ive the corresponding upper bound for P ( L n > nb ). By the condi-

ions on ξ and S , there is some auxiliary function a ( · ) such that

he following limit relations, as x → ∞ , hold simultaneously: 

• 0 < a ( x ) ↑∞ , 
• x 

a (x ) 
→ ∞ , 

• P 
(

S> x 
a (x ) 

)
= o 
(
F ξ (x ) 

)
. 

n terms of this auxiliary function a ( · ) and the function r 2 ( u ; h )

ntroduced in (A.4) , we split P ( L n > nb ) into three parts as 

 ( L n > nb ) = P 

(
L n > nb, S > 

f n 

a ( f n ) 

)
+ P 

(
L n > nb, r 2 

(
Sξ

f n 
; δ
)

< b − 2 δ, S ≤ f n 

a ( f n ) 

)
+ P 

(
L n > nb, r 2 

(
Sξ

f n 
; δ
)

≥ b − 2 δ, S ≤ f n 

a ( f n ) 

)
= J 1 + J 2 + J 3 , 

here δ > 0 is arbitrarily fixed and small. Clearly, 

 1 ≤ P 

(
S > 

f n 

a ( f n ) 

)
= o 
(
F ξ ( f n ) 

)
. 

or J 2 , by the conditions on ξ and θ , we have E θ q < ∞ for 1 <

 < 1 + α. As dealing with I 1 in the proof of Theorem 4.1 , by

emma A.5 , it holds for any λ> 0 and some constant C > 0 that 
 2 ≤
∫ ∫ 
(
0 , f n 

a ( f n ) 
] ×R 

P ( S ∈ ds ) P 

(
ξ

f n 
∈ dt 

)
×P 

( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 
� i 

(
ρt+ 

√ 

1 −ρ2 ηi 
f n 

)
> 1 

) − r 2 (st; δ) > 2 δ

) 

≤ nP (θ > λn ) + Cn 

− δ(q −1) 
2 λ . 

hoose some small λ> 0 such that δ(q −1) 
2 λ

> α. Then it follows from

he conditions on ξ , θ and the condition f n = O (n ) that: 

 2 = o 
(
F ξ (n ) 

)
= o 
(
F ξ ( f n ) 

)
. 

o deal with J 3 , we derive 

 3 ≤
∫ f n 

a ( f n ) 

0 

P 

(
r 2 

(
s 
ξ

f n 
; δ
)

≥ b − 2 δ

)
P ( S ∈ ds ) . 

or s ∈ R + define A s = { t ∈ R : r 2 (st; δ) ≥ b − 2 δ} , which is a cross

ection of the set A = { (s, t) ∈ R + × R : r 2 (st; δ) ≥ b − 2 δ} . Note

hat the inequality r 2 ( u ; δ) ≥ b − 2 δ implies that u ≥ u 0 for some

 0 > 0. Then the event 
(

r 2 

(
s 

ξ
f n 

;δ
)
≥b−2 δ

)
appearing in J 3 implies that,

or all 0 < s ≤ f n 
a ( f n ) 

, 

≥ u 0 

s 
f n ≥ u 0 a ( f n ) → ∞ . 

hen by Potter’s bounds, it holds for any small ε > 0, all 0 < s ≤
f n 

a ( f n ) 
, and all large n that 

P 
(
r 2 
(
s ξ

f n 
; δ
)

≥ b − 2 δ
)

F ξ ( f n ) 
≤

P 
(
ξ ≥ u 0 

s 
f n 
)

F ξ ( f n ) 
≤ C 
(
s α+ ε ∨ s α−ε 

)
or some positive constant C irrespective of s . Applying the dom-

nated convergence theorem, which is justified by the inequality

bove and the moment condition on S , and then applying relation

3.6) , we obtain 

im sup 

n →∞ 

J 3 

F ξ ( f n ) 
≤
∫ 
R + 

lim 

n →∞ 

P 
(
r 2 
(
s ξ

f n 
; δ
)

≥ b − 2 δ
)

F ξ ( f n ) 
1 

(
s ≤ f n 

a ( f n ) 

)P ( S ∈ ds ) 

= 

∫ 
R + 

ν(A s ) P ( S ∈ ds ) 

= 

∫ ∫ 
r 2 (st;δ) ≥b−2 δ

P ( S ∈ ds ) ν(dt) . 

utting these estimates together and letting δ↓ 0, we obtain 

im sup 

n →∞ 

P (L n > nb) 

F ξ ( f n ) 
≤
∫ ∫ 

r 2 (st+) ≥b 

P ( S ∈ ds ) ν(dt) , 

hich is the upper bound in (4.8) . 

Next we derive the corresponding lower bound for P ( L n > nb ).

or any small δ > 0, define the set ˜ A = { (s, t) ∈ R + × R :

 2 (st; −δ) > b + 2 δ} . Then for s ∈ R + , write its cross section

s ˜ A s = { t ∈ R : r 2 (st; −δ) > b + 2 δ} . We derive 

 ( L n > nb ) ≥ P 

(
L n > nb, r 2 

(
Sξ

f n 
;−δ

)
> b + 2 δ, S ≤ f n 

a ( f n ) 

)
= 

∫ f n 
a ( f n ) 

0 

∫ 
˜ A s 

P 

( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 
� i 

(
ρt+ 

√ 

1 −ρ2 ηi 
f n 

)
> 1 

) > b 

) 

× P 

(
ξ

f n 
∈ dt 

)
P ( S ∈ ds ) . 

imilarly to the derivation for the lower bound in the proof of

heorem 4.1 , by Lemma A.5 , it holds uniformly for 0 < s ≤ f n 
a ( f n ) 

nd t ∈ 

˜ A s that 
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( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 
� i 

(
ρt+ 

√ 

1 −ρ2 ηi 
f n 

)
> 1 

) > b 

) 

≥ 1 − P 

( 

1 

n 

n ∑ 

i =1 

θi 1 

(
s 
� i 

(
ρt+ 

√ 

1 −ρ2 ηi 
f n 

)
> 1 

) − r 2 (st;−δ) ≤ −2 δ

) 

→ 1 . 

It follows that: 

P ( L n > nb ) � 

∫ f n 
a ( f n ) 

0 

∫ 
˜ A s 

P 

(
ξ

f n 
∈ dt 

)
P ( S ∈ ds ) 

= 

∫ f n 
a ( f n ) 

0 

P 

(
ξ

f n 
∈ 

˜ A s 

)
P ( S ∈ ds ) . (A.11)

Moreover, from the definition of the function r 2 ( u ; h ) in (A.4) it

is easy to see that, for each fixed s > 0, the cross section 

˜ A s as an

interval is away from 0. Thus, by F ξ ∈ RV −α, 

lim 

n →∞ 

P 
(

ξ
f n 

∈ 

˜ A s 

)
F ξ ( f n ) 

= ν
(

˜ A s 

)
. (A.12)

Applying Fatou’s lemma to the right-hand side of (A.11) and

applying (A.12) , we obtain 

P (L n > nb) 

F ξ ( f n ) 
� 

∫ 
R + 

ν
(

˜ A s 

)
P ( S ∈ ds ) = 

∫ ∫ 
r 2 (st;−δ) >b+2 δ

P ( S ∈ ds ) ν(dt) . 

Thus, the lower bound in (4.8) follows by letting δ↓ 0. 
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