
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 01, 2024

Quality recovering of university timetables

Lindahl, Michael; Stidsen, Thomas Jacob Riis; Sørensen, Matias

Published in:
European Journal of Operational Research

Link to article, DOI:
10.1016/j.ejor.2019.01.026

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Lindahl, M., Stidsen, T. J. R., & Sørensen, M. (2019). Quality recovering of university timetables. European
Journal of Operational Research, 276(2), 422-435. https://doi.org/10.1016/j.ejor.2019.01.026

https://doi.org/10.1016/j.ejor.2019.01.026
https://orbit.dtu.dk/en/publications/6de46939-006f-4349-8e03-616acaf47128
https://doi.org/10.1016/j.ejor.2019.01.026


Quality Recovering of University Timetables

Michael Lindahla,b,∗, Thomas Stidsena, Matias Sørensenb

aDepartment of Management Engineering
Technical University of Denmark

bMaCom A/S
Copenhagen

Abstract

At universities, the timetable plays a large role in the daily life of students and staff, showing
when and where lectures are given. But whenever a schedule is executed in a dynamic envi-
ronment, disruptions will occur. It is then desirable to find a new timetable similar to the old
one, so only a few people will be affected. This leads to a minimum perturbation problem,
where the goal is to find a feasible timetable by changing as few assignments as possible.

In this paper we show that minimum perturbation solutions often have low quality and how
using additional perturbations results in timetables with significantly higher quality while still
keeping the number of perturbations low.

We formulate a bi-objective model and propose a method to solve it by using mixed inte-
ger programming. We test the method on standard instances of the Curriculum-based Course
Timetabling Problem with four different types of disruptions. This allows the decision mak-
ers to determine the best trade-off between the number of perturbations and the quality, ulti-
mately leading to better timetables for students and staff when disruptions occur.

Keywords: Timetabling, Disruptions, Multiple objective programming, Minimum
Perturbation, Integer programming

1. Introduction

Disruptions are unavoidable to all schedules executed in a dynamic environment. This
is also the case at universities where the timetable determines when and where lectures are
taught. After a timetable is finalized and published to lecturers and students, changes will in-
evitably occur. For example, a lecturer might become unable to teach at a certain time during
the week, or a room might get reserved for a conference for an entire day.

When disruptions occur to a published timetable, changing the timetable will cause incon-
venience for the effected parties. Therefore, it is desirable that the new timetable is as similar
to the old one as possible, so the changes do not affect too many people. This leads to the
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minimum perturbation problem where the goal is to reconstruct feasibility for an infeasible
schedule by making as few perturbations (changes) as possible.

However, creating a feasible timetable is only a part of the goal of the minimum perturba-
tion problem. The quality of the timetable is of great importance to universities. The qual-
ity is defined by soft constraints, which are undesired features of the timetable that should
be avoided. Variations of these features that occur in university timetabling are described in
Bonutti et al. (2012). Using the solution with the minimum number of perturbations lead to a
big increase in the violation of the soft constraints given. This is undesirable, and it is likely that
the planner wants to make additional perturbations to obtain a timetable of higher quality.

Example. In table 1, a small example of how a minimum perturbation solution can be im-
proved with an additional perturbation. The disrupted timetable shows the timetable for a day
where Room B becomes unavailable at 15:00 when there is supposed to be a Chem lecture. A
feasible solution can be obtained by moving the lecture to the empty Room A in the previous
timeslot. This room is, despite being feasible, undesired by the Chem teacher as she already
has another chem lecture in Room B on that day and has some equipment she needs to use
for both lectures. But by swapping rooms with the Algo class, which does not care much about
which room to use, the Chem teacher becomes happy with very little sacrifice from the Algo
teacher.

Disrupted timetable
Room A Room B

09:00 Mech Chem
11:00 Math Engl
13:00 - Algo
15:00 Geo BChem

Minimum perturbation
Room A Room B

09:00 Mech Chem
11:00 Math Engl
13:00 Chem Algo
15:00 Geo B

One extra perturbation
Room A Room B

09:00 Mech Chem
11:00 Math Engl
13:00 Algo Chem
15:00 Geo B

Table 1: An example of a disrupted timetable, where Room B becomes unavailable at 15:00. The minimum per-
turbation solution is moving a single lecture, but will require the lecture to use a room that is usable but is not
desirable for that specific lecture. By swapping rooms with another lecture, it leads to a better timetable, with little
extra inconvenience for the invovled parties.

The purpose of this paper is to analyze the trade-off between perturbations and quality.
, and how the addition of more perturbations will improve the quality. Providing planners
with these trade-offs can assist them in recovering an infeasible timetable and still obtain high-
quality timetables.

The paper is organized as follows: In Section 2 we describe the perturbation problem and
how we model it. In Section 3 we show an algorithm to solve the problem. In Section 4 we show
the computational results, and finally, in Section 5 we give our conclusions.

1.1. Previous work

Minimum perturbation problems in university timetabling have received little attention in
the literature compared to the full static problem of creating the entire timetable. The first
work on minimum perturbations in scheduling was in Sakkout and Wallace (2000) who pre-
sented an algorithm based on constraint programming to minimally reconfigure a timetable
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that has become invalid. Later, Elkhyari et al. (2003) also use constraint programming to solve
timetabling problems modeled as a minimum perturbation problem on Resource-Constrained
Project Scheduling Problems. Zivan et al. (2011) propose a hybrid search, also using constraint
programming to solve minimum perturbation problems for scheduling. An improved algo-
rithm, utilizing lower bounds, was proposed in Fukunaga (2013).

The first use of the minimum perturbation approach on real university timetabling in-
stances was by Barták et al. (2003), where they propose a branch-and-bound-like algorithm
to find approximate solutions. This work is extended by Müller et al. (2005), where they modify
the iterative forward search for the static problem to solve minimum perturbation problems.
They preserve quality as a weight in the objective when searching and show the correlation be-
tween the size of the disruption and the impact on quality. Finally, Rudová et al. (2011) describe
their whole system for timetabling at a large university that both incorporates minimal pertur-
bation problems and also problems they call interactive problems, where the software suggests
small changes to existing timetables.

More recently, Phillips et al. (2016) use mixed integer programming to solve the minimum
perturbation problem on real life instances from the University of Auckland. To avoid solving
large models they create a smaller problem with only a part of the timetable, and if no feasible
solution is found, they gradually expand it until a valid perturbation is found. Mixed-integer
programming has however been used on the static university timetabling, see for example Fer-
land and Roy (1985); Burke et al. (2008); Lach and Lübbecke (2008); Phillips et al. (2015). Using
a MIP solver to explore a neighborhood around a solution has also been used to create heuris-
tics, such as Local Branching by Fischetti and Lodi (2003) where a constraint on the hamming
distance is added to the problem to create smaller problems that are easier to solve.

For a more broad perspective on dynamic problems we refer to Kocjan (2002) and Verfaillie
and Jussien (2005).

Overall, there is a lack of research that examines the loss of quality when choosing the min-
imal perturbation solution, and what the potential benefit is when using additional perturba-
tions. Mixed Integer Programming (MIP) has only been used in one previous paper to solve this
problem, but we believe that MIP models and their solvers are well suited.

2. The quality recovering problem

A perturbation problem consists of three components which are described in this section.
In loose terms, the perturbation problem can be defined as follows,

Pertubation problem = static problem+ solution+disruption+∆

The first part is the static problem, which is the underlying problem formulation needed to
create the timetable in the first place (containing all the hard and soft constraints). The second
part is the solution i.e., a feasible assignment of the courses with respect to the static formu-
lation. The third part is a disruption that changes the formulation and makes the solution
infeasible. Finally, to calculate the similarity between two solutions a perturbation function is
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used, denoted by ∆. The perturbation function calculates how many changes are made to the
initial solution to reach the new solution.

In the quality recovering problem we will distinguish between four solutions defined as fol-
lows:

• SInit: The initial solution that after the disruption becomes infeasible.

• S∆QR: The best feasible solution with the distance ∆ from the initial solution. Two special
cases of this solution are:

– Smin
QR : The minimum perturbation solution i.e. the closest feasible solution, where

min is the number of perturbations from the initial solution.

– Smax
QR : The solution with the best quality, where max is the number of perturbations

from the initial solution.

Figure 1 illustrates the relation between these solutions, the solution space and the dis-
ruption. In the following we describe the specific parts of the perturbation problem for the
university course timetabling problem.

Figure 1: An example of the perturbation problem. The figure shows a subset of the solution space. The disruption
makes a subspace of the solution space infeasible (grey area), including the initial solution. The circles show three
distances from the initial solution. The minimum perturbation solution is the nearest feasible solution to the
initial solution. The quality recovering solution is the one that is further away but has higher quality.

4



2.1. Static problem

The static problem comes from the Second International Timetabling Competition ITC-
2007 stated in Di Gaspero et al. (2007), namely Curriculum-based Course Timetabling. The
problem was created to allow researchers to compare algorithms and results on the same in-
stances. The problem consists of assigning lectures to timeslots and rooms while taking both
hard and soft constraints into account.

All instances are real-world data sets from the University of Udine. The hard and soft con-
straints originate from this university, but were generalized with the goal of not making the
model too complex while still having different types of constraints to capture the essence of
real world timetabling. This problem has received much attention in the literature as the de-
facto benchmarking data set for university timetabling. For an overview of the literature on
this, we refer to the survey by Bettinelli et al. (2015).

First, we will describe the problem and explain the model by using mixed-integer program-
ming. Burke et al. (2008) proposed the first model known as the monolithic model or the three-
index model, seen in Model 1. First, the hard constraints given in (1e)-(1h) are described and
then the soft constraints given in (1i)-(1m).

2.1.1. Hard constraints
In curriculum-based course timetabling there is given a list of courses, C , a list of timeslots,

P , and a list of rooms, R. A course c ∈ C consists of a number of lectures, L(c). The goal is
then to schedule all lectures by assigning them to a timeslot and a room. For this we use the
following binary decision variable that determines which assignments are used.

xc,p,r =
{

1 if course c ∈C is planned at period p ∈P and in room r ∈R

0 otherwise

First of all, every lecture needs to be scheduled, which is handled by constraint (1e). A room
can only fit one course in it, which is ensured by constraint (1f). We also have a set of teachers
T , where C (t ) is the set of courses taught by teacher t ∈ T . A teacher can only teach one
course at the time ensured by constraint (1g). Furthermore, students can also only be at one
place at a time. Therefore, a set of curricula C U is given and courses that are a part of the same
curriculum, C (cu), cannot be placed in the same timeslot, ensured by constraint (1h). Last,
there are unavailabilities, which are timeslots to which specific courses cannot be assigned. We
will set xc,p,r = 0 if course c ∈C cannot be taught in timeslot p ∈P .

2.1.2. Soft constraints
The quality of a timetable is measured by how many soft constraints are being violated.

In total of soft constraints are defined, and each one is associated with a number of penalty
points. The objective function (1a)-(1d) is then equal to the sum of these penalty points. The
soft constraints are the following:

RoomCapacity. Each room is associated with a capacity, cap(r ), and each course is associated
with a number of students attending the course, dem(c). A penalty of 1 is given for each extra
student assigned to a room. This is calculated in the objective (1a), where we set the cost equal
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min fqual =
∑

c∈C ,p∈P ,r∈R

ob j (c,r ) · xc,p,r (1a)

+ ∑
c∈C ,r∈R

1 · yc,r −|C | (1b)

+ ∑
c∈C

5 ·wc (1c)

+ ∑
cu∈C U ,p∈P

2 · vcu,p (1d)

s. t.
∑

p∈P ,r∈R

xc,p,r = L(c) ∀c ∈C (1e)∑
c∈C

xc,p,r ≤ 1 ∀p ∈P ,r ∈R (1f)∑
c∈C (t ),r∈R

xc,p,r ≤ 1 ∀t ∈T , p ∈P (1g)∑
c∈C (cu),r∈R

xc,p,r ≤ 1 ∀cu ∈C U , p ∈P (1h)∑
p∈P

xc,p,r −|P | · yc,r ≤ 0 ∀c ∈C ,r ∈R (1i)∑
p∈d ,r∈R

xc,p,r − zc,d ≥ 0 ∀c ∈C ,d ∈D (1j)∑
d∈D

zc,d +wc ≥ mnd(c) ∀c ∈C (1k)∑
c∈C (cu),r∈R

xc,p,r − rcu,p = 0 ∀cu ∈C U , p ∈P (1l)

− rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈C U , p ∈P (1m)

xc,p,r ∈B ∀c ∈C , p ∈P ,r ∈R (1n)

yc,r ∈B ∀c ∈C ,r ∈R (1o)

wc ∈Z+ ∀c ∈C (1p)

zc,d ∈B ∀c ∈C ,d ∈D (1q)

vcu,p ∈B ∀cu ∈C U , p ∈P (1r)

rcu,p ∈B ∀cu ∈C U , p ∈P (1s)

Model 1: The MIP model for the static university timetabling problem.

to the undercapacity of room r if course c is assigned to it i.e. ob j (c,r ) = max(0,dem(c) −
cap(r )).

RoomStability. All lectures from the same course are assigned to the same room. A penalty of
1 is given for each extra room used. To calculate this we introduce the binary variable yc,r to
indicate if course c is scheduled in room r , as ensured by constraint (1i). The violation is then
calculated in objective (1b) as the sum of rooms used minus the total number of courses.
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MinimumWorkingDays. The workload of a course should be distributed throughout the week.
Each course, c, therefore, has a number of minimum working days, mnd(c), on which it at least
should be planned. Let D be the set of days, and let p ∈ d be all the timeslots p on day d ∈ D.
The binary variable zc,d indicates if course c is scheduled on day d , ensured by constraint (1j).
The number of violation, wc , for course c is then calculated by constraint (1k) and summed up
in objective (1c) with a penalty of 5.

CurriculumCompactness. Students should not have idle timeslots, and therefore it is desirable
that a lecture from a given curriculum is next to a lecture from the same curriculum. Two
penalty points are given for each violation. The binary variable rcu,p indicates if a lecture from
curriculum cu is planned in timeslot p, ensured by constraint (1l). The variable vcu,p then in-
dicates if curriculum cu has no neighbors in timeslot p, ensured by constraint (1m) and added
in the objective in (1d).

2.2. Disruption

In this section we introduce the concept of disruption in terms of the model described in
Section 2.1. Disruptions take different forms depending on the type of environment in which
they occur, but are always related to a resource, e.g. a room, teacher, student or a timeslot.

In this paper we will consider two types of disruptions: 1) A resource is removed i.e. unavail-
able for assignment, and 2) a new shared resource is added, i.e. some courses share a resource
and cannot be assigned to the same timeslot. These two very generic disruption types show
that MIP can represent the different kinds of disruptions that occur at a university. A removed
resource is for example when a room is unavailable or a course cannot be taught in a specific
timeslot. This is modeled in the following way by altering the MIP model. Let J be the set of
tuples with all combinations of courses, timeslots and rooms.

J = {(c, p,r ) : c ∈C , p ∈P , r ∈R} (2)

Then let Ĵ ⊂ J be the set of resource combinations that are removed and fix those variables to
zero in the model, thereby making those solutions infeasible.

xc,p,r = 0 ∀(c, p,r ) ∈ Ĵ (3)

Similar to removing a resource, a new shared one could also be added. This is for example
the case if a new curriculum is added because a group of students needs to be able to take a
specific set of courses. This will result in a conflict if these courses are taught at the same time.
Let Ĉ ⊂ C be the courses that share the new resource. The following constraint is then added
to the model, ∑

c∈Ĉ ,r∈R

xc,p,r ≤ 1 ∀p ∈P (4)

Both of the two disruption types restrict the static model. This means that a new solution, S∆QR,
can never be better than the initial solution, S Ini t , as a feasible solution to the dynamic problem
also is a feasible solution to the static problem, and the objective is the same.
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min fqual (as defined by (1a)-(1d)) (6a)

f∆ =∆(x, x̄) (as defined by (5)) (6b)

s. t. (1e)− (1s) (6c)

disruption (either (3) or (4)) (6d)

Model 6: The bi-objective MIP model for the quality recovering problem, consisting of the static model with an
additional objective and a disruption.

2.3. Perturbation function

To measure the amount of changes between the initial solution, SInit, and a new solution,
S∆QR, we need a perturbation function that will be our second objective. For this we use the ham-
ming distance to calculate the number of decision variables of which the value have changed.
Because the sum of all variables is always the same, due to constraint (1e), we only calculate
the values that change from one to zero. Let J̄ = {(c, p,r ) ∈ J : x̄c,p,r = 1}. The hamming distance
between two solutions are defined as,

∆(x, x̄) = ∑
(c,p,r )∈ J̄

(1−xc,p,r ) (5)

More advanced perturbation functions can be modelled by including the variables that
switches from zero to one with a weight to describe how expensive they are. For example, this
could model that it is more desirable to move a course to a different room instead of moving it
to a different day.

2.4. Quality recovering model

Altering the original static model by adding a disruption and a new minimum perturba-
tion objective results in the bi-objective model shown in Model 6. x̄ is the solution from Sinit.
All constraints and variables from the static problem are added in constraint (6c) and in the
objective (6a). The perturbation measure is added as a second objective (6b). Finally, we add
the disruption in constraint (6d). As mentioned, this disruption can take the different forms
described in Section 2.2. The two solutions Smin

QR , Smax
QR are equal to the two lexicographic solu-

tions, i.e. minimizing the objectives in prioritized order.

3. Quality recovering algorithm

To solve the quality recovering problem in Model 6 we need to take both objectives into
account; the quality objective fqual and the perturbation objective f∆. These two objectives
are conflicting, as keeping the number of perturbations down limits the potentially improving
solutions that can be found. This results in a bi-objective optimization problem. To solve this
we search for pareto-optimal solutions, which are defined as solutions where one objective
cannot be improved without worsening the other.
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To generate this solution frontier, we base our algorithm on the ε-constraint method from
Haimes et al. (1971). The approach is to put a constraint on one of the objectives while minimiz-
ing the other and repeat this with a new constraint. The pseudo code is seen in Algorithm 3.1.
The method starts by solving the minimum perturbation problem and then puts a constraint
on the perturbation objective. It then iteratively increases the allowed number of perturbations
while minimizing the quality objective.

The algorithm is simple and fully sufficient for our problem. Because it uses mixed integer
programming underneath, it is very generic and can be used with most of static problems as
well as different perturbation functions depending on the problem at hand.

Algorithm 3.1 Quality Recovering

1: ∆̃← Mi ni mi ze( f∆) . Minimum Pertubations
2: f̃qual ←∞
3: repeat
4: Update ε-constraint: f̃∆ = ∆̃
5: S∆̃QR ← Mi ni mi ze( fqual ) . Find Pareto-solution

6: ∆̃← ∆̃+1
7: until Stopping criteria met

4. Computational results

To show the applicability of our method we use the data sets from the Second International
Timetabling Competition, described in Di Gaspero et al. (2007). The 21 data sets can be seen
in Table 2, and it is seen that there is a variance between , including number of curricula. We
will use the currently best-known solution for each instance for the initial solution, SInit, and
then disrupt it so it becomes infeasible. All data sets and best-known solutions can be found at
http://tabu.diegm.uniud.it/ctt/. The complete source-code to make the computations
are available on http://github.com/miclindahl/UniTimetabling.

We will analyze the impact of four different disruptions that are very different, both in terms
of the way they impact the timetable and in terms of the number of lectures affected. These
disruptions cover scenarios that usually happen at a university. The four disruptions are the
following:

One Assignment Invalid One assignment, (ĉ, p̂, r̂ ), is invalid and needs to be assigned to a dif-
ferent room or to a different timeslot. The following constraint is added,

xĉ,p̂,r̂ = 0

Insert Curriculum Takes four courses Ĉ and put them into a curriculum meaning that they
cannot be taught at the same time. To be able to compare with S Ini t the objective func-
tion is not changed. Only the following constraint is added,∑

c∈Ĉ ,r∈R

xc,p,r ≤ 1 ∀p ∈P
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Instance Courses Rooms Timeslots Curricula
comp01 30 6 30 14
comp02 82 16 25 70
comp03 72 16 25 68
comp04 79 18 25 57
comp05 54 9 36 139
comp06 108 18 25 70
comp07 131 20 25 77
comp08 86 18 25 61
comp09 76 18 25 75
comp10 115 18 25 67
comp11 30 5 45 13
comp12 88 11 36 150
comp13 82 19 25 66
comp14 85 17 25 60
comp15 72 16 25 68
comp16 108 20 25 71
comp17 99 17 25 70
comp18 47 9 36 52
comp19 74 16 25 66
comp20 121 19 25 78
comp21 94 18 25 78

Table 2: The 21 instances used from the second international timetabling competition defined in Di Gaspero et al.
(2007).

Remove Room Whole Day Removes a room r̂ for an entire day d̂ , i.e. adding constraint:

xc,p,r̂ = 0 ∀c ∈C , p ∈ d̂

One Timeslot Unavailable Makes one timeslot p̂ unavailable for all courses. The following
constraint is added,

xc,p̂,r = 0 ∀c ∈C ,r ∈R

. All computations are made on a 64 bit Windows machine with a 4 GHz Intel Core i7 CPU
and 32 GB of memory. To solve the integer programs we use Gurobi with standard settings.

max perturbations = max( f∆(Smin
QR )+5,15) (7)

We also add a timelimit on 10,800 seconds (3 hours).
The remaining of this section is structured as follows. We will first show an example of a set

of solutions for one instance, then analyze each disruption independently and show the impact
on all instances, and, finally, we will summarize all the results and look into the computation
times.
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Example. In Table 3 is an example of a set of solutions for Comp19 where one timeslot is made
unavailable. It is seen that the minimum perturbation solution requires 7 perturbations and
increases the solution value from 57 to 144 (153%) where the soft constraints are being more
violated. By using one more perturbation, the quality can be much improved all the way down
to 72, a 50% improvement. The additional perturbations gives smaller, but still significant im-
provements. The running times for each iteration are also shown, where it can be seen that the
running times increase exponentially with the increased number of perturbations.

Objective SInit S7
QR S8

QR S9
QR S10

QR S11
QR S12

QR S13
QR S14

QR S15
QR

Time (s) - 0 3 2 3 229 28 106 202 296
RoomCapacity 0 69 0 0 0 0 0 0 0 0
MinimumWorkingDays 5 15 10 5 5 5 5 5 5 5
CurriculumCompactness 52 56 56 56 54 54 52 52 52 52
RoomStability 0 4 6 6 6 5 6 5 5 4
fqual 57 144 72 67 65 64 63 62 62 61

Table 3: Example with Comp19 with the One Timeslot Unavailable disruption, showing the objective values for
each of the 9 different solutions. It takes 7 perturbations to reach a feasible solution with a quality that is 153%
worse than the initial solution. However, by using an additional perturbation the quality get improved by 50%.
Further perturbations gives more improvements.

4.1. One assignment invalid

The resulting full pareto fronts from making one assignment invalid on each of the 21 datasets
is seen in Figure 2. Table 4 summarizes the results and shows the two lexicographic solutions,
Smi n

QR and Smax
QR . There is a significant difference between the data sets where the three instances

comp01, comp02, and comp04 only need one perturbation to obtain a feasible solution with
the same quality as the initial solution. The data set is different. Even though it can be made
feasible using only one perturbation, it requires extra perturbations to recover as much quality
as possible. However it is not able to obtain as high quality as the initial solution.

4.2. Insert curriculum

Adding a new curriculum of four courses impacts the timetable on each instance differently.
Figure 3 shows the pareto fronts together with the value of the initial solution. comp01 and
comp10 recover a lot of quality by allowing extra perturbations. A summary showing the two
lexicographic solutions is seen in Table 5. instances can recover and regain the same value of
fqual as before the disruption.

4.3. Remove room whole day

The impact of removing a room for a whole day has a great impact on the solution, as shown
in Figure 4. Especially comp20 loses a lot of quality, going from four to 148 penalty points.
Table 6 summarizes the results showing that of the instances recovers the initial objective value.
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Instance SInit Disruption Time (s) Smin
QR Smax

QR
fqual c t r median total f∆ fqual f∆ fqual

comp01 5 c0064 0,2 rS 0 0 1 †5 1 †5
comp02 24 c0313 4,4 r37 0 0 1 †24 1 †24
comp03 64 Mat1G2n 3,1 rG 8 163 1 65 4 †64
comp04 35 c1044 2,3 r52 0 0 1 †35 1 †35
comp05 285 IcoIcoB 5,2 r10 390 10,800 1 287 1 287
comp06 27 c0965 3,1 r36 318 10,800 1 30 2 28
comp07 6 c0007 4,2 r25 906 10,800 1 9 5 8
comp08 37 c0223 2,4 rG 409 10,800 1 42 7 40
comp09 96 c0535 1,0 r52 337 10,800 1 101 5 97
comp10 4 c0464 2,2 rDS1 246 10,800 1 10 6 9
comp11 0 c0027 2,6 rLUF2 0 0 1 10 2 †0
comp12 294 EtrAntIta 2,0 rO 173 10,800 1 313 5 307
comp13 59 c0163 2,1 rG 8 34 1 70 4 †59
comp14 51 c0184 4,0 rD 1 2 1 58 2 †51
comp15 62 ArcComCv 0,4 r27 304 10,800 1 70 9 67
comp16 18 c0199 0,2 rL 1 2 1 19 2 †18
comp17 56 c0143 2,1 rA 151 10,800 1 63 6 57
comp18 61 LetIta2 0,0 r1 266 10,800 1 76 11 64
comp19 57 c0036 4,3 r38 11 510 1 60 5 †57
comp20 4 c0537 1,0 r25 84 352 1 5 4 †4
comp21 74 c0474 1,3 r27 89 10,800 1 97 5 79

Table 4: Summary of the results of the One assignment invalid disruption. For each of the 21 instances, we show
the initial solutions and the disruption column shows which combination of course, timeslot and room that was
made unavailable by the disruption. We list the running time and the two lexicographic solutions i.e. the mini-
mum perturbation solution and the best solution obtained by relaxing the perturbations. Ten instances recover
completely and regain the same quality level as the initial solution, marked with †.

4.4. One timeslot unavailable

The final disruption we investigate is where an entire timeslot is made unavailable. Table 7
summarizes the results and shows that comp16 is infeasible and cannot be recovered. The
other instances require between two and 17 perturbations to become feasible, which shows
how large the impact of this disruption is. Figure 5 shows the full pareto fronts. Using more
perturbations improves the quality a lot on all instances, but most of them are still far away
from their initial solution value.

4.5. Overall comparison

As seen in the previous sections, the impact of the disruptions differs a lot between the
disruption types and the data sets. In this section we will summarize the overall results for each
disruption type.
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Instance SInit Disruption Time (s) Smin
QR Smax

QR
fqual c1 c2 c3 c4 median total f∆ fqual f∆ fqual

comp01 5 c0063 c0069 c0031 c0070 10 167 7 26 15 7
comp02 24 c0302 c0310 c0266 c0322 227 1,441 1 25 5 †24
comp03 64 StaAns EsMn Cos1Cv GenAn 1 3 1 84 2 †64
comp04 35 c1007 c0420 c0527 c0670 3 33 3 40 6 †35
comp05 285 BibgraCS Antrop OriAnt CatCla 713 10,800 2 291 9 287
comp06 27 c0184 c0959 c0484 c1058 1,184 10,800 3 43 9 30
comp07 6 c0069 c0072 c0897 c0489 213 10,800 1 13 2 8
comp08 37 c0179 c0441 c0978 c0420 529 10,800 2 40 6 38
comp09 96 c0117 c0107 c0112 c0503 206 10,800 2 110 8 98
comp10 4 c0443 c0963 c0069 c0515 376 10,800 4 26 13 6
comp11 0 c0028 c0109 c0107 c0036 0 0 2 †0 2 †0
comp12 294 CulM3 LatA ItaCS Geo1 1,000 10,800 2 347 9 299
comp13 59 c0249 c0218 c0036 c0506 4 8 1 60 2 †59
comp14 51 c1057 c0452 c0935 c0513 39 759 3 55 9 †51
comp15 62 Idr2Cn AziGv Mat1Cn AppMv 372 10,800 5 74 13 70
comp16 18 c0184 c0143 c0965 c0442 95 10,800 3 30 8 23
comp17 56 c0128 c0220 c1031 c0600 6 12 2 57 3 †56
comp18 61 StoMed2 StoGre Cod Est 1 1 1 65 2 †61
comp19 57 c0035 c0055 c0511 c0114 278 10,800 4 70 12 60
comp20 4 c0526 c0467 c0201 c0455 1,776 10,800 3 22 5 21
comp21 74 c0439 c101e c0463 c0261 3 10 3 119 5 †74

Table 5: The initial solution and the two lexicographic solutions for each instance with the insert curriculum dis-
ruption. instances the same solution value is completely recovered to the same value as the initial solution,
marked with †.

Table 8 shows the average minimum number of perturbations across all datasets for each of
the disruptions. It shows that the amount of perturbations needed to make the solution feasible
differs a lot between the disruptions, from 1.0 to 11.3. This means that there is a wide variety of
impact of the occurred disruptions on solutions.
Figure 6 shows that using additional perturbations decreases the number of violated soft con-
straints. For each dataset, the results are scaled so the x-axis is the number of extra perturba-
tions relative to the minimum perturbation solution, meaning that zero is equal to the mini-
mum perturbation solution i.e.

f̄∆ = f∆(S∆QR)− f∆(Smin
QR ) (8)

The y-axis shows the decrease in quality relative to the initial solution, so 0% means that it
reaches the same value, and 100% means that it is doubled, i.e.

f̄qual = 100 ·
(

fqual (S∆QR)

fqual (SInit)
−1

)
(9)
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Instance SInit Disruption Time (s) Smin
QR Smax

QR
fqual r d median total f∆ fqual f∆ fqual

comp01 5 rS 3 12 309 5 16 14 6
comp02 24 rL 3 66 4,139 4 255 14 31
comp03 64 rE 3 12 1,044 4 72 10 †64
comp04 35 rF 4 84 3,871 2 37 8 †35
comp05 285 rB 5 120 4,161 2 287 8 †285
comp06 27 rN 4 725 10,800 2 29 2 29
comp07 6 r27 0 770 10,800 5 11 10 9
comp08 37 rD 1 299 10,800 4 57 13 40
comp09 96 r38 1 1 39 5 97 7 †96
comp10 4 rN 2 93 10,800 5 10 7 9
comp11 0 rLUF2 2 3 21 9 44 14 4
comp12 294 rL 2 410 10,800 4 312 9 300
comp13 59 rB 2 88 10,800 4 75 13 61
comp14 51 rN 1 115 1,347 4 54 9 †51
comp15 62 rDS1 0 178 10,800 4 66 11 63
comp16 18 r34 1 926 10,800 4 22 9 21
comp17 56 r27 0 818 10,800 5 59 5 59
comp18 61 rC1 0 8 106 2 63 6 †61
comp19 57 r37 0 311 6,029 2 59 9 †57
comp20 4 rF 3 41 10,800 5 148 10 15
comp21 74 r38 2 395 10,800 5 88 9 77

Table 6: For each instance we show the initial value and what day which room was removed by the remove room
whole day disruption. We list the running times and the two lexicographic solutions. It can be seen that seven of
the instances recovers to the same value as the initial solution.

To summarize on all the 21 instances we use quartiles due to the fact that the variation between
the instances is high, and the distribution is skewed with a few very large values. The three lines
indicate the 25%, 50% (median) and 75% quartile for the 21 instances.

Figure 6 shows that the median quality decrease for the minimum perturbation solution
differs between 13% and up to 153% on the disruptions. It is also seen that the 25% most af-
fected instances decreases in quality between 25% and 709%. The loss of quality is, therefore,
significant in the minimum perturbation solution.

It is also seen that the quality increases significantly when introducing extra perturbations.
For the median it is between , and on the 75% quartile the improvement is between . The
distribution is skewed as the 25% and 50% quartiles are close, but the 75% is much further
away. This shows that a few instances are heavily influences by the disruption compared to
others.
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Instance SInit Disruption Time (s) Smin
QR Smax

QR
fqual t median total f∆ fqual f∆ fqual

comp01 5 3,2 2 95 6 64 15 10
comp02 24 3,2 25 221 14 179 19 119
comp03 64 3,1 23 242 17 178 22 146
comp04 35 4,3 4 25 11 87 16 61
comp05 285 5,0 244 10,800 2 310 7 298
comp06 27 4,3 11 95 16 110 21 80
comp07 6 0,0 1,902 10,800 17 60 22 46
comp08 37 1,2 76 910 16 78 21 69
comp09 96 1,0 19 152 9 140 15 116
comp10 4 2,0 44 2,619 13 50 18 35
comp11 0 2,3 3 23 5 19 11 †0
comp12 294 2,3 44 2,082 10 463 15 383
comp13 59 2,1 11 88 15 143 20 123
comp14 51 1,0 11 356 10 137 15 65
comp15 62 0,4 293 2,032 12 105 17 93
comp16 18 1,0 0 0 - - - -
comp17 56 0,4 198 3,679 11 96 16 86
comp18 61 0,0 434 10,800 3 84 11 68
comp19 57 0,0 28 870 7 144 15 61
comp20 4 3,0 56 2,353 17 159 22 71
comp21 74 2,3 98 1,296 15 190 20 160

Table 7: The summary of the one timeslot unavailable disruption. We list for each instance the initial value and
the timeslot that was made unavailable. We then list the two lexicographic solutions. It is seen that comp16 is
infeasible, and for the other instances, it takes between two and 17 perturbations to find a feasible solution.

Disruption Avg. min. Perturbation ( f∆) Fully recovered
One Assignment Invalid 1.0 48%
Insert Curriculum 2.6 43%
Remove Room Whole Day 4.1 33%
One Timeslot Unavailable 11.3 5%
All 4.8 32%

Table 8: For each of the four disruptions, the average number of perturbations to make a solution feasible and the
percentage of datasets that was able to recover to their initial solution quality after allowing more perturbations.

4.6. Computation time

In Table 9 is the average and median running times shown for each disruption. Across all
disruptions is the average running time for an iteration 389 seconds but the median running
time is seven seconds. This shows that a few iterations are responsible for most of the running
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time and that half of all iterations is solved in seven seconds or less. Figure 7 shows the run-
ning time for each iteration as a function of the number of perturbations for each of the four
different disruptions. Overall is 38% of the iterations solved in less than 10 seconds. But as the
number of perturbations increases so does the running time that can exceed two hours in a
single iteration.

Solving static curriculum-based course timetabling problems to optimality is difficult, given
it’s NP-hardness Burke et al. (2010) but also in practice - as seen in Cacchiani et al. (2013) and
Bettinelli et al. (2015). The included disruptions does not change the structure of the problem,
therefore to fully recover a disrupted problem is still NP-hard. In this article we have applied
Mixed Integer Programming models, solved by a standard solver, an approach which is not
applicable to solve the problem from scratch. However, by adding limits on the allowed number
of perturbations, we can apply the MIP solver with success. While we acknowledge that when
this approach is implemented for a practical application, heuristics may be required, but we
deemed it more important to obtain results with optimality bounds and possibly guarantees.

Disruption Median time (s) Avg. time (s)
One Assignment Invalid 94 1,033
Insert Curriculum 120 932
Remove Room Whole Day 56 880
One Timeslot Unavailable 21 361
All 50 794

Table 9: The average and median time for the iterations in each disruption and all. It shows that a few iterations
are responsible for the majority of the total running time and that half of the iterations can be solved in 50 seconds
or less.

5. Conclusion

In this paper, we have to recover feasibility of disrupted university timetables while taking
quality of solutions into account. We have proposed a bi-objective optimization algorithm to
find pareto-optimal solutions. This approach gives the planner the option to choose between
several solutions and decide on the best trade-off between finding a timetable similar to the
previous one and one with high quality.

Mixed Integer Programming is well suited for this task as it can prove infeasibility and find
minimum perturbation solutions fast.

Future work. This is one of the very first studies that uses mixed integer programming for this
problem. The approach is generic, and can be used on a broad variety of timetabling prob-
lems after formulating the static problem and the perturbation function using mixed-integer
programming. The authors hope that this will spark further interest in the problem of recover-
ing disrupted timetables. Both using this method on new problems and disruptions, but also
investigate faster methods to solve this problem.
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Note that Curriculum-based University course timetabling is NP-hard, as it can be reduced
to a graph coloring problem (Burke et al., 2010). None of the disruptions imposed in this paper
changes the overall structure of the problem, and therefore, to fully recover a disrupted problem
to the optimal solution is NP-hard. Adding an upper bound on the number of perturbations
limits the number of feasible solutions, but the number increases exponentially depended on
the bound. Better performance could therefore maybe be expected by using dedicated meth-
ods that have proven well on timetabling problems, and heuristics could also be a very powerful
practical method, though loosing the optimality criteria.
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Figure 2: The pareto fronts for each data set on the one assignment invalid disruption and the objective value of
the initial solution. The x-axis is f∆ and the y-axis is fqual . There is a large difference between how much worse
the quality is and how much is gained by using extra perturbations.

19



0 15
4

26
comp01

0 5
23

25
comp02

0 2
63

84
comp03

0 6
34

40
comp04

0 9
282

291
comp05

0 9
26

43
comp06

0 2
5

13
comp07

0 6
36

40
comp08

0 8
95

110
comp09

0 13
3

26
comp10

0 2
0

1
comp11

0 9
291

347
comp12

0 2
58

60
comp13

0 9
50

55
comp14

0 13
61

74
comp15

0 8
17

30
comp16

0 3
55

57
comp17

0 2
60

65
comp18

0 12
56

70
comp19

0 5
3

22
comp20

0 5
73

119
comp21

S
Init

S
QR

S
min

QR

S
max

QR

Figure 3: The pareto fronts for the insert curriculum disruption. The x-axis is f∆ and the y-axis is fqual . Especially
the two instances comp01 and comp10 recover a lot of quality from extra perturbations.
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Figure 4: The pareto front for the remove room whole day disruption. The x-axis is f∆ and the y-axis is fqual .
Especially comp20 is affected and uses many extra perturbations to recover most of the quality.
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Figure 5: The pareto fronts for the one timeslot unavailable disruption. The x-axis is f∆ and the y-axis is fqual . The
impact is high on all instances and comp16 is infeasible and cannot be recovered.
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Figure 7: Running times for each iteration as a function of the number of perturbations for each of the four differ-
ent disruptions. In total of the models are solved in less than 10 seconds. But when the number of perturbations
increases the solution time can get up to hours.
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