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Abstract

A rectangle blanket is a set of non-overlapping axis-aligned rectangles, used to approximately represent the two-

dimensional image of a shape approximately. The use of a rectangle blanket is a widely considered strategy for

speeding-up the computations in many computer vision applications. Since neither the rectangles nor the image have

to be fully covered by the other, the blanket becomes more precise as the non-overlapping area of the image and

the blanket decreases. In this work, we focus on the rectangle blanket problem, which involves the determination

of an optimum blanket minimizing the non-overlapping area with a given image subject to an upper bound on the

total number of rectangles the blanket can include. This problem has similarities with rectangle covering, rectangle

partitioning and cutting / packing problems. The image replaces an irregular master object by an approximating set of

smaller axis-aligned rectangles. The union of these rectangles, namely, the rectangle blanket, is neither restricted to

remain entirely within the master object, nor required to cover the master object completely. We first develop a binary

integer linear programming formulation of the problem. Then, we introduce four methods for its solution. The first

one is a branch-and-price algorithm that computes an exact optimal solution. The second one is a new constrained

simulated annealing heuristic. The last two are heuristics adopting ideas available in the literature for other computer

vision related problems. Finally, we realize extensive computational tests and report results on the performances of

these algorithms.

Keywords: Integer programming; branch-and-price; computer vision; cutting / packing;

heuristics

1. Introduction

The problem of approximately representing a two-dimensional image approximately using multiple non-overlapping

axis-aligned rectangles arises in many computer vision problems such as template matching (Mohr and Zachmann,

2010b,a) and people tracking (Fleuret et al., 2008; Demiröz et al., 2014). A rectangle is axis-aligned if its adjacent

(orthogonal) edges are parallel to x and y axes. An illustration for an approximation of the image with three rectangles
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is provided in Figure 1. Here, the rectangles determine a rectangle blanket. We define the blanket as a set of non-

overlapping axis-aligned rectangles. It should be noticed that a blanket does not have to cover the image perfectly.

There can be uncovered parts of the image as well as uncovering parts of the blanket. Besides, it can be connected or

disconnected depending on the image it approximates. Nevertheless, it is possible to say that the number of rectangles

forming a blanket directly effects the quality of the approximation: the higher it is, the finer the approximation becomes.

Figure 1: An example of a rectangle blanket having K = 3 rectangles

We formally define the Rectangle Blanket Problem (RBP) as determining a rectangle set that contains no more than

K non-overlapping axis-aligned rectangles that minimizes the non-overlapping area with the given two-dimensional

image (i.e. the uncovered area of the image and uncovering area of the blanket). This problem has similarities

with rectangle covering (Chaiken et al., 1981; Heinrich-Litan and Lubbecke, 2006; Stoyan et al., 2011), rectangle

partitioning (Ohtsuki, 1982; O’Rourke and Tewari, 2001) and cutting / packing (Dyckhoff et al., 1997; Wascher et al.,

2007) problems, which we try to outline briefly in the following lines. It is not our aim to provide a comprehensive

review of the similarities and dissimilarites between all the works in these three fertile research areas and this one, but

to use a number of examples to illustrate potentials for cross-fertilization of ideas and methodologies among RBP and

the problems they study.

Rectangle covering and partitioning problems, and cutting / packing problems have attracted considerable research

interest in the last three decades and sophisticated solution approaches have been proposed. As a consequence of the

inherent difficulty of the problems (Fowler et al., 1981; Hochbaum and Maass, 1991; Haessler and Sweeney, 1991;

Culberson and Reckhow, 1994) these are mostly heuristic methods. We direct interested readers to (Daniels and Inkulu,

2001; Baldacci et al., 2014) for didactic overviews. Despite the emergence of heuristics with considerably better quality

of solutions, the research interest in methods based on mathematical formulation, has not waned. Furthermore, the

availability of increased computational power made available by advances in hardware technology has accelerated the

search for exact solution methods.
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1.1. Cutting and packing problems

RBP and cutting / packing problems have a similar structure. First of all, two sets of elements, namely, a master

object (i.e. input, supply, image) and a set of small items (i.e. output, demand, nonidentical rectangles) are defined.

Second, small items are selected and grouped into a subset (i.e. a rectangle blanket) which is assigned to a large object

such that the geometric condition (i.e. rectangles are non-overlapping and axis-aligned, but not necessarily lying within

the image) holds, and a given objective function is optimized. As a result, it is possible to say that RBP is somewhat

related to cutting / packing problems coded as 2/B/O/R or 2/B/O/M in particular, according to Dyckhoff’s typology

(Dychoff, 1990), which is improved later on by Wascher et al. (2007) in order to clear away the ambiguities. RBP can

be seen as an output maximization problem, and within this category of problems, it can be treated as a close relative of

the two-dimensional single large object placement problem (SLOPP) according to Wacher et al.’s improved typology.

However, although small items are rectangular, for two reasons, it is not possible to say that RBP exactly belongs to the

family of the two-dimensional rectangular SLOPP with explicit upper bounds on the number of times a small item

of particular type can be cut from the large object (Christofides and Whitlock, 1977; Wang, 1983; Beasley, 1985b;

Christofides and Hadjiconstantinou, 1995; Beasley, 2004). First of all, in RBP, the upper bound is aggregated and the

total number of rectangles is bounded. Besides, the master object, namely the image, has an irregular shape rather

than rectangular, which pushes RBP towards irregular cutting / packing problems (Downsland and Downsland, 1995;

Baldacci et al., 2014; Cherri et al., 2016).

Mathematical programming formulations of cutting and packing problems are mixed-integer linear programs

(MILPs) in general and their complexity depends on the geometric methodologies used to model constraints related to

the type of interactions between the small items and their layout on the master object. The core geometric methodologies

available in the literature are very well explained in the tutorial by Bennell and Oliveira (2008). There are four of them;

but they can be grouped into two: the pixel / raster method and polygonal methods. The pixel / raster method divides

the surface of the master object into discrete regions in order to represent it as a grid coded in the form of a matrix. One

drawback of this representation is the inability to represent irregular shapes accurately. However, this is not the case

when the D-function is used; it enables benefitting from the well known tests for line intersection and point intersection

of direct trigonometry. Unfortunately the inefficiency in checking the feasibility is its weakness; it takes exponential

time in the number of edges of the items, which is quadratic in the grid size for the pixel / raster method. The nofit

polygon (NFP) is a polygonal construct that offers higher efficiency than direct trigonometry, and more accuracy, since

it uses the original edges. The nofit polygon of two items i and j (NFPi j), is the locus of all points where the reference

point of item j cannot be placed without overlapping item i. Unfortunately, calculating NFPi j is still a non-trivial

task and can be very time consuming. Finally, the Φ-function is the most recent polygonal methodology invented to

represent all mutual positions of two polygons (Stoyan et al., 2001, 2004). The major problem is the determination of

the expression of a suitable Φ-function.

The proposed MILP formulations are not numerous. Some of them are compaction models hybridized with

meta-heuristics. Compaction is known to be a difficult problem as well (Li and Milenkovic, 1993). Compaction models
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can improve layouts by moving small items continuously on the master object without overlapping, by changing the

relative positions of the pairs. A good example of this type of work is due to Gomes and Oliveira (2006). Their hybrid

algorithm solves the Linear Programming (LP) relaxation of their MILP compaction formulation under the guidance

of a simulated annealing search. The formulation uses NFP to model constraints preventing overlapping. The main

drawback of this formulation is that its definition of non-overlapping constraints does not limit the relative positions of

the small items strictly enough so that many different branches of a branch-and-bound (BB) tree can contain the same

solution, when this formulation is used in a BB algorithm. Clearly, this can increase the inefficiency of the search.

Fischetti and Luzzi (2009) develop another MILP formulation. They use a different formulation of NFP than the one

used by Gomes and Oliveira (2006). Their approach takes advantage of the earlier effort of Daniels et al. (1994) and

Li (1994). It is based on slicing, i.e. partitioning into convex disjoint areas, of the region outside the NFP, which

corresponds to the region the second small item can be placed onto without overlapping the first one, for every pair of

small items. However, they do not specify the way in which the slices are defined. Alvarez-Valdes et al. (2013) use their

slices more specifically and define binary variables for each region in which the reference point of a small item can be

placed with respect to another one without overlapping. Using variables associated with slices resolves the inefficiency

problem of Gomes and Oliveira’s BB algorithm (Gomes and Oliveira, 2006). They define slices horizontally, which

helps to control relative vertical position of the small items while developing two new MILP formulations and BB

algorithms for their solutions. Besides, Alvarez-Valdes et al. (2013) prefer a set partitioning constraint to describe the

exterior of the NFP as Fischetti and Luzzi (2009), which is done using a set covering constraint by Gomes and Oliveira

(2006). Algorithms to build the NFP are time consuming, complex and numerically unstable. This limits real world

applications of these models. Cherri et al. (2016) propose two directions to overcome these limitations and built robust

mathematical optimization models. The first one derives non-overlapping constraints based on direct trigonometry

without using NFP. The second one decomposes small objects into convex pieces prior to the computation of the NFPs.

Notice that both of the approaches are polygonal, contrasting the preference of Baldacci et al. (2014); their MILP

formulations for nesting with defects is based on the pixel / raster approach with the simplest coding scheme (Oliveira

and Ferreira, 1993).

RBP is not the first close encounter of computer vision with cutting / packing. The NFP is related to Minkowski or

vector sums. Any two-dimensional region can be considered as a set of vectors, and the Minkowski sum of two regions

is the region obtained by summing all pairs of vectors. This relation was first pointed out by Stoyan and Ponomarenko

(1977) and used extensively by Milenkovic et al. (1992); Li and Milenkovic (1993) in order to determine the constraints

in their compaction processes. Minkowski sum is in fact a particular case of a more general concept which is known as

mathematical morphology (Shih, 2017). It is widely used in computer vision and image processing and motivates some

interesting applications for the cutting / packing of highly irregular items in an irregular master object (Whelan and

Batchelor, 1991, 1996; Bouganis and Shanahan, 2006).
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1.2. Covering and partitioning problems

The rectangle covering problem mainly deals with the covering of a compact polygonal target region with a finite

family of small rectangles. There can be different objectives. For instance, one can search for a minimum number of

rectangles needed to cover the target region (Heinrich-Litan and Lubbecke, 2006), or in case there exists several covers,

one can look for the best one with respect to some objective (Stoyan et al., 2011). The rectangle partitioning problem

has similar features; but the aim is to obtain a partition or dissection of the target region (Ohtsuki, 1982), this time.

As can be noticed there are many relations between covering and cutting / packing problems. One example is the

use of Φ-function as a geometry modeling tool (Stoyan et al., 2011). In the same work the authors exploit the particular

nature of the covering problem and discuss the use of an extension of the Φ-function called Γ-function (Stoyan, 2007),

which they apply for determining whether a given set of rectangles, with respect to their configuration, form a cover of

the target region.

The rectangle covering problem is hard and exact solution methods have an enumerative nature. Some of them

use the above mentioned Φ and Γ functions such as the one developed by Stoyan et al. (2011) for which the choice

of a suitable initial configuration is particularly important. Another possibility is to try to solve the problem after

formulating it as an MILP.→The major difference is the definition of the target object: in our case, it consists of finite

number of rasterized points, in contrast with the branch-and-bound algorithm of Stoyan et al. (2011), where the target

region includes infinite number of points.

MILP models of the rectangle covering problem have both advantages and disadvantages as shown by (Scheithauer

et al., 2009) based on the new formulations they propose. They adopt Beasley’s approach (Beasley, 1985a,b) to

formulate the first one and use a three indexed binary variable to describe the placement of the reference point, which is

the lower left corner, of a rectangle at a position. This results in a binary integer programming problem (BIP) with

very large number of variables and weak LP relaxation lower bound, which makes it difficult to solve exactly by a

BB algorithm using an LP relaxation based lower bounding scheme. They also propose a second formulation under

the assumption that the polygonal target region is convex. They do not use a pixel / raster method to represent the

target region and define relative position variables for modeling the interactions between the rectangles, which lowers

considerably the number of variables and constraints since they are independent of the size of the target region, which

is not the case with the first formulation.

1.3. Rectangle blanket problem

Nesting problems are two-dimensional cutting / packing problems involving irregular shapes. They can be roughly

defined as the placement of small items in a configuration in a master object subject to possible constraints related to

defective areas or areas with different quality of the master object and their compatibility with the small items to cut, in

order to optimize an objective. In RBP there is one master object with an irregular shape. It is the image to be assigned

a blanket consisting of non-overlapping axis aligned small rectangles not necessarily packed within the image, which

is the main difference between RBP and irregular nesting. Besides, the objective of RBP is different. It consists of
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the minimization of the sum of the uncovered area of the master object, which can be treated as the total waste, and

the excess of the small rectangles lying outside the image, which is the uncovering area of the blanket. However, the

typical objective in nesting is to minimize the waste (e.g. Downsland and Downsland (1995)). In the case of nesting

with defects, which occurs when the master object has defect zones, each small item has a quality value depending

on its configuration in the master object and the objective becomes the maximization of the total quality value of the

cutting patterns of the small items (Baldacci et al., 2014).

In rectangle covering and partitioning there is one master object, i.e. target region, as RBP. The main difference

is again in the objective function, i.e. the relation between the set of small items and the master object. RBP is a

slightly more relaxed version of both problems. As can be observed in Figure 1, neither the shape nor the rectangles

need to be fully contained within the other. In other words a rectangle blanket is neither a cover nor a partition; it

partly covers and partly dissects a polygonal region, namely the target image. Consequently, it is possible to see it as

a relative of approximate (or incomplete) rectangle partitioning or exclusive maximal rectangle covering problems.

The maximal covering problem (Church and ReVelle, 1974; Murray, 2016), which is often referred in facility location

theory is quite similar except for the exclusive (or partitioning) constraints. It basically asks to maximize the covered

area while using a given number of primitive shapes. Chan et al. (2014) tackle a similar problem in the context of

integrated circuit manufacturing where the rectangles are allowed to overlap. After transforming the binary input image

appropriately, RBP can also be considered as a generalization of Bentley’s classic maximum sum subsequence problem

to two dimensions for multiple subsequences (Bentley, 1984). In fact, Csurös (2004) have previously proposed a

method to find a set of K disjoint subsequences of a one dimensional array such that the sum of all elements in the

set is maximized. Later, Bengtsson and Chen (2006, 2007) improved the efficiency of his method to have linear time

complexity.

There are three coding schemes in pixel / raster method: the first one is proposed by Segenreich and Braga (1986),

the second one by Oliveira and Ferreira (1993), and the third one by Babu and Babu (2001). The scheme by Oliveira

and Ferreira (1993) is the simplest and mostly preferred in MILP formulations; it uses 1 to code the item and 0 to

represent the empty space. We formulate RBP as a BIP based on this scheme. This formulation resembles Beasley’s

formulation (Beasley, 1985a,b) at the first look. The master object, i.e. target image, is represented by the binary

coefficient matrix, which is given as the part of the problem data as will be seen in the next section. In addition, the

binary variables are single indexed and represent whether a rectangle is selected or not in the packing constraints that

allows the points of the master surface to be covered by at most one rectangle.

1.4. Our contributions

As we have tried to expose in detail RBP is a new problem having relations with cutting / packing, rectangle

covering and partitioning problems. Following its definition, first we introduce a binary integer linear programming

(BIP) formulation, which can be classified as a set packing formulation (Conforti et al., 2014) extended with an

additional cardinality restriction on the total number of rectangles forming the blanket. We benefit from the geometry
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and pixel / raster representation of the a computer image while modeling the coefficients of the objective function and

constraint matrix. Then, we develop a new branch-and-price (BP) algorithm, which we implement using two branching

rules. The first one is the well-known variable branching of integer programming. The second one extends the rule by

Ryan and Foster (1981) for set packing, which is originally proposed for set partitioning problems, for set packing. Our

third contribution is the geometric bisection scheme that solves the pricing subproblems efficiently. The algorithmic

development considers also tailing-off effect and technics for its prevention such as the the use of Lagrangean lower

bounds and dual smoothing. BP algorithm can be computationally expensive for large instances. To overcome this

size limitation, we suggest three heuristics. The first one is a new simulated annealing heuristic; and it is our forth

contribution. The other two, adopt ideas available in the literature for other computer vision related problems. In

addition, we perform extensive computational tests for assessing the performance of the algorithms.

The paper consists of six sections. The BIP formulation and BP algorithm can be found in the next two sections.

The heuristics are explained in Section 4. Section 5 essentially reports the computational results. Finally, the last

section concludes the paper.

2. Problem formulation

A polyomino is a union of unit squares, namely a square with integer coordinates and area 1 (Schrijver, 2003). It

is possible to represent a shape as a polyomino P, by replacing any pixel p belonging to its binary image with a unit

square.

Given a polyomino P, it is possible to construct a graph G = (V(G), E(G)) with vertices as all pixels contained

in P. Two vertices are the endpoints of an edge if and only if P contains an axis-aligned rectangle containing both

pixels. G is called the visibility graph of the polyomino P (Maire, 1994; Motwani et al., 1989, 1990) and has interesting

properties. Györi (Gyori, 1984) has shown that α(G), the minimum number of cliques that cover G, is equal to χ(G),

the maximum number of independent vertices (i.e. the size of the maximum stable set), if each vertical or horizontal

line has a convex intersection with P, namely if P is orthogonally convex. This is a consequence of the fact that G is

perfect for orthogonally convex images. Using the correspondence between a clique and a rectangle, and the relation

α(G) ≥ χ(G) it is possible to obtain a lower bound on the size of a rectangle cover of P. An intriguing question is

whether there is a constant factor approximation algorithm for the rectangle cover problem (Bern and Eppstein, 1997),

which is related to whether the ratio α(G)/χ(G) is bounded by a constant. Although this is still an open question,

numerical results Heinrich-Litan and Lubbecke (2006) report in their study support the fact that such an approximation

exists. These results are based on the BIP formulation of a set covering problem. We also follow this line of research

and propose a set packing type BIP formulation for RBP.

A target image I is a union of disconnected polyominos and it is possible to associate a zero-one matrix I ∈ BW×H

with the target image I, where W and H are the dimensions of the target image. For example, they are the dimensions

of the smallest rectangle covering the polyominos representing the target image fully. Then, for p1 = 1, 2, . . . ,W and
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p2 = 1, 2, . . . ,H

Ip1 p2 =

 1 if pixel p belongs to target image I

0 otherwise,
(1)

is a binary matrix representing target image I, where

 p1

p2

 are the indices of the cell assigned to pixel p. We present

the rectangle r where the pixel values are 1 inside the rectangle, with the binary matrix r ∈ BW×H such that

rp1 p2 =

 1 if rleft ≤ p1 ≤ rright and rtop ≤ p2 ≤ rbottom

0 otherwise,
(2)

for any pixel p with cell coordinates

 p1

p2

. Here, rleft, rright, rtop and rbottom are the coordinates of the left, right, top

and bottom edges of the rectangle, respectively. Please observe that this is exactly the pixel / raster method with Oliveira

and Ferreira (1993) coding scheme used to represent a master object, i.e. target image. It is used to represent small

items on the master surface in cutting / packing (Baldacci et al., 2014). Throughout the paper we have adopted image

based conventions, because the rectangle blanket problem arises from image processing and computer graphics related

fields. According to this convention, y-axis of the coordinate system is oriented downwards. Therefore, rtop ≤ rbottom

for rectangles.

Let R be the set of all possible rectangles in BW×H and has size |R| = R. Then RBP can be formulated as the subset

selection problem

RBP: min {z(B) : B ⊆ R, |B| ≤ K, and B is a blanket} , (3)

for a given target image I. Here a feasible subset B = {r1, r2, . . . , rB} of B = |B| ≤ K non-overlapping rectangles

represents a blanket and cost

z(B) =
∑
r∈B

 W∑
p1=1

H∑
p2=1

rp1 p2 −

W∑
p1=1

H∑
p2=1

Ip1 p2 × rp1 p2


+

 W∑
p1=1

H∑
p2=1

Ip1 p2 −
∑
r∈B

W∑
p1=1

H∑
p2=1

Ip1 p2 × rp1 p2

 . (4)

The first term is the area (i.e. the number of pixels) of blanket B overflowing the target image (i.e. total uncovering area)

and the second term is the area of the target image uncovered by blanket B (i.e. total uncovered area), since rectangles

are non-overlapping. The product Ip1 p2 × rp1 p2 is 1 if p belongs to both the target image and rectangle r; otherwise it is

0. Besides, the first term of the second line equals to the size of the target image, namely
∑W

p1=1
∑H

p2=1 Ip1 p2 = |I| and
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the objective can be rearranged as:

z(B) = |I| +
∑
r∈B

 W∑
p1=1

H∑
p2=1

rp1 p2 − 2
W∑

p1=1

H∑
p2=1

Ip1 p2 × rp1 p2

 . (5)

Here, |I| is constant and thus RBP has the equivalent form

RBP: min

∑
r∈B

c(r) : B ⊆ R, |B| ≤ K, and B is a blanket

 , (6)

with

c(r) =

W∑
p1=1

H∑
p2=1

rp1 p2 − 2
W∑

p1=1

H∑
p2=1

Ip1 p2 × rp1 p2 . (7)

Before proceeding any further we would like to comment on RBP’s computational difficulty. Let us first consider

the decision version of a weighted variant of the set packing problem (SP), the maximum weight set packing problem

(MWSP) for this purpose.

INSTANCE: A family F of finite sets, positive integer weights c(F) F ∈ F , and a positive integer L.

QUESTION: Does F contain a subset B ⊆ F of mutually disjoint sets with total weights
∑

F∈B c(F) ≥ L

MWSP is NP-Complete since SP is a restriction with unit weights (i.e. c(F) = 1) F ∈ F , which is shown to be

NP-Complete by Karp (1972). It is also possible to state a decision version of RBP:

INSTANCE: A target image I represented with a W × H† matrix I with binary entries, a family F of rectangles

represented with binary matrices, positive integer weights c(r) r ∈ F for each rectangle, and positive integers K and L.

QUESTION: Does F contain a subset B ⊆ F of mutually disjoint rectangles (i.e. a blanket) with size |B| ≤ K and total

weights
∑

r∈B c(r) ≥ L

RBP is NP-Complete since it can be restricted to MWSP by setting K = |I| ≤ W × H, which makes the cardinality

constraint redundant, with rectangle weights calculated using formula (7). Yet, another way of reaching to the verdict

that RBP is NP-hard can be by means of the planar geometric packing problem (PGP):

INSTANCE: A set B of geometric objects, positive integer weights c(F) F ∈ B, a not necessarily connected region R†

in the plane.

QUESTION: Is it possible to determine whether the set B of geometric objects can be placed within region R in a

mutually non-intersecting way?

Fowler et al. (1981) have shown that PGP is NP-Complete even when the set B is restricted to a given number of

identical squares to be placed with their sides parallel to the axes of a Cartesian coordinate system. RBP is restricted

to PGP for the case B is a set of |B| ≤ K non-overlapping rectangles (i.e. a blanket) and total weight
∑

r∈B c(r) ≥ L.

Again, the weight c(r) is calculated according to formula (7) (or (5) for the total weight).

As many of the combinatorial optimization problems, the above formulation can be re-expressed using binary

variables and a slight change in the notation with c(r j) denoting the value (cost) of rectangles r j ∈ R, j = 1, 2, . . . ,R, as
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the constrained set packing problem

RBP: min
R∑

j=1

c(r j)x j (8)

s.t.
R∑

j=1

x j ≤ K (9)

R∑
j=1

r j
p1 p2 x j ≤ 1 p1 = 1, 2, . . . ,W; p2 = 1, 2, . . . ,H (10)

x j ∈ {0, 1} j = 1, 2, . . . ,R. (11)

Here, the decision variable x j is set to 1 if rectangle j is selected for the blanket; otherwise it is set to 0. Inequality (9)

restricts the number of rectangles in an optimal blanket. The given integer upper bound K is actually an implicit

parameter for the approximation quality: the larger it is, the better the blanket B approximates the target image I.

Set packing inequalities (10) allow each pixel p to be in at most one of the rectangles. The number of all possible

configurations of K rectangles is O((W × H)2K), which can be very large depending on the size of the target image.

Mohr and Zachmann use a fitness function while assessing the quality of a given rectangle set based on the total

number of uncovered and uncovering pixels. They consider RBP within the context of silhouette matching in particular,

and propose a dynamic programming approach (Mohr and Zachmann, 2010b) and a recursive search heuristic (Mohr

and Zachmann, 2010a). Demiröz et al. (2014) benefit from the same fitness function for person tracking and fall

detection. More general criteria are also suggested in the literature for the analytical description of relations between a

given target image and the finite set of rectangles that is supposed to approximate it; Φ function applied as a fitness

criterion for object packing (Bennell et al., 2010), Γ function for polygonal region covering (Stoyan et al., 2011), and

a value function based on the quality indices associated with pixels for nesting with defects (Baldacci et al., 2014).

Unfortunately, their evaluation requires more computational effort and they do not serve our purpose better than (7) in

the BIP formulation (8)–(11) of RBP.

3. An exact solution method

Since the number of all possible rectangles can be large depending on the size of the image matrix, column

generation procedure can be applied to generate new rectangles as long as they improve the objective function.

However, column generation is not directly applicable when the variables are integer. We wrap the whole column

generation problem into a branch-and-bound scheme, which is also known as branch-and-price. Let RBP(t) denote the

restricted integer programming master problem (i.e. rectangle blanket problem) at step t. Then, the LP relaxation of the
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restricted integer programming master at step t (RLPM(t)) is the linear programming problem

RLPM(t): min
R(t)∑
j=1

c(r j)x j (12)

s.t.
R(t)∑
j=1

x j ≤ K (13)

R(t)∑
j=1

r j
p1 p2 x j ≤ 1 p1 = 1, 2, . . . ,W; p2 = 1, 2, . . . ,H (14)

x j ≥ 0 j = 1, 2, . . . ,R(t), (15)

after relaxing binary restrictions on the variables. Here, R(t) ≤ R is the number of columns (variables) and µ(t)

and {π(t)
p1 p2 : p1 = 1, 2, . . . ,W; p2 = 1, 2, . . . ,H} are the optimal values of the dual variables µ and {πp1 p2 : p1 =

1, 2, . . . ,W; p2 = 1, 2, . . . ,H} at step t. Inequalities x j ≤ 1 are not included since they are implied by constraints (14)

and (15) . Then, the reduced cost can be expressed as

c(r j) = c(r j) −
W∑

p1=1

H∑
p2=1

r j
p1 p2πp1 p2 − µ j = 1, 2, . . . ,R(t), (16)

where the dual variables π and µ are restricted to be nonpositive.

We provide a formal pseudocode of the column generation algorithm that solves linear programming relaxation

of the integer programming formulation of RBP as Algorithm 1. This is the most generic form and does not include

improvements and implementation details such as the multiple column generation, lower bounding, and stabilization.

However, we still believe that it is worth mentioning some of them here since they can make the pseudocode easier

to follow. Notice that x = 0 is always a trivial solution and RLPM(t) is always feasible. This requires the setting of

the W × H + 1 slack variables to the right hand sides of the inequalities (13) and (14) as the initial basic feasible

solution. Hence, the (W ×H + 1)× (W ×H + 1) identity matrix, which corresponds to the slack variables can always be

selected as the initial basic matrix. The solution of the pricing problem at step t is mainly for checking π(t) and µ(t) are

dual feasible for LPM. This provides the minimum reduced cost value c(r(t+1)) and an optimal rectangle (i.e. column)

r(t+1). Objective value zRLPM(t) =
∑R(t)

j=1 c(r j)x(t)
j of the restricted LP master is obtained by only considering R(t) columns

generated up to step t and R(t+1) = R(t) + 1.

The solution of the RLPM using column generation yields an optimal solution x∗ = x(t∗) (at some node of the

branch-and-bound tree) at step t∗ after solving RLPM(t∗) (i.e. restricted master LP with R(t∗) columns). If it is fractional

and it is not possible to prune that node by bound or infeasibility, new branches can be created by partitioning the

solution set of the integer programming master RBP, which can be done by adding constraint(s) either to the master

problem or the pricing subproblems. In the branch-and-price algorithm, we let L be a collection of rectangle blanket

problems RBPi of the form zi = min{cT x : x ∈ Si} where Si is a subset of the original feasible solution set S (i.e.

11



Algorithm 1 Column generation algorithm that solves the LP relaxation of RBP.
1: procedure SolveLinearProgrammingMaster(LPM)
2:(Initialization): Set t = 0 and solve RLPM(0).
3:(Pricing): Call Algorithm 2 to solve pricing subproblem. Let c(r(t+1)) and r(t+1) be the minimum reduced cost value

and corresponding optimal rectangle.
4:(Optimality check): If c(r(t+1)) = 0, then STOP. Set xLPM = x(t) and zLPM = zRLPM(t) and go to Step 6. Otherwise, go

to Step 5.
5:(Generating a new column): If c(r(t+1)) < 0, then introduce the column(

1
r(t+1)

)
with variable xR(t)+1 and unit cost c(r(t+1)) to obtain RLPM(t+1). Set t ← t + 1, and go to Step 3.

6: return xLPM and zLPM .
7: end procedure

the feasible solution set of the original problem RBP described with constraints (9)–(11)). Associated with each

subproblem of L is a lower bound zi ≤ zi. However, there are some special difficulties in combining column generation

with integer programming techniques such as selecting a branching strategy and dealing with slow convergence.

3.1. Pricing subproblem

As a consequence of the reduced cost expression (16) the pricing subproblem can be formulated as

c(r(t+1)) = min{c(r) −
W∑

p1=1

H∑
p2=1

rp1 p2π
(t)
p1 p2
− µ(t) : r ∈ R}, (17)

which can be restated as

c(r(t+1)) + µ(t) = min{
W∑

p1=1

H∑
p2=1

(1 − 2Ip1 p2 − π
(t)
p1 p2

)rp1 p2 : r ∈ R} (18)

by using the definition of c(r) given with expression (7) and the fact that µ(t) is constant. Here, r(t+1) = arg min{c(r(t+1))−

µ(t)}, namely an optimal solution of the minimization problem given as the right-hand side of expression (18). Hence, if

c(r(t+1)) = z(r(t+1))− µ(t) = 0 where z(r(t+1)) is its optimal value, then the current dual solution is feasible and an optimal

solution of the LP relaxation of RBP is reached. Otherwise, if c(r(t+1)) < 0, a new column is added with the following

entries: c(r(t+1)) for objective function (12), 1 for inequality (13) and {r(t+1)
p1 p2 : p1 = 1, 2, . . . ,W; p2 = 1, 2, . . . ,H} for

inequalities (14) corresponding to the R(t+1) = (R(t) + 1)th variable. Observe that c(r(t+1)) is calculated using expression

(7) with r(t+1). As a consequence of this discussion the pricing subproblem becomes

PSP(t) : z(r(t+1)) = min


W∑

p1=1

H∑
p2=1

(1 − 2Ip1 p2 − π
(t)
p1 p2

)rp1 p2 : r ∈ R

 . (19)
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Please recall that dual variables π(t)
p1 p2 are restricted to be nonpositive.

It is possible to formulate the pricing subproblem using binary variables as a BIP. Unfortunately, they could include

many binary variables and the problem becomes inefficient to solve. Hence, for the solution of the subproblems created

at each node of the RBP’s search tree, we adapt a branch-and-bound method that geometrically searches within a

rectangle for a subrectangle with the minimum cost (i.e. such that the sum of the weights of the pixels included in

the subrectangle is the smallest). This method is originally proposed for determining the subwindow for localizing

an object of interest within a given image (Lampert et al., 2009). We summarize our adaptation in the sequel of

this subsection for the sake of completeness. The idea is to start with an initial rectangle set containing all possible

rectangles and dividing it into two disjoint subsets at each branch. Notice that this geometric algorithm, which is

essentially a two-dimensional interval bracketing (bisection) method, eventually computes an optimal solution of the

pricing subproblem PSP(t) at iteration t.

Using the definition given in (2) we can represent any rectangle r by means of the quadruplet (rtop, rleft, rbottom, rright)

denoting respectively its top, left, bottom and right edge coordinates. As we have already mentioned, because of the

conventions we adopt from image processing and computer graphics related fields, the orientation of the y-axis is

downward, and rtop ≤ rbottom as a result.

Similarly, we represent a set Rk of rectangles associated with node k of the search tree as Rk = (Tk,Lk,Bk,Rk).

Here, Tk,Lk,Bk and Rk are the range of values that top, left, bottom and right edge’s coordinates can take. Each of

these ranges have lower and upper bounds. For example Tk = [topk
low, topk

high] means that the top edge coordinate of the

rectangles of set Rk are between topk
low and topk

high, inclusive. This representation is illustrated in Figure 2 with r∪ and

r∩ denoting respectively the subsets corresponding to the union and intersection of all rectangles in the set.

leftlow lefthigh

r∩ 
r∪ 

rightlow righthigh

toplow

tophigh

bottomlow

bottomhigh

Figure 2: Representation of a rectangle set
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At the beginning, the initial node (i.e. node 0) of the branch-and-bound tree includes the whole set of rectangles

R0 = ([1,H], [1,W], [1,H], [1,W]). At each step, the largest range is bisected to form two branches such that rectangle

subsets form a partition of their parent node’s rectangle set. Binary search proceeds according to the best-first branching

rule using a lower bound on the sum of the weights of the pixels the rectangles include for pruning, until a node

representing a subset consisting of a single rectangle with the minimum cost is reached.

The sum of the negative weights inside a rectangle, is a lower bound for the sum of all the weights inside it. We are

going to use a similar principle to define a lower bound for a given rectangle set. Let z(r) be the cost associated with a

given rectangle r and `(R) be the lower bound on the costs of the rectangles belonging to the rectangle set R. Hence,

z(r) =

rright∑
p1=rleft

rtop∑
p2=rbottom

(1 − 2Ip1 p2 − π
(t)
p1 p2

)rp1 p2 , (20)

is the objective function for rectangle r = (rleft, rright, rtop, rbottom). Then, `(R) satisfies the following properties:

`(R) ≤ min
r∈R

z(r), (21)

`(R) = z(r) if set R is the singleton {r}. (22)

A value for `(R) can be calculated by means of the formula

`(R) = `−(r∪) + `+(r∩). (23)

Here, `−(r) and `+(r) are the sum of the negative and positive weights of the pixels of rectangle r. The inequalities

`+(r∩) ≤ `+(r), (24)

`−(r∪) ≤ `−(r) (25)

hold for any rectangle r of set R because of two reasons. First, every rectangle r ∈ R includes r∩ so the sum of

the positive pixels inside r is at least l+(r). Second, every rectangle r ∈ R is included in r∪, and following the

same reasoning, it can be seen that the second inequality also holds. If we sum the inequalities we can see that

`(R) ≤ minr∈R z(r).

The rectangle set representation allows r∪ and r∩ to be calculated very quickly since, r∪ = [toplow, leftlow, bottomhigh,

righthigh] and r∩ = [tophigh, lefthigh, bottomlow, rightlow]. When r∩ does not define a valid rectangle, then the intersection

is empty. Furthermore, `−(r) and `+(r) can be evaluated in constant time using integral images (summed area tables) of

only negative and only positive values (Crow, 1984), which makes the computation of the lower bounds very efficient.

We have all the ingredients of a branch-and-bound algorithm that can solve the pricing subproblem. Let L be a

collection of subproblems PSPi of the form z(Ri) = min
{∑W

p1=1
∑H

p2=1 wp1 p2 rp1 p2 : r ∈ Ri
}
; where wp1 p2 = (1 − 2Ip1 p2 +
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π(t)
p1 p2 ) is the weight of pixel p. Associated with each subproblem PSPi of L is a lower bound `(Ri) ≤ z(Ri) computed

according to (23). We list the steps of the branch-and-bound algorithm, which solves PSP, formally as Algorithm 2.

Finally, Lampert et al. (2009) report that their subwindow search algorithm runs in linear time or faster. Although

we have not tried to show rigorously, we can say that Algorithm 2 also has a polynomial time complexity in the

worst case since it is a close relative of Lampert et al. (2009) algorithm: it is essentially a two-dimensional bisection

procedure. In addition, lower bounds can be computed efficiently, as mentioned above.

Algorithm 2 Branch-and-bound algorithm that solves PSP for computing r∗.
1: procedure SolvePricingSubproblem(PSP)
2: (Initialization): Set PSP0 = PSP, R0 = R, z0 = `(R0), L = {PSP0}, r∗ ← (1,W, 1,H) and

z =
∑W

p1=1
∑H

p2=1 max(0, 1 − 2Ip1 p2 + π(t)
p1 p2 )r∗p1 p2

.
3:(Termination test): If L = ∅, then rectangle r∗ that yields z is an optimal solution of the pricing subproblem.
4:(Problem solution and lower bound computation): Select and delete a problem from L, say PSPi.
5:(Pruning):

i. If zi ≥ z, then go to Step 3.

ii. If rectangle set Ri does not consist of a single rectangle, then go to Step 6.

iii. If rectangle set Ri consists of a single rectangle, say ri, and z(Ri) < z, then set z = z(Ri)

and r∗ ← ri, go to Step 3. Otherwise go to Step 6.

6:(Division): Let {Ri j}2j=1 be a bi-partition of Ri and Ri1 ∩ Ri2 = ∅, which is obtained by bisecting the largest range of
rectangle ri of set Ri. Add problems {PSPi j}2j=1 to L with lower bounds zi j = `(Ri j) j = 1, 2; go to Step 3.

7:return r∗ and z.
8: end procedure

3.2. Branching

First difficulty one can face in combining column generation with integer programming techniques is related

to the branching rule. A scheme suitable for column generation must be devised at some node, say node h, of the

branch-and-bound tree. We should point out that we omit index h to clarify this fact in the derivations in order to

increase the readability. For example, we use S, R, Si, Ri, RLPM(t)
i , PSP(t)

i instead of Sh, Rh, Shi, Rhi, RLPM(t)
hi , PSP(t)

hi .

3.2.1. Branching explicitly in the master problem

A conventional scheme is to consider one of the fractional entries of x∗, say x∗j , and set x j = 0 in one branch and

x j = 1 on the other. These are usually introduced as new constraints to the master problem. Unfortunately, this is not

a good choice since it yields an unbalanced branch-and-bound tree and the optimum is usually reached after many

branchings as explained in (Vanderbeck, 2005).

We have observed that the use of column generation in the solution of the linear programming master LPM produces

integral or close to integral optimal solutions in particular for RBP, which is an important advantage and results in very

few branchings. Hence, one can prefer branching implicitly in the master variables, since it is simple to implement and

define a partition of the feasible solution set S as Si = {S ∩ {x : xq = i}} for i = 0, 1 given that x∗q < Z is the fractional

entry of x∗ and xq is selected as the branching variable.
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3.2.2. Branching implicitly in the master problem

This type of branching is preferred to the previous one since it is more likely to produce a balanced search tree

as pointed by Wolsey (1998). A well-known branching rule for the set partitioning problems is due to Ryan and

Foster (1981). It is possible to adopt it for the solution of the set packing problem after adding slack variables and

transforming packing inequalities to partitioning equalities. However, this causes a considerable increase in the number

of variables. Instead, we propose a new branching scheme for RBP without considering the cardinality inequality (9).

It is a consequence of the next proposition and suitable for the solution of RBP by branch-and-price.

Proposition 1. Let x be the fractional optimal solution to the LPM, i.e. 0 < xk < 1 for some k = 1, 2, . . . ,R. Then,

there exists two pixels

 e1

e2

 and

 f1

f2

 and rectangles j , k such that rk
e1e2
, r j

e1e2 , rk
f1 f2

= r j
f1 f2

= 1, 0 < x j ≤ 1.

Proof. Assume that r j
f1 f2

= 0 for all f =

 f1

f2

 such that rk
f1 f2

= 1, x j > 0 and j , k. Then, we can improve the

objective value by setting xk = 1 since doing so does not violate any constraints. This contradicts the proposition that x

is an optimal solution. Hence, there must exist a rectangle j and pixel f =

 f1

f2

 with rk
f1 f2

= r j
f1 f2

= 1. Then, since

there is no duplicated column in the basis, there must exist one pixel e =

 e1

e2

 such that rk
e1e2
, r j

e1e2 .

After identifying rows e and f we can impose the branching constraints

∑
k:rk

e1e2 =rk
f1 f2

=1

xk ≤ 0 and
∑

k:rk
e1e2 =rk

f1 f2
=1

xk ≥ 1 (26)

for respectively left and right branches. The pixels e and f have to be covered by different rectangles on the left branch

and by the same rectangle on the right branch.

As a consequence of this proposition if it is not possible to identify any (e, f ) pairs, then the solution of the master

problem must be integer. The algorithm terminates in a finite number of branchings since there are only a finite number

of row pairs. Besides, a large number of variables are eliminated at each branch. This rule eliminates the submatrix

 1 1

0 1

 , (27)

which is precisely the excluded submatrix in the characterization of the totally balanced matrices (Hoffman et al., 1985).

Total balancedness of the coefficient matrix is a sufficient condition for the LP relaxation of a set packing problem to

have integer optimal solutions.

RBP includes a cardinality constraint for the number of sets to be packed in addition to the ordinary set packing

constraints. The new branching rule still remains valid for its solution by branch-and-price.
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3.2.3. Implementing the branching rules

Notice that, new constraints added to the pricing subproblem should be compatible with the geometric solution

procedure presented previously as Algorithm 2. For example, they cannot be expressed in an algebraic form, since an

explicit integer programming formulation of PSP, is not considered. Branching schemes that can be implemented by

modifying the objective function (19) are appropriate.

However, as can be observed, any branching scheme that can be handled by only modifying the objective function

(8) is appropriate. We restrict a pixel coverage by making its weight arbitrarily large (i.e. wu1u2 = +∞) and arbitrarily

small (i.e. wu1u2 = −∞), respectively for ru1u2 = 0 and ru1u2 = 1.

This is what we do for x j = 1 branch of the first branching rule: the weights of the pixels belonging to rectangle j

are set to very large numbers in the image of the pricing subproblem so that no rectangle overlapping with rectangle

j is generated. The right hand side of the constraints of the master problem are modified accordingly. However, for

x j = 0 branch the list of the prohibited rectangles belonging to the ancestors is passed to the child. So a rectangle

generated by the pricing subproblem is discarded if it belongs to this list and the second best rectangle is considered.

This procedure continues until the best column (i.e. the column with the smallest reduced cost) that is not included in

the list is generated.

Another approach is to find the geometric representation of the new restrictions at each branch. First, columns

violating the branching constraints are removed from the master problem. When the second branching rule is used, at a

left branch where two pixels are forced to reside in different rectangles, we prune the node by deleting the associated

rectangle set if their intersection contains these two pixels as illustrated in Figure 3a. In case a right branch is visited

we prune the node if the union of rectangles contains only one of these two pixels, since both of the pixels must reside

in the same rectangle. This is illustrated in Figure 3d and Figure 3e. Remaining alignments, which are illustrated with

Figure 3b, Figure 3c and Figure 3f are valid for both branches.

3.3. Improvements for the tailing-off effect

The next difficulty is the efficiency of the branch-and-bound algorithm. It can decrease remarkably because of the

tailing-off effect of the column generation algorithm, which can be prevented by means of effective lower bounds on

the optimal value of RLPM and dual smoothing.

3.3.1. Lower bound for early stopping column generation

It is possible to adapt the very well-known Lagrangean bounds (see page 449 in (Vanderbeck and Wolsey, 2010) for

RBP, which we give in the following proposition.

Proposition 2. Let LB(π(t), µ(t)) = Kc(r(t+1)) + zRLPM(t) , where zRLPM(t) and zLPM are respectively the optimal values of

the relaxed master problem at step t and the LP relaxation of the original BIP formulation. Then,

zRLPM(t) ≥ zLPM ≥ LB(π(t), µ(t)). (28)
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Left: prune, Right: all valid

Left, Right: all validLeft: all valid, Right: prune

(a) (b) (c)

(d) (e) (f)

Figure 3: Possible alignments of two pixels with respect to the rectangle set during pricing

As a direct consequence of this proposition, column generation can be stopped at step t if dLBe ≥ zRLPM(t) or

dLBe ≥ z where LB is the maximum of the previously computed lower bounds and z is the current integer upper bound

(i.e. objective value of the incumbent). The first case implies that the restricted master is solved to optimality and the

second one implies that the current node can be pruned. For the first case, we use the fact that the optimal value of RBP

is integer (i.e. it is the sum of the product of a binary variable with integer coefficients).

Because of the simplified notation we use (i.e. no explicit index denoting the node of the search tree) the bounds

given above may seem to be valid only for the root node. However, it is possible to state similar stopping conditions for

any node of the branch-and-bound tree following a similar path.

3.3.2. Dual smoothing

One of the reasons behind the tailing-off effect is the oscillation of the dual variables erratically during the iterations

of the column generation. One remedy is to stabilize the dual variables using the convex combination of the current and

incumbent dual values as Wentges (1997) and Pessoa et al. (2015) suggest:

π̃(t) = απ(t)
best + (1 − α)π(t). (29)

Here, π(t)
best are the dual variable values that give the largest of the lower bounds (i.e. incumbent dual) calculated up to

iteration t. Then, the pricing subproblem is solved with the modified duals π̃(t), instead of the current duals π(t). If the

reduced cost of the generated column is nonnegative, it is a misprice and the column is not added to RLPM(t). Since we

are not working on a Lagrangean relaxation of RBP, there is no available subgradient to benefit from the automatic

parameter tuning described in Pessoa et al. (2015). Nevertheless, we have experimentally noticed that setting α = 0.8
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increases the efficiency considerably.

4. Heuristics

Solving RBP exactly can be computationally demanding, especially for instances of realistic size. Hence, efficient

heuristics are very valuable. In this section, we introduce three of them. The first two are simple heuristics that enlarge

the blanket, one rectangle at a time. They are based on the ideas proposed in the previous works by Demiröz et al.

(2014) and Mohr and Zachmann (2010a). The third one is a novel application of constrained simulated annealing.

4.1. Split and Fit

Split and Fit heuristic (SF) iteratively splits rectangles and decreases the objective function using their fitness scores.

The fitness score of rectangle r is defined to be inversely proportional to the area of the non-overlapping region of the

rectangle with the target image and can be formulated as

g(r) =
1∑rright

p1=rle f t

∑rbottom
p2=rtop

(1 − Ip1 p2 )
· (30)

It can be computed in constant time using the integral image (i.e. summed area table) of the given image. The blanket

determined by SF is represented by the rectangle set R∗, which is initialized with the axis-aligned initial rectangle

(1,W, 1,H) for a given object image. Another structure Q is maintained for keeping all possible split pairs along with

their fitness scores. At each step, a rectangle r with the lowest fitness score and its complement rectangle r′ (i.e. the

rectangle with the higher fitness score ) are removed from Q. Its parent, namely the rectangle that is split to obtain

r is removed from R∗ and all the siblings are removed from Q. Finally, r and r′ are added to R∗, and their possible

split pairs are added to Q. This splitting process is repeated until K rectangles are obtained. In the original work,

Demiröz et al. (2014) used a tolerance value to enable early stopping. Unfortunately, although early stopping increases

the efficiency, the solutions become less accurate. Therefore, we have run SF without early stopping (i.e. with zero

tolerance) in our experiments.

Possible split pairs of a rectangle are generated by dissecting it vertically and horizontally in different propor-

tions. This process is controlled with parameter ρ. Formally, possible split ratios of a rectangle pair are ( i
ρ
, ρ−i
ρ

)

for i = 1, 2, . . . , ρ − 1. For example, for ρ = 4 possible vertical splits of a rectangle with width W have widths

{( W
4 ,

3W
4 ), ( W

2 ,
W
2 ), ( 3W

4 ,
W
4 )}. Note that ρ = 2 corresponds to splitting the rectangles exactly in half as it is in the original

due to Demiröz et al. (2014). We have experimentally observed that setting ρ = 3 performs better in our experiments.

This procedure yields a set of rectangles covering the target image, i.e. the pixels are fully contained in the

rectangles. To improve the solution further, as a final step, each rectangle is shrunk until c(r) increases. Growing /

shrinking operation moves one of the edges of a rectangle by one pixel outside/ inside, as shown in Figure 5. The steps

of the heuristic are illustrated in Figure 4 for ρ = 2.
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Figure 4: Illustration for Split and Fit for ρ = 2. The last image shows the output of the shrinking operation.

4.2. Fast Adaptive Silhouette Area Based Template Matching

Fast Adaptive Silhouette Area Based Template matching (FAST) heuristic is proposed by Mohr and Zachmann

(2010a). It eventually determines an approximation of a given image by means of rectangles, which makes it a potential

solution method for the solution of RBP. Unfortunately, the output set of rectangles do not exactly form a blanket since

they are allowed to overlap, which means FAST can produce infeasible solutions for RBP in its original form. Based

on our experiments, we can say that the size of the overlaps is usually very small and does not have a serious impact on

the application performance of the heuristic. Nevertheless, we have modified FAST to guarantee the feasiblity of its

solutions, i.e. sets of non-overlapping rectangles, at the end.

Like SF, FAST finds rectangles iteratively, considering a benefit function, which is similar to the fitness score (30),

f (r) =

rright∑
p1=rle f t

rtop∑
p2=rbottom

(Ip1 p2 − τ). (31)

Here, τ ∈ [0, 1] is a parameter that controls the total uncovered area by penalizing covering a zero valued pixel. The

method consists of two main steps. First, a rectangle of size W/2 × H/2 that maximizes f (r) is found. W and H denote

respectively the width and the height of the image, again. If this rectangle has uncovered pixels, then the size is halved.

This procedure is repeated until a rectangle that completely lies inside the binary image is found. Then, the rectangle is

grown until f (r) starts to decrease. The rectangle area is erased from the target image. These two steps are repeated

until K rectangles are obtained.

4.3. Constrained Simulated Annealing

Constrained Simulated Annealing CSA (Wah et al., 2006) is originally proposed for solving a nonlinear program-

ming problem consisting of the minimization of f (x) subject to the equality constraints hi(x) = 0, i = 1, 2, . . . ,m. CSA

considers the Lagrange function

L(x, λ) = f (x) +

m∑
i=1

λihi(x). (32)

obtained by moving the constraints into the objective function with multipliers λ∈ Rm.

The goal is to find x∗ that minimizes f (x) subject to the equality constraints hi(x) = 0, i = 1, 2, . . . ,m by finding

(x∗, λ∗) that minimizes (32). Here, λ∗ is the vector of Lagrange multipliers at which optimum solution x∗ is obtained.

In other words an equality constrained nonlinear minimization problem is solved in x by solving an unconstrained

minimization problem in y = (x, λ), which is one of the classical research problems of nonlinear optimization.
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In this outline, N(y), G(y′ | y) and A(y, y′,T ) denote respectively the neighborhood of y, generation probability of

y′ given y and the acceptance probability of the new point y′. Then the new point y′ can be obtained by changing x

to x′, i.e. at y′ = (x′, λ), or by changing λ to λ′, i.e. at y′ = (x, λ′). The algorithm is very similar to the conventional

simulated annealing procedure, e.g. convergence condition can be extended to take the unchanged y into account in

successive iterations. The neighborhood N(y) and the acceptance probability A(y, y′,T ) for y = (x, λ) are defined as

N(y) =
{
(x′, λ) : x′ ∈ N1(x)

}
∪

{
(x, λ′) : λ′ ∈ N2(λ)

}
, (33)

and

A(y, y′,T ) =


exp

(
−

L(y′)−L(y)
T

)
if y′ = (x′, λ)

exp
(
−

L(y)−L(y′)
T

)
if y′ = (x, λ′).

(34)

In other words, at each iteration, a random point is generated by fixing x or λ.

CSA can be applied to the solution of RBP. The objective function defined as (8) is f (x) in the Lagrange function (32).

There are two constraints in RBP: the maximum number of rectangles is fixed and the solution should not contain

overlapping rectangles. These constraints can be incorporated into the Lagrange function as

h1(R) = max(0, |R| − K),

h2(r) =
∑

ri,r j∈R

ri,r j

∑
p1

∑
p2

ri
p1 p2
× r j

p1 p2 ,

with multipliers λ1 and λ2. h1(R) is for penalizing the excess in the number of rectangles; it increases as the number

of rectangles in the blanket exceeds the upper bound K. h2(r) is for penalizing overlapping rectangles; its value is

obtained by counting pixels in overlapping rectangle pairs.

In this work, five primitive operations are realized using G(y′ | y): grow, shrink, split, delete and create. Grow-

ing/shrinking operation moves one of the edges of a rectangle r ∈ R by one pixel outside/inside. Splitting operation

partitions a rectangle r ∈ R into two rectangles r1 and r2 (r = r1 ∪ r2 and r1 ∩ r2 = ∅). Deleting simply removes

a rectangle r from R. Creating adds a rectangle r to R that resides in the image region (i.e. 1 ≤ rleft < rright ≤ W,

1 ≤ rtop < rbottom ≤ H). These operations are illustrated in Figure 5.

5. Computational results

In this section we report the results obtained in the computational tests made for assessing the performance of the

solution methods.
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+1

-1

Grow Shrink Split

DeleteCreate

Figure 5: Illustration for grow, shrink, split, delete and create operations

5.1. Test bed

For benchmarking, five different groups of binary images are generated; they all have different properties. The

benchmark instances can be seen in Figure 6–Figure 10. The labels and resolutions (i.e. the number of pixels in

each dimension) are given below the images. The first group is ideal human silhouettes selected from the work of

Demiröz et al. (2014) on fall detection and tracking. They are simple nonconvex polygons and the size of the images

are small compared to the other groups. Since the structure of all shapes used in the study are very similar, only four

representative shapes are selected. The second group of benchmark images are taken from (Chan et al., 2014) where

the authors created a similar benchmark for mask fracturing, a process where complex shapes are translated into the

union of simpler shapes called shots during integrated circuit layout production. This group has the largest images and

each image represents a single region. The third group contains images generated artificially to capture certain shape

properties that the first two groups do not have. This group contains convex regions, disconnected regions, regions with

holes and nested disconnected regions. The fourth group of images is a subset of MPEG-7 shape dataset (Latecki et al.,

2000), which are cropped and resized for our experiments. Each category in this group has 20 instances. Because the

purpose of the MPEG-7 shape dataset is to evaluate shape similarity measures, we have found that using only a subset

of the MPEG-7 dataset is sufficient for our study. The selected categories also capture different shape properties like

the previous group. Finally, the last group consists of images belonging to 10 realistic nesting problems. They were

obtained from leather garment and furniture with defects on the master surfaces and have been used to generate the
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results given in Table 4 of Baldacci et al. (2014). We rasterized the images included in the files in DXF format that

were sent by Ganovelli and Maniezzo (2018), using KABEJA library written in JAVA (Kabeja, 2018). In short, the test

bed consists of 147 instances and each one is solved for five distinct blanket sizes (i.e. the number of rectangles in the

blanket); K ∈ {3, 5, 10, 15, 20}. This results in 147 × 5 = 735 test runs for each solution method.

5.2. Implementation details

In the actual implementation of the heuristics, rectangles are presented as quadruplets, (x, y,w, h) where x and y

represent the top left coordinates, and w and h are the width and height of the rectangle. However, in BP, rectangles are

presented as matrices (or vectors) with entries set according to expression (2).

We have noticed that starting column configurations do not affect the number of generated columns and convergence

behavior significantly in BP. Our column generation process shows rapid progress in the early iterations, especially

with the dual smoothing scheme we have implemented.

We have considered various operations to speed up the optimization procedure. Whenever RLPM is modified via

column generation or branching, instead of solving it from scratch we start the optimization from the basis obtained in

the previous step (i.e. warm start). Multiple columns (up to 10) are generated during pricing in order to speed up the

computations. We also keep track of how long each column has been in RLPM. A column that does not enter into the

basis for a certain amount of time, is discarded. If a previously discarded column is regenerated, we double the lifespan

of that column when we add it back to RLPM. This technique limits the amount of columns present in RLPM and

speeds up the optimization dramatically.

In the pricing problem, we have used priority queue data structure, as usually done, to get the next promising

rectangle set. However, rectangle sets that contain few rectangles dominate the overall cost of the algorithm. This is

because of the overhead associated with the priority queue and the data structure that holds the rectangle set. When the

number of rectangles are sufficiently small, we switch to a naive algorithm that iterates through all rectangles in the set.

Iterated rectangles are added to another priority queue with given capacity that determines the number of columns

to return from the pricing problem. We have experimentally found that the best threshold is 256 for switching to the

naive algorithm for our hardware. To make this hybrid algorithm work with the branching constraints, we also check

if all the rectangles in the rectangle set satisfy the constraints before switching to the naive algorithm. This can be

performed quickly by checking the pixels involved in the constraints against the rectangle set (see Figure 3 for valid

configurations).

avatar1
18×15

avatar2
19×25

avatar3
28×17

avatar4
21×19

Figure 6: Selected binary masks of ideal human silhouettes from Demiröz et al. (2014)
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artificial1
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artificial2
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artificial3
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artificial4
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artificial5
65×61

realistic1
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realistic2
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realistic3
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realistic4
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realistic5
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typical1
111×55

typical10
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typical3
75×95

typical4
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typical5
143×125

typical6
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typical7
70×75

typical8
132×137

Figure 7: Binary masks used for mask fracturing in (Chan et al., 2014)
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toy4
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toy5
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toy6
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152×160

toy9
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toy10
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toy11
160×160

toy12
160×140

toy13
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toy14
180×200

Figure 8: Generated binary masks

bat
121×118

device5
139×142

dog
174×130

key
150×72

misk
166×201

Figure 9: Subset of MPEG7 shape dataset categories
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79510
242×278

79611
263×268

79712
230×268

79813
265×263

79914
267×270

79915
250×245

79916
261×278

79917
253×256

79918
269×276

79919
240×263

Figure 10: Leather master surfaces of industrial nesting problems

Image BP SF FAST CSA

Figure 11: Sample nonconvex image, typical4, where SF performs poorly for K = 3

Input BP SF FAST CSA

Figure 12: Sample image, artificial1, where FAST performs poorly for K = 5

Input BP SF FAST CSA

Figure 13: Sample image, device5-9, where BP finds the optimum for K = 3
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Experiments are carried out on a computer with Core i7 3.07 GHz CPU and 8 GB RAM. BP and CSA are

implemented using Java; SF and FAST are implemented in C++. Three software libraries are used: OpenCV (Kaehler

and Bradski, 2015) for operations on images, Kabeja (2018) for rasterization of the images given in DXF format and

Gurobi (Gurobi Optimization, 2015) for BP. The running time of all tests are limited to 1 hour, except for the runs

related to the performance of the branching rules (i.e. Table 1), for which the run time limit is 1.5 hours.

5.3. Observations

The computational results can be grouped in two major categories. The first one is for inspecting the effect of

branching rules on the efficiency of BP. The second one is for analyzing the performance of the solution methods with

respect to their efficiency and accuracy.

5.3.1. Branching rules

We should point that in 652 out of the 685 runs of BP on the first four data sets, the initial LP relaxation gives

the integer optimal solution. So we only have 33 cases for comparing the branching rules. The results are reported

in Table 1, where the first two columns list data sets and the corresponding blanket size. In the next two columns,

we report the number of nodes visited for each rule. RULE 1 and RULE 2 denote branching explicitly or implicitly

in the master, respectively. The numbers in the last two columns are simply the percent relative deviations for the

LP relaxation lower bound from the best feasible solution computed in 1.5 hours CPU time limit using BP (i.e. this

limit is 1 hour for the rest of experiments). As can be observed, they are quite small, indicating the tightness of the

LP relaxation. Besides, “none” means 0.00 % deviation. This occurs when the LP relaxation have also an integer

alternative optimal solution. It is detected by BP later without changing the optimum objective value. Observe that

there is a single column for reporting the deviations in the table, because in all instances, both methods find a solution

with the same objective value even if they reach the time limit and are forced to stop. Besides, when the methods finish

running within the time limit, they both find an optimal solution which makes the reported objective values equal.

We have measured the number of nodes visited in branch-and-price using both rules. RULE 2 visited fewer nodes

for 15 instances and more nodes for 11 instances. We can claim that, although there is no clear winner, RULE 2 is

more efficient than RULE 1 based on the averages reported on the last row of the table. This is expected since RULE 2

is more likely to produce a balanced search tree as mentioned earlier.

5.3.2. Solution time

According to the computational results, we can say that the heuristics are very efficient. Because the order of

magnitude of running times are different, we do not provide a detailed running time comparison between BP and

heuristics. FAST and SF heuristics are the fastest; and they run in milliseconds for a typical input. CSA takes about 2.5

seconds to converge on the average. We force BP to stop running within 1 CPU hour.

As for the BP, column generation shows rapid progress in the early iterations, especially with the dual smoothing

scheme. We illustrate this typical behavior of the optimality gap in Figure 14a by exposing the progress in the best
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Table 1: Efficiency of the branching rules and the improvement on the initial LP relaxation

num. visited nodes CPU time (secs) Relative

name K RULE1 RULE2 RULE1 RULE2 Dev. (%)

dog-12 3 73 115 16 12 1.54
dog-13 3 79 55 18 8 1.54
key-16 3 3 9 210 310 none
key-18 3 3 3 4125 4398 none
toy13 3 3 351 1 17 none

toy4 3 89 43 36 20 0.75
avatar4 5 7 9 1 2 none

device5-13 5 27 27 853 1416 0.28
device5-8 5 18 41 5411 5402 0.27

key-17 5 51 47 2736 3666 0.09
toy12 5 5 5 2 3 none
toy14 5 25 29 31 60 0.25
bat-2 10 48 37 5405 5402 0.05
bat-6 10 179 61 1920 1524 0.13

device5-18 10 7 3 1289 952 0.02
dog-12 10 37 5 20 6 0.24
dog-13 10 7 17 8 12 0.24

toy11 10 3 5 7 11 0.15
typical4 10 6 6 5407 5421 none

dog-6 15 5 7 46 62 none
toy1 15 3 23 4 19 none

toy10 15 33 13 257 175 0.09
toy11 15 7 13 14 13 0.14
toy14 15 9 3 95 68 none

avatar4 20 9 3 2 1 none
dog-12 20 17 17 17 20 0.22
dog-13 20 15 9 12 14 0.22
dog-16 20 7 3 7 6 none
dog-17 20 61 3 6 1 0.44

dog-7 20 3 3 86 90 none
toy2 20 958 5 5428 99 none
toy4 20 15 11 97 126 none
toy9 20 3 3 61 66 none

Mean 55.00 29.82 1019.04 890.98 0.20
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lower bound and objective value our algorithm calculates on artificial3 data set for K = 5. This allows stopping the

process earlier using lower and upper bounds on the optimal value.
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Figure 14: Typical behavior patterns

We provide three more graphs related to the performance of the BP algorithm in Figure 14b - Figure 14d. They

illustrate typical behavior patterns which we observed for almost all test instances. The first one uses data collected on

artificial3 data set for K = 15 and plots the number of columns in the master problem during the iterations. There is a

sharp increase at the very beginning, which slows down later on. This is because column discarding is not active at the

beginning and starts to operate after a large enough number of columns is generated. We should point out that our

column discarding scheme keeps the number of columns relatively lower.

The second one is obtained on artificial2 data set for K = 20. It illustrates the typical behavior of the time devoted

to the solution of the pricing subproblem throughout the iterations. It follows a regular behavior. The curve behaves

parabolically at the beginning with a sharp increase. Then, it reaches a peak and settles down asymptotically. In short,

pricing subproblems are easy in early iterations, and become harder as iterations progress. The hardness is capped at

some point.

The third one is the plot of the CPU time spent to solve the RLPMs throughout the iterations on realistic4 data set

28



for K = 10. First of all observe that, with each iteration the solution of the LP becomes harder. After a while, a second

trend emerges, and occasional solutions take significantly longer times.

Finally, we have prepared Table 2 for the first test problem group for K = 3, 5, 10, 15, 20, in order to give an idea on

the number of generated columns, time spent for the solution of the RLPMs (tRLPM) and PSPs (tPSP) in milliseconds.

The first column includes the instances, as usual. The first column of each group includes the median values for the

number of columns added at each iteration (∆col). The second and third columns are the median values of tRLPM and tPSP.

They all increase with K, as expected. If time spent is zero, it means the median time spent is less than a millisecond.

5.3.3. Solution quality

As for the accuracy of the methods, the results are given in Table 3 and Table 8. The first column of the tables

lists the instances. The accuracies of each algorithm are listed for different K values. The first column of each group

consists of the objective values BP calculates (i.e. the value of the best feasible solution) in 1-hour CPU time limit. The

next three are the percent relative deviations of the values computed using SF, FAST and CSA, respectively. They are

calculated according to the formula

PD = 100 ×
zH − zBP

zBP
,

where zBP and zH for H ∈ {SF,FAST,CSA} are the objective values obtained by BP and the heuristics SF, FAST and

CSA, respectively. zH values are given within parentheses in case the deviation is undefined, i.e. zBP = 0. Column

arithmetic averages and standard deviations of the relative percent deviations are also provided on the last row for a

rough comparison of the methods. BP guarantees the optimal solution. However, it can take remarkably longer.

Table 5 is structured similarly but reports results on MPEG 7 images. Because each category contains 20 instances,

only the arithmetic averages and standard deviations of the relative percent deviations are reported. However, we should

point out that for the configuration K = 20 and device5, BP performed extremely well for a particular test instance,

producing huge errors for other methods. Therefore, we have treated that result as an outlier and removed it from the

sample. In other words, reported arithmetic averages and standard deviations are calculated using 19 values out of 20.

We have observed that the restricted LP master tends to yield integer solutions. Approximately 0.5% of the runs

yielded fractional solutions. Besides, most of the time an integer solution is acquired in very few branchings. We have

also observed that, some problems with fractional optimal solutions had also alternative optimal integer solutions. This

explains why only a few branchings are sufficient, mostly.

In the early iterations of the column generation, the objective value decreases rapidly and approaches the optimum

value. For the aforementioned reasons, the 1-hour CPU time limit does not effect its performance dramatically for the

instances of the first four sets. However, this is not true for the last set.

For the most of the instances, BP is able to find an optimal solution within the 1-hour CPU time limit except the

fifth group of test problems. These cases are marked with an asterisk in the tables. Optimal rectangle blankets obtained

for the artificial1 - artificial5 data sets are illustrated in Table 6. They can be compared with the original ones given
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Table 4: Accuracy of the algorithms: K = 15, 20
(*) Proven optimal solution in 1-hour running time

K = 15 K = 20

Image BP SF (%) CSA (%) FAST (%) BP SF (%) CSA (%) FAST (%)

artificial1 95∗ 146.3 148.4 663.2 65 227.7 240.0 1015.4
artificial2 1510∗ 96.6 135.4 152.0 1147 127.0 129.2 194.8
artificial3 1631∗ 138.6 91.8 86.8 1102 193.7 144.9 135.1
artificial4 459 155.3 199.6 278.2 387 146.5 198.7 348.6
artificial5 33 130.3 581.8 951.5 22 218.2 709.1 1477.3

avatar1 0∗ (12) (8) (34) 0∗ (12) (8) (34)
avatar2 4∗ 475.0 625.0 1725.0 0∗ (22) (20) (73)
avatar3 3∗ 566.7 800.0 2133.3 0∗ (20) (25) (67)
avatar4 2∗ 600.0 1050.0 3350.0 0∗ (12) (17) (69)

realistic1 127 112.6 184.3 502.4 92 158.7 201.1 731.5
realistic2 262 97.7 168.3 726.3 210 90.0 379.5 931.0
realistic3 127 33.1 203.1 1133.1 137 -1.5 243.1 1043.1
realistic4 431 103.2 183.5 239.9 333 113.2 270.6 339.9
realistic5 259 114.7 132.0 798.5 190 123.2 254.7 1124.7

toy1 0∗ (0) (0) (0) 0∗ (0) (0) (0)
toy2 0∗ (0) (9) (182) 0∗ (0) (11) (182)
toy3 20∗ 90.0 330.0 935.0 8∗ 262.5 900.0 2487.5
toy4 40∗ 77.5 120.0 525.0 26∗ 165.4 280.8 861.5
toy5 47∗ 148.9 136.2 193.6 30∗ 216.7 196.7 360.0
toy6 267 58.1 108.2 376.4 210 93.3 158.6 505.7
toy7 50∗ 152.0 132.0 160.0 32∗ 250.0 203.1 306.3
toy8 63∗ 71.4 81.0 195.2 46∗ 95.7 137.0 304.3
toy9 27∗ 170.4 385.2 470.4 17∗ 252.9 282.4 805.9

toy10 62∗ 106.5 141.9 362.9 37∗ 175.7 256.8 675.7
toy11 86∗ 77.9 66.3 112.8 63∗ 141.3 119.0 190.5
toy12 48∗ 106.3 118.8 295.8 28∗ 196.4 307.1 578.6
toy13 73∗ 305.5 97.3 193.2 51∗ 374.5 103.9 319.6
toy14 146∗ 147.9 90.4 161.6 111∗ 184.7 118.9 244.1

typical1 138 51.4 153.6 427.5 100 57.0 156.0 628.0
typical2 462 122.1 116.0 371.6 372 113.2 159.7 485.8
typical3 65 129.2 256.9 484.6 55 167.3 280.0 590.9
typical4 639 182.8 134.3 115.3 482 127.2 138.0 185.5
typical5 329 48.0 91.5 344.1 253 63.2 131.6 477.5
typical6 58 46.6 243.1 672.4 38 105.3 326.3 1078.9
typical7 122 71.3 153.3 398.4 86 129.1 255.8 607.0
typical8 397 76.8 91.9 183.9 300 94.3 157.7 275.7

typical10 267 165.2 151.7 258.4 200 177.0 188.0 378.5

Mean ± Std. Dev. 152.2 ± 135.8 226.6 ± 219.9 587.6 ± 663.6 156.1 ± 73.9 246.1 ± 166.4 635.1 ± 479.3
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Table 5: Accuracy of the heuristics: MPEG 7 benchmark category

K = 3 K = 5

Category SF (%) CSA (%) FAST (%) SF (%) CSA (%) FAST (%)

bat 51.34 ± 20.72 8.99 ± 7.47 27.61 ± 14.22 55.94 ± 17.94 30.10 ± 10.48 50.30 ± 16.46
device5 182.53 ± 147.85 40.29 ± 57.90 36.39 ± 39.29 114.10 ± 68.33 37.42 ± 38.25 49.83 ± 40.61

dog 28.66 ± 17.02 10.90 ± 7.81 26.12 ± 15.09 47.48 ± 23.08 23.04 ± 11.40 43.36 ± 21.43
key 52.82 ± 37.96 25.99 ± 22.07 52.81 ± 50.12 58.38 ± 25.59 43.04 ± 20.21 112.02 ± 74.67

Misk 43.15 ± 9.05 22.67 ± 9.13 39.68 ± 15.75 60.70 ± 14.77 36.54 ± 11.32 70.23 ± 33.92

K = 10 K = 15

Category SF (%) CSA (%) FAST (%) SF (%) CSA (%) FAST (%)

bat 76.70 ± 34.79 62.67 ± 13.53 110.94 ± 39.89 94.75 ± 40.39 103.59 ± 18.35 185.30 ± 63.71
device5 166.01 ± 77.71 84.06 ± 50.95 125.26 ± 91.08 170.57 ± 84.24 114.53 ± 80.65 190.48 ± 118.67

dog 61.99 ± 23.58 47.22 ± 25.55 84.88 ± 45.67 72.69 ± 22.92 71.08 ± 38.58 136.96 ± 80.49
key 74.37 ± 30.53 110.26 ± 40.57 282.73 ± 131.24 97.35 ± 47.52 195.41 ± 79.82 470.81 ± 195.04

Misk 69.96 ± 34.39 83.76 ± 16.23 160.79 ± 69.50 65.84 ± 51.69 102.41 ± 16.98 225.72 ± 85.18

K = 20

Category SF (%) CSA (%) FAST (%)

bat 102.83 ± 43.50 140.20 ± 23.90 268.72 ± 89.28
device5 167.56 ± 105.03 155.67 ± 122.09 247.48 ± 144.18

dog 91.21 ± 30.76 100.67 ± 61.98 195.58 ± 118.57
key 101.71 ± 55.17 277.82 ± 137.49 668.53 ± 290.36

Misk 57.20 ± 50.65 110.09 ± 24.90 269.25 ± 101.10

in Figure 7. Observe the increase in the quality of the approximation with the increasing K values.† It is observed

in Table 7 and Table 8 that BP cannot find an optimal solution in 1-hour CPU time limit. They turned out to be the

most challenging test problems of the test instances. Still, BP gives the best results in one hour. → Similarly, we

observe considerable decreases in the performance of the heuristics, in parallel with the decrease in performance of

the BP. Also, it is possible to observe the considerable increase in the performance of SF. BP may have produced

an optimum solution for certain instances. Nevertheless, necessary columns are not generated within the time limit

to prove optimality. For example for toy2 instance (see Figure 7), it is easy to come up with the optimum for K > 2

manually where the objective value is zero.

FAST performs slightly better than SF for small K values. As mentioned earlier, SF performs poorly on nonconvex

shapes as illustrated in Figure 11 for a particular example. On some simple instances FAST may perform worse than

other heuristics as a consequence of its greedy nature, as illustrated in Figure 12. FAST has another drawback: the

maximum number of rectangles that can be placed may be limited depending on the image. After placing fewer than K

rectangles, all the pixels of the target region might be covered with rectangles preventing FAST to add a new rectangle,

because FAST does not modify rectangles placed in previous steps. For example, for a simple small shape like avatar1,

it cannot place rectangles to improve the objective value and has the same value for increasing K. Although SF performs

poorly for small K, the quality of the approximation increases as K increases. It even outperforms CSA for simple

shapes when K is large.
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Table 8: Comparison of the objective values

K = 15 K = 20

Image BP SF (%) CSA (%) FAST (%) BP SF (%) CSA (%) FAST (%)

79510 2090 76.0 94.4 115.4 2492 23.3 80.0 76.8
79611 2505 22.5 56.2 117.4 2166 28.6 93.9 151.5
79712 2772 17.9 38.0 34.9 2186 17.1 91.2 71.1
79813 2668 40.3 71.0 78.9 2587 25.0 57.0 84.5
79914 2666 23.7 76.6 105.4 2540 21.2 82.0 111.5
79915 2736 8.6 53.2 108.0 1759 49.9 143.0 223.6
79916 2255 49.4 112.6 187.5 2671 14.9 73.0 142.7
79917 2460 22.0 49.1 100.4 2329 20.0 72.4 111.7
79918 3274 22.1 36.2 102.7 3099 15.0 50.2 114.2
79919 1905 22.2 108.2 82.6 2044 3.4 93.0 70.2

Mean ± Std. Dev. 30.5 ± 19.7 69.6 ± 27.9 103.3 ± 38.2 21.8 ± 12.1 83.6 ± 25.5 115.8 ± 47.4

BP always outperforms other methods in exchange for increased running time, even on instances where other

methods are trapped in a local minimum, as illustrated in Figure 13 for a particular example. BP’s inefficiency is not a

problem for real world computer vision applications. Although they are mostly based on online scenarios, a rectangle

blanket is first computed offline, which is then repeatedly used online. For example Mohr and Zachmann (2010b,a)

first precompute rectangle blankets for different hand shapes and store them for real time use to speed up hand shape

matching. Demiröz et al. (2014) determine rectangle blankets for crude human silhouettes at different locations offline

before using them in a generative model to compute occupancy probability at a location. In a slightly different work,

Chan et al. (2014) find the minimum number of rectangles that best fit an integrated circuit layout off-line prior to the

minimization of the mass production time.

5.3.4. The number of rectangles in a blanket

(a) CPU times to reach optimum and 1†%, 3 %, 10 % gaps vs. K (b) Optimum values and LP lower bounds vs. K

Figure 15: Average values of 37 different test instances
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To give theoretical results suggesting a particular value for K does not seem trivial. However, it is not very difficult

to see that RBP’s optimum value is a non-increasing function of K and reaches its lower bound 0 for K equals to the

size of the target image, namely the number of 1s in matrix I. This follows from the fact that every pixel can be treated

as a 1 × 1 rectangle and that many non-overlapping rectangles form a blanket fitting perfectly the target image. Setting

K equals to the smallest of W and H under the assumption that the target image is orthogonally convex and packed

tightly within a W × H rectangle, also gives the smallest optimum value 0, since a blanket consisting of the rectangles

obtained by slicing the target image horizontally or vertically into W or H one-pixel wide strips, fits the target image

perfectly. It is also possible to say that the optimum value of the LP relaxation is a convex function of K, since K

belongs actually to the right-hand side of the formulation and it has been known that the optimal value of a minimizing

LP is a convex function of the resource vector (Charnes and Cooper, 1962). Hence, we expect similar behavior for

the integer optimum values of RBP as well. Also, it is not surprising to see that the running time is a non-decreasing

function of K, since higher K means better fit, or equivalently higher blanket quality, which we have to pay for.

We have conducted computational tests to be able to make concrete suggestions on the choice of K values. The

motivation behind these experiments is based on two main questions: 1. Is there a value of K beyond which the

decrease in the value of the optimum objective function becomes significantly smaller? 2. Is there a value of K beyond

which the running time for the exact solution becomes significantly larger? We think a yes answer to both of them

makes a K value promising, which points that it is not worth considering larger blanket sizes.

We selected 37 test instances (i.e. 7 bat, 2 device5, 18 dog and 10 toy instances) for which our branch-and-price

algorithm computes an optimal solution within 1-hour CPU time limit, and set 2 ≤ K ≤ 30. This makes possible

not only the determination of the times where the objective function reaches proven optimal values, but also certain

optimality gaps effectively. For each instance we group the results in two: running times to reach optimum and 10 %, 3

%, 1 % gap values, and integer and LP relaxation optimum values. This gives 2 × 37 = 74 result groups at sum. Then

we combined them by taking the averages of the 37 values collected for each K per group. The resulting plots are given

in Figure 15.

First of all one can easily observe the convex behavior of the LP lower bounds and optimum values as a function of

K. Besides they are decreasing and approaching asymptotically to 0. Observe also the quality of the LP lower bounds:

they are very close to the optimum values. It seems that setting 5 ≤ K ≤ 10 is not a bad choice, since the increase in the

running times, and decreases in the optimal value and LP bound become sharper beyond and prior to these values.

We also consider percent relative increases for times, and percent relative decreases for integer optimum values and

LP bounds. They are calculated according to formulae

100 ×
tK − tK−1

tK−1
and 100 ×

z∗K−1 − z∗K
z∗K−1

,

respectively, for times and optimum values, for each K and for each data set. The averages taken over the test instances

for each K are given in Figure 16: It can be observed that the average relative deviations of the running times seem to
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(a) CPU times to reach optimum and 1 %, 3 %, 10 % gaps vs. K (b) Optimum values and LP lower bounds vs. K

Figure 16: Average relative changes of 37 different test instances

reach and oscillate around a steady state of 10 − 15 % after K = 8; they are decreasing for K ≤ 7. As for the objective

values, the decrease in the averages is sharper for K ≤ 10. In short, roughly, it is possible to say for K > 10 the increase

in the blanket quality becomes lower with an increasing cost.

6. Conclusions

The problem of representing a target in a binary image as a collection of non-overlapping rectangles is often

encountered in computer vision. In this study, we have formulated the rectangle blanket problem as finding a set of

non-overlapping rectangles that minimizes the non-overlapping area between the target image and the rectangles in the

blanket. We have developed a branch-and-price algorithm to determine an optimal rectangle blanket. In the column

generation phase, to solve the pricing subproblem, we have proposed a geometric branch-and-bound scheme where we

start with all possible rectangles and split the rectangle set into two disjoint subsets to branch.

We have also introduced three heuristics to solve the rectangle blanket problem approximately. The first two of

them, SF and FAST are developed adopting the ideas available in Demiröz et al. (2014) and Mohr and Zachmann

(2010a), respectively. Both are simple yet efficient algorithms. Unfortunately, they are not very accurate. The third one

is a novel constrained simulated annealing heuristic, which tries to minimize a function obtained by adding penalty

terms forcing the upper bound on the number of rectangles and punishing overlapping rectangles.

We have prepared benchmarks and compared the performances of the four different methods. The experiments

showed that SF and FAST are comparable to each other for small K. CSA performs better than SF and FAST with a

large margin for small K in the expense of more computational power. As K increases SF closes the gap between CSA

and starts performing well. BP always produces better or equally good results. Besides, for all of the instances the

results BP produces are proven to be optimal. The overall performance of the heuristics are not bright with respect to
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the accuracy of their results. This is a side effect of their naive design. However, this feature makes them extremely

efficient and attractive for those looking for an order of magnitude faster “quick and dirty” solution.

There are a couple of issues which we can mention as potential future research directions. First of all we plan to

adapt different computer vision problems so that they can benefit from the proposed algorithms, and try to find new

valid inequalities for increasing the efficiency of the BP algorithm. Also, it can be interesting to use BP for generating

initial configuration of the small items on the master surface for the solution of irregular cutting / packing problems

and study the impact of this approach on the solution efficiency. Finally, one can study whether the application of Φ

and Γ functions, which are used in geometry modeling for the covering problems, is also possible for modeling and

evaluating rectangle blankets.
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