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Efficient Solution Selection for Two-stage Stochastic Programs
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Abstract

Sampling-based stochastic programs are extensively applied in practice. However, the resulting

models tend to be computationally challenging. A reasonable number of samples needs to be iden-

tified to represent the random data, and a group of approximate models can then be constructed

using such a number of samples. These approximate models can produce a set of potential solutions

for the original model. In this paper, we consider the problem of allocating a finite computational

budget among numerous potential solutions of a two-stage linear stochastic program, which aims

to identify the best solution among potential ones by conducting simulation under a given compu-

tational budget. We propose a two-stage heuristic approach to solve the computational resource

allocation problem. First, we utilise a Wasserstein-based screening rule to remove potentially in-

ferior solutions from the simulation. Next, we use a ranking and selection technique to efficiently

collect performance information of the remaining solutions. The performance of our approach is

demonstrated through well-known benchmark problems. Results show that our method provides

good trade-offs between computational effort and solution performance.

Keywords: Stochastic Programming, Sample Average Approximation, Wasserstein Metric,

Ranking and Selection

1. Introduction

Real-life optimisation problems often involve uncertainties and require solutions that can han-

dle such uncertainties in the modelling process. Techniques such as the two-stage linear stochastic

programming with recourse (SPR) incorporate random data within the model formulation and
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determine a solution that satisfies the constraints and leads to the best expected objective function

value for all possible scenarios. The development of SPR can be traced back to research conducted

in the 1950s and 1960s, e.g., Beale (1955), Dantzig (1955) and Wets (1966). The successful ap-

plications of SPR can be found in various sectors such as portfolio management (Dupačová, 1999;

Miller and Ruszczyński, 2011), energy planning (Beraldi et al., 2008; Zhou et al., 2013; Feng and

Ryan, 2014), supply chain management (Joensson et al., 1993; Santoso et al., 2005; Dillon et al.,

2017), and transportation planning (Cheung and Chen, 1998; Barbarosolu and Arda, 2004; Liu

et al., 2009).

SPR problems can become computationally intractable in numerous applications because each

possible sample generated from random data is associated with one or several decision variables and

constraints within the model formulation. If the sample space is considerably large or continuous,

then determining an optimal solution within a reasonable timeframe will be impossible for such a

model. Studies have proposed the utilisation of sample average approximation (SAA) to identify

approximate solutions to large-scale SPR problems, e.g., see Gürkan et al. (1994) and Shapiro and

Homem-de Mello (1998). SAA leverages computational challenges in such a way that a subset

of samples generated from random data is used to construct approximate models, which provide

potential solutions to the original SPR model. Monte-Carlo sampling as well as several variance

reduction techniques such as quasi-Monte-Carlo sampling (Leövey and Römisch, 2015; Heitsch

et al., 2016), importance sampling (Parpas et al., 2015) and Latin hyper-cube sampling (Linderoth

et al., 2006) can be utilised to generate such samples. Moreover, some authors suggested the

generation of samples that should satisfy a specified criterion, such as probability distances (Pflug,

2001; Dupačová et al., 2003) or moment discrepancies (Høyland et al., 2003; Gülpınar et al., 2004).

Once samples are generated, various optimisation algorithms can be used to solve the resulting

SAA model. One approach is to utilise the simplex algorithm, which is conveniently implemented

by modern optimisation solvers. Alternatively, some studies exploited the problem structure and

proposed decomposition-based optimisation algorithms, for instance, see Dantzig and Wolfe (1960)

and Van Slyke and Wets (1969). Subsequently, numerous authors introduced advanced procedures

such as the multi-cut approach (Birge and Louveaux, 1988), the trust region method (Linderoth

and Wright, 2003), the regularised decomposition (Ruszczyński and Świetanowski, 1997) and the

level bundle method (Wolf et al., 2014; van Ackooij et al., 2017) to improve the efficiency of utilising

2



the decomposition principle. For a comprehensive review on decomposition approaches, the readers

are referred to Rahmaniani et al. (2017).

The identification of high-quality solutions has been widely studied because of their importance

for performance-sensitive SAA users. The approximate solutions can asymptotically converge to

the optimal one as the number of samples gets sufficiently large, for details, see Shapiro and

Homem-de Mello (1998) and Homem-de Mello and Bayraksan (2014). Shapiro et al. (2002) showed

that, given an arbitrary number of samples, each solution has a certain probability of being the

optimal one, and the probability value is related to problem-specific factors and the number of sam-

ples. If the best solution is selected from several potential ones on the basis of their performances,

then the probability of determining the optimal solution is significantly increased. Therefore, large

quantities of samples and potential solutions are both important in searching for high-quality SAA

solutions. However, these requirements may be difficult to satisfy simultaneously within a given

period because they compete with each other on time allocations. As suggested by Lee et al. (2006),

a practical remedy is to determine a proper balance between these objectives by using computing

time allocation algorithms. The authors also showed that the algorithmic efficiency significantly

influences performance of the final solution. The application of highly efficient optimisation ap-

proaches, such as the aforementioned decomposition-based method, is beneficial because the SAA

user can implement a large sample size to strengthen the approximation of random data and obtain

improved solutions within the same timeframe. Moreover, an effective solution selection method is

also important because it can promptly determine the best option among a large group of potential

solutions. However, only a limited number of studies is concerned with solution selection for the

SPR problems.

Defourny et al. (2013) applied a brute-force approach that runs extensive simulations for each

potential solution to identify a good policy in multi-stage linear stochastic programming. Instead

of individually evaluating solution performance, Kleywegt et al. (2002) used a ranking and selec-

tion approach called indifference zone to determine a good solution in two-stage stochastic discrete

optimisation. The indifference zone approach, which assigns simulation replications for each po-

tential solution on the basis of performance statistics and guarantees the overall procedure at least

a certain probability of selecting the best solution, was proposed by Nelson et al. (2001). How-

ever, this approach is not an anytime algorithm, which means that a specified simulation rule (i.e.
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simulation replications for each potential solution) is followed to finish all requested simulations

so that a probability guarantee is achieved. Also, this method is highly conservative and usually

takes many more samples than necessary (Branke et al., 2007).

In the present study, we propose a solution selection method for the large-scale two-stage linear

SPR problems that can deal with numerous potential solutions and return fairly efficient solutions

within a finite computational budget. The contributions of this study are threefold.

• First, a Wasserstein-based screening (WS) approach is proposed to identify potentially

promising solutions. We demonstrate that the worst-case performances of SAA solutions

in the respective Wasserstein distance regions can be ranked by using the Wasserstein dis-

tance between the sampling measure used in the SAA model and the original probability

measure. Solutions with small distance values have good worst-case performances and thus

be classified as the most promising evaluated in the simulation.

• Second, an optimal computing budget allocation technique (OCBA) (He et al., 2007) is

used to determine how many simulation replications to use for each potential solution. The

technique is an anytime algorithm, which asymptotically minimises the penalty of selecting

an incorrect solution, so that the probability of achieving a good potential solution is greatly

increased. We then introduce a new two-stage selection process called WS-OCBA, which

integrates OCBA with WS to improve the simulation efficiency.

• Third, we conduct several numerical experiments to analyse performance of WS and the

WS-OCBA approaches. Results show that WS achieves a satisfactory trade-off between the

number of potential solutions in the promising group and the performance loss. The findings

also indicate that WS-OCBA outperforms the existing approaches under relatively limited

run times.

The remainder of this paper is structured as follows. In Section 2, we provide a brief overview of

two-stage stochastic programming and introduce the solution performance estimation procedure.

Section 3 introduces the definition of Wasserstein distance and its estimation. Section 4 discusses

the underlying principle of WS-OCBA and describes the overall algorithm. In Section 5, we study

the efficacy of our proposed strategies. Section 6 concludes the paper by summarising our findings.
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2. Sample Average Approximation for Two-stage Linear SPR

2.1. Two-stage Linear SPR Formulation

Although SPR can be applied to problems with arbitrary number of decision stages, we restrict

our discussion to the two-stage linear SPR problems because the specific stability result of Wasser-

stein distance used in the solution screening is limited to this class of SPR. We let ξ ∈ Rµ be a

random vector with a finite first moment. Specifically, random vector ξ is defined on the probability

space (Ξ,B(Ξ),P), where Ξ is the sample space, B(Ξ) is the Borel sigma algebra with respect to

Ξ, and P : B(Ξ) → [0, 1] is the probability measure. Without loss of generality, a two-stage linear

SPR problem with fixed recourse can be formulated as

min
x∈X

f(x) := min
x∈X

c′x+

󰁝

Ξ
g(x, ξ) P(dξ) (1)

where c ∈ Rκ is a vector of constant parameters and X ∈ Rκ represents a non-empty convex

feasible set for the first-stage decision vector x ∈ Rκ. In addition, let g(x, ξ) denote the optimal

value of the second-stage decision problem, formulated as follows:

g(x, ξ) = min
y∈Rι

{q′y | Wy = H(ξ)− T (ξ)x, y ≥ 0} (2)

where q ∈ Rι and W ∈ Rµ×ι are a fixed vector and a fixed matrix, respectively. Moreover,

T (ξ) ∈ Rµ×κ and H(ξ) ∈ Rµ affinely depend on random vector ξ in this study.

We also make the following assumptions throughout this study:

A(1) Relatively complete recourse: For each tuple (x̂, ξ), the corresponding second-stage de-

cision problem (2) is feasible.

A(2) Dual feasibility: There exists at least one π such that the set {π | π′W ≤ q} is not empty.

Assumption A(1) ensures the feasibility of the primal second-stage decision problem. Assump-

tion A(2) implies dual feasibility in the second-stage decision problem, i.e., a sub-gradient value

exists for any potential solution. Assumptions A(1) and A(2) represent necessary conditions for

the stability result of the Wasserstein metric (for detailed information, see Heitsch and Römisch

(2007)) which will be used in our approach.

For the two-stage linear SPR problems, properties of the probability space majorly influence

the computational burden. The problems, in the case of random data with continuous sample
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space, are rarely solvable because the resulting model formulation consists of an infinite number of

second-stage decision variables and constraints. Moreover, the SPR problems might still suffer from

computational intractability even when the probability distribution of random data is discrete. For

instance, consider random data with 10 components, each of which follows a uniform distribution

and can take 200 possible values. If we select one possible value for each component according to

its distribution and then combine them as one sample, then the number of distinctive scenarios

reaches 20010. Since the computational complexity increases exponentially with the number of

samples taken into account, the optimal solution is difficult to obtain. The SAA approach can be

applied for identifying near-optimal solutions to the SPR problem.

2.2. The Near-optimal Solution and its Performance Estimator

Suppose that a group of samples Ξ̂ = {ξ̂m : m = 1, . . . ,M} with respective probability values

{Q(ξm) : m = 1, . . . ,M} is generated from the random data, thereby we can obtain the following

approximate model,

min
x, y(ξ̂m)

c′x+

M󰁛

m=1

Q(ξm)q′y(ξ̂m)

s.t. x ∈ X ,

Wy(ξ̂m) = H(ξ̂m)− T (ξ̂m)x, m = 1, . . . ,M,

y(ξ̂m) ≥ 0, m = 1, . . . ,M.

(3)

The resulting solution is typically not the optimal solution for the original SPR model, so it is

important to evaluate its performance in the original model.

Let x̂ and f(x̂) denote a potential solution and its performance in the original model, re-

spectively. Mak et al. (1999) suggested using Monte-Carlo estimation to infer the value f(x̂).

Assume that we have K i.i.d batches of samples with size N and equal probabilities; that is,

Ξ̃k = {ξ̃kn : n = 1, . . . , NE}, for k = 1, . . . ,K. We can estimate a true solution performance for

each batch k of samples by computing the optimal value f̂k
NE

(x̂):

f̂k
NE

(x̂) :=
1

NE

NE󰁛

n=1

min
y(ξ̃kn)

󰀗
c′x̂+ q′y(ξ̃kn)

󰀘

s.t. Wy(ξ̃kn) = H(ξ̃kn)− T (ξ̃kn)x̂

y(ξ̃kn) ≥ 0.

(4)
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By averaging over all optimal values f̂k
NE

(x̂), for k = 1, . . . ,K, we obtain an estimator of f(x̂) as

J (x̂) =
1

K

K󰁛

k=1

f̂k
NE

(x̂). (5)

Let σ2(f̂NE
(x̂)) denote the population variance of the optimal values of SAA models with the first-

stage decision x̂ and sample size NE . Mak et al. (1999) demonstrated that J (x̂) is an unbiased

estimator and follows the Central Limit Theorem:

√
K

󰀗
J (x̂)− f(x̂)

󰀘
=

√
K

󰀗
1

K

K󰁛

k=1

f̂k
NE

(x̂)− f(x̂)

󰀘
→ N

󰀕
0,σ2(f̂NE

(x̂))

󰀖
, when K → ∞. (6)

Note that N
󰀕
0,σ2(f̂NE

(x̂))

󰀖
is a Gaussian distribution with variance σ2(f̂NE

(x̂)) and zero mean.

Then, the population variance σ2(f̂NE
(x̂)) can be estimated by using the following estimator as

V(x̂) =

K󰁛

k=1

󰀗
f̂k
NE

(x̂)− J (x̂)

󰀘2

K − 1
. (7)

In the SAA framework, the performance of an approximate solution depends on the number

of samples used to represent the random data; therefore, a sufficient number of samples should be

included in the model formulation. Moreover, rather than focusing on only one solution, considering

multiple potential solutions can be also beneficial for finding the optimal solution. In the following

subsection, we will introduce the solution selection problem.

2.3. Solution Selection Under a Fixed Computing Budget

Suppose that a group of potential solutions is given and a simulation is required to select the

best one as the final solution under the fixed computational budget. One of the challenges we

might encounter is that the “best” solution based on Monte-Carlo estimation may not be really

the best solution if insufficient information is available for analysing the solution performance.

In this study, we model the solution selection process as a computing time allocation problem.

Let {x̂λ : λ = 1, . . . ,Λ} denote a set of potential solutions. The performance of each solution x̂λ is

evaluated by Kλ batch samples with size NE . The CPU time to compute each batch sample in (4)

is denoted by t(x̂λ, NE). Let the batch number Kλ for λ = 1, . . . ,Λ represent unknown decision

variables. Moreover, we define x̂s as the best solution according to simulation results. Given the
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total simulation budget T total, the computing time allocation problem can be formulated as follows:

min
K1,K2,...,KΛ

f(x̂s)

s.t.

Λ󰁛

λ=1

t(x̂λ, NE)K
λ ≤ T total,

x̂s = argmin

󰀝
1

Kλ

Kλ󰁛

k=1

f̂k
NE

(x̂) : λ = 1, . . . ,Λ

󰀞
,

Kλ ∈ N, λ = 1, . . . ,Λ.

(8)

It is challenging to solve the solution selection problem in the sense that its objective function

represents true performance of potential solutions. In Section 3, we introduce a heuristic method

to address the above mentioned resource allocation problem. The proposed heuristic method

utilises the Wasserstein distance to adjust the simulation focus on several potentially promising

solutions.

3. The Wasserstein Distance Metric and its Estimation

In this section, we first present the definition of the Wasserstein distance between two proba-

bility measures, and then introduce a method for estimating the Wasserstein distance.

3.1. Formulation of Wasserstein Distance Metric

The Wasserstein metric is a kind of statistical metric for quantifying the dissimilarity between

two probability measures, and has been widely applied in stochastic programming. One application

is scenario reduction wherein the Wasserstein distance is used as the quality indicator of samples

in the approximate model. Given a fixed number of samples used in the approximate model, some

authors proposed heuristics to select the “best” samples with minimum distance. For example,

Dupačová et al. (2003) presented two myopic scenario reduction heuristics for two-stage SPR,

namely, forward selection and backward reduction. Furthermore, Heitsch and Römisch (2009) ex-

tended these heuristics for multi-stage SPR. In another application, the Wasserstein distance was

used to define an ambiguity set for stochastic programs with distributional uncertainty (Moha-

jerin Esfahani and Kuhn, 2017). In addition, the Wasserstein distance was applied to reduce the

optimality gap estimator balance, and this application benefits testing the optimality of a given

solution (Stockbridge and Bayraksan, 2013). In this study, we use the Wasserstein distance metric
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to roughly rank the performance of potential solutions. The Wasserstein distance can be calculated

as follows.

Definition 1. Wasserstein Distance Metric (Dudley, 2002): Consider an approximate model

that is defined by a probability measure Q with sample Ξ̂ = {ξ̂m : m = 1, . . . ,M}. Let Ξ = {ξn :

n = 1, . . . , N} represent the samples associated with probability measure P in the original SPR

model. Moreover, let θ = {θn,m : n = 1, . . . , N ;m = 1, . . . ,M} denote the joint measure with

marginal measures P and Q. The Wasserstein distance W (P,Q) between probability measures P

and Q can be formulated as the following optimisation problem.

W (P,Q) := min
θn,m

M󰁛

m=1

N󰁛

n=1

Z(ξn, ξ̂m)θn,m

s.t.

M󰁛

m=1

θn,m = P(ξn), n = 1, . . . , N

N󰁛

n=1

θn,m = Q(ξ̂m), m = 1, . . . ,M

θn,m ≥ 0, n = 1, . . . , N, m = 1, . . . ,M

(9)

where Z(ξn, ξ̂m) = 󰀂ξn − ξ̂m󰀂2 is the Euclidean distance between samples ξn and ξ̂m.

The optimisation problem (9) has N × M decision variables and N + M + N × M linear

constraints. As discussed in Section 2.2, the number of samples N can be very large or even

infinite, thus an exact calculation of W (P,Q) can be difficult. In order to tackle this, we provide

an estimation method based on the random measures in the following section.

3.2. The Wasserstein Distance Estimation

We can replace the probability measure P with a group of sampling measures, and take the

average Wasserstein distance between random measures and probability measure Q as the estimator

of W (P,Q). The following Lemma states that the bias of such an estimator is bounded.

Lemma 1. Let P k for k = 1, . . . ,KW denote the sampling measure induced by NW realisations

generated from the probability measure P. If we use the estimator

Ŵ (P,Q) =
1

KW

KW󰁛

k=1

W (P k,Q)
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to infer the Wasserstein distance value W (P,Q), then its bias satisfies the following inequality,

󰀏󰀏󰀏W (P,Q)− Ŵ (P,Q)
󰀏󰀏󰀏 ≤

1

KW

KW󰁛

k=1

W (P k,P). (10)

Proof. Since the Wasserstein distance is a metric, it satisfies the reverse triangle inequality:

|W (P,Q)−W (P k,Q)| ≤ W (P k,P). (11)

Next, we can compute the sum of inequalities (11) over all P k for k = 1, . . . ,KW as follows;

−
KW󰁛

k=1

W (P k,P) ≤ KW ×W (P,Q)−
KW󰁛

k=1

W (P k,Q) ≤
KW󰁛

k=1

W (P k,P). (12)

By dividing both sides of the above inequality byKW , we obtain inequality (10). □

Lemma 1 states that the absolute value of estimation bias is bounded by the average Wasserstein

distance. We can increase the sample size of the sampling measure to minimise the fluctuation

of bias. According to the Glivenko-Cantelli theorem, if the sample size becomes sufficiently large,

then P k tends to P, and thus the absolute value of bias fluctuation converges toward zero. The

main benefit of using Lemma 1 is to reduce the computational burden due to the large sample

number N . We can now solve a group of relatively small optimisation problems to infer the actual

Wasserstein distance W (P,Q). Each “small” optimisation problem only has NW × M decision

variables and NW +M +NW ×M linear constraints. The overall Wasserstein distance estimation

procedure is described in Algorithm 1.

Algorithm 1: Wasserstein Distance Estimation Procedure

input : number of sampling measures KW ;

number of samples in each sampling measure NW .

output: estimated Wasserstein distance value Ŵ (P,Q).

generate KW groups of i.i.d NW realisations from probability measure P;

for k = 1, . . . ,KW do

compute the Wasserstein distance W (P k,Q) using (9);

end

Ŵ (P,Q) ← 1

KW

KW󰁛

k=1

W (P k,Q).
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4. The Proposed Approach

In this section we first explain the underlying principles of WS and OCBA approaches. Then,

we introduce the proposed selection procedure.

4.1. Wasserstein-based Screening Approach

When the number of potential solutions is large and the computing budget is insufficient to

perform an extensive simulation for every solution, it is natural to consider performing the sim-

ulation for a certain portion of potential solutions. An important question is how to select a set

of promising solutions for the extensive simulation. In this paper, we propose to select those so-

lutions through the Wasserstein distance due to its low computational cost that allows it to be

run for every potential solution. Specifically, the potential solutions are sorted according to their

Wasserstein distances, and only the high-rank solutions are selected for extensive simulation. A

similar paradigm called “ordinal transformation” is used in a simulation optimisation study (Xu

et al., 2016), wherein the authors considered the simulation output on a user-defined low-fidelity

model as the low-cost measure for each potential solution. The potential solutions were clustered

according to low-fidelity simulation results and the extensive simulation was applied to select the

best solution cluster.

We first establish the relationship between the solution performance and the corresponding

Wasserstein distance in the following theorem.

Theorem 1. Suppose that P and Q are original probability measure and sampling measure, respec-

tively. Let x∗ ∈ Rκ denote the unique optimal solution of the original SPR model, x̂ ∈ Rκ be the

solution of an approximate model. Under assumptions A(1) and A(2), the performance difference

between solutions x∗ and x̂ satisfies the following inequality:

f(x̂) ≤ f(x∗) + 〈|Lx̂| , τW (P,Q)I〉 , (13)

where Lx̂ = E[πx̂(ξ)T (ξ)] + c with πx̂(ξ) = argmax{π′[H(ξ) − T (ξ)x̂] : π′W ≤ q}, τ is a positive

coefficient related to the Lipschitz constants for f(·), and I ∈ Rκ is the all one vector.

Proof. Consider the two-stage SPR given in (1). Let Lx̂ denote one of sub-gradients for solution

x̂. Under assumptions A(1) and A(2), the following sub-gradient inequality holds,

f(x∗) ≥ f(x̂) + 〈Lx̂, x
∗ − x̂〉. (14)
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Let πx̂(ξ) represent a vector of dual decisions associated with constraints of the second-stage

problem (2). It is computed as follows,

πx̂(ξ) = argmax
π

{π′[H(ξ)− T (ξ)x̂] : π′W ≤ q}.

Moreover, the sub-gradient of the two-stage SLP problem at x̂ can be calculated as

Lx̂ = E[π′
x̂(ξ)T (ξ)] + c.

By substituting the sub-gradient and re-arranging both sides of inequality (14), we obtain

f(x̂)− f(x∗) ≤ −〈E[π′
x̂(ξ)T (ξ)] + c, x∗ − x̂〉. (15)

Since x̂ is a potential solution, f(x̂) cannot be smaller than f(x∗) for the minimisation problem.

Therefore, we can obtain

|f(x̂)− f(x∗)| ≤ 〈|E[π′
x̂(ξ)T (ξ)] + c|, |x∗ − x̂|〉. (16)

Using Proposition 3.1 introduced by Heitsch and Römisch (2007), the distance between solutions

x∗ and x̂ is upper bounded by the Wasserstein distance W (P,Q) as follows,

󰀂x∗ − x̂󰀂2 =

󰁹󰁸󰁸󰁷
κ󰁛

κ′=1

(x∗κ′ − x̂κ′)2 ≤ τW (P,Q), (17)

where τ is a positive coefficient related to the Lipschitz constants for f(·). For each element of

solutions x∗ and x̂, we can write

τW (P,Q) ≥

󰁹󰁸󰁸󰁷
κ󰁛

κ′=1

(x∗κ′ − x̂κ′)2 ≥
󰁴

(x∗κ′ − x̂κ′)2 = |x∗κ′ − x̂κ′ |, κ′ = 1, . . . ,κ. (18)

Therefore, |x∗ − x̂| can be approximated by using the Wasserstein distance, W (P,Q), as follows,

|x∗ − x̂| ≤ τW (P,Q)I. (19)

By combining inequality (19) with (15), we obtain (13). □

Theorem 1 implies that performance of potential solution x̂ is bounded by the sub-gradient Lx̂

and the Wasserstein distance W (P,Q). The potential solution x̂ becomes the optimal solution x∗
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for the actual problem if either probability measures Q and P are identical or the sub-gradient at

x̂ becomes zero.

As mentioned before, the Wasserstein distance W (P,Q) can be efficiently estimated using

Monte-Carlo estimation; however, the calculation of sub-gradients Lx̂ for two-stage liner SPRs

is computationally expensive. Next, we introduce the worst-case solution performance in the

Wasserstein-bounded region. We will use this performance measure in the solution screening pro-

cedure.

Definition 2. Worst-case Solution Performance in the Wasserstein-bounded Region.

Let Γ(x̂) represent a set possessing sub-gradients of all feasible solutions within the bounded region

{x : |x − x∗| ≤ τW (P,Q)I}. The worst-case performance Gw(x̂) of a given solution x̂ within its

corresponding Wasserstein-bounded region can be determined as follows:

Gw(x̂) = max
L′∈Γ(x̂)

󰀋
f(x∗) +

󰀍󰀏󰀏L′󰀏󰀏 , τW (P,Q)I
󰀎󰀌

. (20)

Notice that Gw(x̂) is defined as a maximisation problem with respect to the sub-gradient value L′.

The next theorem states the applicability of the Wasserstein distance in sequencing the worst-case

performance of potential solutions.

Theorem 2. Consider a set of potential solutions {xλ : λ = 1, . . . ,Λ} with respective Wasserstein

distances {W (P,Qλ) : λ = 1, . . . ,Λ}. Let [λ] denote the λ-th potential solution in the increasing

sequence of Wasserstein distances as

W (P,Q[1]) ≤ W (P,Q[2]) ≤ · · · ≤ W (P,Q[Λ]). (21)

Then, the worst-case solution performances of these solutions satisfy,

Gw(x̂[1]) ≤ Gw(x̂[2]) ≤ · · · ≤ Gw(x̂[Λ]). (22)

Proof. Assume that the Wasserstein distances satisfy the sequence as in (21). Since the inequality

(19) can be written for all potential solutions x̂λ, we can construct the same relationship as in

sequence of 󰁱
x : |x− x∗| ≤ τW (P,Q[1])I

󰁲
⊆

󰁱
x : |x− x∗| ≤ τW (P,Q[2])I

󰁲

⊆ · · · ⊆
󰁱
x : |x− x∗| ≤ τW (P,Q[Λ])I

󰁲
.

(23)
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Hence, the feasibility set of all sub-gradients at approximate potential solutions holds the sequence

of

Γ(x̂[1]) ⊆ Γ(x̂[2]) ⊆ · · · ⊆ Γ(x̂[Λ]). (24)

From (21) and (24), one can say that the solution with a smaller Wasserstein distance leads to a

smaller feasibility set and a small coefficient vector in the optimisation problem (20). Hence, the

same sequence order also holds for the worst-case performances at potential solutions as stated in

(22). □

Theorem 2 indicates that the sequence of Wasserstein distances for SAA solutions encapsulates

the trend of the worst-case solution performances. We should note that the rank of actual solution

performances in general does not follow the sequence of Wasserstein distances. Therefore, when

the solution screening is applied according to the sequence of Wasserstein distances, a performance

loss that is caused by eliminating the best solution might arise. We describe the performance loss

as follows.

Definition 3. Performance Loss. Let P denote a set of promising solutions obtained from a

specific screening procedure. If the computing budget is restricted on those promising solutions,

then the performance loss due to screening out the best solution x̂b can be computed as

PL(P, x̂b) = min{f(p) : p ∈ P}− f(x̂b). (25)

If PL(P, x̂b) = 0, then the promising group contains the best solution. Otherwise, PL(P, x̂b) is

always greater than zero. The value PL(P, x̂b) reflects the quality of the promising group; thus,

having a screening procedure that has a performance guarantee is desirable. Next, we prove that

the proposed screening approach provides an upper bound for the performance loss.

Theorem 3. Assume that for a set of potential solutions {x̂λ : λ = 1, . . . ,Λ}, the corresponding

set of Wasserstein distances {W (P,Qλ) : λ = 1, . . . ,Λ} possesses an increasing sequence of distance

values. In other words, the following inequalities hold:

W (P,Q[1]) ≤ W (P,Q[2]) ≤ · · · ≤ W (P,Q[Λ]). (26)

Then, the Wasserstein-based screening provides the following upper bound for the performance loss:

PL(P, x̂b) ≤ Gw(x̂[1])− f(x̂b). (27)

14



Proof. From (13) and (20), we can write the following inequality for each promising solution

f(p) ≤ Gw(p), ∀p ∈ P. (28)

Hence, from the definition of performance loss, it follows:

min{f(p) : p ∈ P} ≤ min{Gw(p) : p ∈ P}. (29)

This yields

PL(P, x̂b) = min{f(p) : p ∈ P}− f(x̂b) ≤ min{Gw(p) : p ∈ P}− f(x̂b). (30)

Clearly, selecting a promising subgroup of solutions out of the top |P| of the lowest Wasserstein

distances (using Theorem 2) provides

min{Gw(p) : p ∈ P}− f(x̂b) ≤ Gw(x̂[1])− f(x̂b). (31)

So by combining with (30), we find that (27) holds. □

Theorem 3 implies that the Wasserstein-based screening provides a fixed upper bound for the

performance loss even without performing any simulation. The tightness of the bound depends on

the stability result of the Wasserstein distance.

4.2. Optimal Computing Budget Allocation

The OCBA technique is a class of ranking and selection methods that maximises confidence

in the correct selection evidence under the simulation budget restriction. In this study, we use an

OCBA variant in which the correct selection evidence is defined as expected opportunity cost (He

et al., 2007). Let us denote x̂b as the true best solution and x̂s as the solution with best performance

based on the simulation results. Then, the expected opportunity cost E(OC) quantifies the penalty

due to wrong selection and is defined as follows:

E(OC) = E
󰀗
f(x̂s)− f(x̂b)

󰀘
=

Λ󰁛

λ=1, λ ∕=s

Prob(x̂λ = x̂b)

󰀗
f(x̂s)− f(x̂λ)

󰀘
, (32)

where Prob(x̂λ = x̂b) denotes the probability of solution x̂λ being the true best solution x̂b.

As Prob(x̂λ = x̂b) is unknown in practice, He et al. (2007) proposed to use an upper bound

approximation of E(OC) that can be estimated during the simulation procedure. Let φ(·) and Φ(·)
15



be the probability density function (PDF) and cumulative distribution function of standard normal

distribution, respectively. Moreover, Ks is the number of evaluated samples for the solution x̂s

and Kλ is the number of evaluated samples for solution x̂λ. The upper bound approximation of

expected opportunity cost (abbreviated as AEOC) is presented as follows:

E(OC) ≤ AEOC =

Λ󰁛

λ=1,λ ∕=s

󰀝
Vs,λφ(zs,λ) + δs,λΦ(−zs,λ)

󰀞
, (33)

where Vs,λ = V(x̂s)
Ks + V(x̂λ)

Kλ , δs,λ = J (x̂s)−J (x̂λ) and zs,λ =
−δs,λ√
Vs,λ

. Note that V(x̂λ) and V(x̂s) are

the estimation variances of solution x̂λ and x̂s, which can be computed by (7). The derivation of

the upper bound approximation of opportunity cost is provided in Appendix A.

Given a finite computing budget, we aim to allocate the simulation budget to sequentially

minimise the upper bound of expected opportunity cost. If we evaluate one additional sample for

the solution x̂λ, then the upper bound of expected opportunity cost will change to

󰁦AEOCλ =

Λ󰁛

λ′=1,λ′ ∕=s

󰁝 ∞

0
x ηs,λ′,λ dx, λ = 1, . . . ,Λ, (34)

where ηs,λ′,λ is the PDF of the normally distributed random variable and defined as

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

N
󰀕
f(x̂s)− f(x̂λ), V(x̂s)

Ks+1 + V(x̂λ′ )

Kλ′

󰀖
, if x̂λ = x̂s

N
󰀕
f(x̂s)− f(x̂λ), V(x̂

s)
Ks + V(x̂λ′ )

Kλ′+1

󰀖
, if x̂λ = x̂λ

′

N
󰀕
f(x̂s)− f(x̂λ), V(x̂

s)
Ks + V(x̂λ′ )

Kλ′

󰀖
, if x̂λ ∕= x̂s and x̂λ ∕= x̂λ

′
.

The above integration can be computed by using (33). Then, the possible reduction of AEOC can

be computed as,

Yλ = AEOC− 󰁦AEOCλ ≥ 0. (35)

Next, the sample would be assigned to the solution that leads to the maximum reduction of AEOC,

i.e.,

λ∗ = argmax{Yλ : λ = 1, . . . ,Λ}. (36)

The overall procedure is described in Algorithm 2. The OCBA technique can reduce the overall

simulation budget necessary to identify the best solution. However, the OCBA procedure might

fail to identify the best solution given abundant potential solutions. For instance, if the limited
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Algorithm 2: The OCBA Procedure

input : potential solutions: {x̂λ : ;λ = 1, . . . ,Λ};

size of sample NE in the performance estimation;

number of samples K0 evaluated in the initial estimation.

output: best solution based on the simulation results.

while simulation budget is available do
Step 1: Initial Estimation ;

for λ = 1, . . . ,Λ do

evaluate the performance of solution x̂λ using K0 samples;

compute the performance statistics of solution x̂λ using (6) and (7);

select the current best solution x̂s;

end

Step 2: Sequential Decision Process;

for λ = 1, . . . ,Λ do

compute the expected opportunity cost reduction Yλ as in (33) and (34);

end

find λ∗ = argmax{Yλ,λ = 1, . . . ,Λ};

simulate one additional sample for solution x̂λ∗ and update its statistics;

end

select the current best solution x̂s.

computing budget runs out during the initial estimation of Algorithm 2, then some solutions

will not be evaluated. If the best solution is one of those ignored, then it is not possible to

correctly identify the best solution. Moreover, the solution selection method is challenging when

the computing budget is insufficient in the sequential decision process because the initial estimation

has taken a large proportion of the computing budget. Then insufficient estimation might mislead

our choice of the final solution.

4.3. The Proposed Two-stage Selection Approach

The above difficulties motivate the use of a solution screening method prior to OCBA. Algo-

rithm 3 describes integration of the solution screening approach intoOCBA. The Wasserstein-based

solution screening method selects potential solutions that are then more closely examined using

OCBA. The solution screening procedure takes a proportion of the computing budget. Thus, it

is necessary to properly allot the computing budget among different procedures; namely, solution
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Algorithm 3: The WS-OCBA Procedure

input : potential solutions: {x̂λ : λ = 1, . . . ,Λ};

size of sample NE in the performance estimation;

number of samples KW with size NW in the Wasserstein distance estimation;

number of promising solutions: |P|;

number of samples K0 evaluated in the initial estimation.

output: best solution based on the simulation results.

for λ = 1, . . . ,Λ do

run Algorithm 1 for solution xλ to estimate the corresponding Wasserstein distance;

end

rank and select the top |P| potential solutions according to their Wasserstein distances;

while computing budget is available do
run Algorithm 2.

end

screening, initial estimation, and sequential allocation. We now highlight some rules for a practical

application of Algorithm 3.

• A proper computing budget allocation is important for WS and OCBA. The solution screen-

ing process provides the sequence of potential solutions based on their worst-case perfor-

mances in the corresponding Wasserstein-bounded region whereas the actual performance

is exploited in OCBA. Therefore, we should allocate the computing budget to OCBA such

that there are sufficient simulation replications to guarantee the accuracy of the selection

procedure.

• A large sample size is preferred for the Wasserstein distance estimation because it helps to

reduce potential estimation bias; however, the computational cost of the Wasserstein distance

estimation should be controlled to a certain level, which aims to secure sufficient computing

budget in OCBA. The rule of thumb is that, for a single solution, the computational cost of

the Wasserstein distance estimation should be smaller than that of the initial estimation in

Algorithm 2.

• The number of potential solutions to be run for simulation (i.e., promising solutions) is

determined by the computing budget to be allocated for OCBA. We should guarantee to
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have sufficient computing budget for Step 2 of Algorithm 2. Otherwise, the insufficient

simulation may lead to selection errors.

5. Numerical Experiments

5.1. Overview of Test Instances

In this section, we describe four benchmark problem instances to be used for the numerical

experiments. Table 1 presents complexity of these instances in terms of number of decision variables

(D), constraints (C), dimension of uncertainties (Dim), number of scenarios (NS) as well as

the optimal values (mean ± standard error). The corresponding problem descriptions are briefly

Table 1: Complexity of benchmark problems

Problem Instances
D/C

Dim NS Optimal Values
1st stage 2nd stage

LandS 4/2 12/7 3 1× 106 225.620±0.020

Retail 7/0 70/22 7 1× 1011 154.410±0.770

20term 64/3 764/124 40 1.1× 1012 254298.572±38.743

SSN 89/1 706/175 86 1.1× 1070 9.840±0.100

summarised as below:

• LandS is an electricity planning problem (Louveaux and Smeers, 1988). The first-stage

decisions are concerned with an allocation of four power terminals, and the second-stage

decisions are related to allocating the power supply to various residential areas.

• Retail is taken from Herer et al. (2006), which is a supply chain optimisation problem involv-

ing multiple retailers and one supplier. The objective is to design the optimal replenishment

policy for each retailer.

• 20term, adopted from Linderoth et al. (2006), is a large-scale vehicle management problem.

The first-stage decisions find the vehicle locations at the beginning of the plan, and the

second-stage decisions optimise the fleet transportation plan on the basis of the initial vehicle

locations.
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• SSN (Sen et al., 1994) aims to design an optimal telecommunication network that can min-

imise the number of lost demands. In view of randomness of the communication demand in

the network, the bandwidth between destination and origin nodes must be sufficiently large

to satisfy the customer demand. Otherwise, that demand will be lost.

All test instances are minimisation problems, which are written in SMPS format and publicly

available online 1. This study implements an SMPS parser that is based on the Julia programming

language and the COIN-OR linear program solver. All numerical experiments are computed on a

machine with i7-6700K CPU and 32GB memory.

5.2. Performance of Wasserstein-based Screening Approach

We adopt the following benchmark strategies to compare with WS:

• Random screening (RS): a fixed number of solutions is randomly selected from the potential

solutions.

• Moment discrepancy (MD): a fixed number of solutions is selected according to the discrep-

ancy of the first four statistical moments between samples of the original model and those of

the approximate model.

The experimental settings are designed as follows. We implement SAA with 200 samples to generate

200 potential solutions for each test instance. Table 2 presents the statistical description of those

potential solutions. Figure 1 graphically illustrates performances of the potential solutions in terms

of the mean, range and confidence intervals. We apply three strategies to select various numbers

(from 1 to 200) of solutions and compute the corresponding performance loss (as discussed in

Section 4.1). The performance of each solution is evaluated with 30 groups of 500,000 samples.

For WS, the solution’s Wasserstein distance is estimated using four samples with a size of 1,000.

Figure 2 presents the average performance loss over 30 runs in terms of the number of promising

solutions for all test instances. The results in Figure 2 confirm the superiority of WS for all test

instances. The performance losses of RS and MD are much worse than that of WS when the

number of promising solutions is less than 30. TheMD approach outperformsRS in all benchmark

problems except LandS. The average performance losses obtained by three strategies coincide as the

1http://pages.cs.wisc.edu/~swright/stochastic/sampling/ and http://plato.asu.edu/sd/instances/
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Figure 1: Box plots providing the mean (horizontal line in box), range (vertical lines extending from box), and 95%

confidence intervals (vertical extent of box) for the performances of potential solutions

number of promising solutions approaches to 200. Moreover, the convergence of WS in LandS and

Retail is more rapid than that in SSN and 20term, indicating that the stability of the quantitative

result varies with the problem structure. The results also imply that the required number of

promising solutions for guaranteeing a relatively small performance loss changes with the problem

structure. For example, more solutions need to be included in the simulation procedure for 20term

and SSN than LandS and Retail.

Table 2: Statistical description of potential solutions

Problem Instances Mean Standard Deviation Maximum Minimum

LandS 225.659 0.029 225.823 225.639

Retail 156.034 2.225 172.673 154.393

20term 254318.492 20.011 254441.922 254305.193

SSN 10.990 0.375 12.496 10.385
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Figure 2: Comparison of average performance losses obtained by RS and WS using various numbers of promising

solutions.

5.3. Average Performance Comparison with Benchmark Algorithms

We also conduct numerical experiments to study the performance of the solution selection

algorithm in terms of the CPU time. The performance of WS-OCBA is compared with that of the

following approaches.

• OCBA is the standard OCBA algorithm as described in Algorithm 2.

• EAS uses the equal allocation and selection algorithm, which sequentially allocates the same

number of simulations to each potential solution and selects the current best solution based

on simulation results.

• WS-EAS employs EAS with the proposed Wasserstein-based solution screening procedure.

For each test instance, we utilise SAA with 200 samples to generate 200 potential solutions and

then apply all algorithms to identify the best potential solution. This procedure is repeated 100
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times to examine the average performance of each algorithm. The detailed experimental settings

are listed in Table 3. Figure 3 presents the convergence comparisons over 100 runs in terms of

CPU time and average solution performance. The computational costs of solution screening for

the WS-based algorithms are included in the comparison results.

Table 3: Experimental settings

Problem
Algorithms

Solution Screening
NE C/E(s)

Initial Estimation

Instances |P| KW NW TC(s) K TC(s)

LandS

EAS
− − − −

50,000 1.5

− −

OCBA 5 1,460

WS-EAS
10 4 1,000 91

− −

WS-OCBA 5 1,460

Retail

EAS
− − − −

50,000 2.4

− −

OCBA 5 2,400

WS-EAS
10 4 1,000 105

− −

WS-OCBA 5 2,400

20term

EAS
− − − −

20,000 20.4

− −

OCBA 5 20,400

WS-EAS
10 4 1,000 128

− −

OCBA 5 20,400

SSN

EAS
− − − −

20,000 24.8

− −

OCBA 5 24,800

WS-OCBA
10 4 1,000 154

− −

WS-OCBA 5 24,800

|P |: number of promising solutions; KW : number of samples for the Wasserstein distance estimation;

NW : sample size for Wasserstein estimation; TC: total CPU time;

NE : sample size for performance evaluation; C/E: CPU time of each evaluation;

K: number of samples used in the initial estimation.

As shown in Figure 3, the EAS algorithm provides the worst results for all test instances among

all algorithms because the equal allocation strategy spends unnecessary evaluations on potential

solutions with a large mean. We also observe that EAS and OCBA exhibit similar convergence

patterns on LandS (before 1,500s) and Retail (before 2,500s) whereas the overall patterns of EAS

and OCBA for 20term and SSN are almost identical. The reason behind this phenomenon could
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Figure 3: Convergence comparison with respect to CPU time

be because OCBA has a sufficient computing budget to finish the initial estimation on LandS and

Retail, but this is not the case for test instances 20term and SSN (see Table 3). When OCBA stays

in the stage of initial estimation, its evaluation behaviour (as described in Algorithm 2) is similar

to EAS.

However, OCBA performs worse than any of the WS-based algorithms on all test instances,

indicating that WS enhances performance of the solution selection algorithm for the case of nu-

merous potential solutions. For WS-OCBA, the computational cost for initial estimation is greatly

reduced. We observe that WS-OCBA achieves the fastest convergence in all test instances, as this

algorithm has more time to explore the performance of each promising solution compared with

OCBA.

We display the performance of solutions obtained from various algorithms averaged over 100
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repetitions in Table 4. The best results and those statistically not different from the best are high-

lighted in bold. The results confirm the importance of adopting solution screening in the selection

procedure for numerous potential solutions. The WS-based algorithms significantly outperform

the others in all benchmark problems although all algorithms display similar performance in LandS

and 20terms when the CPU time is 1,000s. Moreover, we find that WS-OCBA performs better

than WS-EAS due to its advanced computing budget allocation scheme.

Table 4: Average solution performance of the selected subset (mean ± std. err).

Problem CPU Algorithms

Instances Time (s) EAS OCBA WS-EAS WS-OCBA

LandS

1,000 225.648±0.002 225.647±0.001 225.648±0.002 225.647±0.001

2,000 225.648±0.001 225.645±0.001 225.644±0.001 225.643±0.001

3,000 225.647±0.001 225.645±0.001 225.643±0.001 225.641±0.001

Retail

1,000 154.556±0.013 154.545±0.017 154.499±0.009 154.449±0.003

2,000 154.545±0.012 154.506±0.008 154.490±0.009 154.431±0.001

3,000 154.554±0.013 154.490±0.006 154.479±0.003 154.408±0.001

20term

2,500 254334.892±1.041 254334.267±1.050 254333.018±0.894 254331.562±0.835

5,000 254334.172±0.952 254334.797±0.948 254332.134±0.707 254330.358±0.665

7,500 254335.117±0.936 254335.062±0.931 254331.255±0.792 254328.726±0.706

SSN

2,500 10.654±0.015 10.645±0.014 10.595±0.014 10.543±0.012

5,000 10.589±0.015 10.586±0.016 10.546±0.011 10.430±0.009

7,500 10.553±0.013 10.553±0.014 10.534±0.011 10.461±0.008

6. Conclusions

The solution selection problem for large-scale two-stage problems is challenging for decision

makers with a relatively limited computational budget when numerous potential solutions are

present. Thus, we may consider removing several potential solutions from the simulation. This

study shows that the worst-case solution performance in the corresponding Wasserstein-based

regions satisfies the sequence of the corresponding Wasserstein distances. On the basis of this

property, we propose a new solution screening approach and integrate this approach with an op-

timal computing budget allocation algorithm. Empirical results for various benchmark problems

demonstrate the benefit of the Wasserstein-based screening and the advantage of applying the op-
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timal computing budget allocation algorithm in selecting the near-best solutions. Future studies

can refine the idea of the Wasserstein-based screening in a sophisticated manner to determine the

number of promising solutions. The Wasserstein-based solution screening may also be extended to

the multi-stage SPR problems.

Appendix A. An Upper Bound Approximation of Expected Opportunity Cost

He et al. (2007) provided an upper bound approximation for the probability Prob(x̂λ = x̂b) as

follows,

Prob(x̂λ = x̂b) ≤ Prob

󰀕
f(x̂λ) < f(x̂s)

󰀖
. (A.1)

Hence, we can obtain

E(OC) ≤
Λ󰁛

λ=1,λ ∕=s

Prob

󰀕
f(x̂λ) < f(x̂s)

󰀖󰀗
f(x̂s)− f(x̂λ)

󰀘

=

Λ󰁛

λ=1,λ ∕=s

󰁝 +∞

0
t ηs,λ(t) dt = AEOC,

(A.2)

where ηs,λ denotes the PDF of random value N
󰀕
f(x̂s) − f(x̂λ),Vs,λ

󰀖
. The integration in (A.2)

can be calculated by using the following equation:

󰁝 +∞

0
ηs,λ(t) = Vs,λφ(zs,λ) + δs,λΦ(−zs,λ). (A.3)
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