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1 Introduction

Nonparametric Malmquist indices are widely used to assess changes in productivity across

firms in various industries. In addition, Malmquist indices are often decomposed into various

measures of sources of productivity change, including changes in efficiency, changes in tech-

nology, and other factors. Examples include Aly et al. (1990), Färe et al. (1992, 1994a, Färe

et al. (1997), Gilbert and Wilson (1998), Simar and Wilson (1998), Wheelock and Wilson

(1999), Alam (2001), Armagan et al. (2010), Liu (2010), de Castro Lobo et al. (2010), An-

dries (2011), Chang et al. (2011), Chowdhury et al. (2011), Ng (2011), Egilmez and McAvoy

(2013), Ahn and Min (2014), Bassem (2014), Wu et al. (2014) and Woo et al. (2015).1 Es-

timates of both Malmquist indices and their component indices are typically reported for

individual firms or units, and often results are summarized by reporting geometric means of

estimated Malmquist indices and their corresponding component indices. Geometric means,

as opposed to arithmetic means, are used to preserve the multiplicative nature of the indices.

Most applied papers that estimate productivity change and its component sources make

no attempt at inference. The few that attempt inference either rely on standard Central Limit

Theorem (CLT) results or the bootstrap method proposed by Simar and Wilson (1999). As

demonstrated below, however, inferences based on standard CLT results is invalid for cases

with more than one input and one output for reasons similar to those discussed by Kneip

et al. (2015) in the context of mean efficiency in cross-sectional settings. Moreover, Simar

and Wilson (1999) provide only heuristic arguments to develop their bootstrap method and

do not provide any theoretical results. Although the simulation evidence provided by Simar

and Wilson (1999) suggests that their smooth bootstrap method works well, the approach

cannot be justified theoretically in view of the results obtained below.

Until recently, no theoretical results have been available to permit inference about produc-

tivity change estimated by Malmquist indices. Kneip et al. (2018) establish the convergence

rate and the existence of a non-degenerate limiting distribution for data envelopment analysis

(DEA) estimators of Malmquist indices for individual producers. These results enable use of

the subsampling methods of Simar and Wilson (2011) to make inference about the produc-

tivity change from one period to another by an individual producer. In addition, Kneip et al.

1 See also Färe et al. (2011) for a recent survey on the use of Malmquist indices.
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provide new central limit theorem (CLT) results for geometric means of Malmquist indices

as well as arithmetic means of logarithms of Malmquist indices over samples of producers.2

This paper extends the results of Kneip et al. to component indices obtained by various de-

compositions of Malmquist indices into sources of productivity change. Theoretical results

developed below provide convergence rates and existence of non-degenerate limiting distri-

butions for indices measuring change in efficiency, change in technology, etc. for individual

producers, enabling use of the subsampling methods presented by Simar and Wilson (2011)

to make inference about individual units. In addition, new CLT results are provided to en-

able inference about geometric means of the component indices as well as arithmetic means

of their logarithms. These new CLT results can be used to make inference about average

(geometric or arithmetic) changes in components of productivity change. In addition, the

new CLT results can be used for hypothesis testing about differences in changes in efficiency,

technology or other features between groups of firms along the lines of Kneip et al. (2016).

The next section develops a nonparametric, statistical model of production in a dynamic

context. Various decompositions of Malmquist indices are considered. The Malmquist in-

dex and its component indices are defined in terms of hyperbolic distances (as opposed to

distances in the input or output directions) in order to ensure that the component indices

are well-defined. In Section 3, hyperbolic DEA estimators and their asymptotic properties

are discussed. Near the end of Section 3, new results for these estimators needed for compo-

nents of Malmquist indices are developed. Results for making inference about components

of productivity change are presented in Section 4. In Section 4.1, results for inference about

change in technology are developed. These results are then extended to other components

of productivity change in Section 4.2. An empirical illustration using data from Färe et al.

(1992), is presented in Section 5, and conclusions are discussed in Section 6. Additional

technical details, as well as proofs of the theorems presented in Sections 3 and 4 appear in

Appendix A.

2 The results obtained by Kneip et al. (2018) make clear that standard CLT results such as the Lindeberg-
Feller CLT cannot be used to make inference about means of logs of Malmquist indices.
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2 A Dynamic, Nonparametric Production Process

In order to establish notation, let x ∈ Rp
+ and y ∈ Rq

+ be vectors of fixed input and

output quantities. Throughout, vectors are assumed to be column-vectors, as opposed to

row-vectors. At time t, the set of feasible combinations of inputs and outputs is given by

Ψt := {(x, y) | x can produce y at time t} . (2.1)

The technology, or efficient frontier of Ψt, is given by

Ψt∂ :=
{

(x, y) | (x, y) ∈ Ψt, (γx, γ−1y) 6∈ Ψt ∀ γ ∈ (0, 1)
}
. (2.2)

Various economic assumptions regarding Ψt can be made; the assumptions of Shephard

(1970) and Färe (1988) are typical in microeconomic theory of the firm and are used here.

Assumption 2.1. Ψt is closed and strictly convex.

Assumption 2.2. (x, y) 6∈ Ψt if x = 0, y ≥ 0, y 6= 0; i.e., all production requires use of

some inputs.

Assumption 2.3. For x̃ ≥ x, ỹ ≤ y, if (x, y) ∈ Ψt then (x̃, y) ∈ Ψt and (x, ỹ) ∈ Ψt; i.e.,

both inputs and outputs are strongly disposable.

Here and throughout, inequalities involving vectors are defined on an element-by-element

basis, as is standard. Assumption 2.2 rules out free lunches, while Assumption 2.3 imposes

weak monotonicity on the frontier.

The Farrell (1957) output efficiency measure at time t gives the feasible proportionate

expansion of output quantities and is defined by

λ(x, y | Ψt) := sup
{
λ | (x, λy) ∈ Ψt

}
. (2.3)

This gives a radial measure of efficiency since all output quantities are scaled by the same

factor λ. The Farrell (1957) input efficiency measure at time t is given by

θ(x, y | Ψt) := inf
{
θ | (θx, y) ∈ Ψt

}
(2.4)

and measures efficiency in terms of the amount by which input levels can be scaled downward

by the same factor without reducing output levels. Clearly, λ(x, y | Ψt) ≥ 1 and θ(x, y |
Ψt) ≤ 1 for all (x, y) ∈ Ψt.
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An alternative measure of efficiency is the hyperbolic graph measure of efficiency at time

t introduced by Färe et al. (1985), i.e.,

γ(x, y | Ψt) := inf
{
γ > 0 | (γx, γ−1y) ∈ Ψt

}
. (2.5)

By construction, γ(x, y | Ψt) ≤ 1 for (x, y) ∈ Ψt. Just as the measures θ(x, y | Ψt) and

λ(x, y | Ψt) provide measures of the technical efficiency of a firm operating at a point

(x, y) ∈ Ψt, so does γ(x, y | Ψt), but along a hyperbolic path to the frontier of Ψt. The

measure in (2.5) gives the amount by which input levels can be feasibly, proportionately

scaled downward while simultaneously scaling output levels upward by the same proportion.

Next, define the operator C(·) so that

C(Ψt) :=
{

(x, y) | x = ax̃, y = aỹ for some (x̃, ỹ) ∈ Ψt and any a ∈ R1
+

}
(2.6)

is the convex cone of the set Ψt. Note that this is a pointed cone (i.e., C(Ψt) includes

{(0, 0)}). Analogous to (2.2), the frontier of this set is given by

C∂(Ψt) :=
{

(x, y) | (x, y) ∈ C(Ψt), (γx, γ−1y) /∈ C(Ψt) ∀ γ ∈ (0, 1)
}
. (2.7)

If C(Ψt) = Ψt, then the frontier Ψt∂ at time t exhibits globally constant returns to scale

(CRS), although this is ruled out by strict convexity of Ψt in Assumption 2.1. Otherwise,

Ψt ⊂ C(Ψt) and Ψt∂ is said to exhibit variable returns to scale (VRS), with returns to scale

either increasing, constant, or decreasing depending on the particular region of the frontier.

Now consider a sample Xn = {(X1
i , Y

1
i ), (X2

i , Y
2
i )}ni=1 of input-output combinations for

n firms observed in periods t = 1 and 2. To simplify notation, define Zt
i := (X t

i , Y
t
i ) for

t ∈ {1, 2}. Then the sample Xn is represented by Xn = {Z1
i , Z

2
i }ni=1. Firm i’s change in

productivity between periods 1 and 2 is measured by the hyperbolic Malmquist index

Mi :=

(
γ (Z2

i | C(Ψ1))

γ (Z1
i | C(Ψ1))

× γ (Z2
i | C(Ψ2))

γ (Z1
i | C(Ψ2))

)1/2

. (2.8)

This is the geometric mean of two ratios, each providing a measure of productivity change,

in the first case using the boundary of C(Ψ1) as a benchmark, and in the second case using

the boundary of C(Ψ2) as a benchmark. For firm i, Mi > (= or <) 1 if productivity

increases (remains unchanged or decreases) between periods 1 and 2. As in Kneip et al.

(2018), the Malmquist index here is defined in terms of hyperbolic measures as opposed
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to input- or output-oriented measures to avoid numerical difficulties and to ensure that

measures of components of productivity change defined below are well-defined. Zofio and

Lovell (2001), Johnson and McGinnis (2009) and Russell (2018) discuss the advantages of

defining Malmquist indices in terms of hyperbolic distances. In particular, use of hyperbolic

measures helps ensure that all of the components of productivity change defined below are

well-defined.

Various decompositions of Malmquist indices have been proposed in attempts to identify

the sources of any changes in productivity. Färe et al. (1992) propose the input-oriented

analog of

Mi =

[
γ(Z2

i | C(Ψ2))

γ(Z1
i | C(Ψ1))

]
︸ ︷︷ ︸

:=E1(Z1
i ,Z

2
i |Ψ1,Ψ2)

×
[
γ(Z2

i | C(Ψ1))

γ(Z2
i | C(Ψ2))

× γ(Z1
i | C(Ψ1))

γ(Z1
i | C(Ψ2))

]1/2

︸ ︷︷ ︸
:=T1(Z1

i ,Z
2
i |Ψ1,Ψ2)

. (2.9)

The authors remark (p. 90) that “the quotient outside the bracket measures the change

in technical inefficiency and the ratios inside the bracket measure the shift in the frontier

between periods” 1 and 2. However, this is true if and only if the technology is one of

globally constant returns to scale. Recognizing this, Färe et al. (1994b) decompose the

output-oriented analog of E1(Z1
i , Z

2
i | Ψ1,Ψ2) to obtain the output-oriented analog of

Mi =

[
γ(Z2

i | Ψ2)

γ(Z1
i | Ψ1)

]
︸ ︷︷ ︸

:=E2(Z1
i ,Z

2
i |Ψ1,Ψ2)

×
[
γ(Z2

i | C(Ψ2))/γ(Z2
i | Ψ2)

γ(Z1
i | C(Ψ1))/γ(Z1

i | Ψ1)

]1/2

︸ ︷︷ ︸
:=S1(Z1

i ,Z
2
i |Ψ1,Ψ2)

×T1(Z1
i , Z

2
i | Ψ1,Ψ2). (2.10)

Here, E2(Z1
i , Z

2
i | Ψ1,Ψ2) gives a measure of technical efficiency change under either variable

or constant returns to scale since efficiency is measured in terms of Ψ1 and Ψ2 as opposed to

the conical hulls of Ψ1 and Ψ2 as in E1(Z1
i , Z

2
i | Ψ1,Ψ2) in (2.9). The term S1(Z1

i , Z
2
i | Ψ1,Ψ2)

provides a measure of any change in the scale efficiency of firm i. The ratio in the denominator

of S1 measures the distance between the projection of (Z1
i ) onto Ψ1∂ and the projection of

(Z1
i ) onto C∂(Ψ1), providing a measure of the scale efficiency of firm i in period 1.3 The ratio

in the numerator of S1(Z1
i , Z

2
i | Ψ1,Ψ2) provides the corresponding measure in period 2. It

is easy to see that both the numerator and the denominator of S1 must be less than 1, and

that S1 > (=, <) 1 iff scale efficiency for firm i increases (remains unchanged, decreases)

from period 1 to period 2.

3 Note that firm i would be scale-efficient in period 1 if γ(Z1
i | C(Ψ1)) = γ(Z1

i | Ψ1). Otherwise, the firm
is scale-inefficient. See Wheelock and Wilson (1999) for discussion.
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Both decompositions in (2.9) and (2.10) use the term T1 to measure change in technology,

but this term is based on the conical hulls of Ψ1 and Ψ2. Under variable returns to scale,

it is possible for the conical hulls to remain unchanged while the technology shifts upward

or downward in regions where the technology Ψt∂ is not coincident with C∂(Ψt). This prob-

lem is addressed by Ray and Desli (1997) who propose the output-oriented analog of the

decomposition

Mi = E2(Z1
i , Z

2
i | Ψ1,Ψ2)×

[
γ(Z2

i | Ψ1)

γ(Z2
i | Ψ2)

× γ(Z1
i | Ψ1)

γ(Z1
i | Ψ2)

]1/2

︸ ︷︷ ︸
:=T2(Z1

i ,Z
2
i |Ψ1,Ψ2)

=

[
γ(Z2

i | C(Ψ1))/γ(Z2
i | Ψ1)

γ(Z1
i | C(Ψ2))/γ(Z1

i | Ψ2)
× γ(Z2

i | C(Ψ2))/γ(Z2
i | Ψ2)

γ(Z1
i | C(Ψ1))/γ(Z1

i | Ψ1)

]1/2

︸ ︷︷ ︸
:=S2(Z1

i ,Z
2
i |Ψ1,Ψ2)

(2.11)

The term T2(Z1
i , Z

2
i | Ψ1,Ψ2) provides a measure of the change in technology between periods

1 and 2 regardless of whether returns to scale are constant or variable. This term consists of

a geometric mean of two ratios. The first ratio gives a measure of any shift in the technology

Ψ∂ relative to firm i’s position in period 2. Similarly, the second ratio gives a measure of

any shift in the technology relative to firm i’s position in period 1. Either of these ratios is

greater than (equal to, less than) 1 iff the technology shifts outward (remains unchanged,

shifts inward).

Ray and Desli remark (p. 1036) that S2(Z1
i , Z

2
i | Ψ1,Ψ2) “is a geometric mean of the

ratios of scale efficiencies of the two bundles using in turn the VRS technologies from the

two periods as the benchmark. In that sense, it is more in the spirit of a Fisher index.” Färe

et al. (1997, p. 1042) criticize the measure S2, and in particular note that the term “may

incorrectly identify the scale properties of the underlying technology.” while providing an

illustrative example in their footnote 7.

Indeed, the term S2(Z1
i , Z

2
i | Ψ1,Ψ2) defined by (2.11) can be written as

S2(Z1
i , Z

2
i | Ψ1,Ψ2) =

[
γ(Z2

i | C(Ψ1))/γ(Z2
i | Ψ1)

γ(Z1
i | C(Ψ2))/γ(Z1

i | Ψ2)
× S1(Z1

i , Z
2
i | Ψ1,Ψ2)

]1/2

. (2.12)

The meaning of S1(Z1
i , Z

2
i | Ψ1,Ψ2) is clear and intuitive, but the first ratio inside the

parentheses in (2.12) is less so. The numerator of this ratio measures scale efficiency in

period 1, but from the viewpoint of the firm’s location in period 2. Similarly, the denominator
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measures scale efficiency in period 2, but relative to the firm’s location in period 1. Lovell

(2003, p. 442) describes S2(Z1
i , Z

2
i | Ψ1,Ψ2) and notes that “the qualifier ‘change’ refers to

the quantity vectors but not to the technologies.”

Gilbert and Wilson (1998), Simar and Wilson (1998) and Wheelock and Wilson (1999)

use the output-oriented analog of

Mi =E2(Z1
i , Z

2
i | Ψ1,Ψ2)× T2(Z1

i , Z
2
i | Ψ1,Ψ2)× S1(Z1

i , Z
2
i | Ψ1,Ψ2)×[

γ(Z1
i | C(Ψ1))/γ(Z1

i | Ψ1)

γ(Z1
i | C(Ψ2))/γ(Z1

i | Ψ2)
× γ(Z2

i | C(Ψ1))/γ(Z2
i | Ψ1)

γ(Z2
i | C(Ψ2))/γ(Z2

i | Ψ2)

]1/2

︸ ︷︷ ︸
:=S3(Z1

i ,Z
2
i |Ψ1,Ψ2)

(2.13)

after decomposing S2(Z1
i , Z

2
i | Ψ1,Ψ2) in (2.11) into S1(Z1

i , Z
2
i | Ψ1,Ψ2) and S3(Z1

i , Z
2
i |

Ψ1,Ψ2). This measure consists of a geometric mean of two ratios, each resembling the ratio

that defines S1(Z1
i , Z

2
i | Ψ1,Ψ2) in (2.10), but with some important differences. Note that

S1(Z1
i , Z

2
i | Ψ1,Ψ2) measures the change in scale efficiency of the firm. This could improve

if the firm moves closer to the most efficient scale size in period 2, or it could improve if

the firm does not move between periods 1 and 2, but the technology changes so that Ψ2∂

is closer to C∂(Ψ2) than Ψ1∂ is to C∂(Ψ1). But now consider the first ratio in the definition

of S3(Z1
i , Z

2
i | Ψ1,Ψ2) in (2.13). Here, the firm’s position is fixed at its location in period

1; the ratio can differ from 1 iff the distance between the projection of (Z1
i ) onto Ψ1∂ and

C∂(Ψ1) is different from the projection of (Z1
i ) onto Ψ2∂ and C∂(Ψ2) along the hyperbolic

path through (Z1
i ). The second ratio in S3(Z1

i , Z
2
i | Ψ1,Ψ2) provides a similar measure

relative to the firm’s position in period 2, and S3(Z1
i , Z

2
i | Ψ1,Ψ2) is the geometric mean of

these two measures.4 Gilbert and Wilson (1998), Simar and Wilson (1998) and Wheelock

and Wilson (1999) label their corresponding measures “∆ScaleTech,” and both Simar and

Wilson (1998) and Wheelock and Wilson (1999) refer to the term as a measure of “the scale

of the technology” as opposed to the change in the scale efficiency of a firm as measured by

S1. See Simar and Wilson (1998) and Wheelock and Wilson (1999) for further discussion

and illustrations.5

4 Balk (2001, p. 173) remarks that the decomposition in (2.13) is confusing, but its meaning seems clear.
5 Other decompositions are possible, and it is not feasible to give an exhaustive treatment here. See Lovell

(2003) and Zofio (2007) for summaries and discussion. Note that Lovell (2003) refers to S2(Z1
i , Z

2
i | Ψ1,Ψ2)

as “the activity effect” and decomposes (p. 446) the term into 3 components. Estimation of each of these
new components requires nesting one estimator inside another, resulting in considerable complication for
statistical inference requiring new theoretical results that are beyond the scope of this paper.
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All of the quantities and model features defined so far are unobservable, and hence must

be estimated. In addition, inference is needed in order to know what might be learned

from data. Some additional assumptions are needed to complete the statistical model. The

following assumptions are analogous to Assumptions 3.1–3.4 of Kneip et al. (2015). In order

to draw upon previous results, we state the assumptions below in terms of the input-oriented

measure of efficiency. The assumptions can also be stated in terms of the output, hyperbolic

and directional measures of efficiency, and the results of Kneip et al. (2015) extend to those

measures after trivial (but tedious) changes in notation in Kneip et al. (2015).

Assumption 2.4. (i) The random variables (X, Y ) possess a joint density f t with support

Dt ⊂ Ψt; and (ii) f t is continuously differentiable on Dt.

Assumption 2.5. (i) Dt∗ := {θ(x, y | Ψt)x, y) | (x, y) ∈ Dt} ⊂ Dt; (ii) Dt∗ is compact; and

(iii) f t(θ(x, y)x, y) > 0 for all (x, y) ∈ Dt.

The next two assumptions are needed when DEA estimators are used. Assumption

2.6 imposes some smoothness on the frontier. Kneip et al. (2008) require only two-times

differentiability to establish the existence of a limiting distribution for VRS-DEA estimators,

but the stronger assumption that follows is needed to establish results on moments of the

DEA estimators.

Assumption 2.6. θ(x, y | Ψt) is three times continuously differentiable on Dt.

Recalling that the strong (i.e., free) disposability assumed in Assumption 2.3 implies

that the frontier is weakly monotone, the next assumption strengthens this by requiring the

frontier to be strictly monotone with no constant segments. This is also needed to establish

properties of moments of the DEA estimators.

Assumption 2.7. Dt is almost strictly convex; i.e., for any (x, y), (x̃, ỹ) ∈ Dt with ( x
‖x‖ , y) 6=

( x̃
‖x̃‖ , ỹ), the set {(x∗, y∗) | (x∗, y∗) = (x, y)+α((x̃, ỹ)−(x, y)) for some 0 < α < 1} is a subset

of the interior of Dt.

Assumptions 2.1–2.7 comprise a statistical model similar to the one defined in Kneip et al.

(2015) and where DEA estimators have desirable properties. However, two additional, im-

portant assumptions are needed to obtain asymptotic properties of DEA estimators derived
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by Kneip et al. (2018) of the Malmquist index defined in (2.8) as well as of DEA estimators of

the various components of Malmquist indices presented above. These assumptions appear as

Assumptions 3.1 and 3.2 in Kneip et al. (2018). Since these assumptions involve considerable

technical detail and require additional notation, the assumptions are presented with some

discussion in Section A.1 of Appendix A. Assumption A.1 is needed to ensure well-defined

estimators of θ(x, y | C(Ψt)) and γ(x, y | C(Ψt)). Part (iii) of the assumption is needed to

bound the logarithms of these as well as of θ(x, y | Ψt) and γ(x, y | Ψt) away from zero.

Assumption A.2 is required to ensure well-defined estimators of cross-period efficiencies.

3 Hyperbolic DEA Estimators and their Asymptotic

Properties

The VRS-DEA estimator of Ψt proposed by Farrell (1957) and Banker et al. (1984) is

the convex hull of the free-disposal hull of observed input-output pairs in period t. The

estimator is given by

Ψ̂t
n :=

{
(x, y) ∈ Rp+q | y ≤ Y tω, x ≥X tω, i′nω = 1, ω ∈ Rn

+

}
, (3.1)

where X t =
(
X t

1, . . . , X
t
n

)
and Y t =

(
Y t

1 , . . . , Y
t
n

)
are (p × n) and (q × n) matrices of

input and output vectors in period t, respectively; in is an (n× 1) vector of ones, and ω is

a (n× 1) vector of weights. Replacing Ψt in (2.4) with Ψ̂t
n yields the linear program

θ(x, y | Ψ̂t
n) = min

θ,ω

{
θ | y ≤ Y tω, θx ≥X tω, i′nω = 1, ω ∈ Rn

+

}
. (3.2)

Alternatively, replacing Ψt in (2.5) with Ψ̂t
n yields the nonlinear program

γ(x, y | Ψ̂t
n) = min

γ,ω

{
γ | γ−1y ≤ Y tω, γx ≥X tω, i′nω = 1, ω ∈ Rn

+

}
. (3.3)

Wilson (2011) provides a simple numerical algorithm for computing γ(x, y | Ψ̂t
n) that avoids

the computational difficulty of solving the nonlinear program directly.

Alternatively, the conical DEA (CDEA) estimator C(Ψ̂t) of C(Ψt) is obtained by dropping

the constraint i′nω = 1 in (3.1). This leads to the CDEA estimator γ(x, y | C(Ψ̂t)) of

γ(x, y | C(Ψt)) obtained by dropping the constraint i′nω = 1 in (3.3).

Kneip et al. (2018) establish asymptotic properties of the CDEA estimator γ(x, y | C(Ψ̂t))

of γ(x, y | C(Ψt)) under appropriate assumptions. In particular, Kneip et al. establish
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consistency and existence of a non-degenerate limiting distribution with rate of convergence

nκ under Assumptions 2.1–2.7 where

κ :=
2

p+ q + 1
. (3.4)

In addition, Kneip et al. (2018) establish properties of the first two moments of γ(x, y | C(Ψ̂t))

as well as of log γ(x, y | C(Ψ̂t)).

Kneip et al. then consider a firm operating at observed, fixed points (x1, y1) and (x2, y2)

in periods 1 and 2. From (2.8) the Malmquist index for this firm is

M =

[
γ (x2, y2 | C(Ψ1))

γ (x1, y1 | C(Ψ1))
× γ (x2, y2 | C(Ψ2))

γ (x1, y1 | C(Ψ2))

]1/2

. (3.5)

Using the data X 1
n1

:= {(X1
i , Y

1
i }i=1,...,n1 and X 2

n2
:= {(X2

i , Y
2
i }i=1,...,n2 , M can be estimated

by

M̂ =

γ
(
x2, y2 | C(Ψ̂1

n1
)
)

γ
(
x1, y1 | C(Ψ̂1

n1
)
) × γ

(
x2, y2 | C(Ψ̂2

n2
)
)

γ
(
x1, y1 | C(Ψ̂2

n2
)
)
1/2

. (3.6)

Under Assumptions 2.1–2.7, A.1 and A.2, Theorem 3.3 of Kneip et al. (2018) establishes

the existence of a non-degenerate limiting distribution as well as the convergence rate for

the estimator in (3.6) of the Malmquist index for a given firm observed in periods 1 and 2.

These results permit inference about the unobserved, true Malmquist index M using the

subsampling methods described by Simar and Wilson (2011). In addition, Theorems 4.2 and

4.3 of Kneip et al. (2018) provide CLTs for making inference about µM := E(logMi) where

the expectation is over (X1, Y1, X2, Y2). In addition, Theorems 4.5 and 4.6 of Kneip et al.

(2018) provide CLTs permitting inference about exp(µM) estimated by the geometric mean

M̂n :=
n∏
i=1

γ
(
X2
i , Y

2
i | C(Ψ̂1

n1
)
)

γ
(
X1
i , Y

1
i | C(Ψ̂1

n1
)
) × γ

(
X2
i , Y

2
i | C(Ψ̂2

n2
)
)

γ
(
X1
i , Y

1
i | C(Ψ̂2

n2
)
)
1/2

. (3.7)

Wilson (2011) establishes consistency of the hyperbolic estimator in (3.3) of γ(x, y | Ψt)

under Assumptions weaker than Assumptions 2.1–2.7 listed above, and proves that the rate

of convergence is nκ. However, some additional results are needed in order to make inference

about the Malmquist index components defined by the various decompositions discussed

above in Section 2. Proofs are given in Appendix A.
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The first result establishes the existence of non-degenerate limiting distributions for the

hyperbolic efficiency estimator and its logarithm.

Theorem 3.1. Let Γ(·) denote either (i) the identity function or (ii) the log function. Under

Assumptions 2.1–2.7 and A.1 part (iii),

nκ
(

Γ(γ(x, y | Ψ̂t
n))− Γ(γ(x, y | Ψt))

)
L−→ QΓ

γ (3.8)

as n→∞, where QΓ
γ is a non-degenerate distribution with finite variance.

The next result establishes properties of the first two moments of the hyperbolic efficiency

estimator under VRS, analogous to Kneip et al. (2015, Theorem 3.1).

Theorem 3.2. Let Γ(·) denote either (i) the identity function or (ii) the log function. Let

ν1 = 3/(p+q+1), ν2 = (p+q+4)/(p+q+1) and ν3 = (p+q+2)/(p+q+1). Under Assumptions

2.1–2.7 and A.1 part (iii), ∃ a constant CΓ
1 ∈ (0,∞) such that for all i, j ∈ {1, . . . , n},

E
(

Γ(γ(X t
i , Y

t
i | Ψ̂t

n))− Γ(γ(X t
i , Y

t
i | Ψt))

)
= CΓ

1 n
−κ +O

(
n−ν1(log n)ν2

)
, (3.9)

VAR
(

Γ(γ(X t
i , Y

t
i | Ψ̂t

n))− Γ(γ(X t
i , Y

t
i | Ψt))

)
= O

(
n−ν1(log n)ν1

)
(3.10)

and∣∣∣COV
(

Γ(γ(X t
i , Y

t
i | Ψ̂t

n))− Γ(γ(X t
i , Y

t
i | Ψt)), Γ(γ(X t

j , Y
t
j | Ψ̂t

n))− Γ(γ(X t
j , Y

t
j | Ψt))

)∣∣∣
= O

(
n−ν3(log n)ν3

)
= o

(
n−1
)
. (3.11)

The value of the constant CΓ
1 depends on the density f , Γ(·) and on the structure of the set

Dt ⊂ Ψt.

The next result provides properties of moments of the log-hyperbolic estimator in dy-

namic, two-period settings.

Theorem 3.3. Let Let ν1, ν2 and ν3 be defined as in Theorem 3.2. Under Assumptions

2.1–2.7, A.1 part(iii) and A.2, for all t, s ∈ {1, 2} ∃ a constant Cts
2 ∈ (0,∞) such that for

all i, j ∈ {1, . . . , n},

E
(

log γ(X t
i , Y

t
i | Ψ̂s

n)− log γ(X t
i , Y

t
i | Ψs)

)
= Cts

2 n
−κ +O

(
n−ν1(log n)ν2

)
, (3.12)

VAR
(

log γ(X t
i , Y

t
i | Ψ̂s

n)− log γ(X t
i , Y

t
i | Ψs)

)
= O

(
n−ν1(log n)ν1

)
(3.13)
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and for t∗, s∗ ∈ {1, 2}, j 6= i,∣∣∣E( [log γ(X t
i , Y

t
i | Ψ̂s

n)− E(log γ(X t
i , Y

t
i | Ψs))

]
[
log γ(Xs∗

j , Y
s∗

j | Ψ̂t∗

n )− E(log γ(Xs∗

j , Y
s∗

j | Ψt∗))
] )∣∣∣ = O

(
n−ν3(log n)ν3

)
= o

(
n−1
)

(3.14)

as n ≤ min{n1, n2} → ∞. The value of the constant Cts
2 depends on the density f and on

the structure of the sets Ds ⊂ Ψs and Dt ⊂ Ψt.

4 Inference about Malmquist Index Components

4.1 Inference about Change in Technology

This section focuses on the technology change measure T2(Z1
i , Z

2
i | Ψ1,Ψ2) defined in

(2.11) and appearing in (2.13). The measure T1(Z1
i , Z

2
i | Ψ1,Ψ2) defined in (2.9) is seldom

used in the literature, but nonetheless is considered in Section 4.2 as are the other components

of productivity change defined in (2.9), (2.10), (2.11) and (2.13).

As discussed above, the sample Xn = {Z1
i , Z

2
i }ni=1 contains the set of input-output pairs

from periods 1 and 2 for firms observed in both periods. However, there may be n1 > n

firms observed in period 1, and n2 > n firms observed in period 2 so that n ≤ min(n1, n2).

The n1 observations in X 1
n1

= {Z1
i }

n1
i=1 can be used to construct an estimate Ψ̂1

n1
of Ψ1, while

the n2 observations in X 2
n2

= {Z2
i }

n2
i=1 can be used to construct an estimate Ψ̂2

n2
of Ψ2. For

a firm observed at z1 = (x1, y1) ∈ Ψ1 in period 1 and at z2 = (x2, y2) ∈ Ψ2 in period 2,

T2(z1, z2 | Ψ1,Ψ2) is estimated by T2(z1, z2 | Ψ̂1
n1
, Ψ̂2

n2
).

Theorem 4.1. Under Assumptions 2.1–2.7, A.1 part (iii) and A.2, for each z1 ∈ D1 and

z2 ∈ D2, as n1, n2 →∞

nκ
(
T2(z1, z2 | Ψ̂1

n1
, Ψ̂2

n2
)− T2(z1, z2 | Ψ1,Ψ2)

)
L−→ QT2,z1,z2 (4.1)

where QT2,z1,z2 is a non-degenerate distribution with finite variance.

Theorem 4.1 establishes the existence of a limiting distribution as well as consistency and

rate of convergence nκ for the estimator T2(z1, z2 | Ψ̂1
n1
, Ψ̂2

n2
). These results are sufficient

12



to enable valid inference about T2(z1, z2 | Ψ1,Ψ2) for a single firm using the subsampling

methods described by Simar and Wilson (2011).

Given the sample Xn, one may obtain n estimates T2(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
). Define

µT2 :=E
(
log T2(Z1

i , Z
2
i | Ψ1,Ψ2)

)
=E

(
log γ(Z2

i | Ψ1)− log γ(Z2
i | Ψ2) + log γ(Z1

i | Ψ1)− log γ(Z1
i | Ψ2)

)
, (4.2)

where expectations are with respect to Z1
i and Z2

i . Then consider the sample mean

µ̂T2,n := n−1

n∑
i=1

log T2(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
). (4.3)

To simplify notation, let σ2
T2 = VAR (log T2(Z1

i , Z
2
i | Ψ1,Ψ2)) < ∞ where expectations

are over (Z1, Z2). The next result provides a CLT for µT2 .

Theorem 4.2. Under Assumptions 2.1–2.7, A.1 part (iii) and A.2, ∃ a constant DT2 such

that

n1/2
(
µ̂T2,n − µT2 −DT2n−κ − ξn,κ

) d−→ N
(
0, σ2

T2

)
(4.4)

where ξn,κ = O (n−ν1(log n)ν1) = o (n−κ) and ν1 is defined in Theorem 3.2. In addition,

σ̂2
T2,n = n−1

n∑
i=1

(
log T2(Z1

i , Z
2
i | Ψ̂1

n1
, Ψ̂2

n2
)− µ̂T2,n

)2 p−→ σ2
T2 . (4.5)

Although µ̂T2,n is a consistent estimator of µT2 , the estimator has bias DT2n
−κ. If κ > 1/2,

then the bias as well as the remainder term ξn,κ are dominated by the n1/2 scaling factor and

hence can be ignored. Consequently, whenever κ > 1/2, a (1− α)× 100-percent confidence

interval for µ̂T2,n is estimated by [
µ̂T2,n ± z1−α

2

σ̂T2,n√
n

]
, (4.6)

where z1−α
2

is the corresponding (1− α
2
) quantile of the standard normal distribution func-

tion. Under the conditions of Theorem 4.2, this interval has asymptotically correct coverage

provided κ > 1/2 (i.e., p+ q ≤ 2).

By contrast, if κ = 1/2, the bias in (4.4) is constant. If κ < 1/2, the bias tends to

infinity as n→∞. In cases where κ ≤ 1/2, replacing the scaling factor n1/2 with nζ where

ζ ∈ (0, κ) would drive the bias to 0 as n → ∞, but would also drive the variance to 0,
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resulting in a degenerate limiting distribution and preventing inference from begin made.

The usefulness of Theorem 4.2 for practical applications is quite limited since κ > 1/2 if and

only if (p + q) ≤ 2. Fortunately, an approach similar to the one of Kneip et al. (2015) can

be used to solve this problem.

Let nκ = min(bn2κc, n), where bac denotes the largest integer less than or equal to a.

Then for κ < 1/2, nκ < n. Assume that the observations in Xn are randomly sorted (the

algorithm described by Daraio et al., 2018, Appendix D can be used to randomly sort the

observations while allowing results to be replicated by other researchers using the same data

and the same sorting algorithm). Define

µ̂T2,nκ := n−1
κ

nκ∑
i=1

log
(
T2(Z1

i , Z
2
i | Ψ̂1

n1
, Ψ̂2

n2
)
)
. (4.7)

Note that the estimates T2(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
) are computed using all of the available obser-

vations, but that the summation is over only the first nκ observations in Xn. The next result

establishes the properties of this estimator.

Theorem 4.3. Under Assumptions 2.1–2.7, A.1 part (iii) and A.2, for cases where κ ≤ 1/2,

nκ
(
µ̂T2,nκ − µT2 −DT2n−κ − ξn,κ

) d−→ N
(
0, σ2

T2

)
(4.8)

as n→∞, where ξn,κ = O (n−ν1(log n)ν1) = o (n−κ) and ν1 is defined in Theorem 3.2.

The bias term DT2n
−κ remains in (4.8), but the both the bias and the variance remain

constant as n→∞. Consequently, the bias term can be replaced with a generalized jackknife

estimate B̂T2,n,κ similar to the bias estimate developed in Kneip et al. (2015). The bias

estimate presented in Kneip et al. assumes n1 = n2 = n, while the presentation below

explicitly allows n1 ≥ n or n2 ≥ n.

Recall that n firms are observed in both periods 1 and 2; these observations comprise

the sample Xn = {(Z1
i , Z

2
i )}. In addition, as discussed above, there are n∗1 = n1 − n ≥ 0

firms observed in period 1 but not in period 2; let these observations comprise the set

W1
n∗1

= {W 1
i }

n∗1
i=1 ⊂ X 1

n1
. Similarly, there are n∗2 = n2 − n ≥ 0 firms observed in period 2 but

not in period 1; let W2
n∗2

= {W 2
i }

n∗2
i=1 ⊂ X 2

n2
denote the set of such observations. Of course,

either W1
n∗1

or W2
n∗2

will be the empty set if n1 = n or n2 = n. Now split Xn randomly into

two sub-samples X (1)
m1 and X (2)

m2 of sizes m1 = bn/2c and m2 = n − bn/2c (respectively).
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Note that if n is even, m1 = m2, but if n is odd then m1 = m2 − 1. Asymptotically, this

makes no difference since m1/m2 → 1 as n→∞. In addition, split W1
n∗1

randomly into two

sub-samples W1(1)
m11 and W1(2)

m12 of sizes m11 = bn∗1/2c and m12 = n∗1−bn∗1/2c (respectively). If

n∗1 is even, m11 = m12, but if n∗1 is odd then m11 = m12−1, but this also makes no difference

asymptotically. Similarly, splitW2
n∗2

randomly into two sub-samplesW2(2)
m21 andW2(2)

m22 of sizes

m21 = bn∗2/2c and m22 = n∗1 − bn∗2/2c (respectively). If n∗2 is even, m21 = m22, but if n∗2 is

odd then m21 = m22 − 1, but again this also makes no difference asymptotically.

Now let X t(j)
mj denote the set of observations on Zt

i for period t ∈ {1, 2} and subsample

j ∈ {1, 2}. Let m∗tj = mj +mtj. Define V t(j)m∗tj
:= X (t)

mj ∪W
t(j)
mtj . Let Ψ̂

t(j)
m∗tj

denote the estimator

of Ψt, analogous to (3.1), but obtained using the observations in V t(j)m∗tj
instead of X t

n1
. Let

γ(x, y | Ψ̂
t(j)
m∗tj

) denote the corresponding estimator of γ(x, y | Ψ) obtained by substituting

Ψ̂
t(j)
m∗tj

for Ψ in (2.5).

Now define

µ̂
(j)
T2,mj := m−1

j

∑
i|(Z1

i ,Z
2
i )∈X (j)

mj

log T̂2(W 1
i ,W

2
i | Ψ̂

1(j)
m∗1j

, Ψ̂
2(j)
m∗2j

) (4.9)

for j ∈ {1, 2} and set

µ̂∗T2,n/2 =
1

2

(
µ̂

(1)
T2,m1

+ µ̂
(2)
T2,m2

)
. (4.10)

Using reasoning similar to that in Kneip et al. (2015, Section 4), it is easy to show that

B̃T2,n,κ = (2κ − 1)−1 (µ̂∗T2,n/2 − µ̂M,n

)
= DT2n

−κ + ξ∗n,κ + op
(
n−1/2

)
, (4.11)

provides an estimator of the bias DT2n
−κ. The remainder term ξ∗n,κ in (4.11) is of the same

order as ξn,κ appearing in (4.4).

Note that there are
(
n
n/2

)
possible splits of the original n observations. To reduce the

variance of the bias estimate in (4.11), the sample can be split K <<
(
n
n/2

)
times while

randomly shuffling the observations before each split, and computing B̃T2,n,κ,k using (4.11)

for k = 1, . . . , K. Then

B̂T2,n,κ = K−1

K∑
k=1

B̃T2,n,κ,k (4.12)

gives a generalized jackknife estimate of the bias DT2n
−κ (Gray and Schucany, 1972, Defini-

tion 2.1). Averaging in (4.12) reduces the variance by a factor of K−1 relative to the bias in

(4.11).
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Substituting the bias estimate in (4.12) for the bias terms DT2 in Theorems 4.2 and 4.3

leads to the following CLT result.

Theorem 4.4. Under the conditions of Theorem 4.2, as n→∞

n1/2
(
µ̂T2,n − B̂T2,n,κ − µT2 − ξn,κ

)
d−→ N

(
0, σ2

T2

)
(4.13)

whenever κ ≥ 2/5. In addition, for cases where κ < 1/2,

nκ
(
µ̂T2,nκ − B̂T2,n,κ − µT2 − ξn,κ

)
d−→ N

(
0, σ2

T2

)
(4.14)

as n→∞.

Note that in all cases (i.e., for all values of κ), ξn,κ = o(n−κ) and hence nκξn,κ = o(1).

Therefore the remainder term can be neglected.

In cases where κ ≥ 2/5 and hence (p + q) ≤ 4, Theorem 4.4 together with (4.5) from

Theorem 4.2 ensures that the interval[
µ̂T2,n − B̂T2,n,κ ± z1−α

2

σ̂T2,n√
n

]
, (4.15)

where as in (4.6) z1−α
2

represents the
(
1− α

2

)
quantile of the standard normal distribution

function provides an asymptotically correct (1 − α) confidence interval for µT2 . For cases

where κ < 1/2 and hence (p+q) ≥ 4, Theorem 4.4 permits construction of the asymptotically

correct (1− α) confidence interval[
µ̂T2,nκ − B̂T2,n,κ ± z1−α

2

σ̂T2,n
nκ

]
(4.16)

for µT2 .

The interval in (4.16) is centered on µ̂T2,nκ−B̂T2,n,κ, and µ̂T2,nκ is computed from a random

subset of nκ estimates T2(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
). As discussed by Kneip et al. (2015), while

this may seem arbitrary, any confidence interval for µT2 is arbitrary since any asymmetric

confidence interval for µT2 can be constructed simply by using different quantiles of the

N(0, 1) distribution to establish the bounds. The goal is always to achieve a high level of

coverage without making the confidence interval too wide to be informative.

Alternatively, in cases where κ < 1/2, the randomness of the interval in (4.16) due to

centering on a mean over a subsample of size nκ < n can be eliminated by replacing µ̂T2,nκ
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with µ̂T2,n to obtain [
µ̂T2,n − B̂T2,n,κ ± z1−α

2

σ̂T2,n
nκ

]
. (4.17)

Both intervals (4.16) and (4.17) have the same length and hence are equally informative.

However, the interval in (4.17) should have higher coverage in finite samples because the

estimator µ̂T2,n uses more information than the estimator µ̂T2,nκ . Hence for κ < 1/2, nκ < n

and hence the interval in (4.17) contains the true value µT2 with probability greater than

(1−α). Due to the results given above, it is clear that the coverage of the interval in (4.17)

converges to 1 as n→∞.

Note that when (p+q) = 4, either result (4.13) or (4.14) can be used to construct intervals

with asymptotically correct coverage. For reasons given by Kneip et al. (2015, Section 4.1),

one should expect the interval in (4.16) to provide a better approximation in finite samples

than (4.15) when (p+ q) = 4.

As with estimates of the Malmquist index defined in (2.8), researchers typically report

geometric means

T̂2,n = exp (µ̂T2,n) =

(
n∏
i=1

T̂2(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
)

)1/n

. (4.18)

Clearly, T̂2,n can be seen as an estimator of T2 = exp (µT2). The properties of this estimator

are given the next result.

Theorem 4.5. Under Assumptions 2.1–2.7, A.1 part (iii) and A.2, as n ≤ min{n1, n2} →
∞

n1/2
(
T̂2,n − exp(µT2) + exp(µT2)DT2n

−κ + ξ∗n,κ

)
d−→ N

(
0, exp(2µT2)σ

2
T2

)
(4.19)

where ξ∗n,κ = O (n−ν1(log n)ν1) = o (n−κ) and ν1 is defined in Theorem 3.2.

Provided κ > 1/2, both the bias and the remainder terms in (4.19) are asymptotically

negligible, and [
T̂2,n ± z1−α

2

exp (µ̂T2,n) σ̂T2,n
n1/2

]
(4.20)

provides a (1−α)× 100-percent confidence interval for exp(µT2) with asymptotically correct

coverage. But if κ ≤ 1/2, the bias must be dealt with.
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Suppose κ ≤ 1/2. Assume the observations in Xn are randomly ordered and define

T̂2,nκ = exp (µ̂T2,nκ) =

(
nκ∏
i=1

T̂2(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
)

)1/nκ

. (4.21)

Note that the estimates under the product sign are computed using all of the available data,

but the product is over only the first nκ observations in Xn. The properties of the estimator

T̂2,nκ are established in the next theorem.

Theorem 4.6. Under Assumptions 2.1–2.7, A.1 part (iii) and A.2, for cases where κ ≤ 1/2,

nκ
(
T̂2,nκ − exp(µT2) + exp(µT2)DT2n

−κ + ξ∗n,κ

)
d−→ N

(
0, exp(2µT2)σ

2
T2

)
(4.22)

as n→∞.

As in Theorem 4.3, the bias is stabilized in Theorem 4.6, but it does not disappear as

n→∞ and therefore must be estimated. A generalized jackknife estimate B̂T2,n,κ analogous

to the estimate B̂T2,n,κ discussed above can be obtained by following the steps to compute

B̂T2,n,κ but replacing the sample arithmetic means with their corresponding sample geometric

means. This leads to the following result.

Theorem 4.7. Under the conditions of Theorem 4.2, as n→∞

n1/2
(
T̂2,n − B̂T2,n,κ − exp(µT2) + ξ∗n,κ

)
d−→ N

(
0, exp(2µT2)σ

2
T2

)
(4.23)

as n→∞ whenever κ ≥ 2/5. In addition, for cases where κ < 1/2,

nκ
(
T̂2,nκ − B̂T2,n,κ − exp(µT2)− ξ∗n,κ

)
d−→ N

(
0, exp(2µT2)σ

2
T2

)
(4.24)

as n→∞.

For cases where κ ≥ 2/5, Theorem 4.7 permits construction of an asymptotically correct

(1− α) confidence interval for exp(µT2) given by[
T̂2,n − B̂∗T2,n,κ

± z1−α
2

exp (µ̂T2,n) σ̂T2,n
n1/2

]
. (4.25)

Alternatively, whenever κ < 1/2, Theorem 4.7 can be used to construct the asymptotically

correct (1− α) confidence interval[
T̂2,nκ − B̂∗T2,n,κ

± z1−α
2

exp (µ̂T2,n) σ̂T2,n
nκ

]
. (4.26)
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Analogous to the discussion above, one could also replace T̂2,nκ with T̂n in (4.26), with the

coverage of the resulting interval converging to 1 as n→∞.

Also as discussed above, one can use either of the intervals in (4.25) and (4.26) when

(p + q) = 4. The interval in (4.25) uses the scaling factor
√
n and hence neglects the term

√
nηn,κ = O

(
n−1/10

)
in result (4.23) of Theorem 4.7, while the interval in (4.26) uses the

scaling factor nκ and hence neglects the term nκηn,κ = O
(
n−1/5

)
in result (4.24) of Theorem

4.7. Therefore one should expect (4.26) to provide a better approximation in finite samples

than (4.25) when (p+ q) = 4. For testing purposes, however, one cannot escape the tradeoff

between size and power.

The null hypothesis of no technology change corresponds to exp(µT2) = 1, while the

alternative hypothesis of change in technology between periods 1 and 2 corresponds to

exp(µT2) 6= 1. Hence the null is rejected whenever the relevant estimated confidence in-

terval in (4.25) or (4.26) does not include unity. The results of such tests are expected to

be similar to the results of similar tests based on log values, but small differences may arise

due to the different asymptotic approximations involved. Asymptotically, any differences are

negligible.

4.2 Inference about Other Components of Productivity Change

From an applications perspective, the most important results in Section 4.1 are Theorems

4.1, 4.4 and 4.7. The results in Theorems 4.2 and 4.3 are intermediate results needed to

establish Theorem 4.1 and make clear the role of estimation bias. Theorems 4.5 and 4.6

similarly lead to Theorem 4.7. Just as T2(Z1
i , Z

2
i | Ψ1,Ψ2) is estimated by T2(Z1

i , Z
2
i |

Ψ̂1
n1
, Ψ̂2

n2
) in Section 4.1, each of the components E1(Z1

i , Z
2
i | Ψ1,Ψ2), E2(Z1

i , Z
2
i | Ψ1,Ψ2),

T1(Z1
i , Z

2
i | Ψ1,Ψ2), S1(Z1

i , Z
2
i | Ψ1,Ψ2), S2(Z1

i , Z
2
i | Ψ1,Ψ2) and S3(Z1

i , Z
2
i | Ψ1,Ψ2) defined

in (2.9), (2.10), (2.11) and (2.13) can be estimated by replacing Ψ1 and Ψ2 in the definitions

of the measures by the estimators Ψ̂1
n1

and Ψ̂2
n2

.

A careful reading of the proofs of Theorems 4.4–4.7 in Appendix A reveals that arguments

similar to those used to obtain the results for change in technology in Section 4.1 can be used

to establish analogous results for an estimator of the change-in-efficiency measure E2(Z1
i , Z

2
i |

Ψ1,Ψ2), which like the estimator of T2(Z1
i , Z

2
i | Ψ1,Ψ2) involves a ratio of measures γ(Zs

i |
Ψt). The other components of productivity change listed above involve ratios of both γ(Zs

i |
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Ψt) and γ(Zs
i | C(Ψt)), s, t ∈ {1, 2}. Arguments similar to those used in the proofs of

the results in Section 4.1, combined with results from Kneip et al. (2018) on the CDEA

estimator of distances to boundaries of conical hulls C(Ψt), can be used to derive results

for estimators of E1(Z1
i , Z

2
i | Ψ1,Ψ2), T1(Z1

i , Z
2
i | Ψ1,Ψ2), S1(Z1

i , Z
2
i | Ψ1,Ψ2), S2(Z1

i , Z
2
i |

Ψ1,Ψ2) and S3(Z1
i , Z

2
i | Ψ1,Ψ2) analogous to those obtained in Section 4.1 for the estimator

of T2(Z1
i , Z

2
i | Ψ1,Ψ2). Consequently, to avoid repetition, the results in this section are stated

without formal proofs.

To simplify notation, let Ξ be a place-holder denoting either E1, E2, T2, S1, S2 or S3 or

some other index defined in terms of ratios of the measures γ(Zs
i , Z

t
i | Ψs,Ψt) or γ(Zs

i , Z
t
i |

C(Ψs), C(Ψt)), s, t ∈ {1, 2}. The results that follow hold when Ξ is replaced with any of the

components listed above. The next result is immediate.

Theorem 4.8. Under Assumptions 2.1–2.7, A.1 and A.2, for each z1 ∈ D1 and z2 ∈ D2,

as n1, n2 →∞

nκ
(

Ξ(z1, z2 | Ψ̂1
n1
, Ψ̂2

n2
)− Ξ(z1, z2 | Ψ1,Ψ2)

)
L−→ QΞ,z1,z2 (4.27)

where QΞ,z1,z2 is a non-degenerate distribution with finite variance.

Remark 4.1. Note that in the theorems of Section 4.1, parts (i)–(ii) of Assumption A.1 are

not needed since the measure T2(Z1
i , Z

2
i | Ψ1,Ψ2) does not involve the conical hull of either

Ψ1 or Ψ2. Similarly, E2(Z1
i , Z

2
i | Ψ1,Ψ2) also does not involve the conical hull of either Ψ1

or Ψ2. Hence when E2 replaces Ξ in (4.27), Theorem 4.8 does not require parts (i)–(ii) of

Assumption A.1. But for the other measures listed above, all three parts of Assumption A.1

are needed. The same remark applies to the remaining theorems that follow in this section.

Theorem 4.8 establishes the existence of limiting distributions as well as consistency and

rate of convergence nκ for the estimators of the components E1(Z1
i , Z

2
i | Ψ1,Ψ2), E2(Z1

i , Z
2
i |

Ψ1,Ψ2), T1(Z1
i , Z

2
i | Ψ1,Ψ2), S1(Z1

i , Z
2
i | Ψ1,Ψ2), S2(Z1

i , Z
2
i | Ψ1,Ψ2) and S3(Z1

i , Z
2
i | Ψ1,Ψ2)

of productivity change. These results are sufficient to enable valid inference about each

component for a single firm using the subsampling methods described by Simar and Wilson

(2011).

Analogous to (4.2), define

µΞ := E
(
log Ξ(Z1

i , Z
2
i | Ψ1,Ψ2)

)
(4.28)
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and consider the sample mean

Ξ̂,n := n−1

n∑
i=1

log Ξ(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
). (4.29)

Similar to (4.7), define

Ξ̂,nκ := n−1
κ

nκ∑
i=1

log Ξ(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
), (4.30)

noting that the estimates log Ξ(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
) are computed using all of the available

observations, but that the summation is over only the first nκ observations in Xn where

again nκ = min(bn2κc, n). Finally, let B̂Ξ,n,κ denote the generalized jackknife estimate of

bias DΞn
−κ analogous to B̂T2,n,κ in (4.12) obtained by replacing T2 with Ξ in (4.9)–(4.12).

The next result enables inference about µΞ.

Theorem 4.9. Under the conditions of Theorem 4.2, as n→∞

n1/2
(
µ̂Ξ,n − B̂Ξ,n,κ − µΞ − ξΞ,n,κ

)
d−→ N

(
0, σ2

Ξ

)
(4.31)

whenever κ ≥ 2/5. Alternatively, for cases where κ < 1/2,

nκ
(
µ̂Ξ,nκ − B̂Ξ,n,κ − µΞ − ξΞ,n,κ

)
d−→ N

(
0, σ2

Ξ

)
(4.32)

as n→∞. In addition,

σ̂2
Ξ,n = n−1

n∑
i=1

(
log Ξ(Z1

i , Z
2
i | Ψ̂1

n1
, Ψ̂2

n2
)− µ̂Ξ,n

)2 p−→ σ2
Ξ. (4.33)

In all cases (i.e., for all values of κ), ξΞ,n,κ = o(n−κ) and hence nκξΞ,n,κ = o(1). Therefore

the remainder term can be neglected. Theorem 4.9 ensures that the interval[
µ̂Ξ,n − B̂Ξ,n,κ ± z1−α

2

σ̂Ξ,n√
n

]
(4.34)

provides a confidence interval for µΞ with asymptotically correct coverage of (1−α) in cases

where κ ≥ 2/5. Alternatively, when κ < 1/2, Theorem 4.9 ensures that the interval[
µ̂Ξ,nκ − B̂Ξ,n,κ ± z1−α

2

σ̂Ξ,n

nκ

]
(4.35)

has asymptotic coverage of (1− α).
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In order to consider geometric means of the various components of productivity change

while avoiding repetitive notation, let E1, E2, T1, T2, S1, S2 or S3 denote geometric

means of estimators of E1, E2, T1, T2, S1, S2 or S3, respectively. In other words, write

Υ̂,n = exp (µ̂Ξ,n) =

(
n∏
i=1

Ξ̂(Z1
i , Z

2
i | Ψ̂1

n1
, Ψ̂2

n2
)

)1/n

(4.36)

and replace Ξ with one of {E1, E2, T1, T2, S1, S2, S3} while replacing Υ with the corre-

sponding element of the set {E1, E2, T1, T2, S1, S2, S3} (for example, replacing Ξ and

Υ in (4.36) with T2 and T2, respectively, yields the expression in (4.18)). Then let B̂Υ,n,κ

denote a generalized jackknife estimate of bias analogous to B̂T2,n,κ obtained by replacing T2

with Υ in (4.9)–(4.12). Similar to (4.18), Υ̂,n can be viewed as an estimator of Υ = exp(µΞ).

The results in the remainder of this sections are stated in terms of Ξ and Υ, with the under-

standing that these are place-holders as described above. The next result permits inference

about Υ = exp(µΞ).

Theorem 4.10. Under the conditions of Theorem 4.2, as n→∞

n1/2
(

Υ̂,n − B̂Υ,n,κ − exp(µΞ) + ξ∗n,κ

)
d−→ N

(
0, exp(2µΞ)σ2

Ξ

)
(4.37)

as n→∞ whenever κ ≥ 2/5. In addition, for cases where κ < 1/2,

nκ
(

Υ̂,nκ − B̂Υ,n,κ − exp(µΞ)− ξ∗n,κ
)

d−→ N
(
0, exp(2µΞ)σ2

Ξ

)
(4.38)

as n→∞.

For cases where κ ≥ 2/5, Theorem 4.10 permits construction of an asymptotically correct

(1− α) confidence interval for exp(µΞ) given by[
Υ̂,n − B̂∗Υ,n,κ ± z1−α

2

exp (µ̂Ξ,n) σ̂Ξ,n

n1/2

]
. (4.39)

Alternatively, whenever κ < 1/2, Theorem 4.10 can be used to construct the asymptotically

correct (1− α) confidence interval[
Υ̂,nκ − B̂∗Υ,n,κ ± z1−α

2

exp (µ̂Ξ,n) σ̂Ξ,n

nκ

]
. (4.40)

Analogous to the discussion above, one could also replace Υ̂,nκ with Υ̂,n in (4.40), with the

coverage of the resulting interval converging to 1 as n→∞.
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5 An Empirical Illustration

Färe et al. (1992) examine productivity change among n = 42 Swedish pharmacies over

1980–1989. Their model specifies p = 4 inputs and q = 4 outputs.6 As noted in Section

2, Färe et al. estimate a Malmquist index based on input-oriented distance measures, and

decompose their index analogously to the decomposition in (2.9). For each pair of years

1980–1981, 1981–1982, . . ., 1988–1989 Färe et al. report geometric means of their estimated

Malmquist indices as well as for their estimates of input-oriented analogues of the components

E1(Z1
i , Z

2
i | Ψ1,Ψ2) and T1(Z1

i , Z
2
i | Ψ1,Ψ2) defined in (2.9).

Table 1 shows geometric means of estimated hyperbolic Malmquist indices as well as of

the various components defined in (2.9), (2.10), (2.11) and (2.13). One, two or three asterisks

indicate statistical significance of differences from 1 at levels .1, .05 and .01 (respectively).

Geometric means of estimated Malmquist indices for year-to-year periods range from 0.9708

to 1.0364, but are significantly different (at the .05 level) from 1 only for 1984–1985 and

1985–1986 (at .1) and 1987–1988 and 1988–1989 (at .01). However, looking at 1980–1989,

there is evidence of considerable (about 9 percent, significant at .05) change in productivity.

In the periods where geometric means of estimated Malmquist indices are not signif-

icantly different from 1, some of the components of productivity change are significantly

different from 1 although they work to offset each other resulting in no significant change in

productivity. For example, the geometric mean of estimated Malmquist indices among the

year-to-year periods is largest—1.03636—for 1981–1982. Both of the geometric means for

efficiency change estimates are significant and less than 1, while both of the geometric means

for change in technology are significant and greater than 1. Combined, these results suggest

that while the technology shifted upward between 1981 and 1982, the pharmacies did not

become more productive, and consequently became less technically efficient. In other words,

the technology shifted, but the pharmacies did not. Instead, they were left behind. The

value of 0.99626 for Ŝ1,n during 1981–1982 indicates a significant decrease in scale efficiency,

but the value is perhaps not economically significant since it is numerically close to 1.

For 1980–1989, the estimated value Ê2,n for (geometric) mean efficiency change is numer-

6 The inputs are (i) labor input for pharmacists; (ii) labor input for technical staff; (iii) building services;
and (iv) equipment services. The outputs are (i) drug deliveries to hospitals; (ii) prescription drugs for
outpatient care; (iii) medical appliances for the handicapped; and (iv) over the counter goods. See Färe
et al. (1992) for further details. We are grateful to the authors for making the data available.
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ically very close to 1, but significantly different from 1 at the .01 level. This is due in part to

the fact that the estimated variance σ̂E2,n is rather small (0.00198). Although the estimate

is significantly different from 1, it is perhaps not economically meaningful. By contrast, the

value of the technology-change estimate T̂2,n is equal to 1.10708, and significant at the .01

level. Together, these two estimates imply that the technology shifted upward between 1980

and 1989, and the pharmacies also shifted upward, keeping pace with the technology. The

product of the scale estimates Ŝ1,n and Ŝ2,n is less than 1 (the estimate Ŝ3,n is also less than

1). Thus while the technology improved by about 10.7 percent, and efficiency was largely

unchanged, the scale effects offset a small part of the improvement in technology resulting

in an increase in average productivity of about 9.2 percent.

6 Summary and Conclusions

Indices arising from various decompositions of Malmquist indices are widely used to

measure changes in technology efficiency, technology, scale efficiency and other factors and

are often estimated by nonparametric DEA estimators. Until now, no theoretical results

justifying inference about the sources of productivity change measured by these indices have

been available, nor have theoretical results permitting valid inference using geometric means

of these indices been available. These deficiencies are remedied by the present paper. Results

enabling inference via the subsampling methods of Simar and Wilson (2011) for individual

producers are provided. In addition, new CLT results are established to enable inference

about overall or average changes in terms of geometric means. Moreover, it is easy to

use these new CLT results to test hypotheses regarding differences in changes in efficiency,

changes in technology, etc. between groups of firms along the lines of Kneip et al. (2016).

A Technical Details

A.1 Additional Assumptions

The two additional assumptions that appear in this section appear as Assumptions 3.1

and 3.2 in Kneip et al. (2018). The first assumption is needed to ensure that estimators

of θ(x, y | Ψt) and γ(x, y | Ψt) are well-defined. The second assumption ensures that the

cross-efficiency estimators θ(Z2
i | Ψ1) and θ(Z1

i | Ψ2) as well as γ(Z2
i | Ψ1) and γ(Z1

i | Ψ2)
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are well-defined. Before stating the assumptions, some discussion is presented to establish

notation used in the first assumption. See Kneip et al. (2018) for additional discussion.

Note that for a point (x, y) ∈ Dt the input-oriented efficiency θ(x, y | C(Ψt)) can be

written as7

θ(x, y | C(Ψt)) = min
a>0

{
θ(x, ay | Ψt)

a
| (θ(x, ay | Ψt)x, ay) ∈ Ψt

}
. (A.1)

In addition, let ax,ymin ∈ R+ denote the smallest a > 0 such that

θ(x, y | C(Ψt)) =
θ(x, ax,yminy | Ψt)

ax,ymin
= min

a>0

{
θ(x, ay | Ψt)

a
| (θ(x, ay | Ψt)x, ay) ∈ Ψt

}
. (A.2)

Necessarily, ax,ymin ∈ R+ is uniquely defined if Ψt is strictly convex.

Recall that due to Assumptions 2.4–2.7, the support of any observable data in each period

t is some subset Dt ⊂ Ψt. In other words, Dt is the “observable part” of Ψt. The difference

between Dt and Ψt does not play an important role in Kneip et al. (2008, 2015 and 2016)

since Assumption 2.5 requires (i) (θ(x, y | Ψt)x, y) ∈ Dt for (θ(x, y | Ψt)x, y) ∈ Dt and (ii)

f(θ(x, y | Ψt)x, y) > 0. Here, however, the difference between Dt and Ψt is problematic

for dealing with θ(x, y | C(Ψt)). Furthermore, in order to ensure that Malmquist indices

are well-defined, Dt and Ds must “fit together” for different periods t, s. Therefore, some

additional conceptual work is necessary.

Let

Dtnorm :=

{(
x

‖x‖
,
y

‖y‖

)
| (x, y) ∈ Dt

}
. (A.3)

If p + q = 2 then trivially Dtnorm = {(1, 1)}. But when p + q > 2, Dtnorm will quantify the

set of all possible “directions” of vectors x and y where it is possible to define a frontier.

Note that for any (x̃, ỹ) with ‖x̃‖ = 1 and ‖ỹ‖ = 1 and (x̃, ỹ) /∈ Dtnorm, we necessarily have

{ax̃, bỹ | a, b > 0} ∩ Dt = ∅. This means that “in the direction” of (x̃, ỹ) it is not possible

to define any type of identifiable efficiency measure, since there is no information about an

efficient frontier in such directions.8

7 For any efficiency estimator θ(x, y | Ψt) considered in this section we will use the following conventions:
if (x, y) 6∈ Ψt with (bx, y) ∈ Ψt for some b > 1 we set θ(x, y | Ψt) = bθ(bx, y | Ψt). Otherwise, θ(x, y | Ψt) := 1

(or θ̂(x, y | Ψt) := 1) whenever the set of all possible values satisfying the defining inequalities is the empty
set. Asymptotically, this has negligible effect.

8 Under the strong disposability assumed in Assumption 2.3, the DEA and CDEA estimators of θ(x, y | Ψt)
and θ(x, y | C(Ψt)) described above are well-defined and can be computed, but they do not estimate anything
that does not depend entirely upon Assumption 2.3 or that can be identified from data when (x, y) 6∈ Dt

norm.
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Introduction of Dtnorm is of particular importance in a dynamic context where efficiencies

in two different time periods t and s are to be compared. Frontiers may change and we

may have different supports Dt and Ds in the two periods. However, it is necessary that

Dtnorm = Dsnorm. Otherwise, there will be observations in one period for which distance to

the other-period frontier cannot be defined. In this case Malmquist indices will be undefined

with non-zero, non-negligible probability.

On the other hand, for any
(

x
‖x‖ ,

y
‖y‖

)
∈ Dtnorm there exists a unique ray defining the

corresponding part of the conical hull frontier C∂(Ψt). This can easily be seen by letting(
x
‖x‖ ,

y
‖y‖

)
∈ Dtnorm. In addition, for a > 0, define

g̃x

(
a
y

‖y‖

)
:= min

b>0

{
b
x

‖x‖
|
(
b
x

‖x‖
, a

y

‖y‖

)
∈ Ψt

}
. (A.4)

Then there exists some αx,ymin > 0 such that

g̃x(α
x,y
min

y
‖y‖)

αx,ymin
= min

a>0

{
g̃x(a

y
‖y‖)

a
|
(
gx

(
a
y

‖y‖

)
x

‖x‖
, a

y

‖y‖

)
∈ Ψt

}
(A.5)

where αx,ymin ∈ R+ is necessarily uniquely defined if Ψt is strictly convex.9

Assuming that only values a leading to well-defined frontier points are taken into account,

for any (x, y) ∈ Dt we now have

min
a>0

θ(x, ay)

a
= min

a>0

g̃x(‖y‖a y
‖y‖)

‖x‖a
=
‖y‖
‖x‖

min
a>0

g̃x(‖y‖a y
‖y‖)

‖y‖a
=
‖y‖
‖x‖

g̃x(α
x,y
min

y
‖y‖)

αx,ymin
, (A.6)

and ax,ymin defined in (A.2) satisfies ax,ymin =
αx,ymin
‖y‖ .

Obviously, all we can hope to estimate is the version of (A.5) where Ψt is replaced by

the observable part Dt ⊂ Ψt. If αx,ymin ∈ R+ is such that (gx(α
x,y
min

y
‖y‖)

x
‖x‖ , α

x,y
min

y
‖y‖) /∈ D

t, then

it is impossible to estimate θ(x, y | C(Ψt)) consistently. Minimizing (A.5) with respect to Dt

instead of Ψt will then lead to a “boundary solution” α∗ ∈ Dt which is “as close as possible”

to αx,ymin ∈ R+. This can only be avoided by assuming that Dt is large enough such that (when

minimizing (A.5) over Dt instead of Ψt) the solution ax,ymin ∈ R+ is in the interior of Dt in the

sense that (gx((α
x,y
min−δ)

y
‖y‖)

x
‖x‖ , (α

x,y
min−δ)

y
‖y‖) ∈ D

t as well as (gx((α
x,y
min+δ) y

‖y‖)
x
‖x‖ , (αx,ymin+

9 Note that g̃x

(
a y
‖y‖

)
corresponds to the function gx

(
0, a y
‖y‖

)
defined in Kneip et al. (2008). The

coordinate system introduced in Kneip et al. (2008) is not needed here, but is required in the proofs that
follow in Appendix A.
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δ) y
‖y‖) ∈ D

t. Since Dt is almost strictly convex by Assumption 2.7, αx,ymin ∈ R+ is necessarily

unique, and
g̃x((ax,ymin−δ)

y
‖y‖ )

(ax,ymin−δ)
>

g̃x(αx,ymin
y
‖y‖ )

αx,ymin
as well as

g̃x((αx,ymin+δ) y
‖y‖ )

(αx,ymin+δ)
>

g̃x(αx,ymin
y
‖y‖ )

αx,ymin
. Convexity of

Ψt then necessarily implies that this value αx,ymin ∈ R+ also corresponds to the solution of the

original minimization problem with respect to Ψt. In this sense the following assumption

ensures well-defined estimators of θ(x, y | C(Ψt)).

Assumption A.1. (i) The support Dt ⊂ Ψt of f is such that for any ( x
‖x‖ ,

y
‖y‖) ∈ D

t
norm we

have (g̃x(α
x,y
min

y
‖y‖)

x
‖x‖ , α

x,y
min

y
‖y‖) ∈ D

t; (ii) there exists a δ > 0 such that for any ( x
‖x‖ ,

y
‖y‖) ∈

Dtnorm we also have (g̃x([α
x,y
min−δ]

y
‖y‖)

x
‖x‖ , [α

x,y
min−δ]

y
‖y‖) ∈ D

t and (g̃x([α
x,y
min+δ] y

‖y‖)
x
‖x‖ , [α

x,y
min+

δ] y
‖y‖) ∈ D

t; (iii) There exists a constant 0 < M <∞ such that ‖x‖ ≤M for all (x, y) ∈ Dt.

Now turn to the dynamic case. Suppose that for two different time periods t ∈ {1, 2}
we have the set Xn = {(Z1

i ), (Z2
i )}ni=1 defined earlier in Section 2 of independent, identically

distributed (iid) pairs (of pairs) of input and output quantities for the two different periods.

In each period there may exist additional observations which do not possess a counterpart

in the other period. More precisely, there are n1 ≥ n observations in period 1 which are

used to estimate the hyperbolic distance γ1(x, y) := γ(x, y | C(Ψ1)), while there are n2 ≥ n

observations in period 2 which are used to estimate the hyperbolic distance γ2(x, y) :=

γ(x, y | C(Ψ2)).

Assumption A.2. (i) For t ∈ {1, 2} there are iid observations (X t
i , Y

t
i ), i = 1, . . . , nt,

such that Assumptions 2.1–2.7 and A.1 are satisfied with respect to the underlying densities

f t with supports Dt; (ii) D1
norm = D2

norm; (iii) for some n ≤ min{n1, n2} the observations

((Z1
i ), (Z2

i )), i = 1, . . . , n are iid and their joint distribution possesses a continuous density

f12 with support D1×D2; (iv) for any i = 1, . . . , n, (Z1
i ) is independent of (X2

j , Y
2
j ) for all

j = 1, . . . , n2 with i 6= j; (v) for any i = 1, . . . , n, (Z2
i ) is independent of (X1

j , Y
1
j ) for all

j = 1, . . . , n1 with i 6= j.

Note that condition (i) of this assumption only guarantees that all estimators θ(x, y |
Ψ̂t
nt)) and γ(x, y | Ψ̂t

nt) follow the asymptotic distributions derived in Theorems 3.1 and 3.2

of Kneip et al. (2018). Condition (ii) together with equation (3.9) of Kneip et al. (2018)

ensures that the cross-efficiency estimators θ(Z2
i | Ψ̂1

n1
) and θ(Z1

i | Ψ̂2
n2

) as well as γ(Z2
i | Ψ̂1

n1
)

and γ(Z1
i | Ψ̂2

n2
) are asymptotically well-defined and possess the same rates of convergence

as the contemporaneous efficiency estimators. Conditions (iv)–(v) permit dependence of a
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given firm’s input-output quantities across periods 1 and 2, but require independence of the

firm’s input-output quantities from those of other firms in other periods.

A.2 Proof of Theorem 3.1

For case (i) where Γ(·) denotes the identity function, the result follows immediately from

Wilson (2011, Theorems 6.3.1 and 6.3.2). Given the result for case (i), the result for case

(ii) where Γ(·) denotes the log function follows via the delta method given the fact that the

log function is monotone and differentiable with non-zero derivatives on R+.

A.3 Proof of Theorem 3.2

For case (i) where Γ(·) denotes the identity function, consider the mapping φ from Rp
+×R

q
+

to Rp
+ × Rq

+ such that φ : (x, y) 7→ (x, y−1) where y−1 is the vector whose elements are the

inverses of the corresponding elements of y. Denote ω = φ(x, y). Clearly, φ is a continuous,

one-to-one transformation; hence (x, y) = φ−1(ω). From the proof of Theorem 6.3.1 in

Wilson (2011), it is clear that in ω-space, γ(Xi, Yi | Ψt) is an input-oriented efficiency

measure along the lines of (2.4). Moreover, by Theorem 6.3.1 and Lemma 6.3.1 of Wilson

(2011), γ(Xi, Yi | Ψ̂t
n) is an ordinary input-oriented (VRS) DEA estimator along the lines

of (3.2) with (p+ q) “inputs” and no outputs. Hence the results in (3.9)–(3.11) follow from

Kneip et al. (2015, Theorem 3.1).

For case (ii) where Γ(·) denotes the log function, by Assumption A.1 part (iii), γ(Xi, Yi |
Ψt) as well as the derivatives γ′(Xi, Yi | Ψt) and γ′′(Xi, Yi | Ψt) are uniformly bounded for

all (Xi, Yi) ∈ Dt. Then the results in (3.9)–(3.11) follow from arguments parallel to those

used in the proof of Theorem 3.2 of Kneip et al. (2018).

A.4 Proof of Theorem 3.3

For t = s the results in (3.12)–(3.14) follow trivially from case (ii) of Theorem 3.2.

For t 6= s, note that due to Assumption A.2, D1
norm = D2

norm. The results follow from

arguments parallel to those used in the proof of Theorem 3.4 in Kneip et al. (2018).
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A.5 Proof of Theorem 4.1

By definition, taking logs yields

log
(
T2(z1, z2 | Ψ1,Ψ2)

)
= log

(
γ(z2 | Ψ1)

)
− log

(
γ(z2 | Ψ2)

)
+

log
(
γ(z1 | Ψ1)

)
− log

(
γ(z1 | Ψ2)

)
(A.7)

and

log
(
T2(z1, z2 | Ψ̂1

n1
, Ψ̂2

n2
)
)

= log
(
γ(z2 | Ψ̂1

n1
)
)
− log

(
γ(z2 | Ψ̂2

n2
)
)

+

log
(
γ(z1 | Ψ̂1

n1
)
)
− log

(
γ(z1 | Ψ̂2

n2
)
)
. (A.8)

Note that Theorem 3.1 holds for both z1 and z2 due to Assumption A.2. Then

nκ
(

log
(
T2(z1, z2 | Ψ̂1

n1
, Ψ̂2

n2
)
)
− log

(
T2(z1, z2 | Ψ1,Ψ2)

)) L−→ Qlog
T2,z1,z2 (A.9)

follows trivially from Theorem 3.1. The exponential function is monotonic and differentiable

with nonzero derivatives on R+. Therefore the result follows from (A.9) via the delta method.

A.6 Proof of Theorem 4.2

First, let

Rn = E (µ̂T2,n − µT2)

= DT2n
−κ − ξn,κ (A.10)

. To simplify notation, let T2i = T2(Z1
i , Z

2
i | Ψ1,Ψ2) and let T̂2i = T2(Z1

i , Z
2
i | Ψ̂1

n1
, Ψ̂2

n2
).

Then (4.4) can be rewritten as

n1/2 (µ̂T2,n − µT2 −Rn)

=
n1/2

n

n∑
i=1

(
log T̂2i − log T2i − E

(
log T̂2i

)
+ µT2

)
+
n1/2

n

n∑
i=1

(log T2i − µT2) . (A.11)

Results (3.9)–(3.10) in Theorem 3.2 imply

n1/2

n

n∑
i=1

(
log T̂2i − log T2i − E

(
log T̂2i

)
+ µT2

)
p−→ 0. (A.12)
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Hence result (4.4) follows from the Lindeberg-Levy CLT.

Second, the results in (4.5) follows directly from (A.9) in the proof of Theorem 4.1. In par-

ticular, σ̂2
T2,n = n−1

∑n
i=1

(
log
(
T̂2i

)
− µ̂T2,n

)2 p−→ E

[(
log T̂2i

)2
]
− µ2

T2,n = VAR (log T2i) +

[E (log T2i)]
2 − µ2

T2 = σ2
T2 since [E (log T2i)]

2 − µ2
T2 = 0.

A.7 Proof of Theorem 4.3

The result follows immediately from Theorem 4.2 since the remainder term is of order

o (n−κ) and hence nκξT2 = nκo (n−κ) = o(1). Since µ̂T2,n in (4.4) has been replaced with

µ̂T2,nκ in (4.8), the scale factor needed to stabilize the variance is nκ.

A.8 Proof of Theorem 4.4

The results follow trivially after substituting the jackknife bias estimator into (4.4) and

(4.8). When (p+q) = 4 then κ = 2/5, and the remainder term in (4.4) is O
(
n−3κ/2

)
ignoring

the (log n) term which does not affect the rate. Moreover, n1/2O
(
n−3κ/2

)
= O

(
n−1/10

)
, while

in (4.8) nκξn,κ = O
(
n−1/5

)
.

A.9 Proof of Theorem 4.5

The result follows using the delta method. Define

Rn = E (µ̂T2,n − µT2) = DT2n
−κ + ξn,κ (A.13)

where κ is the remainder term defined in (4.4) in Theorem 4.2. A Taylor expansion yields

n1/2 (exp(µ̂T2,n)− exp(µT2 +Rn)) = exp(µT2 +Rn)n1/2 (µ̂T2,n − µT2 −Rn) +Op

(
n−1/2

)
.

(A.14)

Since Rn = O (n−κ), the result follows from a further Taylor expansion of exp(µT2 + Rn)

and result (4.4) in Theorem 4.2.

A.10 Proof of Theorem 4.6

The exponential function is monotonic and differentiable with nonzero derivatives on R+.

Therefore the result follows from Theorem 4.3 via the delta method.
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A.11 Proof of Theorem 4.7

The results follow trivially after substituting the jackknife bias estimator into (4.19) and

(4.22).
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la-Neuve, Belgium.

— (1999), Estimating and bootstrapping Malmquist indices, European Journal of Opera-
tional Research 115, 459–471.

— (2011), Inference by the m out of n bootstrap in nonparametric frontier models, Journal
of Productivity Analysis 36, 33–53.

Wheelock, D. C. and P. W. Wilson (1999), Technical progress, inefficiency, and productivity
change in U. S. banking, 1984–1993, Journal of Money, Credit, and Banking 31, 212–
234.

Wilson, P. W. (2011), Asymptotic properties of some non-parametric hyperbolic efficiency
estimators, in I. Van Keilegom and P. W. Wilson, eds., Exploring Research Frontiers in
Contemporary Statistics and Econometrics , Berlin: Springer-Verlag, pp. 115–150.

Woo, C., Y. Chung, D. Chun, H. Seo, and S. Hong (2015), The static and dynamic environ-
mental efficiency of renewable energy: A Malmquist index analysis of OECD countries,
Renewable and Sustainable Energy Reviews 47, 367–376.

Wu, A.-H., Y.-Y. Cao, and B. Liu (2014), Energy efficiency evaluation for regions in China:
An application of DEA and Malmquist indices, Energy Efficiency 7, 429–439.

Zofio, J. L. (2007), Malmquist productivity index decompositions: A unifying framework,
Applied Economics 39, 2371–2387.

Zofio, J. L. and C. A. K. Lovell (2001), Graph efficiency and productivity measures: an
application to US agriculture.

34



T
ab

le
1:

P
ro

d
u
ct

iv
it

y
C

h
an

ge
an

d
It

s
C

om
p

on
en

ts
fo

r
S
w

ed
is

h
P

h
ar

m
ac

ie
s,

19
80

–1
98

9

P
er

io
d

M̂
n

Ê
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