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Léopold Simar
§,∗∗

leopold.simar@uclouvain.be

March 05, 2018
Abstract

Conditional efficiency measures are needed when the production process does not depend only on the

inputs and outputs, but may be influenced by external factors and/or environmental variables (Z). They

are estimated by means of a nonparametric estimator of the conditional distribution function of the

inputs and outputs, conditionally on values of Z. For doing this, smoothing procedures and smoothing

parameters, the bandwidths, are involved. So far, Least Squares Cross Validation (LSCV) methods have

been used, which have been proven to provide bandwidths with optimal rates for estimating conditional

distributions. In efficiency analysis, the main interest is in the estimation of the conditional efficiency

score, which typically depends on the boundary of the support of the distribution and not on the full

conditional distribution. In this paper, we show indeed that the rate for the bandwidths which is

optimal for estimating conditional distributions, may not be optimal for the estimation of the efficiency

scores. We propose hence a new approach based on the bootstrap which overcomes these difficulties.

We analyze and compare, through Monte Carlo simulations, the performances of LSCV techniques with

our bootstrap approach in finite samples. As expected, our bootstrap approach shows generally better

performances and is more robust to the various Monte Carlo scenarios analyzed. We provide in an

Appendix the Matlab code performing our experiments.
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Bootstrap; Monte Carlo.

∗Department of Applied Mathematics, Bucharest University of Economic Studies and Gh. Mihoc-C. Iacob Institute
of Mathematical Statistics and Applied Mathematics, Bucharest, Romania. Financial support from the Romanian
National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-
2905, is gratefully acknowledged.

§Department of Computer, Control and Management Engineering A. Ruberti (DIAG) Sapienza University of
Rome, Italy. Financial support from the Project Sapienza 2015 Awards, N. 6H15XNFS, FILAS RU 2014-1186, PRIN
2015 (2015RJARX7) and Sapienza 2017 Awards, N. PH11715C8239C105 is gratefully acknowledged.

∗∗Institut de Statistique, Biostatistique et de Sciences Actuarielles, Université Catholique de Louvain, Voie du
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1 The Background

In order to boost the economic performance of productive units, one is interested in developing

management strategies that can lead to increasing the units efficiency (or technical efficiency). An

important aspect is the explanation of differences in the efficiency levels achieved by economic

producers which are facing different environmental and external conditions (see Bădin et al. 2012,

2014). Nonparametric conditional frontier models include exogenous variables or environmental

factors that may influence the production process, having a compound impact, affecting on the

one hand, the range of values for input×output vectors including the shape of the boundaries and,

on the other hand, the distribution of the efficiencies. The conditional frontier approach became

very popular due to its direct and natural manner of defining conditional efficiency scores and so,

providing a formal way for handling heterogeneity. First introduced by Cazals et al. (2002) and

further extended by Daraio and Simar (2005, 2007a, 2007b), the approach is based on defining a

Data Generating Process (DGP) including a probabilistic model that characterizes the production

process in the presence of heterogeneous conditions.

Summing up, recent theoretical and empirical studies on conditional frontier models highlight

the importance of conditional efficiency measures as a general fully nonparametric way to treat

appropriately the presence of environmental factors in a production process (see Bădin et al., 2012,

2014 and the references therein). The conditional approach has been applied to university rankings

(see e.g. Daraio et al., 2015) but also in macroeconomic setups (see e.g. Mastromarco and Simar,

2015). The approach has also been used to handle quality variables in the production process (see

e.g. for the efficiency in the hospital sector, Varabyova et al. 2016a, 2016b and Varabyova and

Schreyögg, 2017).

To have an idea of the variety of fields where conditional efficiency measures have been used,

see Table 1 which shows references of applications in regional innovation, environment, water,

municipalities, public services and culture.

The bandwidths for the conditioning variables play a crucial role in the process of estimating

these measures since they “tune” the localization for computing the conditional efficiencies (FDH

and/or DEA). Statistical theory, so far, was based on results from Hall et al. (2004), Li and Racine

(2008). These approaches use Least Squares Cross Validation (LSCV) techniques sharing some

nice optimality properties. They have been adapted to frontier analysis in Bădin et al. (2010) and

involve the estimation of a nonstandard conditional Probability Density Function (PDF), nonstan-

dard in the sense that, e.g. in the output orientation, the condition is on the value considered

for the external factor and on an inequality for the input vector. Recent works from Simar et

al. (2016) have stressed the possibility of improving the properties of the conditional efficiency

scores by estimating the joint PDF of the inputs and outputs by conditioning only on the external
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Table 1: A selective survey on empirical applications of conditional efficiency measures.

Field of application Reference

Regional innovation Broekel (2012), Broekel and Schlump (2009), Filippetti and Peyrache (2015)

Education Haelermans and De Witte (2012), Daraio et al. (2015), Cordero et al. (2017)

Environment Halkos and Tzeremes (2010, 2013a, 2014), Halkos and Managi (2016)

Water Carvalho and Marques (2011), Zschille (2015), Fuentes et al. (2015),

Guerrini et al. (2016)

Health Halkos and Tzeremes (2011), Cordero et al. (2015)

Varabyova et al. 2016a, 2016b , Varabyova and Schreyögg, 2016

Banking Tzeremes (2015), Matousek and Tzeremes (2016), Bădin et al. (2012)

Macroeconomics Mastromarco and Simar (2015)

Agriculture Kourtesi et al. (2012)

Serra and Lansink (2014), Balez̆entis and De Witte (2015)

Public services Verschelde and Rogge (2012), De Witte and Geys (2011)

Culture Halkos and Tzeremes (2013b,c)

Airports D’Alfonso et al. (2015)

Municipalities Cordero et al. (2016)

Mutual funds Daraio and Simar (2006), Bădin and Daraio (2011), Bădin et al. (2014)

factors. Also, the latter involves much less computational burden. On the other hand, results from

Li et al. (2013), suggest to estimate optimal bandwidths for conditional distribution directly, by

evaluating a criterion based on the Cumulative Distribution Function (CDF). Their Monte Carlo

experiments indicate the superiority of this approach, relative to the indirect one passing through

the estimation of the conditional PDF, then correcting the order of the bandwidths when the final

objective is to estimate the CDF. All these techniques are asymptotically equivalent and provide

bandwidths having optimal rates. Since the latest results from Li et al. (2013) and Simar et al.

(2016) suggest rather the use of the joint CDF of inputs and outputs and conditioning only on the

external/environmental factors, we will follow this strategy in our paper.

The main goal of the paper is to describe in details the impact of the bandwidth choice on the

object of interest, i.e. the efficiency score, which is determined by the upper (lower) boundary of

the support of the conditional CDF, when output (input) oriented measures are estimated, and not

by the conditional CDF itself in its full range. Therefore the objective to get an optimal estimation

of conditional efficiency scores may be thus quite different from the objective of estimating the full

conditional CDF, which is the target of all the LSCV approaches developed so far. In this paper, we

show that the rate for the bandwidths which is optimal for estimating conditional distributions, may

not be optimal for the estimation of the efficiency scores. As explained in the paper, the situation

can be different if the external variables Z are separable or not. In real empirical applications one

does not know in advance if separability holds. We propose in this paper a new approach, based on

the bootstrap, which overcomes these difficulties, providing, by construction, optimal bandwidths

in all the situations. It is based on a bootstrap estimator of the mean square error of the efficiency
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estimators themselves.

The paper is organized as follows. Section 2 summarizes the definitions and introduces the no-

tations for marginal and conditional efficiency scores and their nonparametric estimators. Section

3 introduces the elements which allow us to develop our new approach for bandwidth selection. In

Section 4 we analyze through a Monte Carlo study the finite sample performances of the available

bandwidth selection methods. As expected, our bootstrap approach shows generally better perfor-

mances and is more robust to the various Monte Carlo scenarios analyzed. Section 5 summarizes

the main contribution of the paper and concludes, while the Matlab code is reported in Appendix

A.

2 The Production Process in the Presence of

Environmental Factors

This section can easily be skipped by readers familiar to conditional efficiency scores and their

nonparametric estimators. Details could be found, e.g. in Simar and Wilson (2007, 2011) and in

Bădin et al. (2012, 2014).

The statistical model for production analysis in the presence of environmental factors is the set

of assumptions describing the Data Generating Process (DGP) of triples (X,Y,Z) where X ∈ Rp

is the vector of inputs, Y ∈ Rq is the vector of outputs and Z ∈ Z ⊆ Rd is the vector of external

factors or environmental variables. We consider (Ω,F ,P) the probability space on which the random

variables X,Y,Z are defined and we denote by P the support of the joint distribution of (X,Y,Z).

The elements of Z are neither inputs nor outputs and are typically not under the control of the

manager; they characterize heterogeneity conditions, but they may influence the production process

in different ways, as explained below.

Let fXY Z(x, y, z) denote the pdf of (X,Y,Z) on P. This joint density can always be decomposed

as

fXY Z(x, y, z) = fXY |Z(x, y|z)fZ(z), (2.1)

where the notations are self-explanatory. Let Ψz denote the support of fXY |Z(x, y|z); it is the

support of (X,Y ) given that Z = z. Thus it is the attainable set for units facing external conditions

Z = z:

Ψz = {(x, y)|x can produce y if Z = z}. (2.2)

The variables Z can affect the production process either (i) only through Ψz the support of (X,Y ),

or (ii) only through the density fXY |Z(x, y|z), affecting only the probability of a unit to reach its

optimal boundary, or (iii) through both Ψz and fXY |Z(x, y|z).
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Let Ψ be the marginal support of (X,Y ). By definition we have

Ψ = {(x, y)|x can produce y} = {(x, y)|fXY (x, y) > 0} =
⋃

z∈Z

Ψz, (2.3)

and by construction, Ψz ⊆ Ψ, for all z ∈ Z.

If the joint support of (X,Y,Z) can be written as a cartesian product P = Ψ×Z, then Z will

not have an impact on the boundaries of Ψ and Ψz = Ψ for all z ∈ Z (this is called the “separability

condition” in this literature). In this very particular case, the only potential influence of Z on the

production process, might be on the distribution of the efficiencies. In this case, the usual two-

stage approaches are valid for investigating, with appropriate tools, the potential effects of Z (see

Simar and Wilson 2007, 2011 for details). Otherwise, measuring the distance of a unit (x, y) to

the boundary of Ψ is of little economic interest, since it ignores the heterogeneity introduced by

Z on the attainable set of values for (X,Y ). The conditional nonparametric approach does not

rely on this restrictive assumption, conditional efficiencies derived below are defined in terms of the

support of the conditional distribution which characterizes the production process when Z = z.

Marginal Farrell efficiency measures (output-oriented case1) for a unit operating at the level

(x, y) can be defined as

λ(x, y) = sup{λ > 0|(x, λy) ∈ Ψ}, (2.4)

whereas when the environmental conditions are Z = z, the same unit has a conditional efficiency

scores (introduced by Cazals et al., 2002 and Daraio and Simar, 2005) defined as

λ(x, y|z) = sup{λ > 0|(x, λy) ∈ Ψz}. (2.5)

In order to derive the nonparametric estimators below, the efficiency measure in (2.4) and (2.5) are

better defined in terms of our probability model. It has been shown that under the free disposability

assumption, we have for the marginal case

λ(x, y) = sup{λ > 0|HXY (x, λy) > 0}, (2.6)

where HXY (x, y) = Pr(X ≤ x, Y ≥ y) is the marginal probability of finding a unit dominating the

production plan (x, y). This can be factored as Pr(X ≤ x)Pr(Y ≥ y|X ≤ x) = FX(x)SY |X(y|x),

where the latter conditional survival function is nonstandard due to the condition X ≤ x. For (x, y)

such that x is in the interior of its support (i.e. FX(x) > 0) the efficiency score can equivalently be

defined as

λ(x, y) = sup{λ > 0|SY |X(λy|X ≤ x) > 0}. (2.7)

1We follow the presentation for the output-oriented case, but this can be easily translated to the input-oriented,

the hyperbolic and the directional distance cases. See the recent survey Simar and Wilson (2015) and the references

therein.
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We have the analog decompositions for the conditional efficiency scores:

λ(x, y|z) = sup{λ > 0|HXY |Z(x, λy|z) > 0}, (2.8)

where HXY |Z(x, y|z) = Pr(X ≤ x, Y ≥ y|Z = z) is the conditional probability of finding a firm

dominating the production plan (x, y), facing the same environmental conditions z. Along the same

line as above this can also be written as

λ(x, y|z) = sup{λ > 0|SY |X,Z(λy|X ≤ x,Z = z) > 0}, (2.9)

where here SY |X,Z(λy|X ≤ x,Z = z) = Pr(Y ≥ y|X ≤ x,Z = z), noting the different condition for

the inputs X and for the external factors Z.

If we have a sample of observations Sn = {(Xi, Yi, Zi)}
n
i=1, the nonparametric envelopment

estimators of λ(x, y) and λ(x, y|z) can be obtained by plugging in the nonparametric estimator

of the corresponding distribution HXY and HXY |Z respectively. The nonparametric estimator of

HXY is given by

Ĥn,XY (x, y) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)

n
, (2.10)

where 1I(A) = 1 if A is true and zero otherwise. For the conditional version we have to smooth

over the values of Zi in a neighborhood of z, because usually we do not have for all z, observations

with exact values Zi = z, so we have

Ĥn,XY |Z(x, y|Z = z) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)Kh(Zi, z)∑n

i=1 Kh(Zi, z)
, (2.11)

where Kh(Zi, z) are appropriate kernel functions and h is a vector of d bandwidths, one for each

component of z. We know that the resulting FDH estimators of the efficiency scores are given by

the simple expressions

λ̂n(x, y) = max
i|Xi≤x

{
min

j=1,...,q

Y
(j)
i

y(j)

}
, (2.12)

λ̂n(x, y|z) = max
i|Xi≤x,||Zi−z||≤h

{
min

j=1,...,q

Y
(j)
i

y(j)

}
, (2.13)

where the inequality ||Zi − z|| ≤ h has to be understood component by component |Z
(j)
i − z(j)| ≤

h(j). By comparing (2.12) and (2.13), we see clearly that the conditional efficiency estimate is a

localized version of the marginal one, where the localization is in the Z-space and it is tuned by

the bandwidths.2 It has been pointed in Daraio and Simar (2005) that for being able to estimate

2For simplicity we focus in this paper on the FDH estimators because our target is to compare different ways for

selecting the bandwidths h, but similar expressions have been derived for the DEA estimators and for the different

orientations. When DEA is involved, the estimated attainable sets are convexified, so they imply to solve a linear

optimization program in both cases. See Simar and Wilson (2015) for a detailed list of references.
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the conditional upper boundary of the support of HXY |Z and so detect potential effect of Z, the

nonparametric estimator has to be based on kernels for Z with compact support, like Epanechnikov

or Quartic kernels, the Gaussian kernel being not allowed.3

The statistical properties of these estimators have been established. If we denote by h(j),

j = 1, . . . , d the d components of the vector h and by h̄ their product
∏d

j=1 h
(j), at any fixed

(x, y) ∈ Ψ and under mild regularity conditions, we have as n → ∞ with h(j) → 0 such that

nh̄ → ∞,

n1/(p+q)
(
λ(x, y)− λ̂n(x, y)

) L
−→ Q1(η1) (2.14)

(nh̄)1/(p+q)
(
λ(x, y|z) − λ̂n(x, y|z)

) L
−→ Q2(η2), (2.15)

where for k = 1, 2, Qk is a Weibull distribution with parameters ηk described in Park et al. (2000)

for FDH and in Jeong et al. (2010) for conditional FDH.

So we see in (2.13) the crucial role of the bandwidths in computing the conditional efficiencies

in practice because it determines the localization in the data set of points where the “local” FDH

is computed (the same is true for the conditional DEA and conditional variants of the FDH). We

know that the optimal bandwidth for estimating a conditional distribution is of order n−1/(d+4)

and, as pointed by Jeong et al. (2010), this deteriorates the rate of convergence of the conditional

FDH to (n4/(d+4))−1/(p+q), since the real number of observations used to compute λ̂n(x, y|z) is not

of the order n but of order nh̄ = n4/(d+4). This indicates that any analysis with a large number of

inputs/outputs and environmental factors will require large data sets.

Note also that the estimator of the conditional efficiency could equivalently be obtained by

looking at the support of conditional survival function defined after (2.9) and estimated by

Ŝn,Y |X,Z(y|X ≤ x,Z = z) =
Ĥn,XY |Z(x, y|Z = z)

Ĥn,XY |Z(x, 0|Z = z)
. (2.16)

The estimator of λ(x, y|z) is unique for a given h, but the derivation of the optimal bandwidths

by LSCV methods will be different according to the chosen approach. First of all, we observe first

that when estimating the survival function SY |X,Z(y|x, z), we must select the optimal bandwidths

hx for each selected value of x, inducing numerical burden. In addition, by using the unique

optimal bandwidths h derived from the estimation of HXY |Z(x, y|z), the resulting estimators of the

efficiency scores have the expected monotonicity properties in x (as shown in Simar et al., 2016).

Remark 2.1. The use of discrete ordered or unordered variables Z

All the analysis done so far is valid even if some components of Z are categorical or discrete ordered

3This comes from the fact that in solving (2.8) where HXY |Z(x, y|z) is replaced by Ĥn,XY |Z(x, y|Z = z), with

e.g. a Gaussian kernel, Kh(Zi, z) in (2.11) is formally > 0 for all Zi, so the sup{λ > 0|Ĥn,XY |Z(x, λy|Z = z) > 0}

does not depend on z and λ̂n(x, y|z) = λ̂n(x, y) (see also Remark 2.1 below).
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variables. The only point is that special kernels handling these variables have to be used (see e.g.

Li et al., 2013 and the references therein). Here bandwidths ℓz take often their values in [0, c]

where c depends on the chosen kernel. If ℓz = 0, we obtain a separate analysis for each value of

the corresponding discrete variable and for the maximum value c, there is no difference between

the different groups corresponding to the different values of this variable, there is no smoothing at

all. This may be useful when we are interested in the estimation of the full CDF (either SY |XZ or

HXY |Z). However, when only the full frontier efficiency λ(x, y|z) is of interest, it is easy to show

that unless the optimal bandwidth ℓz = 0, there is no effect on the support of Ŝn,Y |XZ or of Ĥn,XY |Z ,

i.e. for any value of z, λ̂n(x, y|z) = λ̂n(x, y). This is analog to what happens for continuous Z

when using, e.g., Gaussian kernels (see Footnote 3). So smoothing in these discrete components is

meaningless when we estimate λ(x, y|z); we have to do separate analysis for each group (ℓz = 0).

This peculiar behavior was already pointed by Daraio et al. (2018) in another context.

3 Bandwidth Selection for Estimating λ(x, y|z)

3.1 The setup

Hereafter we denote our estimator λ̂h
n(x, y|z) to make explicit that the estimator depends on the

chosen bandwidth h. Using the optimal bandwidth for estimating the conditional probabilities

HXY |Z is certainly a good idea but estimating the support of HXY |Z(x, y|z) on a ray defined by y

is more specific and nothing ensures that optimal value for this specific problem will be the same as

the optimal value for estimating HXY |Z on its full range. A second issue, already pointed by Jeong

et al. (2010), is related to the fact that for a given h, the real target of our estimator λ̂h
n(x, y|z)

defined in (2.13), is not rigorously λ(x, y|z) but rather

λh(x, y|z) = sup{λ > 0|(x, λy) ∈ Ψz,h}, (3.1)

where

Ψz,h =
{
(x, y)

∣∣∣Hh
XY |Z(x, y|z) = Pr

(
X ≤ x, Y ≥ y

∣∣||Z − z|| ≤ h
)
> 0

}
. (3.2)

In addition, it is clear that Ψz,h = ∪||z̃−z||≤hΨ
z̃.

Therefore, for all points (x, y) in Ψz, the error of estimation can be decomposed as

λ̂h
n(x, y|z)− λ(x, y|z) =

[
λ̂h
n(x, y|z)− λh(x, y|z)

]
+

[
λh(x, y|z) − λ(x, y|z)

]
, (3.3)

where the first difference in the brackets is due to the estimation error in the localized problem

and the second difference is a non-random error due to the localization. The latter can be seen as

a kind of “bias” introduced by the localization (we are not targeting the appropriate target). We

need the following assumption to control the size of this bias:

Assumption 3.1. For all z and all (x, y) ∈ Ψz, λh(x, y|z)− λ(x, y|z) = O(||h||) as ||h|| → 0.

7



This amounts to an assumption of differentiability of λ(·, ·|z) as a function of z and is analog to

the Assumption 2 in Jeong et al. (2010), as will become clear from what follows. Note that if Z is

separable and has no effect on the frontier (Ψz = Ψ for all z) Assumption 3.1 is trivially satisfied

for all h since in this case λh(x, y|z) = λ(x, y|z) = λ(x, y) and so, when Z is separable, it turns out

that the localization bias O(||h||) ≡ 0 for all h. Of course we do not know if Z is separable or not

and this creates an additional problem, as explained below.4

3.2 Optimal order of the bandwidths: the problem

3.2.1 Z is not separable

Now looking at (3.3), we see that when the bandwidths are such that ||h|| → 0 and nh̄ → ∞, the

error of estimation has an order Op

(
nh̄)−1/(p+q)

)
+O(||h||)). So the first part requires bandwidths

as large as possible but the second term requires bandwidths as small as possible.

By Proposition 1 in Jeong et al. (2010), we need ||h|| ∝ n−γ with γ < 1/d to ensure there are

enough observations in the h-neighborhood of z (roughly speaking, the cardinality of the number

of data points such that ||Zi − z|| ≤ h tends to infinity with probability one when n → ∞).

Since we do not have explicit expression for the second component of (3.3) and the Weibull

distribution linked to the first term contains unknown parameters, the best we can do is to determine

the order of the optimal bandwidth by balancing the order of the two error terms. Simple algebraic

manipulations lead to the following optimal order for each component of the bandwidth vector:

h(j)⋆ ∝ n−γ , with γ =
1

d+ p+ q
. (3.4)

It is easy to check that in this case the two terms of (3.3) have an order n−1/(d+p+q). As is often

the case in nonparametric smoothing techniques (where we usually balance between the square

of the bias and the variance), choosing a smaller order for the bandwidths, say h(j) ∝ n−γ with

γ > 1/(d + p + q) (but keeping γ < 1/d), the second term in (3.3) is negligible as now being

o(n−1/(d+p+q)). We then obtain the asymptotic results described in (2.15) for the conditional

efficiency estimators but at a rate which is now (nh̄)1/(p+q) = n(1−dγ)/(p+q) where γ > 1/(d+p+ q),

for eliminating the “bias” term. This argument is similar to the argument in Jeong et al. (2010),

when we note that if γ > 1/(d + p+ q), our Assumption 3.1 leads to Assumption 2 in Jeong et al.

(2010).

So we see that the optimal order of the bandwidth is different from the order resulting from

the usual LSCV techniques focusing on the best estimation of the probabilities HXY |Z . Let us

denote h
(j)
LSCV this resulting bandwidth, so we have, as pointed above, h

(j)
LSCV ∝ n−1/(d+4). Since

having a good estimation of the underlying probabilities remains an attractive idea, we suggest to

4Daraio et al. (2018) suggest a procedure to test the hypothesis of separability but the test requires anyway the

selection of a bandwidth, as discussed here.
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correct the bandwidths obtained by LSCV to achieve the optimal order. We denote this approach

hereafter CORR, to be specific, we define

h
(j)
CORR = n1/(d+4)n−1/(d+p+q)h

(j)
LSCV

= n
p+q−4

(d+4)(d+p+q)h
(j)
LSCV. (3.5)

Of course, the resulting rates of convergence to the Weibull distribution using h
(j)
LSCV and h

(j)
CORR

will be different. The rates (nh̄)1/(p+q) in (2.15) are n4/((d+4)(p+q)) for the LSCV case and, as pointed

above, n1/(d+p+q) for the corrected case. Obvious algebra, looking at the correction factor in (3.5),

indicates that we achieve the same rate for p+ q = 4, better rates for h
(j)
CORR if p+ q > 4 but slower

rates if p+q < 4. Note that our CORR approach is able to handle the bias due to localization, which

is ignored in the LSCV criterion. Note also that the CORR approach only provide a bandwidth

with optimal order, which is not necessarily the optimal bandwidth.

3.2.2 Z is separable

As pointed above when Z is separable there is no localization bias and only the estimation error has

to be controlled for. Clearly we need large values of h, large enough so that λ̂h
n(x, y|z) ≡ λ̂n(x, y),

i.e., the conditional efficiency estimator has to coincide with the FDH estimator, with usual rate of

convergence n−1/(p+q), as given in (2.14). Indeed when Z is separable, there is no need to compute

the conditional estimator since for all z, λ(x, y|z) = λ(x, y).

Of course in practice, when we compute λ̂h
n(x, y|z), we do not know if Z is separable or not.

Hence, we need a data driven technique to select the appropriate bandwidth, that should be “large”.

The existing approaches we could use are based on the LSCV approaches which in general provides

small bandwidths of order n−1/(d+4), which is evidently not appropriate. Since here the localization

bias is identically equal to zero, the CORR approach is fully inappropriate in all the cases. But

there is only one particular case where the LSCV method could be asymptotically optimal and this

is when the component of Z is completely independent of the production process (Z is independent

of (X,Y )). Indeed, in this case, Hall et al. (2004) have shown that the LSCV will provide for such

component a bandwidth h(j) → ∞, when n → ∞. However, for all the other components of Z

which are separable, if they have some impact on the distribution of the efficiencies (so Z is not

independent of (X,Y )), the corresponding elements h
(j)
LSCV → 0 when n → ∞, hence the LSCV

approaches will provide too small values for the bandwidths.

But of course remember that we do not know in advance if the separability assumption holds

and testing approaches (like Daraio et al., 2018) will require the use of bandwidths. That is the

reason why we search to develop a new method allowing to estimate the mean squared error of

the estimator of conditional efficiencies for a given bandwidth vector and valid in every possible

situation. This is the main objective of the bootstrap approach described in the next section.
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3.3 A bootstrap-based solution

The idea of using a bootstrap approach as an alternative was already mentioned in Jeong et al.

(2010), but considering only the first part of the error (estimation part) described in (3.3) and they

did not provide details on how to implement the idea in practice. Of course the “bias” part should

also play a crucial role and we will suggest a way (adapted to the two situations described above,

i.e., Z being separable or not) to handle these two parts simultaneously.

Now, to clarify the presentation of the bootstrap, we need to specify which is the sample of

reference when computing the estimators. So hereafter, we denote our estimator as λ̂h(x, y|z;Sn)

to clearly indicate the chosen bandwidth h and the sample Sn used in its computation.

For a given point of interest (x, y, z), the Mean Squared Error (MSE) for a given bandwidth h

is defined as

MSEx,y,z(h) = ESn

[(
λ̂h(x, y|z;Sn)− λ(x, y|z)

)2
]
, (3.6)

where the only random part is linked to the randomness of the sample Sn. The error of estimation

can be decomposed, as above, in the two components

MSEx,y,z(h) = ESn

[(
λ̂h(x, y|z;Sn)− λh(x, y|z) + λh(x, y|z) − λ(x, y|z)

)2
]
. (3.7)

The first part is the estimation error in the localized problem and can be approximated by the

subsampling-bootstrap (see Jeong and Simar, 2006 and Simar and Wilson 2011), whereas we suggest

below a way to approximate the “bias” term λh(x, y|z) − λ(x, y|z).

Due to the Assumption 3.1, it may be reasonable to estimate the bias by the first term of its

Taylor expansion which can be written as

λh(x, y|z) − λ(x, y|z) =

d∑

j=1

∂λh(x, y|z)

∂h(j)

∣∣∣∣
h(j)=0

h(j) + o(||h||) (3.8)

Clearly this approximation is valid even if Z is separable, in this case the corresponding derivatives

being equal to zero. The problem of course is that the function λh(x, y|z) is unknown, so, in the

bootstrap world, we will use an estimate by using a fixed pilot bandwidth h0, such that h0 → 0

as n → ∞. In practice, we could choose hLSCV, since we do not have localization-bias issues when

estimating λh(x, y|z). We suggest to use the conditional FDH estimator, so we use the next proxy

for the derivative

∂λh(x, y|z)

∂h(j)

∣∣∣∣
h(j)=0

≈ lim
ε→0+

λ̂h
(j)
0 +ε(x, y|z,Sn)− λ̂h

(j)
0 −ε(x, y|z,Sn)

2ε
, (3.9)

where ε > 0 is a tuning parameter to fix the neighborhood of h
(j)
0 which should converge to zero

faster than h0 (we used ε = n−1/2 in our Monte Carlo experiments, but the results are very stable

to this choice).
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Note that the FDH estimators are quite discontinuous, and since the estimates depend only on

one data point, tilting the bandwidth with ε could produce high jumps in the numerator even with

small value of ε. One could use as well a continuous version of the FDH, which is the linearized

free disposal hull (LFDH) proposed in Jeong and Simar (2006), but, even if this estimator is

continuous, it is still not differentiable, therefore some smoothing techniques are needed to define

better estimates for the local derivatives. We will use standard and fast B-splines techniques, but

other smoothing techniques could be used as well.

3.3.1 The bootstrap algorithm

For the part of the MSE which comes from the estimation error, we can use subsampling. So the

bootstrap estimate of MSEx,y,z(h) can be obtained through the following steps.

1. Compute the “true” value of λh(x, y|z) in the bootstrap world: here we need a pilot bandwidth

h0 that we choose as hLSCV for the reason explained above, this gives λ̂h0(x, y|z;Sn).
5

2. Select a subsample size m < n, then for b = 1, . . . , B, draw without replacement a subsample

of size m from the Sn.
6 This provides a sample S⋆

m,b =
{
(X⋆

i,b, Y
⋆
i,b, Z

⋆
i,b)

}m

i=1
and we compute

λ̂⋆,h
b (x, y|z;S⋆

m,b).

3. The bootstrap analog of MSEx,y,z(h) for the selected value of m, is given by

M̂SEx,y,z(h,m) =
1

B

B∑

b=1

[(m
n

)1/(p+q) (
λ̂⋆,h
b (x, y|z;S⋆

m,b)− λ̂h0(x, y|z;Sn)
)

+
( λ̂h

(j)
0 +ε(x, y|z,Sn)− λ̂h

(j)
0 −ε(x, y|z,Sn)

2ε

)
h

]2

, (3.10)

where the factor m/n is there for correcting the rate of convergence due to the different

sample size m < n used with S⋆
m,b (see Simar and Wilson, 2011a for details). We will discuss

below how to choose m in practice.

Now this value can be computed for any value of h and any value of (x, y, z) but the latter

depends on the realization of the random variable (X,Y,Z). So what is more appropriate is the

Average Mean Square Error (AMSE) defined as follows

AMSE(h) = EX,Y,Z [MSEX,Y,Z(h)] . (3.11)

5It is important to notice that we use a pilot bandwidth h0 for defining the true value in the bootstrap world. If

we would rather use the current value of h, it is easy to verify that the minimum of M̂SEx,y,z(h,m) in (3.10) would

be zero with h = 0.
6As explained in Jeong and Simar (2006), with or without replacement does not matter asymptotically, but Simar

and Wilson (2011a) report better performance in small samples of the drawings without replacement.
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In practice, as often suggested in this kind of problems, we will use the empirical version of the

AMSE, and use the bootstrap approximation defined above for a given value of subsample size m.

So our criterion to evaluate a particular bandwidth vector h is given by

ÂMSE(h,m) =
1

n

n∑

i=1

M̂SEXi,Yi,Zi
(h,m), (3.12)

where M̂SEXi,Yi,Zi
(h,m) is given by evaluating (3.10) at each data point (Xi, Yi, Zi). So we will

search for the value of h minimizing ÂMSE(h,m).

3.3.2 Selection of the subsample size m

Jeong and Simar (2006) have proven that the subsampling is consistent for any value m = nβ,

where β ∈ (0, 1). But the quality of the approximation in finite samples depends on β, although

the results are very stable for small variations in the value of m. To select a value for m, we follow

the procedure suggested in Simar and Wilson (2011a), which is inspired from Politis et al. (2001).

We compute for a given m, ĥm the optimal value for h and the achieved value of the optimum

ÂMSE(ĥm,m). Then we redo the exercise for a grid of values for m and search the values of m

where the quantity of interest, i.e. ÂMSE(ĥm,m) is less volatile. This can be viewed by some

appropriate plots of ÂMSE(ĥm,m) versus m, but can be automated in a Monte Carlo experiment

along the lines described in Politis et al. (2001). Note that in our setup here, the FDH estimates

depends on only one point in the reference samples, S⋆
m,b and Sn, used in (3.10). So for h = h0,

the probability that λ̂⋆,h
b (x, y|z;S⋆

m,b) = λ̂h0(x, y|z;Sn) is equal to m/n. Therefore if we choose m

too large, we will bias to zero the sampling part of the estimate M̂SEx,y,z(h,m) for h near h0. On

the other hand, too small m will give too much noise in λ̂⋆,h
b (x, y|z;S⋆

m,b) and too many undefined

local FDH estimators. In our Monte Carlo experiments we used a grid of values for m in the range

[0.10n, 0.35n]. Again the procedure is quite robust to the choice of the preceding grid.

In practice, we use the various bootstrap subsample sizes in the selected grid m1 < m2 < . . . <

mJ , and then measure the volatility corresponding to mj by computing the standard deviations of

the achieved optimal ÂMSE corresponding to the values of m = mj−k, . . . ,mj , . . . ,mj+k where k

is a small integer (e.g., k = 1, 2, or 3) and j = (k+1), . . . , (J−k). The subsample size m would then

be chosen as the mj yielding the smallest measure of volatility. This involves some computational

burden, but the FDH estimators are so fast to compute that for a given sample of data, it remains

quite reasonable.

We have observed in our Monte Carlo experiments a great stability of the results w.r.t. the

choice of m and that often the chosen value was not far from n3/4, which can be viewed, in our

experiments, as a rough approximation of the optimal m. In our Monte Carlo experiment this

simple rule provided in all the scenarios very good results, as good as the full search of optimal m
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over the grid. While this is not a proof of any optimality, for sure with this simple rule for defining

m, the subsampling is consistent.

3.3.3 Approximating the derivatives

If we choose the conditional FDH estimates for defining the derivative at each data point (Xi, Yi, Zi)

we have

d̂eri =
λ̂h

(j)
0 +ε(Xi, Yi|Zi,Sn)− λ̂h

(j)
0 −ε(Xi, Yi|Zi,Sn)

2ε
, (3.13)

where ε = n−1/2. But as pointed above the estimates of the derivatives can still show high jumps

due to the discontinuity of the FDH estimator. So we suggest to smooth the obtained estimates

d̂eri over the values of Zi to correct this disappointing behavior of the FDH. We use in our Monte

Carlo experiment a smoothing technique based on penalized B-splines (see e.g. Eilers and Marx,

1996). We define

deri = g(Zi), i = 1, . . . , n, (3.14)

where g(z) is a penalized B-spline estimate of the regression of d̂er on Z, obtained from the data

points {Zi, d̂eri}
n
i=1, where the FDH estimators are used to define the λ̃.7 It appears from our

Monte Carlo experiments, that this smoothing provides the desired stabilization and improves

substantially the performances of the bootstrap algorithm. So we have the explicit formula

ÂMSE(h,m) =
1

nB

n∑

i=1

B∑

b=1

[(m
n

)1/(p+q) (
λ̂⋆,h
b (Xi, Yi|Zi;S

⋆
m,b)− λ̂h0(Xi, Yi|Zi;Sn)

)
+ hderi

]2
.

(3.15)

We can denote by hBOOT the minimizers of (3.15), and we can then select the optimal m according

to the rule described above. We will also refer to the Rule Of Thumb (ROT) for selecting h by

minimizing (3.15) where m is fixed to our simple rule m = n3/4.

4 Monte Carlo Experiments

Under the assumptions made above, we have for any given h a consistent estimator of the localiza-

tion bias, and we know (Jeong and Simar, 2006) that subsampling provides consistent estimator

of the estimation error. So we conjecture that the bootstrap we propose above provides for all h

a consistent estimator of the AMSE(h). The Monte Carlo experiments confirm this conjecture.

Still, a formal proof of the consistency of the bootstrap algorithm has to be done but this is out of

the scope of this paper.

7We used the Matlab programs provided by Eilers and Marx (1996), with B-splines defined on 20 intervals, cubic

splines, with penalty on the first differences (with penalty term= 100), to target the continuity of the derivatives. As

known in the related literature the results are rather stable with respect to the spline tuning parameters.
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So we will compare through Monte Carlo simulations the performances, in finite samples, of

the nonparametric estimator λ̂h
n(x, y|z) , obtained by using different approaches for selecting the

bandwidth h. We have two methods based on LSCV techniques using hLSCV and its corrected

version hCORR as defined in the preceding section and the method based on bootstrap, hBOOT.

We also provide some empirical evidence that the bootstrap is able to estimate the AMSE(h) by

comparing for some particular given sample, its bootstrap estimate with the true value of AMSE(h)

evaluated from an independent Monte Carlo experiment.8

To achieve this we consider 4 scenarios (denoted A, B, C and D) which correspond to 4 different

situations on how Z interacts with the production process crossing the fact that Z is separable or

not with the fact that Z influences the distribution of inefficiencies or not. We limit (for the ease of

the presentation and because of the computational burden of the bootstrap approach in a simulation

setup) the presentation in the case of one input X, one output Y and one external factor Z. Our

DGP is inspired from the scenarios proposed in Simar and Wilson (2011b). The basic marginal

frontier (i.e. ignoring the possible effect of Z) is given by the function g(x) =
√
1− (x− 1)2 for

x ∈ (0, 1). We simulate n independent uniformly distributed input values Xi ∼ Unif(0, 1), external

factors Zi independent Zi ∼ 4Beta(2, 2) (the factor 4 is to scale the beta density so that Zi ∈ (0, 4))

and we generate the inefficiencies according to a half-normal distribution Ui|Zi ∼ N+(0, σ2
U (Zi)).

The effect of Z on the frontier and the variance function σ2
U (Zi) will vary according the 4 cases as

described below. In all the 4 scenarios we expect a good behavior of the bootstrap method which

is supposed to be adapted to all the situations. We described shortly what we expect from the

methods using LSCV bandwidths, hLSCV and hCORR.

Case A : We consider the “basic” model, without any effect of the environmental factor, assuming

full independence between Z and X,Y,U and setting σU (Z) = 0.5:

Yi = g(Xi)× exp(−Ui), where Ui does not depends on Zi. (4.1)

So here we have separability and full independence: here the usual marginal FDH estimator

should be used since no conditioning is required, so The FDH is our benchmark in this case .

We expect that when selecting the bandwidth, the LSCV criterion would provide reasonable

solutions since, as the theory tells us, in this case the resulting bandwidth hLSCV should be

large. The CORR should not be appropriate since there is no localization bias.

Case B : In this case, we assume separability, but we impose σU (Z) = Z/4, such that the distribution

of inefficiency U depends on Z, with higher probability of being inefficient when Z increases

8In each of the scenarios, we simulated M random samples of specified size n, and over a grid of values for h

we evaluate the “true” AMSE(h) given in (3.11) by replacing the operator EX,Y,Z by its Monte Carlo average; by

the Law of large numbers, if M → ∞, we can approach this true value as close as we want. In practice we used

M0 = 5000.
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(the average value of σU (Z) remains equal to 0.5, as in Case A). So we have:

Yi = g(Xi)× exp(−Ui), where Ui depends on Zi. (4.2)

Here again, as in Casa A, the benchmark is the FDH (no conditioning is needed) and we

expect a poor behavior of methods based on LSCV, at least when n is large, because the

dependency between Z and (X,Y ) will induce bandwidth converging to zero when n → ∞,

where the optimal values for h should be large.

Case C : This is a non-separable case since Z influences the position of the frontier, but we keep

σU (Z) = 0.5, so no effect of Z on the distribution of inefficiencies:

Yi = g(Xi)× exp {−(Zi − 2)} × exp(−Ui), where Ui does not depends on Zi. (4.3)

Here, the effect of Z is only on the boundary of the attainable (X,Y ), the shift is multiplicative

and more important when Z decreases. We expect here a better behavior of the CORR

approach (with respect to the basic LSCV), since it takes into account the bias of localization.

Case D : In this non-separable case, Z influences both the frontier and the inefficiency U , as above

σU (Z) = Z/4:

Yi = g(Xi)× exp {−(Zi − 2)} × exp(−Ui), where Ui depends on Zi. (4.4)

In this case, Z has a compound effect on both the boundary of the attainable set and the

distribution of inefficiency. We expect similar behavior as in Case C.

4.1 Quality of the bootstrap approximation of the AMSE(h)

By an intensive Monte Carlo simulation we can approximate the “true” optimal value of h and the

values of AMSE(h) as a function of h. It is computed for a given h in a grid of values, for a given

sample size n, and for a given scenario, as

AMSE(h) =
1

M0

M0∑

m0=1

1

n

n∑

i=1

[
λ̂h(Xi, Yi|Zi;S

(m0)
n )− λ(Xi, Yi|Zi)

]2
(4.5)

where S
(m0)
n is one particular simulated sample, for m0 = 1, . . . ,M0, and we choose M0 = 5000 in

practice.

To have an idea of the quality of the approximation of our bootstrap algorithm, in each scenario

we provide the picture of the bootstrap approximation with the selected value of the subsample

size derived by our algorithm. We can first do this for one particular random sample, to see if we

have any chance (as we expect) to have similar behavior of the curves in the 4 cases. Of course this
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is only for qualitative evaluation but below we analyze the results for many such random samples.

The results are displayed in Figure 1 to 4 for the four scenarios with n = 200.

First we see that for the 4 cases, the true values behave as expected, with the optimal values

for h going to ∞ for case A and B (Z is separable, so no conditioning is needed and the FDH is the

optimal estimator; in practice, since the range of Z is equal to 4, we achieve already this with h ≥ 4).

For the other cases, as expected, conditioning is needed and the optimal bandwidth is around 0.3–

0.35. Their bootstrap approximations for one sample of size n = 200 are quite reasonable leading

to optimal bandwidth (for this arbitrary sample) of the same order of magnitude as the true one.

Figure 1: Case A, n = 200. Left panel: Monte Carlo (true) values of AMSE(h). Right panel: its

Bootstrap estimation for one particular sample.
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Figure 2: CaseB, n = 200. Left panel: Monte Carlo (true) values of AMSE(h). Right panel: its

Bootstrap estimation for one particular sample.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Monte−Carlo (’’True’’) Values of AMSE

Value of h
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Bootstrap estimation of AMSE(h), m−opt = 54

Values of h

16



Figure 3: Case C, n = 200. Left panel: Monte Carlo (true) values of AMSE(h). Right panel: its

Bootstrap estimation for one particular sample.
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Figure 4: Case D, n = 200. Left panel: Monte Carlo (true) values of AMSE(h). Right panel: its

Bootstrap estimation for one particular sample.
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Table 2 gives for the 4 cases, and for different sample sizes the “true’ optimal bandwidths

obtained through the Monte Carlo approximation, and the square root of the corresponding optimal

AMSE (the square roots are in the same units as the efficiency scores). The latter will serve

as benchmark to evaluate and compare the performance of the different approaches in the next

subsection.
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Table 2: The optimal “true” value of h and the corresponding values of RAMSE obtained by Monte

Carlo simulation across the M0 = 5000 trials.

n = 100 n = 200 n = 400 n = 800

hopt RAMSE hopt RAMSE hopt RAMSE hopt RAMSE

Case A 4.00 0.2334 3.92 0.1787 4.00 0.1366 4.00 0.1035

Case B 4.00 0.2575 4.00 0.1935 4.00 0.1474 4.00 0.1097

Case C 0.38 0.4004 0.32 0.3393 0.26 0.2858 0.21 0.2398

Case D 0.42 0.5411 0.35 0.4600 0.29 0.3906 0.24 0.3274

4.2 Performance of various approaches

In this subsection we compare and analyze the behavior of the different methods to select the

bandwidth, by simulating in the 4 cases described above, MC = 200 samples of various sizes, n =

100, 200, 400 and 800. For one particular sample, the computational burden is reasonable depending

on the sample size and the number of values of m over which the subsampling is performed (we

fixed the number of bootstrap replications at 100, but similar results where found with larger values

on some pilot experiments). For one particular sample with n = 200 and 21 values of the grids for

both m and h, the code provided in the Appendix took less than 3 minutes with an Intel 3.4 GHz

machine (see details in Appendix A) but it raises quickly with n increasing. So the Monte Carlo

evaluations here are limited to 200 replications. Under the heading “BOOTROT”, we also report

the results of the Rule Of Thumb (ROT) for selecting m = n3/4, which decreases the computing

time by a factor 5. The resulting optimal bandwidths with the corresponding evaluation of the

AMSE are displayed in Tables 3 to 6. In fact we report, as above, the RAMSE, i.e. the square

root of the AMSE.

Table 3: Case A. Optimal value of h and the corresponding values of RAMSE, obtained through

MC=200 Monte Carlo trials.

n = 100 n = 200 n = 400 n = 800

hopt RAMSE hopt RAMSE hopt RAMSE hopt RAMSE

FDH — 0.2301 — 0.1778 — 0.1364 — 0.1031

LSCV 6.09 0.2638 5.58 0.2014 4.72 0.1567 3.89 0.1273

CORR 3.29 0.3037 2.75 0.2359 2.12 0.1909 1.59 0.1628

BOOT 2.66 0.2548 2.77 0.1957 2.74 0.1497 2.54 0.1210

BOOTROT 2.61 0.2581 2.78 0.1965 2.72 0.1493 2.58 0.1196
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Table 4: Case B. Optimal value of h and the corresponding values of RAMSE, obtained through

MC=200 Monte Carlo trials.

n = 100 n = 200 n = 400 n = 800

hopt RAMSE hopt RAMSE hopt RAMSE hopt RAMSE

FDH — 0.2564 — 0.1878 — 0.1476 — 0.1065

LSCV 1.44 0.3655 1.12 0.3024 0.92 0.2594 0.76 0.2096

CORR 0.78 0.4666 0.55 0.4084 0.41 0.3605 0.31 0.3110

BOOT 1.95 0.3385 1.48 0.2844 1.24 0.2391 1.02 0.1886

BOOTROT 1.83 0.3456 1.44 0.2863 1.23 0.2397 1.03 0.1883

Table 5: Case C. Optimal value of h and the corresponding values of RAMSE, obtained through

MC=200 Monte Carlo trials.

n = 100 n = 200 n = 400 n = 800

hopt RAMSE hopt RAMSE hopt RAMSE hopt RAMSE

FDH — 10.3021 — 11.6621 — 13.1221 — 14.4115

LSCV 0.68 0.7421 0.55 0.6065 0.49 0.5360 0.42 0.4670

CORR 0.36 0.4196 0.27 0.3626 0.22 0.3047 0.17 0.2556

BOOT 0.28 0.4216 0.24 0.3616 0.20 0.3014 0.18 0.2490

BOOTROT 0.30 0.4169 0.24 0.3610 0.20 0.3031 0.16 0.2532

Table 6: Case D. Optimal value of h and the corresponding values of RAMSE, obtained through

MC=200 Monte Carlo trials.

n = 100 n = 200 n = 400 n = 800

hopt RAMSE hopt RAMSE hopt RAMSE hopt RAMSE

FDH — 21.00881 — 23.3558 — 25.8223 — 28.2463

LSCV 0.64 0.8417 0.51 0.6548 0.45 0.5807 0.38 0.4901

CORR 0.34 0.5685 0.25 0.5030 0.20 0.4455 0.15 0.3710

BOOT 0.27 0.5793 0.23 0.4981 0.20 0.4387 0.17 0.3507

BOOTROT 0.29 0.5685 0.23 0.4952 0.20 0.4397 0.16 0.3575

From the results of our Monte Carlo experiments summarized in Tables 3–6, we learn the

following. For Case A, Z is independent of (X,Y ) and so is separable as expected, the benchmark

is the FDH: no need to condition, but when conditioning is used, the LSCV criterion gives rather

good estimator of the bandwidths and so of the resulting efficiency scores (RAMSE, not far from the
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benchmark values of the FDH). The CORR, as expected, behaves less good (there is no localization

bias here). The good news is that the BOOT approach and its ROT version behave even slightly

better than the LSCV.

Case B (Z is separable but influences the production process through inefficiency) seems to be

the most difficult case for all the approaches, compared with the benchmark solution (no condi-

tioning and use of the FDH estimator). The bootstrap approaches seems to be more robust, giving

the smallest RAMSE among its competitors.

On the contrary, if Z is not separable (Case C and Case D), the FDH is nonsense, as shown

by the achieved RAMSE. Here as expected, for both cases, the LSCV approach does not work well

even for large n, because it does not take into account for the correction for the localization bias.

We can see that by correcting the rate, the CORR method does much better. However, here again,

the bootstrap approaches BOOT and BOOTROT seem to be able to adapt the procedure to the

actual situation: the achieved RAMSE are smaller that for CORR, in particular when n increases.

Although there is a price to pay in the numerical burden which is typical for bootstrap based

methods (unless we use an appropriate Rule Of Thumb for selectingm), our new bootstrap approach

appears to be able to handle all the cases. So we think it will be suitable for practical applications

where the practitioner does not a priori know whether the separability condition holds or not.

5 Conclusions

This paper provides a complete investigation on the practical aspects of bandwidth selection proce-

dures for the particular framework of conditional efficiency estimation. It proposes a new approach

based on bootstrap for selecting the bandwidth, crucial for obtaining reliable estimates of condi-

tional efficiency in empirical studies. The theoretical developments are complemented by practical

implementation details and the Matlab codes are provided.

Traditional LSCV methods focus on the estimation of an appropriate conditional distribution,

but not on the estimation of its support. In case the external variable is non separable (has an effect

on the frontier), the order of the resulting bandwidth obtained by LSCV may be not optimal. In

these cases, we suggest to correct the LSCV bandwidth. But in case of separability, this correction

is not recommended. Our new approach is able to handle all these cases. Indeed, by developing the

component of the MSE for conditional efficiency estimators, we have been able to disentangle the

role of the bandwidth for the underlying localization bias and the estimation process itself. Our

approach suggests how to estimate these two parts.

By Monte Carlo techniques, we have illustrated that our new procedure is robust with respect

to various separable/non-separable DGPs improving the quality of the estimation. In a practical

situation where the researcher has no information about the separability condition, the bootstrap
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method is an attractive approach which allows us to handle all the cases correctly. To be more

specific, it gives an approach able to handle separable and non separable cases doing as well as the

traditional LSCV (and its CORR version) when the latter are appropriate, and much better when

they are not.

If one is interested to estimate partial frontiers like order-m or order-α, then the target would

no longer be the support of the distribution and the story may be quite different in these cases.

In particular, LSCV remains a reasonable way to determine the bandwidth for fitting the quantile,

but these issues are kept for future work. Another track for future research is to derive better

estimates of the derivatives, in the light of the techniques developed e.g. in Park et al. (2008).

A Appendix: Matlab Code

We present below the Matlab code allowing to run all the examples used in the Monte Carlo sce-

narios described above. For the spline smoothing, we used the Matlab code provided by Eilers and

Marx (1996) and downloadable from their own website. All these computations can be equivalently

done in R. About computational burden, the example below is for Case B, with n=200, and B=100

bootstrap replications. It took 160 seconds on an Intel 3.4GHz (16G RAM) and 313 seconds on a

MacPro, Intel 2.6GHz, (8G RAM).

% This version for UNIVARIATE Z
% prepared by L. SIMAR, February 2018
% This is for one sample simulated according one of the scenarios of the paper

clearvars
close all

n=200;
B=100;% number of bootstrap loop (should be >=200, but works fine with B=100)
pen_spl=100;% penalty factor for splines
ord_pen=1; % order of the penalty in splines

% Ex=’caseA’;% full independence between Z and others
Ex=’caseB’;% Separability but inefficiency U depends on Z
% Ex=’caseC’;% Non separable Z influence the frontier BUT NOT U
% Ex=’caseD’;% Non separable Z influence the frontier AND U
fprintf(’================= NEW RUN ===================\n’)
fprintf(’ You choose Case-Example %8s \n’,Ex)
fprintf(’ With sample size %4.0f \n’,n)
fprintf(’ Spline Tuning order = %2d and penalty = %6.3f \n’,[ord_pen,pen_spl])
switch Ex

case{’caseA’,’caseB’}
% SEPARABILITY
hmin=0.1;hmax=4;% this has to be adpated after some trials

case{’caseC’,’caseD’}
% NO-SEPARABILITY
hmin=0.01;hmax=0.5;% this has to be adpated after some trials

otherwise
disp(’select appropriate example’)
return

end
p=1;q=1;d=1;
disp(’Bounds for the grid search in h’)
disp([hmin, hmax])
nhV=21;
hV=linspace(hmin,hmax,nhV);

state = 9;% to allow reproducability
rng(state);
% # Generate the random sample of size n = (X,Y,Z)
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% # Environment Z
Z=4*betarnd(2,2,n,1);
% # Input
X = unifrnd(0,1,n,1);
switch Ex

case(’caseA’)% SEPARABILITY
Yfr = sqrt(ones(n,1)-(X-1).^2);
sigU = 0.5*ones(n,1); % U independent of Z

case(’caseB’)% SEPARABILITY
Yfr = sqrt(ones(n,1)-(X-1).^2);
sigU = Z/4;

case(’caseC’)% # NO separability
Yfr = sqrt(ones(n,1)-(X-1).^2).*exp(-(Z-2));
sigU = 0.5*ones(n,1); % U independent of Z

case(’caseD’)% # NO separability
Yfr = sqrt(ones(n,1)-(X-1).^2).*exp(-(Z-2));
sigU = Z/4;

otherwise
disp(’select appropriate example’)
return

end
% # Efficiencies
U = abs(normrnd(0,sigU));
% # # Values for OUTPUT Y
Y = Yfr.*exp(-U);
trueff=exp(U);
nobs=(1:n)’;

t0=clock;
% Build the grid search for the subsample size
m_min=floor(0.15*n);
m_max=floor(0.35*n);
mgrid=21;
mpas=max(1,round((m_max-m_min)/(mgrid-1)));
mv=(m_min:mpas:m_max)’;
nmv=length(mv);

hoptm=zeros(nmv,1);
MSEoptm=zeros(nmv,1);
MSEboot=zeros(nmv,nhV);
% Evaluation of the LSCV bandwidth and its corrected version
kappa = 1/(p+q);% rate of FDH
% % % LSCV bandwidth
fprintf(’---------------------------------------------------------------------------\n’)
fprintf(’\n LSCV on Non-smoothed CDF of H(X,Y|Z) (Li, Lin, Racine 2013) \n’)
kernelZ=’epan’;
hz0=n^(-1/(d+4))*std(Z);%
W=[X,-Y]; % -Y because survivor function in Y
CV0=CCDFnonsmth_lscv_NEW(hz0,W,Z,n,d,kernelZ);
disp(’starting values for h’)
disp(hz0’)
fprintf(’Starting value of LSCV is CV = %15.8f \n’, CV0)
LB=hz0/10; % lower bound for h
UB=Inf*ones(d,1);% upper bound for h
options=optimset(’Algorithm’,’active-set’,’Display’,’iter’,’MaxFunEvals’,5000,’MaxIter’,100);

LSCV=’YES’;% type here YES or NO
if strcmp(LSCV,’YES’)

tic
[h,CV,exitflag]=fmincon(@(h)CCDFnonsmth_lscv_NEW(h,W,Z,n,d,kernelZ),hz0,[],[],[],[],LB,UB,[],options);

toc
if exitflag <= 0

fprintf(’Problem for minimization, exitfalg is %3.0f \n’,exitflag)
end
disp(’Selected Bandwidths’)
fprintf(’Final Value of LSCV = %15.10f\n’,CV)
fprintf(’\nFor estimation of H(x,y|z)\n Starting h0 Lower Upper Final values for h \n’)
fprintf(’%15.8f %15.8f %15.8f %15.8f \n’,[hz0 LB UB h]’)
else
h=1.44162963;% value found for Case B, seed=9 and n=200
CV =0.0883316662;% value found for Case B, seed=9 and n=200

end
hz=h*n^(((1/kappa)-4)/((d+4)*(d +(1/kappa))));
hlscv=h;
hp=hz;% this is h_{CORR} in BDS4 paper
fprintf(’ Final value of h_{corr} after rate correction hz = %8.6f \n’,hz)

hoptmPEN=zeros(nmv,1);
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ih_optmPEN=zeros(nmv,1);
MSEoptmPEN=zeros(nmv,1);
MSEbootPEN=zeros(nmv,nhV);
effzk_h=zeros(n,nhV);
biaskh=zeros(n,nhV);
FDHk=zeros(n,1);
effzk_hp=zeros(n,1);
effzk_lscv=zeros(n,1);
effzk_hpc1=zeros(n,1);
effzk_hpc2=zeros(n,1);
derkh=zeros(n,1);

epsh = 1/sqrt(n); % value of epsilon for derivative
% % % % Evaluation of the "bias" term (the derivative with hlscv)
hd=hlscv;
tic
for k=1:n

xk=X(k,:);
yk=Y(k,:);
zk=Z(k,:);
effk = fdhxkykNoScaling(X,Y,xk,yk);
FDHk(k)=effk(3);% output

% LSCV-corrected Bandwidth Conditional efficiency in original sample
flagzkp = all(abs(Z - repmat(zk,n,d))<= hp’,2);
Xzkp = X(flagzkp,:);
Yzkp = Y(flagzkp,:);
nzkp =sum(flagzkp);
effzkp = fdhxkykNoScaling(Xzkp,Yzkp,xk,yk);
effzk_hp(k)=effzkp(3);% output

% LSCV Bandwidth Conditional efficiency in original sample
flagz0 = all(abs(Z - repmat(zk,n,d))<= hlscv’,2);
Xzk0 = X(flagz0,:);
Yzk0 = Y(flagz0,:);
effzk0 = fdhxkykNoScaling(Xzk0,Yzk0,xk,yk);
effzk_lscv(k)=effzk0(3);% output

% Conditional efficiency for hd+epsh in original sample for derivative
flagzkpc = all(abs(Z - repmat(zk,n,d))<= (hd+epsh)’,2);
Xzkpc = X(flagzkpc,:);
Yzkpc = Y(flagzkpc,:);
effzkpc2 = fdhxkykNoScaling(Xzkpc,Yzkpc,xk,yk);
effzk_hpc2(k)=effzkpc2(3);% output

% Conditional efficiency for hd-epsh in original sample for derivative
flagzkpc = all(abs(Z - repmat(zk,n,d))<= (hd-epsh)’,2);
Xzkpc = X(flagzkpc,:);
Yzkpc = Y(flagzkpc,:);
effzkpc1 = fdhxkykNoScaling(Xzkpc,Yzkpc,xk,yk);
effzk_hpc1(k)=effzkpc1(3);% output

derkh(k) = (effzk_hpc2(k) - effzk_hpc1(k))/(2*epsh);% Z UNIVARIATE (otherwise gradient vector)

% Basic conditional eff in original sample with hc in the grid
% (we need the full matrix effzk(i,ih) near the end for final evaluation)

hhg=hV;
for ih=1:nhV

hc=hhg(ih);% current value of h in the grid
% Conditional efficiency in original sample for the grid bandwidths
flagzk = all(abs(Z - repmat(zk,n,d))<= hc’,2);
Xzk = X(flagzk,:);
Yzk = Y(flagzk,:);
nzk =sum(flagzk);
flagxk = all( Xzk <= repmat(xk,nzk,d),2);
nxk = sum(flagxk);
if nxk > 0

effzk = fdhxkykNoScaling(Xzk,Yzk,xk,yk);
effzk_h(k,ih)=effzk(3);% output

else
fprintf(’WARNING: no points below or = xk, h is too small increase h \n’)
return

end
end

end
toc
% Spline Smoothing of Derivatives: the next comes from Eilers and Marx (1996)
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spder = pnormal(Z,derkh,20,3,ord_pen,pen_spl,1,1);
title(’Estimate of derivatives as function of Z’)
xlabel(’values of Z_i’)
derspline = spder.muhat;

% Bootstrap for each value of m in mgrid
Pnans=zeros(nmv,nhV);
for im=1:nmv

mboot=mv(im);% current value of m (subsample size)
fprintf(’Value of mboot is %4.0f \n’,mboot)
for ih=1:nhV

hc=hV(ih);% current value of h
% BOOTSTRAP CALCULATIONS
effzk_boot=zeros(n,B);
numnans=0;
parfor b=1:B

% generate random labels
rng(state+b-1);% for reproducability in parfor
rN=randperm(n)’;labelb=rN(1:mboot); % resampling WITHOUT replacement
Xb=X(labelb,:);Yb=Y(labelb,:);Zb=Z(labelb,:);
for k=1:n

xk=X(k,:);
yk=Y(k,:);
zk=Z(k,:);
flagbzk = all(abs(Zb - repmat(zk,mboot,d))<= hc’,2);
Xbzk = Xb(flagbzk,:);
Ybzk = Yb(flagbzk,:);
nbzk =sum(flagbzk);
flagbxk = all( Xbzk <= repmat(xk,nbzk,d),2);
nbxk = sum(flagbxk);
if nbxk > 0

effbzk = fdhxkykNoScaling(Xbzk,Ybzk,xk,yk);
effzk_boot(k,b)=effbzk(3);

else
% Jeong-Simar JMVA2006: add the point to bootsample if NaN
effzk_boot(k,b)=1;
numnans=numnans + 1;

end
end

end % end bootstrap loop b=1:B
% For the "Estimation-FDH" part correct for sample size to get the appropriate rate wrt n

MSEbootPEN(im,ih) = nanmean(nanmean((repmat(derspline*hc,1,B) +...
(mboot/n)^(kappa)*(effzk_boot -repmat(effzk_lscv,1,B))).^2,2));

Pnans(im,ih) = numnans/(n*B);% percentage of Nans
end % end loop ih=1:nvh
[MSE_opt,Imin]=min(MSEbootPEN(im,:));
h_opt = hV(Imin);
ih_optmPEN(im)=Imin;
hoptmPEN(im)=h_opt;
MSEoptmPEN(im)=MSE_opt;

%% If wanted, see the Pictures and check that the bounds for the grid in h is OK
% figure
% plot(hV,MSEbootPEN(im,:),’r-’,’LineWidth’,2)
% title([’For m = ’,num2str(mboot),’ AMSE(h) as function of h’],’FontSize’,14)
% xlabel(’Values of h’,’FontSize’,14)
end % end loop im=1:nmv
fprintf(’=====================\n End of the Bootstrap \n=====================\n’)

CPU=etime(clock,t0);
fprintf(’ Case-Example is %10s \n’,Ex)
fprintf(’ Sample size is n = %4.0f \n’,n)
fprintf(’ Elapsed time = %15.4f seconds for B = %6.0f \n’,[CPU,B])
fprintf(’ Seed = %10.4f \n’,state)
fprintf(’----------------------------------------------------------\n’)

wind=1; % define the window width choose 1 or 2 (only 2 if mgrid >20)
fprintf(’ Window width for measuring volatility = %3.0f \n’,2*wind +1)
jvec=zeros(nmv-2*wind,1);
CV1 = zeros(nmv-2*wind,1);
for j=1:nmv-2*wind

jvec(j)=j+wind;
CV1(j)= std(MSEoptmPEN((jvec(j)-wind:jvec(j)+wind)),0);% volatility of MSEopt

end
figure
plot(mv(jvec),CV1,’o’,’LineWidth’,2)
title(’volatility for MSEbootPEN’,’FontSize’,14)
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[~,jopt]=min(CV1);
imopt=jvec(jopt);
mopt_pen=mv(imopt);
HOPT_pen=hoptmPEN(imopt);
MSEOPT_pen=MSEoptmPEN(imopt);
ihOPT_pen = ih_optmPEN(imopt);
fprintf(’PEN: mOPT ihOPT Hopt MSEopt RMSEopt \n’)
fprintf(’ %3.0f %3.0f %9.6f %9.6f %9.6f \n’,[mopt_pen ihOPT_pen HOPT_pen MSEOPT_pen sqrt(MSEOPT_pen)])
figure
plot(hV,MSEbootPEN(imopt,:),’-’)
title([’Bootstrap estimation of AMSE(h), m-opt = ’,num2str(mopt_pen)],’FontSize’,14)
xlabel(’Values of h’,’FontSize’,14)

% FINAL EVALUATION of THE n efficiency score and estimation of the AMSE for this one sample
effzk_hopt = effzk_h(:,ihOPT_pen);% WE NEED HERE the full MATRIX effzk_h: (n x nhV) computed above!
BIASZ_hp= nanmean(effzk_hp - trueff);
BIASZ_lscv= nanmean(effzk_lscv - trueff);
BIAS_FDH= nanmean(FDHk - trueff);
BIASZ_pen= nanmean(effzk_hopt - trueff);

MSEZ_hp= nanmean((effzk_hp - trueff).^2);
MSEZ_lscv= nanmean((effzk_lscv - trueff).^2);
MSE_FDH= nanmean((FDHk - trueff).^2);
MSEZ_pen= nanmean((effzk_hopt - trueff).^2);

fprintf(’==========================\n’)
fprintf(’ Bandwidths selected :\n’)
fprintf(’ h_{LSCV} = %10.6f \n’,hlscv)
fprintf(’ h_{CORR} = %10.6f \n’,hp)
fprintf(’ h_{BOOT} = %10.6f \n’,HOPT_pen)
fprintf(’============================================================\n’)
fprintf(’ Bias, AMSE and RAMSE within that paricular sample ! \n’)
fprintf(’--------------- Bias AMSE RAMSE------ \n’)
fprintf(’FDH :%15.6f %15.6f %15.6f \n’ ,[BIAS_FDH MSE_FDH sqrt(MSE_FDH)])
fprintf(’LSCV :%15.6f %15.6f %15.6f \n’ ,[BIASZ_lscv MSEZ_lscv sqrt(MSEZ_lscv)])
fprintf(’CORR :%15.6f %15.6f %15.6f \n’ ,[BIASZ_hp MSEZ_hp sqrt(MSEZ_hp)])
fprintf(’BOOT :%15.6f %15.6f %15.6f \n’ ,[BIASZ_pen MSEZ_pen sqrt(MSEZ_pen)])
fprintf(’============================================================\n’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function eff = fdhxkykNoScaling(X,Y,xk,yk)
% FDH FOR A FIXED POINT (xk,yk) with reference set (X,Y)
% X : Matrix of input(s) (n x p)
% Y : Matrix of output(s) (n x q)
% xk : vector of input(s) (1 x p)
% yk : vector of input(s) (1 x d)
% eff : results (1 x 3)
% Number of dominating units
% Efficiency score in input
% Efficiency score in output
% Written by L. SIMAR (april, 2002)
[n,p] = size(X);
q= size(Y,2);
xi=ones(n,1)*xk;
yi=ones(n,1)*yk;
flagx=(X<=xi);
flagy=(Y>=yi);
flagxy=[flagx ,flagy];
flag=all(flagxy,2);
ydi=Y(flag,:);xdi=X(flag,:);
ndi=size(xdi,1);
Status=ndi-1;
if ndi==0

% INPUT orientation
flagy=(Y>=yi);
flagy=all(flagy,2);
XM=X(flagy,:);
nxm=size(XM,1);
if nxm==0

I_eff=1;
else

xkv=ones(nxm,1)*xk;
ratioxk=XM./xkv;
if p==1
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I_eff=min(ratioxk,[],1);
else
I_eff=min(max(ratioxk,[],2),[],1);

end
end
% OUTPUT orientation
flagx=(X<=xi);
flagx=all(flagx,2);
YM=Y(flagx,:);
nym=size(YM,1);
if nym==0

O_eff=1;
else

ykv=ones(nym,1)*yk;
ratioyk=YM./ykv;
if q==1

O_eff=max(ratioyk,[],1);
else
O_eff=max(min(ratioyk,[],2),[],1);

end
end
eff=[Status,I_eff,O_eff];
return

end

ratioxi=xdi./(ones(ndi,1)*xk);
I_eff=min(max(ratioxi,[],2),[],1);
ratioyi=ydi./(ones(ndi,1)*yk);
O_eff=max(min(ratioyi,[],2),[],1);
eff=[Status,I_eff,O_eff];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function CV=CCDFnonsmth_lscv_NEW(hz,Y,Z,n,d,kernelz)
% Evaluate the LSCV criterion for estimating a conditional CDF: F(y|Z=z)for bandwidth h=hz
% see details in Li, Lin, Racine, JBES2013 paper
% Written by L. Simar, August, 2014
%
% kerz specify the UNIVARIATE kernels used for Z
% We use product kernels for d >1
% hz is COLUMN vectors

% Some kernel function
Kepan = @(u) (abs(u) <=1).*(1 - u.^2)*3/4; % |u| <= 1
Kgaus = @(u) exp(-u.^2/2)/sqrt(2*pi); % u\in R
Kquar = @(u) (abs(u) <=1).*(1 - u.^2).^2 *15/16; % |u| <= 1
Kunif = @(u) 0.5*(abs(u) <=1); % |u| <= 1

wz=ones(n,1); % weight function to avoid dividing by zero below
Dhz=diag(ones(d,1)./hz); % this is diag matrix d x d
CVi=zeros(n,1);
for i=1:n

zi=Z(i,:);
yi=Y(i,:);
% leave-one out sample
lo=[(1:i-1)’; (i+1:n)’];
Yi=Y(lo,:);
Zi=Z(lo,:);
% Kernel for Z
tempz=(Zi-repmat(zi,n-1,1)); % this is a (n-1) x d matrix
tempzh=tempz*Dhz;
switch lower(kernelz)
case (’gauss’)

kerzi= Kgaus(tempzh)*Dhz;
case (’quart’)

kerzi= Kquar(tempzh)*Dhz;
case (’epan’)

kerzi= Kepan(tempzh)*Dhz;
case (’unif’)

kerzi= Kunif(tempzh)*Dhz;
otherwise

disp(’Specify corect Kernel method for Z ’’Epan’’ or ’’Quart’’’)
CV=NaN;
return

end
kerz=prod(kerzi,2); % Product kernel: a (n-1) x 1 vector
mzi=mean(kerz); % this is \hat f_{-(i)}(zi) (Leave-i-Out)
Fnsi=zeros(n-1,1); % non-smoothed F
Ii1 = all(repmat(yi,n-1,1) <= Yi,2); % this is (n-1) x 1 vector
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for k1=1:n-1
j1=lo(k1); % this insure that j1 ne i (the i of the outer loop)
yj1=Y(j1,:);
Ii2 = all(Yi <= repmat(yj1,n-1,1),2);
numyzi= kerz.*Ii2;
Fnsi(k1) = mean(numyzi)/(mzi); % this is non-smoothed hatF_{-i} (yj1 | xi)

end
CVi(i) = nanmean((Ii1 - Fnsi).^2);

end
CV= nanmean(CVi);
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