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Abstract 

Many institutions have their own vehicle fleet and hired drivers that can be assigned to working trips to 

ensure that they all take place within the desired time periods. In these situations, it is important that 

vehicles and drivers are assigned to planned trips in an optimal and automated way. Trips are planned 

to occur over a given planning horizon and have a number of characteristics that have to be taken into 

account: a trip is characterized by a starting time, start and end locations, travelling distance and time, 

number of drivers needed for each assigned vehicle, number of passengers, and so on. This paper 

considers the problem of assigning both vehicles and drivers to a set of planned trips, having as objective 

the minimization of total cost. To properly address this problem it is necessary to consider a number of 

features, like the possibility of vehicles being shared between different trips if the timeframes and 

destinations are compatible. The mathematical model developed and presented in this paper takes all 

these features into account. The problem was motivated by a case study in the context of a public 

Brazilian university. This case study is also described and computational experiments using a general 

solver are reported. The general solver is capable of calculating optimal solutions in reasonable 

computational times, but problems where the fleet is mainly composed of small vehicles are more 

challenging. A matheuristic has been developed and tested, that seems to be competitive for these type 

of problems. 
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1. Introduction 

In this paper a fleet management problem is considered, assuming that the vehicles and drivers have to 

be assigned to a set of planned trips over a given time horizon. Let us consider that a given institution 

has to ensure that a series of predetermined trips take place within predetermined time periods. The 



 

 

institution has a set of available vehicles with different passenger capacity and operating costs (related 

basically to the distance travelled). The institution also employs a number of drivers. It wants to 

determine the best assignment of vehicles and drivers to the planned trips, with the objective of 

minimizing the total cost. The trip costs to consider are the vehicle operating and driver assignment 

costs. These latter costs are directly related to the trips made, other than the basic salary of drivers. 

Examples are the situations where drivers are paid allowances because they are working more than a 

threshold limit of consecutive hours, or because they are working during the weekend, for instance. 

A trip is characterized by its origin and destination, and its departure and returning times. The number 

of passengers associated with each trip is also known. It is possible for different trips to share resources 

as long as they are compatible regarding both space (starting and ending location) and time. Trips can 

have different needs regarding the number of drivers per vehicle. A long distance trip, for instance, may 

require more than one driver per vehicle to comply with safety regulations. 

There is a vast literature related to fleet management problems. Fleet management is a broad concept 

that incorporates decisions about fleet sizing and configuration, fleet allocation, vehicle routing, 

considering homogeneous or heterogeneous vehicles. Both deterministic and stochastic problems can 

be considered. (Baldacci, Battarra, & Vigo, 2008) present an overview of approaches for fleet 

management in the context of heterogeneous vehicle routing problems. (Hoff, Andersson, Christiansen, 

Hasle, & Lokketangen, 2010) review the literature which focuses on fleet composition and routing 

problems for the maritime and road-based transport of goods. The authors state that unless routing and 

trip scheduling are already predetermined, it is crucial to consider routing and fleet composition 

decisions simultaneously. (Bielli, Bielli, & Rossi, 2011) identify the most relevant problems in fleet 

management for different transport modes. The authors refer to vehicle routing and scheduling 

problems, dynamic fleet management interpreted as a real time vehicle routing problem, private and 

public urban transport, dial-a-ride transport, and specific problems related to air, maritime, rail and 

intermodal transport. (Ertogral, Akbalik, & González, 2017) present a literature review summarizing 

the state-of-the-art regarding the fleet sizing problem. Most of the cited papers are based on models for 

vehicle routing problems. 

A driver-task assignment in the context of container movement with time-windows and uncertainty in 

task duration is described in (Cheung & Hang, 2003). It is assumed that assignment decisions can 

change in the course of time if new information arrives. A similar problem has also been tackled in a 

subsequent work (Cheung, Hang, & Shi, 2005), and this was solved by an adaptive labelling approach. 

The fleet management problem in the container trucking industry is addressed by (Coslovich, Pesenti, 

& Ukovich, 2006), where the objective was to minimize total cost (routing, resource assignment and 

repositioning costs) and satisfy time window constraints. Each driver is modelled as a driver and vehicle 

combination. The authors solve the problem by breaking it down into three simpler subproblems.  

More recently, a fleet management system with a heterogeneous fleet deployed for waste collection is 

described in (Markov, Varone, & Bierlaire, 2016). Each route can start and end in different depots.  



 

 

Real time dynamic fleet management interpreted as a simultaneous task allocation and vehicle 

deployment problem is addressed by (Billhardt et al., 2014). The authors describe a discrete event-based 

framework capable of dealing with the arrival of new tasks or unforeseen changes in the current fleet 

situation. This framework assumes that vehicles are capable of sending information about their current 

position and state to a fleet tracker system. The authors assume that the driver-vehicle assignment is 

known. A heuristic based on multiple neighbourhood search is proposed. 

The importance of simultaneously optimizing vehicle and human resources assignment has been 

recognized by several authors. (Freling, Huisman, & Wagelmans, 2003) present different mathematical 

formulations for the vehicle and crew integrated scheduling problem when there is a single depot, and 

develop algorithms based on column generation in combination with Lagrangean relaxation approaches. 

The authors conclude that the integration is most useful when changing the  vehicle or driver is not 

allowed, and crew costs are significant compared with vehicle costs. (Laurent & Hao, 2007) also 

consider the simultaneous vehicle and driver scheduling problem in the context of a limousine rental 

company. One differentiating feature of their work is the explicit consideration of the drivers’ skills. A 

driver can only be assigned to a trip if his skills match those required for that trip (like being able to 

speak a given language). The authors develop a two stage algorithm, based on constraint programming 

and simulated annealing. Drivers’ skills are also taken into account in (Peters, Matta, & Boe, 2007). 

The authors consider a single depot with bus fleets of three different categories and with a set of drivers 

with different skills, which determine the driver’s primary and secondary jobs (the bus categories the 

driver can be assigned to, and a preference associated with this assignment). The problem is solved by 

a combination of Lagrangean relaxation and tabu search. 

A multi-period vehicle and crew scheduling problem considering the possibility of outsourcing for both 

vehicles and drivers is studied by (Zäpfel & Bögl, 2008). The model is applied in the context of defining 

routes for postal companies, where time windows and vehicle capacities have been considered. The 

authors present an algorithm framework that can be adapted to different metaheuristics. 

(Simão et al., 2009) address the truckload trucking problem, where a set of drivers have to be assigned 

to a set of loads that need to be transported, where the transportation time is usually long. If the transport 

distance is long it can sometimes be necessary to assign more than one driver to one load, so that drivers 

can take rest periods without delaying the transportation. The study is based on a large scale real case 

problem involving more than 6000 drivers. The authors tackled the problem using an algorithmic 

approach based on approximate dynamic programming, merged with mathematical programming and 

machine learning techniques. 

Another fleet management problem can be found in car rental logistics problems (Fink & Reiners, 2006; 

Oliveira, Carravilla, Oliveira, & Toledo, 2014). Decisions that have to be made in these cases are related 

not only to fleet composition, but also to the assignment of vehicles to clients’ requests and repositioning 

cars at different rental stations.  



 

 

Vehicle and client compatibility constraints can be found in the model developed by (Detti, Papalini, & 

Lara, 2017), considering a healthcare application. The authors explicitly consider the condition of the 

patient to make sure that the assigned vehicle is compatible with that condition (patients that need a 

wheelchair, for instance). Patients’ preferences are also explicitly taken into account. The problem is 

then solved by a heuristic approach based on tabu search and variable neighbourhood search. 

There are also vehicle routing problems with explicit driver assignment concerns related to customer 

service quality assurance (for a survey, the reader is referred to (Kovacs, Golden, Hartl, & Parragh, 

2014)). It is possible to consider arrival time consistency, person-oriented consistency and delivery 

consistency (Kovacs et al., 2014). One example that considers both time arrival and person-oriented 

consistency can be found in (Groër, Golden, & Wasil, 2009). In that work the authors take into account 

the relationships established between the drivers and the clients. Each client must therefore be visited 

by the same driver whenever the client requests the service, and at approximately the same time. The 

authors develop a mathematical programming model and an algorithm and test them on a real-world 

problem involving 3715 customer locations. (Coelho, Cordeau, & Laporte, 2012) address both person-

oriented and delivery consistency in the context of vendor-managed inventory systems. The authors 

develop a matheuristic based on an adaptive large neighbourhood search. Driver consistency in dial-a-

ride problems is addressed by (Braekers & Kovacs, 2016). The authors examine the possibility of 

several users sharing the same vehicle, despite having different pick-up and drop-off locations. The 

maximum number of different drivers the clients will meet over a given planning horizon is upper 

bounded. The authors present two formulations and apply two algorithmic approaches, namely, branch-

and-cut and large neighbourhood search. Driver consistency in vehicle routing problems with unknown 

demands is described in (Spliet & Dekker, 2016). The stochastic demand is represented by means of 

scenarios. Driver consistency is not client focused but driver focused, in the sense that the constraints 

guarantee that each driver will visit at least a lower bound of the customers that are assigned to him. 

The solution procedure solves the assignment and routing problems sequentially. 

Another field of research that can be seen as related to fleet management problems is the school bus 

routing problem (the reader is referred to (Park & Kim, 2010) for a review). (Li & Fu, 2002) consider 

a case study in Hong Kong for which a multiobjective programming problem is formulated. The 

objectives have to do with the minimization of costs, but also the minimization of travel times both for 

students and buses. Drivers’ assignments are not explicitly considered. A school bus routing problem 

which explicitly holds that students from different schools can share the same bus (mixed load) is 

described in (Park, Tae, & Kim, 2012). The authors develop a constructive heuristic approach that uses 

as initial solution a schedule that does not consider the possibility of a mixed load and then improves it 

by considering the possibility of mixed load. A similar problem is described in (Lima, Pereira, 

Conceição, & Nunes, 2016), where the authors assume the existence of a heterogeneous fleet and the 

same starting time for all schools. The authors compare five metaheuristics, as well as integrating four 

local search neighbourhoods especially adapted to deal with mixed loads. They reach the conclusion 



 

 

that iterated local search integrating a random variable neighbourhood descent local search outperforms 

the other approaches. School bus routing in urban contexts motivates the development of a model that 

simultaneously optimizes routes and the choice of bus stops students are assigned to (Riera-Ledesma & 

Salazar-González, 2012). The authors call this problem the multiple vehicle traveling purchaser 

problem. A set of valid inequalities that strengthen the linear programming relaxation are presented and 

these are used in the proposed branch-and-cut algorithm. 

The point of view in this paper is different from other works. It is assumed that the set of available 

vehicles is known and determined a priori, and this fleet is heterogeneous. A number of trips have to be 

carried out and the scheduling and routing decisions have already been made. The trips are work trips 

made by members of an institution. So, the scheduling of the trip is defined by the travellers and each 

trip is a route that starts and ends in the institution, with predefined stops (usually only one destination). 

The main concern of the institution is to optimize the assignment of its fleet to the planned trips over a 

given planning horizon so that costs are kept as low as possible. The institution has to consider both the 

assignment of vehicles to trips and the assignment of drivers to these vehicles. This paper is thus 

concerned with a resource assignment problem, where two different resources have to be assigned to a 

given task. These resources cannot be assigned independently of each other because the number of 

vehicles assigned and the characteristics of the trip will determine the number of drivers that are needed. 

The problem considered in this paper can thus be regarded as an extension of the generalized assignment 

problem (GAP). The GAP can be defined as finding the optimal assignment of n jobs (items) to m 

agents, where both jobs and agents have a limited capacity and one agent can be assigned to more than 

one task (as long as its maximum capacity is not exceeded). The GAP is known to be NP-hard and the 

corresponding feasibility problem NP-complete (Öncan, 2007). There are several extensions and 

variants of GAP (for a review see, for instance, (Morales & Romeijn, 2004; Öncan, 2007; Pentico, 

2007)). 

(Kogan, Khmelnitsky, & Ibaraki, 2005) describe a dynamic GAP, where an agent can be assigned to 

many tasks and a task can also be assigned to many agents; tasks are interpreted as being composed of 

a set of units. Demands for these task units are stochastic. The authors derive several mathematical 

properties of the model and present a needle time decomposition algorithm. (Moccia, Cordeau, Monaco, 

& Sammarra, 2009) present three linear integer formulations for the dynamic GAP and develop a 

column generation algorithm capable of calculating lower bounds for the objective function, embedded 

in a heuristic procedure. 

A dynamic version of GAP is described by (Mazzola & Neebe, 2012). The assignment of tasks to agents 

has to be guaranteed in each time period of a given planning horizon, assuming that there are transition 

costs whenever a task is reassigned to a different agent in two consecutive time periods. The authors 

propose two model formulations and two algorithmic approaches, which are a Lagrangean relaxation 

based heuristic and a branch-and-bound algorithm. More recently, (Xu, Wang, & Sun, 2018) consider 

a GAP with cooperative agents in a scalable multi-agent system (distributed GAP). The authors assume 



 

 

the existence of a large number of distributed heterogeneous agents that should be optimally assigned 

to tasks aiming to fulfil a common goal. They propose an intelligent routing decentralized heuristic to 

solve the problem, based on agent modelling. Agents use local information inferred from previous 

searches to decide which agents are more capable of contributing to the improvement of the current 

solution. 

The multi-resource GAP is a GAP variant where each agent has to use not just one but a variety of 

resources to perform the tasks that are assigned to him (Gavish & Pirkul, 1991). This problem is 

extended in (Shtub & Kogan, 1998) by including the possibility of demand variation over time and 

dynamic capacity assignments. (Karsu & Azizoğlu, 2014) consider a bicriteria version of the problem 

that simultaneously minimizes the total workload assigned over all agents and minimizes the maximum 

workload assigned among agents. A set of nondominated solutions is then generated. 

Several authors have proposed heuristic and metaheuristic procedures for the GAP, the dynamic GAP 

and the multi-resource GAP. The multi-resource GAP is tackled in (Mazzola & Wilcox, 2001) by the 

use of a constructive heuristic structured in three phases that is able to find an admissible solution. This 

solution is then submitted to an additional improvement procedure. They also test a hybrid procedure 

combining two different heuristics, including a sub-gradient optimization procedure. A heuristic based 

on very-large scale neighbourhood search including an adaptive mechanism for adjusting search 

parameters is presented in (Yagiura, Iwasaki, Ibaraki, & Glover, 2004). A few years later, (Mitrović-

Minić & Punnen, 2009) use both very large-scale neighbourhood search and variable neighbourhood 

search applied to the same problem. The authors were able to find the best solution known at that time 

for some benchmark instances. (Kiraz & Topcuoglu, 2010) apply hyper-heuristic methods to the 

dynamic GAP. The low-level heuristics are based on local search procedures based on mutation 

operators. A tabu search embedding a branch-and-bound procedure is proposed by (Woodcock & 

Wilson, 2010) for GAP. A parallel genetic algorithm developed for GAP is described in (Liu & Wang, 

2015), taking advantage of the inherently parallel computation possibilities of genetic algorithms. 

Different migration strategies are tried. Algorithms based on differential evolution and embedding three 

distinct local search techniques are presented in (Sethanan & Pitakaso, 2016). The performance of the 

described algorithms is compared with a bee-based algorithm and tabu search. (Souza, Santos, & 

Coelho, 2017) describe a hybrid method based on scatter search and using a tabu list for generating a 

pool of solutions. The authors were able to improve the best solutions known thus far for 21 GAP 

benchmark problems and prove the optimality of 15 other solutions. 

The model we have developed was motivated by a real case of assigning resources to trips in a public 

Brazilian University. It is an extension of the GAP but differs from the multi-resource GAP in that in 

our case a task (trip) needs two separate resources (vehicles and drivers), and the requirements of one 

of the resources (drivers) will depend on the number of assigned units of the other resource (vehicles). 

Moreover, tasks do not take place all at the same time, so the time periods in which they do occur have 

to be taken into account when considering the resources’ capacity constraints and sharing possibilities. 



 

 

Solutions are calculated using a general mixed-integer linear programming solver (cplex). A 

matheuristic was also developed, which combines a metaheuristic (a genetic algorithm) with a 

mathematical programming solver (cplex) to solve sub-problems. 

In the next section, the real case that motivated the development of the model is described. Section 3 

describes the mathematical model. Section 4 illustrates the reasoning behind the model by examining a 

small size version of the problem. Section 5 presents the results obtained when the model is applied to 

the real case (instance A) and to the scaled down problem based on the real case (instance B). Section 

6 presents the computational results of several instances randomly generated taking instance B as their 

basis. These instances aim to study the impact of the problem data on computational time and total cost. 

Changes in the number of vehicles and the number of drivers available, in the fleet composition and in 

the costs associated with the trips are analysed and discussed. Section 7 describes the matheuristic 

developed and presents and discusses some computational results. Section 8 presents some conclusions 

and identifies paths for future research. 

2. The problem of optimizing work trips in a public Brazilian 

University 

The problem addressed in this paper was motivated by the real need of a public Brazilian University to 

optimize work trips required by its employees with the aim of saving costs.  

The University has its own resources, such as vehicles, drivers, mechanics, auxiliary and car wash 

personnel, as well as technical-administrative staff. The costs associated with the trips may vary 

significantly. They depend not only on the requirements (origin/destination, number of passengers, 

number of drivers needed per vehicle) but also on the resources assigned to each trip (one large capacity 

vehicle vs. several vehicles, sharing resources with other compatible trips). It is possible that not all 

drivers are available all the time, since they can have different rest periods and may already be assigned 

to other trips (work trips that take place on a regular basis, which are not requested by workers). Such 

unavailability can be reflected in the assignment costs. 

Currently, the users (employees, teachers or students) submit requisitions for work trips in a 

decentralized way. These requisitions are then sent to a centralized department which tries to identify 

compatible demands based on the routes, destinations, date and time of departure and return. Two or 

more requisitions are compatible if their origins and destinations match (which means that trips have 

the same origin/destination or that one trip is a sub-route of another one), and their schedules can also 

be reconciled, thus enabling resources to be shared. At present the University does not use any 

optimizing procedure to manage the assignment of resources to planned trips, although some cost 

reduction is achieved by ad hoc adjustments that allow some compatible requisitions to be grouped 

together.  



 

 

The problem consists of assigning vehicles and drivers to trip requisitions. Some trips may require more 

than one vehicle due to the number of passengers, and more than one driver per vehicle (for long trips). 

Compatible trips may share vehicles and drivers. In addition, the same vehicle and driver can be used 

for trips occurring in different periods of time. 

To be able to incorporate all the real features of the problem, a very flexible model has been developed. 

Although in the real problem the time dimension has to be considered, since each trip has a start and 

end time and the assignment of resources has to take this period into account, it was possible to 

incorporate this time dimension without reflecting it explicitly in the decision variables. This is an 

advantage because the model size (in terms of both variables and constraints) will not be a function of 

the number of time periods to be considered in the planning horizon. This new model, which is detailed 

in the next section, can be regarded as an extension of the GAP. 

3. The proposed model 

The requisitions for trips are the centre of the proposed model. Each requisition will require the 

simultaneous assignment of vehicles and drivers. For each requisition it is necessary to allocate vehicles 

ensuring that the total capacity (number of available seats) is greater than or equal to the total number 

of passengers. It is also necessary to allocate drivers, given that the number of drivers required by each 

requisition will depend on the number of vehicles assigned, as well as the characteristics of the 

requisition itself. Thus, drivers are not directly assigned to vehicles. They are assigned to requisitions, 

depending on the vehicles simultaneously assigned to each requisition and the number of drivers needed 

per vehicle for that requisition.  

Time periods and trip origins/destinations do not need to be explicitly represented in the model, either 

in the decision variables or in the model constraints. The data that are needed to ensure that the 

calculated solutions are feasible are represented in two matrices. These data matrices can be 

automatically created from the existing information about the requisitions. One data matrix (the non-

overlapping matrix) indicates whether two requisitions have no period of time in common. The other 

data matrix is the compatibility matrix, since it indicates whether two requisitions are compatible and 

thus may share resources. If the requisitions are compatible, then they can share resources (vehicles and 

drivers). If the requisitions are not compatible, then the same vehicle/driver cannot be simultaneously 

assigned to both of them unless they occur in different periods of time, i.e., they do not overlap 

according to the non-overlapping matrix. 

To simplify the constraints of the model, it is assumed that compatible requisitions are ordered by 

increasing costs. This ordering is the same for vehicle and driver assignment costs. This is not a limiting 

assumption because two requisitions are compatible if both trips correspond to the same route or one 

trip is a sub-route of the other. Since the costs associated with assigning drivers and vehicles are mainly 

related to distance and travel time, it is realistic to assume that the same order applies to vehicle costs 

and driver costs, and even to the number of drivers required by each requisition. It must be noted that 



 

 

fixed costs such as drivers’ salary are not considered because they exist a priori and are independent of 

the requisitions, i.e., they do not affect the solution of the problem. Thus, if two requisitions 𝑗 and 𝑗ᇱ 

such that 𝑗 < 𝑗ᇱ are compatible, then 𝐶௜௝ ≤  𝐶௜௝ᇲ , 𝐷௠௝ ≤  𝐷௠௝ᇲ  and 𝑛௝ ≤ 𝑛௝ᇲ, where, for a requisition j, 

𝐶௜௝ refers to the cost of vehicle 𝑖, 𝐷௠௝ refers to the cost of driver 𝑚 and 𝑛௝ is the number of drivers 

required. 

The model’s data and decision variables are now detailed. 

Data: 

𝑖 = 1, … , 𝑉 (number of vehicles) 

𝑗 = 1, … , 𝐽 (number of requisitions) 

𝑚 = 1, … , 𝑀 (number of drivers) 

𝐶௜௝ =cost of allocating vehicle 𝑖 to requisition 𝑗, ∀𝑖, 𝑗 

𝐷௠௝ =cost of allocating driver 𝑚 to requisition  𝑗, ∀𝑚, 𝑗 

𝑃௝ =number of passengers of requisition 𝑗, ∀𝑗 

𝑄௜ =capacity (in number of available seats) of vehicle 𝑖, ∀𝑖 

𝑛௝ =number of drivers required for each vehicle allocated to requisition 𝑗, ∀𝑗 

 

Compatibility matrix: 𝐴 = [𝑎௝௝ᇲ], ∀𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ 

𝑎௝௝ᇲ = ൜
1, if requisitions 𝑗 and 𝑗ᇱ are compatible (i.e., they can share resources)

0,  otherwise                                                                                             
 

 

Non-overlapping matrix: 𝐵 = [𝑏௝௝ᇲ], ∀𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ 

𝑏௝௝ᇲ = ൜
1, if there is no period of time common to requisitions 𝑗 and 𝑗ᇱ

0, otherwise.                                                                                         
 

Note: by definition, 𝑎௝௝ᇲ + 𝑏௝௝ᇲ ≤ 1,    ∀ 𝑗, 𝑗ᇱ 

 

Decision variables: 

𝑥௜௝ = ൜
1, if vehicle 𝑖 is assigned to requisition 𝑗         
0,  otherwise                                                          

       ∀ 𝑖, 𝑗 

 

𝑧௜௝௝ᇲ = ൜
1, if requisitions 𝑗 and 𝑗ᇱ share vehicle 𝑖
0,   otherwise                                               

 ∀ 𝑖, 𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ 

 

𝑍′௝௝ᇲ = ൜
1, if requisitions 𝑗 and 𝑗ᇱ share any vehicle
0,   otherwise                                                    

∀ 𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ 

 

𝑋௜௝
ᇱ = ൝

1, if vehicle 𝑖 is assigned to requisition 𝑗 and to requisitions compatible with 𝑗
sharing resources with j

0, otherwise                                                                                                                      
∀ 𝑖, 𝑗   



 

 

 

𝑌௠௝
ᇱ = ൝

1, if driver 𝑚 is assigned to requisition 𝑗 and to requisitions compatible with 𝑗
sharing resources with j

0,  otherwise                                                                                                                      
∀ 𝑚, 𝑗  

 

The problem can be formulated as follows: 

 

Constraints 

 Constraints (1) ensure consistency between variables 𝑋ᇱ
௜௝ and 𝑥௜௝: vehicle 𝑖 can be assigned to 

requisition 𝑗 and to requisitions compatible with it that share the same vehicle (𝑋ᇱ
௜௝ = 1) only if 

vehicle 𝑖 is assigned to requisition  (𝑥௜௝ = 1). 

𝑋ᇱ
௜௝ ≤ 𝑥௜௝      ∀𝑖, 𝑗                                                                                      (1) 

 Constraints (2) and (3) ensure consistency between variables 𝑍′௝௝ᇱ and 𝑧௜௝௝ᇲ : 𝑍′௝௝ᇱ must be equal to 1 

if requisitions 𝑗 and  𝑗ᇱ share any vehicle, but should be equal to 0  if requisitions 𝑗 and  𝑗ᇱ do not 

share any vehicle. 

𝑍′௝௝ᇱ ≥
1

𝑉
෍ 𝑧௜௝௝ᇲ  ,

௏

௜ୀଵ

     ∀𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ                                                                         (2) 

𝑍′௝௝ᇱ ≤ ෍ 𝑧௜௝௝ᇲ  ,

௏

௜ୀଵ

     ∀𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ                                                                              (3) 

 A sufficient number of vehicles with enough capacity must be assigned to each requisition to 

guarantee that all passengers will travel without exceeding the capacity of each vehicle. The 

passengers can be distributed by several vehicles and a vehicle can transport passengers from 

different requisitions, and both situations can occur simultaneously. 

෍ 𝑄௜𝑥௜௝

௏

௜ୀଵ

≥ 𝑃௝ + ෍ 𝑃௝ᇲ  𝑍′௝௝ᇲ

௃

௝ᇲ:௝ழ௝ᇲ

,     ∀𝑗                                                    (4) 

 A vehicle can only be assigned to more than one requisition if the requisitions are compatible or they 

have no common period of time (corresponding to a vehicle being used in two requisitions, but over 

different periods of time). 

𝑥௜௝ + 𝑥௜௝ᇲ ≤ ൫𝑎௝௝ᇲ + 𝑏௝௝ᇲ൯ + 1,       ∀𝑖, 𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ                                        (5) 

 The number of drivers assigned to a requisition depends on the number of drivers per vehicle 

required by this requisition and the number of vehicles assigned to the requisition. If compatible 



 

 

requisitions share vehicles, the number of drivers required by the most demanding requisition is 

taken (the one with the highest costs). 

෍ 𝑌′௠௝ ≥ 𝑛௝ ෍ 𝑋′௜௝  ,    ∀𝑗                                                              (6)

௏

௜ୀଵ

ெ

௠ୀଵ

 

 Two requisitions cannot share a vehicle if they occur in overlapping periods of time or they are not 

compatible. 

𝑧௜௝௝ᇲ ≤ ൫1 − 𝑏௝௝ᇲ൯𝑎௝௝ᇲ

𝑥௜௝ + 𝑥௜௝ᇲ

2
,      ∀𝑖, 𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ                                      (7) 

 If two requisitions are compatible and use the same vehicle, then they share this vehicle. 

𝑧௜௝௝ᇲ ≥ 𝑎௝௝ᇲ + 𝑥௜௝ + 𝑥௜௝ᇲ − 2,     ∀𝑖, 𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ                                         (8) 

 A given driver can only be assigned to two requisitions if they share the same vehicle (because they 

are compatible) or they occur in non-overlapping periods of time. 

𝑌′௠௝ + 𝑌′௠௝ᇲ ≤ ෍ 𝑧௜௝௝ᇲ + 𝑏௝௝ᇲ + 1,

௏

௜ୀଵ

     ∀𝑚, 𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ                               (9) 

 If a given vehicle is used by just one requisition, then its cost is considered; however, if the vehicle 

is shared by several compatible requisitions, then only the highest cost should be included. 

Therefore, if '
': '

0ijj
j j j

z


  for a given  j, i.e., there are no requisitions (or no requisitions with a 

longer journey) sharing vehicle i with requisition j, then individual costs of requisition  j must be 

considered. Otherwise, the costs associated with the most expensive requisition will be considered 

(according to the assumption that requisitions are ordered in increasing order of costs and there is 

consistency in the growth of costs 𝐶௜௝ and 𝐷௠௝). Thus, the last requisition j of grouped trips is the 

one corresponding to the longest journey, leading to costs 𝐶௜௝ and 𝐷௠௝ of this journey being higher 

than those of the previous ones. Accordingly, for requisitions that share the same vehicle i, the 

variable 𝑋௜௝
ᇱ  will be equal to 1 only for the requisition with the longest journey, i.e., the last index j. 

𝑋௜௝
ᇱ ≥ 𝑥௜௝ − ෍ 𝑧௜௝௝ᇲ

௃

௝ᇲ:௝ழ௝ᇲ

 ,    ∀𝑖, 𝑗                                                            (10) 

 If requisitions 𝑗 and 𝑗ᇱ are compatible and share the same vehicle i, i.e., 𝑧𝑖𝑗𝑗′ = 1, and driver 𝑚 is 

assigned to requisition 𝑗′ with a longer journey, i.e., 𝑌ᇱ
௠௝ᇲ   = 1, 𝑗 < 𝑗ᇱ , then 𝑌′𝑚𝑗 (which indicates 

whether driver 𝑚 is assigned to requisition 𝑗 or not) must be equal to 0 in order to guarantee that the 

correct costs are considered in the objective function (the costs associated with the longest journey 

only).  Constraints (11) ensure this requirement.  𝑌′𝑚𝑗 is free to be 1 if 𝑗  is the requisition with the 



 

 

longest journey between requisitions sharing vehicles or if there is no vehicle being shared between 

requisition 𝑗 and other requisitions. Constraints (6) ensure the proper assignment of 𝑌′𝑚𝑗 when they 

are not fixed by constraints (11). 

𝑌′௠௝ ≤ 2 − 𝑧௜௝௝ᇲ − 𝑌ᇱ
௠௝ᇲ   ,    ∀ 𝑖, 𝑚, 𝑗, 𝑗ᇱ: 𝑗 < 𝑗ᇱ                                              (11)  

 

Objective function 

𝑀𝑖𝑛 ෍ ෍ 𝐶௜௝𝑋′௜௝

௃

௝ୀଵ

௏

௜ୀଵ

+ ෍ ෍ 𝐷௠௝𝑌′௠௝

௃

௝ୀଵ

ெ

௠ୀଵ

                                                                  (12) 

The objective function aims at minimizing the total cost, including vehicle costs (first term) and 

driver costs (second term).  

 

The objective function (12) does not consider the number of vehicles that are being shared. This means 

that there will be many alternative optimal solutions for a given instance, since it will be possible to 

consider that two requisitions are sharing a vehicle, even if that is not necessary (the vehicles that are 

being assigned independently to each of the requisitions have the needed capacity, but they fulfil the 

conditions for sharing, so it will be indifferent, in terms of objective function values, to consider the 

sharing or not). This situation can be avoided by including a small perturbation in the objective function 

that will eliminate all the unnecessary sharing: 

𝑀𝑖𝑛  ෍ ෍ 𝐶௜௝𝑋′௜௝

௃

௝ୀଵ

௏

௜ୀଵ

+ ෍ ෍ 𝐷௠௝𝑌′௠௝ + 𝜀 ෍ ෍ ෍ 𝑧௜௝ ᇲ

௃

௝ᇲ:௝ழ௝ᇲ

௃

௝ୀଵ

௏

௜ୀଵ

௃

௝ୀଵ

ெ

௠ୀଵ

                         (13) 

In (13), 𝜀 is a positive very small number. 

From the computational tests performed, it was possible to conclude that the introduction of this 

perturbation in the objective function decreases the computational time needed to solve the problem by 

the general solver. 

The number of variables is: 𝑉 × 𝐽 for variables 𝑥௜௝  and  𝑋௜௝
ᇱ , 𝑉 ×

௃(௃ିଵ)

ଶ
 for variables 𝑧௜௝௝ᇲ , 

௃(௃ିଵ)

ଶ
 for 

variables  𝑍′௝௝ᇲ  and 𝑀 × 𝐽 for 𝑌′௠௝ . The total number of variables is 2(𝑉 × 𝐽) + (𝑉 + 1) ×
௃(௃ିଵ)

ଶ
+

𝑀 × 𝐽. The total number of constraints is 2𝐽(𝑉 + 1) + (2 + 3𝑉 + 𝑀 + 𝑉 × 𝑀) ×
௃(௃ିଵ)

ଶ
. This model 

has a large number of variables and constraints, however the general solver used (cplex) eliminates a 

significant number of them in the pre-solve stage. 

4. Application of the model to an example 

To illustrate the proposed model, let us take a small numerical example with 4 requisitions, 4 vehicles 

and 5 drivers. The data are presented in Table 1. 



 

 

As Table 1 shows, requisition 1 (req1) is compatible with requisition 2 (req2), and requisition 3 (req3) 

is compatible with requisition 4 (req4) (cf. Compatibility matrix). The model assumes that compatible 

requisitions are in order of non-decreasing cost, so Ci1Ci2, Dm1Dm2 and Ci3Ci4, Dm3Dm4 for all 

vehicles i and all drivers m. Requisitions 1 and 2 do not have any period of time that coincides with 

requisitions 3 and 4 (cf. non-overlapping matrix), so the same vehicles and drivers can be assigned to 

these two groups, {req1, req2} and {req3, req4}. 

An optimal solution to the problem was obtained using the cplex solver, with an objective function 

value (cost) of 622. This solution is shown in Table 2. 

As can be seen in Table 2, req1 and req2 share vehicles and drivers in the optimal solution. Passengers 

of req3 are transported in a vehicle different from the vehicles assigned to req4, although these 

requisitions are also compatible with each other. 

Req1 and req2 have to transport 3+6=9 passengers and there is a vehicle with seating capacity for 16, 

which would be enough for both requisitions. However, it is not used because it costs more to use this 

vehicle (plus two drivers) for req2 than to use two vehicles, v1 and v3, with four drivers (two drivers 

for each vehicle). The req1 trip corresponds to a sub-route of the trip of req2 (req1 requires only one 

driver), so the req1 passengers can travel with passengers of req2 without increasing the cost of the req2 

trip alone. In practice, all the req1 passengers can travel in just one vehicle, v1 or v3, but both vehicles 

go to the req2 destination. 

Req3 has to transport 4 passengers and only one vehicle (v4 with capacity of 5) and one driver (m1) is 

assigned to this requisition. 

Req4 is fulfilled by the assignment of vehicles v1 and v3 (which are also assigned to req1 and req2, but 

these requisitions do not have periods of time that overlap with req4) and four drivers, since req4 

requires two drivers per vehicle. Req4 has to carry 10 passengers. Again, there is a vehicle, v2, with 

seating for 16 people that could be used to carry all the req4 and req3 passengers. However, the 

minimum cost solution does not use it; thus, these requisitions are not grouped and three vehicles with 

five drivers are used to satisfy the two requisitions at minimum cost. 

This example illustrates the ability of the model to distribute the passengers of one requisition among 

several vehicles while simultaneously allowing vehicles to be shared by several requisitions. The 

example also shows the case in which sharing resources is not economically advantageous (although 

possible) and, thus, the trips are made using separate vehicles and drivers. 

 



 

 

Table 1 – Data of the example 

Vehicles (𝒊) v1 v2 v3 v4  

Requisitions (𝒋) req1 req2 req3 req4  

Drivers (𝒎) m1 m2 m3 m4 m5 

Costs for vehicles (𝑪𝒊𝒋) 

 req1 req2 req3 req4 

v1 75 250 50 60 

v2 100 400 220 300 

v3 60 95 60 80 

v4 55 280 100 120 

Costs for drivers (𝑫𝒎𝒋) 

 req1 req2 req3 req4 

m1 1 2 3 4 

m2 2 3 4 5 

m3 5 6 7 8 

m4 1 2 3 4 

m5 3 4 5 6 

  v1 v2 v3 v4  

Vehicle capacity (𝑸𝒊) 5 16 5 5  

  req1 req2 req3 req4  

Number of passengers (𝑷𝒋) 3 6 4 10  

No. of drivers required (𝒏𝒋) 1 2 1 2  

Compatibility matrix (𝒂𝒋𝒋ᇲ) 

 req1 req2 req3 req4 

req1 - 1 0 0 

req2 - - 0 0 

req3 - - - 1 

Non-overlapping matrix (𝒃𝒋𝒋ᇲ) 

 req1 req2 req3 req4 

req1 - 0 1 1 

req2 - - 1 1 

req3 - - - 0 

 

Table 2 – Optimal solution of the illustrative example 

Requisitions Vehicles Drivers 

req1,req2 v1, v3 m1,m2,m4,m5 

req3 v4 m1 

req4 v1, v3 m2,m3,m4,m5 

 



 

 

5. Case Study 

In this section, the mathematical model developed is applied to a case study involving the optimization 

of internal resources for making planned trips that are requested by the workers of a Brazilian 

University. This was actually the real situation that motivated the development of the model. 

Data corresponding to a one-month period were used for this case study.  The total number of 

requisitions is 122. A total of 28 vehicles are available, with nine different capacities.  There are 24 

drivers in total, who can be clustered in two different groups for travel assignment costs.  

This instance was built and cplex solver (version 12.7) was used to find the optimal solution, using an 

Intel Xeon Silver 4116, 2,1 GHz, 12-core processor, 128 GB RAM.  Cplex was able to find the optimal 

solution in 852.54 seconds. In the pre-solve stage it eliminated 209583 variables and 5649534 

constraints, resulting in an adjusted problem with 14226 variables and 129484 constraints. 

In this section we present the optimal solution found. Furthermore, for illustration purposes, another 

instance with only 40 requisitions was considered. The optimal solution for the reduced instance is also 

presented and discussed below. This dataset will also be used as the starting point for a number of 

instances that are randomly generated and that will allow a better understanding of the characteristics 

of the model. All data and calculated solutions are available as supplementary material. 

5.1 Complete dataset 

We will refer to the original case study as instance A, which considers the complete dataset. This 

instance was selected taking data from a typical work month. These data gather information about trips 

that have all the same departure point, destinations within a radius of up to 600 kilometres from the 

origin, and return to the point of origin. Trips have an average distance (round trip) of around 440 

kilometres and range from 97 to 1067 kilometres. The travel requests, represented by {r1,…, r122} 

consider different number of passengers P = {1,…,52}. The number of drivers required per vehicle, N 

= {1,2}, was also defined according to the current legislation, considering both the distance and the 

duration of each trip. A fleet of 28 vehicles (V = {v1,…,v28}) that were available in this period was 

considered. These vehicles had different characteristics such as the cost per kilometre and capacity 

representing the maximum number of passenger seats (Q = {3, 4, 16, 18, 19, 20, 26, 42, 46}). For the 

same period, a pool of drivers M = {m1, ..., m24} was available. These drivers are divided into two 

groups, each with its own travel cost per kilometre, due to the different working contracts. 

Two matrices (compatibility and non-overlapping matrices) were created based on the known 

characteristics of the trips, namely, date, time and destination (as explained in Section 3). The capacity 

of each vehicle is shown in Table 3.  

 

 

 



 

 

Table 3 – Vehicle capacity 

Vehicle v01 v02 v03 v04 v05 v06 v07 v08 v09 v10 v11 v12 v13 v14 v15 v16 

Q 26 26 26 42 42 46 4 4 4 4 4 4 16 16 16 3 

                 

Vehicle v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28     

Q 18 19 20 4 4 4 4 4 4 4 4 4     

 

Table 4 presents a summary of the solution obtained. 

Table 4– Results for Instance A 

 Nr. % 

   

Objective function value 43 309.92  

Total Requests 122  

Total Passengers 837  

Total Vehicle Assignments (TVA) 97  

Total Driver Assignments 107  

Total Seats Available on Assigned Vehicles 980  

% Empty Seats on Total Assigned Vehicles  14.59 

   

Trips sharing resources 91 74.59 

Trips not sharing resources 31 25.41 

   

Passengers in trips sharing resources 513 61.29 

Passengers in trips not sharing resources 324 38.71 

   

Vehicles shared by trips 52 53.61 

Vehicles not shared by trips 45 46.39 

   

Drivers Assigned to shared trips 57 53.27 

Drivers Assigned to non-shared trips 50 46.73 

   

% Empty Seats in vehicles on shared trips  8.23 

% Empty Seats in vehicles on non-shared trips  23.04 

 

It was possible to guarantee the fulfilment of all requested trips. The model enabled the passengers of a 

given requisition to be assigned to more than one vehicle, even in cases where vehicles are shared. The 

use of shared vehicles proves to be a valuable option since a large number of trips share vehicles, thus 

contributing to a cost reduction. Only 31 of the 122 travel requests do not share any vehicle.   



 

 

A total of 91 travel requisitions share vehicles and drivers in various proportions. Vehicle sharing also 

helps to increase the seat occupation in the vehicles used: 91.77% of the vehicles’ total capacity is used 

in shared vehicles, against 76.96% in non-shared vehicles. 

The optimal solution found by the general solver for this dataset was compared with two other solutions: 

the optimal solution found for the same problem but without the possibility of shared vehicles and 

shared drivers; the actual vehicle and driver assignments made by the institution in the month 

considered. The comparison between these solutions in terms of cost is shown in Figure 1. 

 

Figure 1- Comparison of the solutions obtained by the optimization model, the organization 

with manual adjustments and the model without allowing shared resources (Opt.= optimized with the model; 

Org.adj. = adjusted by the organization; Org.n-adj. = without vehicle and driver sharing) 

 

The first column in Figure 1 shows the total cost of the optimal solution found for the model. The second 

one shows the total cost of the solution implemented by the organization (without optimization, but 

with manual adjustments), and the third column shows the total cost of an optimization model that 

allows neither vehicle nor driver sharing. It is interesting to note that the solution implemented by the 

institution is better than the one found with an optimization model that does not allow the sharing of 

resources. This can be explained by the fact that manual adjustments could assign shared resources to 

some requisitions. In this case, the use of the proposed optimization model would achieve a cost 

reduction of 23.18% relative to the implemented solution. 

Figure 2 details part of the resources’ assignment in the optimal solution found. Requisitions r34 

and r36 have in total 3 passengers. They are compatible so it is possible for them to share a vehicle. As 

the longest trip (r36) requires two drivers, two drivers are indeed assigned. An example of slightly more 

complex sharing can be seen in requisitions r39, r40 and r41. These are all compatible requisitions, 

considering 51 passengers in total. Passengers of requisition r40 all use vehicle v15. As the vehicle 
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would have four seats left, one of them is used by the only passenger of r39. The three vacant seats are 

used by r41, which needs further vehicles to accommodate all its 38 passengers. It is possible to achieve 

100% seat occupation by sharing the vehicles. Another example can be seen if we look at requisitions 

r33, r35 and r38. In this case, r38 and r35 share each of their vehicles separately with r33 and not with 

each other. However, to complete the number of available seats r33 needs one more vehicle. 

 

Figure 2 – Examples of requisitions sharing resources in the optimal solution found for instance A 

 

5.2 Instance of reduced size 

For illustration purposes, a smaller instance was considered where the total number of requisitions was 

cut to 40. Drivers and vehicles were unchanged. This instance of the problem will be referred to as 

instance B. Cplex needed 50.39 seconds of computational time. A summary of the results is shown in 

Table 5. 

As was seen in the previous instance, many trips are sharing vehicles (77.5%). Another interesting 

feature of the optimal solution is the efficient use of the available seats, reaching 97.37% in the case of 

shared vehicles and 73.55% for non-shared vehicles. Similar figures of vehicle sharing were found in 

this solution to those found for Instance A. 

 

Table 5– Results for Instance B 

 Nr. % 

Objective function value 16 054.40  

Total Requests 40  

Total Passengers 311  

Total Vehicle Assignments (TVA) 35  

Total Driver Assignments 39  

Total Seats Available on Assigned Vehicles 349  

% Empty Seats on Total Assigned Vehicles 38 10.89 

   

Trips sharing resources 31 77.50 

Trips not sharing resources 9 22.50 

   

Main P N v07 v08 v09 v10 v11 v12 v13 v14 v15 v16 Q Vc m13 m14 m15 m16 m17 m18 m19 m20 m21 m22 m23 m24

r33 r35 r38 33 1 v08 v14 v15 16 -17 m16

r35 r33 1 1 v14 16 15 m13

r38 r33 1 1 v08 4 3 m20

r34 r36 2 1 v16 -2

r36 r34 1 2 v16 3 2 m14 m23

r39 r40 r41 1 1 v15 -1

r40 r39 r41 12 1 v15 16 4 m15

r41 r39 r40 38 1 v13 v14 v15 v16 35 -3 m13 m14 m24

Requisition Vehicle Driver

Shared



 

 

Passengers in trips sharing resources 222 71.38 

Passengers in trips not sharing resources 89 28.62 

   

Vehicles shared by trips 22 62.86 

Vehicles not shared by trips 13 37.14 

   

Drivers Assigned to shared trips 23 58.97 

Drivers Assigned to non-shared trips 16 41.03 

   

% Empty Seats in vehicles on shared trips  2.63 

% Empty Seats in vehicles on non-shared 

vehicles  26.45 

 

 

6. Analysis of different datasets 

Further computational tests were carried out on random instances obtained from Instance B in order to 

analyse the solutions produced by the model under different circumstances. The impact of different 

configurations of the available fleet (small, medium or large vehicles), reduction of the total number of 

seats, reduction of the number of drivers and variation of the individual costs is analysed in this section 

with respect to the running time and the objective function value (cost) of the optimal solution. 

Instance B has 40 requisitions and considers all the vehicles and drivers of the real case (Instance A), 

i.e. 28 vehicles (with 376 available seats) and 24 drivers. The vehicle fleet includes 16 small vehicles 

(with 3 or 4 seats), 9 medium vehicles (from 16 to 26 seats) and 3 large vehicles (two with 42 seats and 

one with 46 seats). In all the instances generated for this analysis the number of requisitions was kept 

constant and equal to 40.  

The first group of instances (case 1 to case 4) aimed at studying the effect of reducing the total seat 

capacity considering different configurations of the vehicle fleet. We have considered a fleet with an 

overall capacity close to 100 seats: case 1 – only small vehicles were considered; case 2 – only medium 

vehicles were considered; case 3 – only large vehicles were considered; case 4 – a diversified fleet was 

kept as in Instance B, but with fewer vehicles. The vehicles were selected at random from the respective 

category (small, medium or large) in Instance B, enabling repetitions (i.e., it is possible to have a fleet 

with several identical vehicles resulting from a multiple selection of the same original vehicle). Case 3 

has a higher number of seats (172) because only large vehicles were considered and at least 4 vehicles 

are needed to ensure feasibility. 

The second group of instances (case 5 to case 7) aimed at studying the effect of reducing the number 

of drivers available: case 5 – 20 drivers; case 6 – 15 drivers; case 7 – 12 drivers. For each case the 



 

 

drivers were selected at random from the ones in Instance B. The original fleet of 28 vehicles was 

considered in this group. 

The third group of instances (case 8 to case 12) aimed at studying the effect of changing the costs. 

These five instances consider the original fleet of vehicles and all drivers. All these cases were randomly 

generated from Instance B and using similar rules: the individual costs 𝐶௜௝  (cost of allocating vehicle 𝑖 

to requisition 𝑗) and 𝐷௠௝ (cost of allocating driver 𝑚 to requisition 𝑗) suffered a positive or negative 

variation of up to 25% with respect to its original value. Thus, each 𝐶௜௝ was replaced with a random 

value in [0.75𝐶௜௝ , 1.25𝐶௜௝]; since costs should be non-decreasing in compatible requisitions, a second 

rule was applied after changing all 𝐶௜௝ to ensure consistent values: if requisition j' is compatible with  j,  

j' >j, then 𝐶௜௝ ← max {𝐶௜௝ , 𝐶௜௝ᇱ} . A similar procedure was applied to the generation of costs 𝐷௠௝. 

The characteristics that distinguish these instances from Instance B are summarized in Table 6. Full 

data and calculated solutions are available as supplementary material. 

 

 Table 6 – Characteristics of the random instances. 

Group Case Characteristics 

 case 1 26 small vehicles  103 seats 

1 case 2 5 medium vehicles  106 seats 

 case 3 4 large vehicles  172 seats 

 case 4 6 vehicles: 3 small, 2 medium, 1 large 96 seats 

 case 5 20 drivers 

2 case 6 15 drivers 

 case 7 12 drivers 

 case 8  

3 … Random variations in costs of up to 25% 

 case 12  
 

A summary of the results obtained using cplex is shown in Table 7. For sake of clarity, the results of 

Instance B are repeated in this table. 

 

Table 7 – Results of the random instances. 

Group Case 
Objective 

value 
Cplex 
GAP 

Computational 
time (sec) 

% Empty seats in 
shared vehicles 

% Empty seats in 
non-shared vehicles 

 Instance B 16,054.40  0% 50.39 0.44 26.45 

 case 1 24,699.45 0% 6,405.63 1.54 6.06 

1 case 2 26,712.65 0% 2.45 16.28 62 .16 

 case 3 56,113.90 0% 0.52 43.81 83.33 

 case 4 23,628.17 0% 3.42 9.17 37.18 

 case 5 16,269.13 0% 43.75 2.16 26.45 

2 case 6 16,269.13 0% 26 2.16 26.45 

 case 7 16,269.13 0% 23 2.16 26.45 

 case 8 14,840.77 0% 55.01 2.45 10.47 



 

 

3 case 9 14,933.50 0% 52.44 3.24 24.51 

 case 10 15,110.39 0% 51.98 3.82 25.58 

 case 11 15,316.97 0% 54.2 2.28 21.54 

 case 12 14,682.40 0% 51.34 2.58 21.93 

 

The analysis of the results leads to the following conclusions: 

- In the first group of instances, case 1 (which considers only small vehicles) turned out to be 

much more difficult to solve than the other cases. This finding is in accordance with what might 

be expected since more vehicles and drivers have to be assigned in case 1, so there are many 

more combinations of possible assignments.  

- It seems that the fleet composition has a higher impact than the total number of seats available 

on the computational time. 

- In the second group, all instances have similar solutions, and these solutions are similar to the 

solution to Instance B. Therefore, cutting the number of drivers in these instances did not 

change the solution structure. There are some variations in the computational times, but no 

pattern can be established: the computational time is really problem dependent. 

- In the third group, in which all costs were changed, there are no substantial differences in the 

outcomes of the five cases, or in the computational times. Therefore, costs do not seem to have 

much influence on the computational time..    

- Concerning occupancy rates in shared and non-shared vehicles, all the solutions to these 

instances involve a percentage of empty seats that is smaller in shared vehicles than in non-

shared vehicles (i.e. vehicles not shared by several requisitions). This finding is in accordance 

with the results for Instances A and B, supporting the assertion of efficiency in the use of seats, 

mainly in shared vehicles. 

As a main conclusion, we can say that these results suggest that the fleet composition is the issue 

that most influences the computational time needed to solve the problem when the number of 

requisitions is kept constant and various changes are tried in the fleet configuration, in the number 

of drivers or in the structure of costs. 

7. Genetic algorithm combined with Cplex 

The general solver was able to calculate optimal solutions in reasonable computational times for all 

instances tested. However, given the combinatorial nature of the problem, it is expected that, for larger 

instances of the problem, this might not happen. This observation has motivated the development of a 

dedicated heuristic procedure.  

Developing a metaheuristic to deal with this problem is a highly complex task. The main problem faced 

has to do with solution feasibility. These difficulties are felt in the construction of initial solutions and, 

even more, in the design of operators that do not "damage" too much the solutions in terms of feasibility 



 

 

because it is very difficult to recover it. It is difficult to keep feasibility due to several issues. Listing 

just two, among many other constraints: trips that occur in periods of time with intersection cannot be 

assigned to the same vehicles and drivers; the vehicle/set of vehicles assigned to a trip/set of trips 

sharing resources must have enough capacity to attend the requisition/s. It is very hard to guarantee 

feasibility considering the usual operators used in metaheuristics, since they all imply making and 

breaking the sharing of vehicles and drivers. These difficulties are far beyond what has to be considered 

in designing a metaheuristic for GAP, for instance, mainly due to the existence of two interdependent 

resources. The representation of a solution is also nontrivial (contrarily to the GAP). We have tested 

several representations and all of them suffered from important drawbacks regarding solution 

feasibility. When most of the generated solutions are infeasible, the metaheuristic does not work and 

does not converge to an interesting solution. 

Considering all the described difficulties, a hybrid metaheuristic (matheuristic) was developed for this 

problem, which combines a genetic algorithm with a mathematical programming solver (cplex). The 

chromosomes do not codify the complete solution, but only the assignment of vehicles to requisitions. 

Furthermore, chromosomes do not represent explicitly this part of the solution, but they rather consist 

of patterns of 1’s and 0’s, where 1 means free variables and 0 means variables fixed to 0 regarding the 

assignment of vehicles to requisitions. Therefore, a chromosome s is a binary matrix 𝒔 = [𝑠௜௝], i =1,…,V 

(number of vehicles), j=1,…,J (number of requisitions), which represents a mask for obtaining a 

solution:  𝑠௜௝ = 0  means that 𝑥௜௝ = 0, i.e., the vehicle i cannot be assigned to requisition j, and  𝑠௜௝ =

1 means that 𝑥௜௝ is free to be 0 or 1 (the vehicle can be assigned or not). For each chromosome s, the 

generalized assignment model (1)-(13) with 𝑥௜௝ fixed to 0 for 𝑖, 𝑗 such that 𝑠௜௝ = 0 is solved using cplex, 

considering a time limit. Setting a time limit means that cplex can or cannot reach the optimal solution 

for the subproblem represented by the chromosome. The more degrees of freedom it has (number of 

variables with a value that can take either 0 or 1) the more time it will need to find the optimal solution. 

These chromosomes can be interpreted as representing search spaces that are smaller than the entire 

feasible region, for the assignment of vehicles to requisitions. The feasibility of the solution is 

guaranteed by the use of a general solver. It is possible that no feasible solution exists in the solution 

space codified by the chromosome, or cplex is not able to find one because of the imposed time limit. 

If this is the case, that chromosome will have a very poor fitness (large cost value). 

The evolution of these solutions will make them progress towards more interesting search spaces, where 

it will be easier for cplex to find the optimal solution. Table 8 shows an example of a chromosome. 

Table 8 – Example of a chromosome 

  req.1 req.2 req.3 req.4 req.5 

 v1 1 0 0 1 1 

𝒔′ = v2 0 0 1 0 1 

 v3 1 1 0 1 0 

 v4 0 1 1 0 0 



 

 

Chromosome 𝒔′ represents a mask for which v1 cannot be assigned to req.2 nor to req.3; v2 cannot be 

assigned to req.1, req.2 nor to req.4; etc. This means that 𝑥ଵଶ = 0, 𝑥ଵଷ = 0, 𝑥ଶଵ = 0, 𝑥ଶଶ = 0, 𝑥ଶସ = 0, 

etc., are fixed a priori. Therefore, the problem is solved just considering the 𝑥௜௝ variables corresponding 

to 𝑠௜௝ = 1. 

After generating an initial population 𝑷 of N chromosomes, 𝑷 = {𝒔௡
 
, 𝑛 = 1, … , 𝑁}, the MILP sub-

problem for each mask 𝒔௡ is solved using the cplex (with a low time limit). The objective function value 

(cost) of the solution is the fitness of 𝒔௡. The reproduction and mutation operators of the genetic 

algorithm are then applied considering the following scheme: 

1. Two parents 𝒔′ and 𝒔" are selected from 𝑷 by binary tournament. A crossover row 𝑘 ∈

{1, … , 𝑉 − 1} is randomly drawn, separating the vehicles of masks 𝒔′ and 𝒔" into two parts. 

Two offspring are generated, 𝒐′ and 𝒐" such that 𝒐′ = ቈ
𝑠′௜௝ , 𝑖 = 1, … , 𝑘

𝑠"௜௝ , 𝑖 = 𝑘 + 1, … , 𝑉
቉ 𝑗 = 1, … , 𝐽  and 

𝒐" = ቈ
𝑠"௜௝ , 𝑖 = 1, … , 𝑘

𝑠′௜௝ , 𝑖 = 𝑘 + 1, … , 𝑉
቉ 𝑗 = 1, … , 𝐽 . An example in shown in Figure 3. 

2. The mutation operator is applied to 𝒐′ and 𝒐" with probability 𝑃௠௨௧ of changing each gene 𝑜௜௝ 
(we have used 𝑃௠௨௧ = 0.1/𝑉). 
 

 

Figure 3 – Example of crossover between 𝑠′ and 𝑠" with crossover row 𝑘 = 1. 

 

An offspring population 𝑶 with N children is obtained after applying steps 1 and 2 during N/2 times 

(assuming N an even number). 

A selection procedure is then applied to select the N individuals of 𝑷 and 𝑶 that will integrate the 

population for the next generation. The fittest chromosome will always move to the next generation. 

The other N-1 individuals are selected by binary tournaments, each one made between an element of 𝑷 

and an element of 𝑶. The chromosome with lower cost (best fitness) is selected and deleted for further 

selection. 

The genetic algorithm stops after a predefined number of G generations and the best solution is returned. 

 

The main parameters that must be set for this matheuristic are: the number of solutions in the population 

(N); the number of generations (G); the time limit imposed to cplex for each chromosome; the number 

of free variables that each chromosome codifies in the initial population. 



 

 

The first three parameters are directly linked to the computational time: more individuals, more 

generations and a greater time limit for cplex means increased computational times. It is important to 

find a compromise between allowed computational time and solution quality.  

The number of 1’s and 0’s allowed in a chromosome is related with the degrees of freedom cplex will 

have, and may also affect the computational time. In the extreme cases, if all 𝑠௜௝ are set to 1, then there 

is no reduction in the number of variables and the corresponding sub-problem has the same dimension 

as the original problem. On the opposite case, if 𝑠௜௝ = 0 for many 𝑖, 𝑗, the corresponding sub-problem 

may be infeasible. In the initial population, each chromosome is randomly generated considering a 

predefined probability Prob1 of generating 1 and 1-Prob1 the probability of generating 0. If Prob1 is 

small, the number of 0’s in each chromosome is high and the corresponding sub-problem is either 

infeasible or its resolution is fast (because it has only a few number of variables). If Prob1 is large, there 

is a greater chance that a lower cost solution will be obtained, but the resolution of the sub-problem 

may require a longer computational time (cplex will probably use all the allowed time). However, it has 

been observed that including a sub-optimal solution (obtained with a very short computational time) to 

the original problem may improve the search process of the genetic algorithm. Thus, the initial 

population includes a chromosome mask of only 1’s and the others are generated with lower Prob1.  

Several different combinations of parameters were tested considering instance A. The best compromise 

results were obtained considering Prob1 equal to 10%, populations of 10 solutions, a maximum of 10 

generations and a maximum time limit for cplex equal to 60 seconds. The matheuristic was run 10 

times. The average total computational time was 1 hour. The optimal solution was found in 5 out of 10 

runs. The average gap to the optimal cost was 0.24%, and the worst gap was 3.64%. Figure 4 presents 

the evolution of the objective function value in one of the runs that led to the calculation of the optimal 

solution. It is possible to observe the ability of the algorithm to improve the best-known value of the 

objective function in almost all generations. 

 

 

Figure 3 – Objective function values using the matheuristic 

 

Increasing Prob1 without increasing the maximum time limit for cplex diminishes the diversity of the 

population, and the algorithm converges prematurely. Increasing the number of individuals or the 

number of generations has a strong impact on the total computational time. We also tested increasing 



 

 

the number of individuals, decreasing the cplex time limit, but the results were worse, especially in 

terms of the worst gap achieved. Comparing the computational times and the quality of the solutions, it 

can be stated that cplex is a better option regarding this instance. 

We have tested the matheuristic in another instance, randomly generated from instance A, where the 

number of requisitions was increased to 200, keeping all the resources unchanged. This is a much more 

challenging problem to cplex. Within a time limit of 4 hours, it was not possible to find the optimal 

solution. The best solution found had a gap of 1.14%. Considering that this problem has a higher 

dimension, the algorithm was tested considering a cplex time limit of 90 seconds for calculating the 

fitness of each individual, 20 individuals in the population and a total number of generations equal to 

8. This means that the total time is similar to the time limit imposed to cplex to solve the original 

problem. The average gap was equal to 2.09% (since the optimal solution is not known, the gap was 

calculated with respect to the best limit given by cplex). 

Among the 12 instances that were tested in section 6, case 1 was particularly difficult to solve by cplex. 

This is the instance characterized by having small vehicles only. Cplex needed 107 minutes to find the 

optimal solution. The matheuristic was run 10 times, considering a cplex time limit of 60 seconds for 

calculating the fitness of each individual, 10 individuals in the population and a total number of 

generations equal to 10. Prob1 was kept equal to 10%. It was always able to find the optimal solution. 

The average computational time was 50 minutes. The optimal solution was found, on average, in the 

second generation and, in the worst case, in the third generation.  One of the reasons that can justify the 

better performance of the matheuristic in this case is the fact that, with small vehicles only, the number 

of possible vehicle combinations that can be assigned to requisitions is much larger than with vehicles 

with bigger capacity. This forces the general solver to build a very large branch&bound tree.. In the 

matheuristic, each individual codifies a much smaller search space in which cplex is able to find an 

optimal solution in a very short time.  

Although the computational results were not totally favorable to the heuristic, it is possible to disguise 

future developments based on the main idea of this heuristic, i.e., chromosomes codifying search spaces 

instead of complete solutions: 

 One parameter that greatly influences the heuristic behavior is the cplex time limit; this 

parameter can be set in a dynamic way, with lower values in the beginning, to promote 

diversification, and higher values as the generations progress, at least for the most promising 

individuals.  

 The parameter Prob1 can also be set differently for different pairs of requisitions and vehicles. 

It could be beneficial to define Prob1 as a function of the ratio between the total number of 

passengers of the requisition and the capacity of the vehicle.  

 It is also possible to consider the concept of islands, where each island has individuals codifying 

different search spaces associated with the two different resources. The evolution will be 



 

 

independent in each island, but connections can be made using, for instance, the best 

individuals.  

 Information about sharing can also be considered, making it possible to rapidly discard 

individuals that do not represent interesting search spaces (exploring the information gathered 

by the cplex branch&bound trees).  

This will be the focus of future research. 

8. Conclusions 

In this paper, a model has been presented that aims at optimizing the assignment of two distinct 

resources to a set of tasks, where the assignment of one of the resources depends on the assignment of 

the other resource. Moreover, tasks can share resources if they are compatible. The presented model 

can thus be interpreted as an extension of GAP. As far as the authors know, this is the first time that 

such a problem has been tackled. It was motivated by a real case of assigning both vehicles and drivers 

to planned trips. Although the model has been applied to a concrete situation of vehicle and driver 

assignment, it can be easily adapted to many other situations where two distinct types of resources have 

to be assigned to a set of tasks, with constraints that link the assignment of the two resources. 

From the computational tests performed, it is possible to conclude that allowing the use of 

shared resources is very important in terms of cost reduction. The use of the proposed optimization 

model for the real case, which is able to accommodate vehicle sharing between requisitions, contributed 

to a significantly lower cost than that provided by the non-computer-assisted solution determined by 

the institution. The optimal solution for the complete dataset is significantly better than the one 

implemented by the institution. A further analysis with random instances suggest that the composition 

of the vehicle fleet (i.e. number of vehicles within each category of number of seats) has a significant 

influence on the computational time required to solve the problem. 

A matheuristic was also developed, based on a genetic algorithm, where each chromosome 

codifies a search space, instead of an individual solution. The computational results demonstrate that 

this heuristic is competitive when the fleet is mainly composed by vehicles of small capacity (problems 

that are challenging for cplex). 

The main concern of the institution regarding the assignment of resources to planned trips is 

cost minimization. There are, however, other aspects of the solutions that should be analysed and taken 

into account in the optimization, namely equity in trips assigned to drivers. With the proposed model, 

it is possible that some drivers are assigned to many more trips than others. This could be seen in the 

optimal solution found for the complete dataset (Instance A), where the driver with the largest number 

of assigned requisitions will be driving on 16 trips while some drivers are not assigned to any trip. 

Equity measures that take into account not only the number of trips but also distances travelled and 

other ordinary work assignments for drivers could be considered. Even regarding vehicles, some 



 

 

concerns could be included in the model. Indeed, the frequency of the use of the vehicles and miles 

travelled can imply very different wear and tear conditions and may therefore have an impact on the 

total costs associated with the fleet (particularly in the case of own vehicles). These concerns are 

motivating future developments of multi-objective models where objective functions other than cost 

minimization will be explicitly considered.  

Another aspect that is not being addressed in the model proposed is the uncertainty associated 

with the requisitions. Although only planned trips are considered, it can happen that requisitions appear 

unexpectedly, for urgent trips. Moreover, trips can take more or less time to be completed than expected 

(several factors may be involved in travel delays, such as traffic problems and weather conditions), with 

implications not only in terms of costs but also in terms of resources assignment compatibility. This 

will also be considered in future work. 
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