
Robust recoverable 0-1 optimization problems under polyhedral

uncertainty

Mikita Hradovich†, Adam Kasperski‡, Pawe l Zieliński†
†Faculty of Fundamental Problems of Technology,

Wroc law University of Technology, Wroc law, Poland
‡Faculty of Computer Science and Management,

Wroc law University of Technology, Wroc law, Poland

{mikita.hradovich,adam.kasperski,pawel.zielinski}@pwr.edu.pl

Abstract

This paper deals with a robust recoverable approach to 0-1 programming problems. It
is assumed that a solution constructed in the first stage can be modified to some extent
in the second stage. This modification consists in choosing a solution in some prescribed
neighborhood of the current solution. The second stage solution cost can be uncertain and
a polyhedral structure of uncertainty is used. The resulting robust recoverable problem is a
min-max-min problem, which can be hard to solve when the number of variables is large.
In this paper we provide a framework for solving robust recoverable 0-1 programming
problems with a specified polyhedral uncertainty and propose several lower bounds and
approximate solutions, which can be used for a wide class of 0-1 optimization problems.
The results of computational tests for two problems, namely the assignment and the
knapsack ones, are also presented.

1 Introduction

In many practical applications of discrete optimization a solution constructed in the first
stage can be modified to some extent, after the problem parameters have been changed.
For example, a connection network (represented by a spanning tree) can be modified by
exchanging some links, after the structure of the link costs has been changed. Typically,
it is not possible to reconstruct the whole network, but only a given fraction of links can
be exchanged in the current solution. Models, which take such a situation into account,
belong the the class of two-stage recoverable ones. Usually, the parameters in the first stage
are precisely known, while the future, second-stage values of the parameters are uncertain.
However, the second-stage decision, called also a recourse action, can be made after the true
values of the parameters have been revealed.

The idea of recoverable robustness, first proposed in [18], is similar to the so-called ad-
justable robustness in mathematical programming [5], in which the values of some decision
variables can be fixed after the true parameter realization has been revealed. It is also sim-
ilar to the min-max-min approach, recently discussed in [7], where a subset of solutions is
computed in the first stage and one of them is adopted, when the second-stage scenario be-
comes known. In the recoverable approach a modification of the first-stage solution is allowed,
while in the problems studied in [7] a complete solution can be chosen from a small subset of
solutions chosen in the first stage.

1

ar
X

iv
:1

81
1.

06
71

9v
1

 [
cs

.D
S]

 1
6

N
ov

 2
01

8

In the recoverable model a neighborhood of a given solution is defined. Each solution
in this neighborhood is within some predefined distance from the current solution. For 0-1
programming problems, there are several natural ways of defining the distance function (see,
e.g., [12]), and we will describe them in more detail in Section 2. A solution constructed in
the first stage can be then replaced with a solution in its neighborhood in the second stage.
The goal is to compute a pair of solutions, namely the first stage solution and the second
stage one in its neighborhood, which minimize the total first and second stage costs. If the
second stage costs are uncertain, then the robust approach can be used (see, e.g., [4, 17])
and we seek a pair which minimizes the total cost in a worst case. In this paper we will use
the following polyhedral uncertainty representation. For each second stage cost we specify an
interval of its possible values. An adversary can increase each cost within its interval but
the total increase cannot be greater than a given budget. Additional linear constraints, which
model relationships between the costs, are also allowed. The resulting uncertainty set is a
polyhedron, whose special case is the interval budgeted uncertainty set, discussed in [11, 20].

The robust recoverable problems are a far-reaching generalization of the class of incre-
mental problems considered in [12]. In an incremental problem we seek a cheapest solution
within a neighborhood of a fixed solution. In [12] the class of incremental network prob-
lem was examined. It has been shown that the incremental version of some basic network
problems (for example, the shortest path) can be NP-hard for some natural neighborhood
definitions. The robust recoverable network problems were first studied in [8, 9], where several
negative complexity results were obtained. Recently, the robust recoverable versions of the
minimum spanning tree [13, 14], selection [11, 16], and traveling salesperson [10] problems
were discussed. We will briefly describe complexity results for these problems in Section 3.

The goal of this paper is to provide a framework for solving robust recoverable 0-1 pro-
gramming problems with a specified polyhedral uncertainty. In general, such problems can be
very complex from a computational point of view. The underlying deterministic single-stage
problem can be already NP-hard and hard to approximate. Adding recoverable robustness
leads to a min-max-min 0-1 programming problem, which can be very difficult to solve. If the
uncertainty set is finite, i.e. contains the finite numbers of scenarios, or can be replaced with
its finite representation (for example by the set of extreme points of a polytope for polyhedral
uncertainty), then a mixed integer programming (MIP for short) formulation can be built and
solved by row and column generation techniques proposed, for example, in [21]. However, for
the problems examined in this paper no finite representation of the considered uncertainty set
is known. Hence, the solution method consisting in solving a MIP formulation can be hard
to apply. In Section 5 we propose several lower bounds, which will be based on solving one
or a sequence of special MIP formulations. The formulations can be solved for quite large
instances by using modern solvers. We will then use these lower bounds to characterize the
quality of some approximate solutions in Section 6. Finally, in Section 7, we will present the
results of the experiments for robust recoverable versions of the knapsack and assignment
problems. The tested instances have large number of variables, so the proposed approach can
be attractive in practical applications.

2

2 Problem formulation

Consider the following generic 0-1 programming problem P:

min CCCxxx
xxx ∈ X ⊆ {0, 1}n,

where CCC = [C1, . . . , Cn] is a vector of nonnegative costs and X is a set of feasible solutions.
No additional assumptions about problem P are made here. In particular, P can be NP-hard
and not at all approximable. Let I(xxx) = {i ∈ [n] : xi = 1}, be the set of elements contained
in solution xxx (we will denote by [n] the set {1, . . . , n}). Fix α ∈ [0, 1], xxx ∈ X , and let Xαxxx ⊆ X
be a neighborhood of xxx. In this paper we will use the element exclusion neighborhood [12],
defined as follows:

Xαxxx = {yyy : |I(xxx) \ I(yyy)| ≤ α|I(xxx)|} = {yyy ∈ X :
∑
i∈[n]

xi(1− yi) ≤ α
∑
i∈[n]

xi}. (1)

Thus yyy ∈ Xαxxx , if the number of elements which are in I(xxx) and not in I(yyy) is at most α|I(xxx)|.
In other words, forming solution yyy from solution xxx, at most α|I(xxx)| elements of I(xxx) can be
removed. Our definition of the neighborhoods slightly differs from the one considered in [12].
However, in the context of the incremental problem, where xxx (and thus |I(xxx)|) is fixed, it is
equivalent to that in [12]. In the context of the recoverable approach, where xxx is variable, it
is more natural to provide a constant fraction α, which is independent on |I(xxx)|. Some other
types of neighborhood, such as the element inclusion or based on the symmetric difference,
were also examined in [12]. The results presented in this paper can easily be modified for
the aforementioned neighborhoods. It is sufficient to change the constraint, describing the
neighborhood in (1). Let (xxx,yyy), where xxx ∈ X and yyy ∈ Xαxxx be a feasible pair of solutions. We
will denote by Z the set of all such feasible pairs.

It is worth noting that all the neighborhoods, based on the element inclusion, the element
exclusion and the symmetric difference, considered in [12] are equivalent if |I(xxx)| = m, m ∈ [n],
for each xxx ∈ X . We will call such a problem P, an equal cardinality problem. We can then
write

Xαxxx = {yyy : |I(xxx) ∩ I(yyy)| ≥ m(1− α)} = {yyy ∈ X :
n∑
i=1

xiyi ≥ `},

where ` = dm(1− α)e is a fixed integer, independent on solution xxx.
Given xxx ∈ X , and a vector of nonnegative costs ccc = [c1, . . . , cn], we define the following

incremental problem:
Inc(xxx,ccc) = min

yyy∈Xαxxx
cccyyy.

In this problem we seek a solution yyy in the neighborhood of xxx of a minimum cost. The
incremental problem, for various network problems P, was discussed in [12]. In general, it
can be harder than P and its complexity will be presented in more detail in Section 3. Given
a cost vector ccc, let us formulate the following recoverable problem:

Rec(ccc) = min
xxx∈X

min
yyy∈Xαxxx

(CCCxxx+ cccyyy) = min
(xxx,yyy)∈Z

(CCCxxx+ cccyyy).

In the recoverable problem we wish to find a pair of solutions xxx and yyy ∈ Xαxxx (equivalently
(xxx,yyy) ∈ Z), which minimizes the total cost of both solutions. We will call xxx the first stage

3

solution and yyy the second stage solution. The recoverable problem is a generalization of the
incremental problem. Indeed, one can easily reduce the incremental problem for a given
solution xxx and cost vector ccc to the recoverable problem by fixing Ci = 0 if xi = 1 and Ci = M
if xi = 0, i ∈ [n], where M is a sufficiently large constant.

Suppose that the second stage cost vector ccc is uncertain, which means that precise cost
values are not known in advance. Typically, uncertainty in parameters (costs) is modeled
by specifying a set, denoted by U , of all possible vectors of the parameter (cost) values,
called scenarios. In this paper we focus on polyhedral uncertainty representation and define
the uncertainty set U as follows. We are given a vector of nominal second stage costs ccc =
[c1, . . . , cn] and a vector ddd = [d1, . . . , dn] of maximal deviations of the costs from their nominal
values. We also specify a budget Γ, i.e. the amount of uncertainty, which can be allocated to
the second stage costs. We consider the following polyhedral uncertainty set:

U = {ccc+ δδδ : 000 ≤ δδδ ≤ ddd, ||δδδ||1 ≤ Γ, δδδ ∈ V}, (2)

where the vector δδδ = [δ1, . . . , δn] represents deviations of the costs from their nominal values
and V ⊆ Rn is a polyhedron described by some additional linear constraints involving δδδ.
To ensure that ccc ∈ U , we will assume that 000 ∈ V. One can optionally use V to model
some additional relationships between the uncertainty of the costs. For example, a constraint∑

i∈A δi ≤ ΓA can represent the situation in which a subset of the costs has its own budget
ΓA ≤ Γ. Another constraints of the form αijδi ≤ δj ≤ βijδi, for some fixed αij ≤ βij ,
can model a possible correlation between δi and δj . If V = Rn, then we get the following
continuous budgeted interval uncertainty representation [20]:

U0 = {(ci + δi)i∈[n] : δi ∈ [0, di],
∑
i∈[n]

δi ≤ Γ}.

As U ⊆ U0, the set U0 is a relaxation of U . Given U , we will investigate the following robust
recoverable problem:

Rob-Rec : min
xxx∈X

max
ccc∈U

min
yyy∈Xαxxx

(CCCxxx+ cccyyy).

The robust recoverable problem generalizes the recoverable problem. It is enough to fix ccc = ccc
and ddd = 000 (or Γ = 0). Assume that Xαxxx = {xxx}. This is true, for example, when P is an equal
cardinality problem and α = 0. If additionally CCC = 000, then Rob-Rec can be rewritten as

min
yyy∈X

max
ccc∈U

cccyyy,

which is a traditional single-stage robust min-max problem widely discussed in the literature
(see, e.g., [17, 4, 6]). In this paper we will also consider the following evaluation problem:

Eval(xxx) = CCCxxx+ max
ccc∈U

min
yyy∈Xαxxx

cccyyy = CCCxxx+ max
ccc∈U

Inc(ccc,xxx),

where the inner maximization problem is called the adversarial problem [20]. Observe that
solving Rob-Rec consists in minimizing Eval(xxx) over xxx ∈ X . The evaluation problem
generalizes the incremental one, as we get the latter problem by fixing CCC = 000 and Γ = 0.

4

3 The computational complexity of problems

The computational complexity of the incremental, recoverable, robust recoverable and ad-
versarial problems is not less than the complexity of the generic problem P. So, all these
problems are NP-hard if P is already NP-hard. However, even the incremental version of P
can be much harder than P. It has been shown in [12], then the incremental shortest path
problem (X is the set of characteristic vectors of simple paths in a given graph) for the element
exclusion neighborhood is NP-hard and hard to approximate (interestingly, the incremental
shortest path problem with the element inclusion neighborhood is polynomially solvable [12]).
The incremental minimum assignment problem (X is the set of characteristic vectors of per-
fect matchings in a bipartite graph) is equivalent to the minimum exact matching problem,
for which no polynomial time algorithm is known [12].

The incremental problem is polynomially solvable, when P is the minimum spanning
tree [12]. It turns out that also the more general recoverable version of this problem, i.e.
computing Rec(ccc) for a given scenario ccc, is polynomially solvable [14, 13]. In fact, the
recoverable problem can be solved in polynomial time if P has a matroidal structure [14].
Namely, X is the set of characteristic vectors of the bases of some matroid. In particular, it
can be solved efficiently when P is the selection problem [16], i.e. when X = {xxx ∈ {0, 1}n :
x1 + · · · + xn = p} for a fixed constant p ∈ [n]. Notice that that matroidal problems have
the equal cardinality property, as each matroid base has the same number of elements. On
the other hand, the recoverable version of the shortest path problem is NP-hard and hard to
approximate for both element inclusion and element exclusion neighborhoods [9, 12].

Consider now the Rob-Rec problem under the uncertainty set U discussed in this paper.
Of course, this problem is not easier than Rec(ccc). So, it is interesting to characterize its
complexity when the underlying recoverable problem is polynomially solvable. It has been
recently shown that Rob-Rec is polynomially solvable under U0, when P is the selection
problem [11]. However, the complexity of Rob-Rec under U0 for other matroidal problems,
in particular for the minimum spanning tree, remains open (the corresponding evaluation
problem can be solved in polynomial time [20]).

Let us now briefly describe the known results for Rob-Rec under U0, with comparison
to other uncertainty sets. We will consider the discrete uncertainty set UD = {ccc1, . . . , cccr},
where UD contains r > 1 explicitly listed cost scenarios ccck, k ∈ [r], and the discrete budgeted
uncertainty set U1 = {(ci + δi)i∈[n] : δi ∈ [0, di], |{i ∈ [n] : δi > 0}| ≤ Γ} proposed in [6]. The
known complexity results for basic problems P are summarized in Table 1.

Table 1: Summary of complexity results for basic problem P: SEL - the selection problem,
ST - the minimum spanning tree problem, SP (Incl.) - the shortest path problem with the
element inclusion neighborhood, SP (Excl.) - the shortest path problem with the element
exclusion neighborhood; P - polynomially solvable, H - NP-hard.

U0 U1 UD
P Inc Rec Eval Rob-Rec Eval Rob-Rec Eval Rob-Rec

SEL P [16] P [16] P [11] P [11] P [11] ? P [16] H [2, 16]
ST P [12] P [14, 13] P [20] ? H [19, 20] H [19, 20] P [12] H [17]
SP (Incl.) P [12] H [9] P [20] H [9] H [9, 3, 20] H [9, 3, 20] P [12] H [9, 17]
SP (Excl.) H [12] H [12] H [12] H [12] H [12] H [12] H [12] H [12]

Under UD, the evaluation problem has the same complexity as the incremental problem,
because it reduces to solving r incremental problem Inc(xxx,ccck) for k ∈ [r]. For this uncertainty

5

representation, the single-stage robust min-max problem has been extensively discussed and
all the negative results obtained in this area (see, e.g., [2, 17]) remain valid for Rob-Rec.
All the negative results presented in Table 1 remain true even if r = 2. Observe that the
complexity of the Rob-Rec version of the selection problem under U1 and the minimum
spanning tree problem under U0 are interesting open problems. The complexity of the selection
problem under more general set U of the form (2) is unknown. However, the problem is NP-
hard when the uncertainty set is any polyhedron. It is enough to observe that the single-stage
robust min-max problem for two scenarios ccc1 and ccc2 is equivalent to the single-stage robust
min-max problem under U ′ = conv{ccc1, ccc2} and the former problem is known to be NP-hard [2].
But, it is not clear that U ′ can be represented as (2).

4 Solving the problems by MIP formulations

The incremental and recoverable problems for the element exclusion neighborhood (1) can be
solved by using the following MIP formulations (3a) and (3b), respectively:

(a)

min cccyyy∑
i∈[n]

xi(1− yi) ≤ α
∑
i∈[n]

xi

yyy ∈ X

(b)

min CCCxxx+ cccyyy∑
i∈[n]

(xi − zi) ≤ α
∑
i∈[n]

xi

zi ≤ xi i ∈ [n]
zi ≤ yi i ∈ [n]
zi ≥ xi + yi − 1 i ∈ [n]
zi ∈ {0, 1} i ∈ [n]
xxx,yyy ∈ X

(3)

The MIP formulations can be simplified if P is an equal cardinality problem. The incre-
mental and recoverable problems can be then formulated as follows:

(a)

min cccyyy∑
i∈[n] xiyi ≥ `

yyy ∈ X
(b)

min CCCxxx+ cccyyy∑
i∈[n] zi ≥ `

zi ≤ xi i ∈ [n]
zi ≤ yi i ∈ [n]
zi ≥ 0 i ∈ [n]
xxx,yyy ∈ X

(4)

Observe that we can drop the assumption that zi is binary in (4b). The algorithms described
in the next part of this paper will be based on the assumption that the formulations (3) and (4)
can be solved exactly in reasonable time. To this purpose one can use a good off-the-shelf
MIP solvers.

Consider now the evaluation problem, i.e. the problem of computing the value of Eval(xxx).
Given xxx, the inner adversarial problem maxccc∈U Inc(xxx,ccc) can be represented as the following
linear programming problem.

max t
t ≤ cccyyy ∀yyy ∈ Xαxxx
ccc ∈ U

(5)

6

If topt is the optimal value of t, then Eval(xxx) = CCCxxx + topt. Notice that (5) is a linear
programming problem, since ccc ∈ U can be described by a system of linear constraints with
real variables and the set Xαxxx is finite. However, formulation (5) has exponential number of
constraints. If we replace Xαxxx with a subset Y ⊆ Xαxxx of feasible solutions, then we get an
upper bound on topt. Also the value of Inc(xxx,ccc), for any ccc ∈ U , is a lower bound on topt.
Thus in order to find the value of topt with a given accuracy ε ≥ 0, we can use a relaxation
(constraint generation) algorithm shown in the form of Algorithm 1.

Algorithm 1 Compute Eval(xxx) with accuracy ε.

1: UB :=∞
2: Choose an initial scenario ccc0 ∈ U
3: Solve Inc(xxx,ccc0) obtaining yyy∗ ∈ Xαxxx , LB := Inc(xxx,ccc0)
4: Y := {yyy∗}
5: while UB−LB

LB > ε do
6: Solve the formulation (5) with Xαxxx = Y obtaining (ccc∗, t∗), UB := t∗

7: Solve Inc(xxx,ccc∗) obtaining yyy∗ ∈ Xαxxx
8: if LB < Inc(xxx,ccc∗) then LB := Inc(xxx,ccc∗)
9: Y := Y ∪ {yyy∗}

10: end while
11: return CCCxxx+ UB.

Algorithm 1 solves a sequence of the incremental problems and relaxed problems (5). It
is easily seen that the algorithm converges. This fact follows from the observation that the
size of Y increases by one at each step 9 of the algorithm. Indeed, suppose that yyy∗ is already
present in Y, so in formulation (5) solved in step 6. Then LB = Inc(xxx,ccc∗) = ccc∗yyy∗ ≥ cccyyy∗ for
each ccc ∈ U . In consequence LB ≥ t∗ = UB and the algorithm terminates.

Notice that each relaxed problem (5) is a linear programming problem, which can be
solved efficiently. Hence, the running time of the algorithm relies on the complexity of solving
the incremental problem. For larger problems the algorithm may converge slowly. However,
we can terminate it after a specified time is exceeded. In this case we get an upper bound
on Eval(xxx). We can also improve the performance of the algorithm by choosing good initial
cost scenario ccc0 in step 2. Such scenario will be proposed in Section 5.1.

Finally, focus on the most complex Rob-Rec problem, which can be represented as the
following program:

min CCCxxx+ θ
θ ≥ cccyyyccc ccc ∈ U∑
i∈[n]

xi(1− yccci) ≤ α
∑
i∈[n]

xi ccc ∈ U

xxx,yyyccc ∈ X ccc ∈ U

(6)

When U = {ccc1, . . . , cccr} is explicitly given or the uncertainty set can be replaced with its
finite representation, for example by the extreme points of U (see, e.g., [10, 21]), then (6)
becomes a MIP formulation for Rob-Rec. This formulation can have exponential num-
ber of variables and constraints and solving it requires special row and column generation
techniques [21]. For the problem discussed in this paper the situation seems to be more
complex, because it is difficult to replace U with its finite equivalent representation. In par-
ticular, we cannot replace U with the set of its extreme points. We will demonstrate this

7

fact using the following simple example. Let X = {(x1, x2) ∈ {0, 1}2 : x1 + x2 = 1} and
U = {(0+δ1, 0+δ2) : δ1, δ2 ∈ [0, 1], δ1 +δ2 ≤ 1}. When CCC = 000 and α = 1, we get the following
problem

max
(c1,c2)∈U

min
(x1,x2)∈X

c1x1 + c2x2.

This problem has a unique solution c1 = 0.5, c2 = 0.5 with the objective value equal to 0.5.
The set of extreme points of U is {(0, 0), (0, 1), (1, 0)} and for each of these points the objective
value is 0. In this paper we do not consider MIP formulation for Rob-Rec. Instead, we will
use the formulations (3), (4), (5) for the incremental, recoverable and evaluation problems to
construct approximate solutions for Rob-Rec.

5 Lower bounds

In this section we will propose several methods of computing a lower bound for the Rob-Rec
problem. We will then use these lower bounds to evaluate the quality of the approximate
solutions. We will denote by opt the optimal objective value in Rob-Rec.

5.1 Adversarial lower bound

It is easy to check that for each cost scenario ccc ∈ U , the value of Rec(ccc) is a lower bound on
opt. In consequence, the following adversarial problem can provide us the first general lower
bound:

Adv : max
ccc∈U

Rec(ccc) = max
ccc∈U

min
(xxx,yyy)∈Z

(CCCxxx+ cccyyy).

Let us rewrite this problem as follows:

max t
t ≤ CCCxxx+ cccyyy ∀(xxx,yyy) ∈ Z
ccc ∈ U

(7)

In order to solve (7) we will use a similar technique as for the model (5). The corresponding
algorithm is shown in the form of Algorithm 2.

Algorithm 2 Compute Adv with accuracy ε.

1: UB :=∞
2: Choose an initial scenario ccc0 ∈ U
3: Solve Rec(ccc0) obtaining (xxx∗, yyy∗) ∈ Z and LB := Rec(ccc0)
4: Z ′ := {(xxx∗, yyy∗)}
5: while UB−LB

LB > ε do
6: Solve the formulation (7) with Z := Z ′ obtaining (ccc∗, t∗) and UB := t∗.
7: Solve Rec(ccc∗) obtaining (xxx∗, yyy∗) ∈ Z
8: if LB < Rec(ccc∗) then LB := Rec(ccc∗)
9: Z ′ := Z ′ ∪ {(xxx∗, yyy∗)}.

10: end while
11: return LB.

Again, (7) is a linear programming problem, which can be solved efficiently for a small
subset Z ′ ⊆ Z. In order to prove that Algorithm 2 converges, one can use the same argument

8

as in Section 4. The running time of Algorithm 2 depends on the complexity of solving the
recoverable problem, which is not easy in general. However, we can fix a limit for its running
time, after which we still get a lower bound on opt.

For larger problems the relaxation algorithm may converge slowly. In order to speed up
the computations we can start with a good heuristic initial scenario ccc0 ∈ U , computed as
follows:

max v
ci + δi ≥ min{ci + di, v}∑

i∈[n] δi ≤ Γ

0 ≤ δi ≤ di i ∈ [n]
δδδ ∈ V

(8)

The idea of (8) is to uniformly distribute the budget among the smallest costs. This problem
can be solved efficiently by using a binary search on [0, V], where V = maxi∈[n]{ci + di}. An
illustration for the uncertainty set U0 is shown in Figure 1. In this case, given v ≥ 0, we fix
δi = max{0,min{di, v − ci}}. We choose the maximum value of v for which the constraint∑

i∈[n] δi ≤ Γ is satisfied.

v

c1

c2

c3

c4

c5

c1 + d1

c2 + d2

c3 + d3

c4 + d4

c5 + d5

6

ci

Figure 1: Computing the initial scenario ccc0 for a sample uncertainty set U0 with Γ = 13.

For large problems we can use Rec(ccc0) as a starting lower bound on opt. We can then
try to improve the lower bound by running Algorithm 2 for a given time limit.

The tightness of the adversarial lower bound is likely to depend on α. Observe that
when α = 1, then Xαxxx = X and Rob-Rec is equivalent to Adv. Also, for α close to 1, the
adversarial lower bound should be closer to opt.

5.2 Cardinality selection constraint lower bound

In this section we will propose another lower bound which, contrary to the adversarial lower
bound, can be computed by solving one MIP formulation. This lower bound should be-
have better than the adversarial lower bound for smaller values of α. In order to simplify
the presentation we will use the uncertainty set U0. A generalization to any set U will be
straightforward. The idea will be to relax the incremental problem by relaxing the structure
of the neighborhood. We consider first the case when P is an equal cardinality problem.
Let us replace the constraint yyy ∈ X in (4a) with a weaker cardinality (selection) constraint,

9

namely y1 + · · ·+yn = m, m ∈ [n]. So, the second stage solution need not to be feasible. Only,
the cardinality constraint must be satisfied. As the result, we get the following relaxation of
the incremental problem:

Inc(xxx,ccc) ≥ Inc′(xxx,ccc) = min cccyyy∑
i∈[n]

xiyi ≥ `∑
i∈[n]

yi = m

yi ∈ {0, 1} i ∈ [n]

(9)

Since ` is integer and xxx ∈ {0, 1}n is fixed, we get the following equivalent problem:

Inc′(xxx,ccc) = min cccyyy∑
i∈[n]

xiyi ≥ `∑
i∈[n]

yi = m

0 ≤ yi ≤ 1 i ∈ [n]

(10)

The problems (9) and (10) have the same optimal objective values, which follows from the
fact that, given xxx, the constraint matrix of (10) is totally unimodular. Taking the dual to (10)
we get

Inc′(xxx,ccc) = max σ`+ ρm−
∑
i∈[n]

αi

σxi + ρ− αi ≤ ci i ∈ [n]
σ ≥ 0

Now the relaxed evaluation problem Eval′(xxx) = maxccc∈U0 Inc
′(xxx,ccc) can be formulated as

follows
Eval(xxx) ≥ Eval′(xxx) = CCCxxx+ max σ`+ ρm−

∑
i∈[n]

αi

σxi + ρ− αi ≤ ci + δi i ∈ [n]∑
i∈[n]

δi ≤ Γ

δi ≤ di i ∈ [n]
δi ≥ 0 i ∈ [n]
σ ≥ 0

Taking the dual to the inner maximization problem we get:

Eval′(xxx) = CCCxxx+ min πΓ +
∑
i∈[n]

ciyi +
∑
i∈[n]

uidi∑
i∈[n]

xiyi ≥ `∑
i∈[n]

yi = m

yi ≤ 1 i ∈ [n]
−yi + π + ui ≥ 0 i ∈ [n]
π ≥ 0
ui, yi ≥ 0 i ∈ [n]

10

Finally, we obtain

min
xxx∈X

Eval′(xxx) = min CCCxxx+ πΓ +
∑
i∈[n]

ciyi +
∑
i∈[n]

uidi∑
i∈[n]

xiyi ≥ `∑
i∈[n]

yi = m

yi ≤ 1 i ∈ [n]
−yi + π + ui ≥ 0 i ∈ [n]
π ≥ 0
xxx ∈ X
ui, yi ≥ 0 i ∈ [n]

(11)

Since
opt = min

xxx∈X
Eval(xxx) ≥ min

xxx∈X
Eval′(xxx),

the MIP formulation (11) gives us a lower bound on opt. Notice that the constraint
∑

i∈[n] xiyi ≥
` can be easily linearized by using standard techniques.

Let us now turn to the element exclusion neighborhood. Let us remove the constraint
yyy ∈ X in (3a) and rewrite this problem as follows:

Inc(xxx,ccc) ≥ Inc′(xxx,ccc) = min cccyyy∑
i∈[n]

xi(1− yi) ≤ α
∑
i∈[n]

xi

yi ∈ {0, 1} i ∈ [n]

(12)

which can be rewritten as

Inc′(xxx,ccc) = min cccyyy∑
i∈[n]

xiyi ≥ (1− α)
∑
i∈[n]

xi

yi ∈ {0, 1} i ∈ [n]

(13)

We cannot add the cardinality constraint, since the size of I(yyy) is unknown. Also, the right
hand side of the constraint need not to be integral. However, we can still obtain a lower
bound on the incremental problem by solving the following relaxation of (12):

Inc(xxx,ccc) ≥ Inc′′(xxx,ccc) = min cccyyy∑
i∈[n]

xiyi ≥ (1− α)
∑
i∈[n]

xi

yi ≤ 1 i ∈ [n]
yi ≥ 0 i ∈ [n]

Using similar reasoning as for the equal cardinality problem, we get the following MIP for-

11

mulation:
min
xxx∈X

Eval′′(xxx) = min CCCxxx+ πΓ +
∑
i∈[n]

ciyi +
∑
i∈[n]

uidi∑
i∈[n]

xiyi ≥ (1− α)
∑
i∈[n]

xi

yi ≤ 1 i ∈ [n]
−yi + π + ui ≥ 0 i ∈ [n]
π ≥ 0
xxx ∈ X
ui, yi ≥ 0 i ∈ [n]

(14)

The formulation (14) is a lower bound on opt for the element exclusion neighborhood. The
terms xiyi in (14) can be linearized by using standard techniques.

Observe that for the equal cardinality problem P the cardinality selection constraint lower
bound is equal to opt when α = 0, because X 0

xxx = {xxx}. The same property is true for the
element exclusion neighborhood under the additional assumption that ccc > 000. In this case X 0

xxx

contains all solution yyy such that I(yyy) is a superset of I(xxx). Hence the cardinality selection
constraint lower bound can behave better for α close to 0.

5.3 Lagrangian lower bound

In this section we will construct another lower bound, which will be based on the La-
grangian relaxation technique (see, e.g., [1]). Contrary to the adversarial and selection
lower bounds, this bound will be limited to a special class of problems. Namely, we will
make two assumptions about the underlying problem P. Firstly, we will assume that X =
{xxx ∈ {0, 1}n : AAAxxx = bbb}, where AAA is an m × n matrix, and the corresponding polyhedron
PX = {xxx : 000 ≤ xxx ≤ 111,AAAxxx = bbb} is integral. This is true, for example, when AAA is a totally
unimodular matrix. We will also assume that P has the equal cardinality property, which will
allow us to use the simplified neighborhood representation. An important problem, which sat-
isfies both assumptions, is the minimum assignment. Again, we will consider the uncertainty
set U0, as the generalization to any U is straightforward.

Let us introduce a Lagrangian multiplier µ ≥ 0 and consider the following Lagrangian
relaxation of the incremental problem (4a):

Inc(xxx,ccc) ≥ Inc′(xxx,ccc, µ) = min cccyyy + µ(`−
∑
i∈[n]

xiyi)

AAAyyy = bbb
yyy ∈ {0, 1}n

(15)

By the integrality property, (15) is equivalent to the following linear programming problem:

Inc′(xxx,ccc, µ) = min
∑
i∈[n]

(ci − µxi)yi + µ`

AAAyyy = bbb
yi ≤ 1 i ∈ [n]
yi ≥ 0 i ∈ [n]

(16)

12

Dualizing (16) yields

Inc′(xxx,ccc, µ) = max
∑
i∈[m]

γibi −
∑
i∈[n]

βi + µ`

γγγAAAi − βi ≤ ci − µxi i ∈ [n]
βi ≥ 0 i ∈ [n],

where AAAi is the ith column of matrix AAA and γγγ = [γ1, . . . , γm]. Now, given xxx ∈ X , we get the
following LP relaxation of the evaluation problem:

Eval(xxx) ≥ Eval′(xxx, µ) = CCCxxx+ max
∑
i∈[m]

γibi −
∑
i∈[n]

βi + µ`

γγγAAAi − βi ≤ ci + δi − µxi i ∈ [n]∑
i∈[n]

δi ≤ Γ

δi ≤ di i ∈ [n]
δi, βi ≥ 0 i ∈ [n]

After dualizing the inner maximization problem, we get the following equivalent formulation

Eval′(xxx, µ) = CCCxxx+ min πΓ +
∑
i∈[n]

yi(ci − µxi) +
∑
i∈[n]

uidi + µ`

AAAyyy = bbb
−yi + π + ui ≥ 0
0 ≤ yi ≤ 1 i ∈ [n]
ui ≥ 0 i ∈ [n]

Finally, we have

min
xxx∈X

Eval′(xxx, µ) = min CCCxxx+ πΓ +
∑
i∈[n]

yi(ci − µxi) +
∑
i∈[n]

uidi + µ`

AAAyyy = bbb
−yi + π + ui ≥ 0
yi ≤ 1 i ∈ [n]
AAAxxx = bbb
ui, yi ≥ 0 i ∈ [n]
xxx ∈ {0, 1}n

(17)

The formulation (17) can be linearized, which results in the following linear MIP model:

min
xxx∈X

Eval′(xxx, µ) = min CCCxxx+ πΓ +
∑
i∈[n]

yici − µ
∑
i∈[n]

zi +
∑
i∈[n]

uidi + µ`

AAAyyy = bbb
−yi + π + ui ≥ 0
yi ≤ 1 i ∈ [n]
AAAxxx = bbb
zi ≤ xi i ∈ [n]
zi ≤ yi i ∈ [n]
ui, yi, zi ≥ 0 i ∈ [n]
xxx ∈ {0, 1}n

(18)

13

Observe that (18) has only n binary variables. Let us denote

Eval∗(µ) = min
xxx∈X

Eval’(xxx, µ)

Hence, for each µ ≥ 0, we get a lower bound on opt. The best lower bound can be computed
by solving the following problem:

max
µ≥0

Eval∗(µ). (19)

The problem (19) can be solved by applying a search method on the single parameter µ ≥ 0.
One can also solve one problem (18) for a heuristically chosen value of µ, also obtaining a
lower bound on opt (but possibly not the most tight one).

6 Upper bounds and approximate solutions

As we make no assumptions on the underlying problem P, no general polynomial time ap-
proximation algorithm can exist for any problem discussed in this paper. In this section we
will explore the approximability of the robust recoverable problem, under the assumption
that we can solve the incremental and recoverable problems in reasonable time. In general,
these problems cannot be solved in polynomial time. However, good modern solvers can solve
them to optimality for quite large instances (see Section 7). As in Section 5, we will use opt
to denote the optimal objective value for Rob-Rec.

By exchanging the inner max-min operators in Rob-Rec, we get the following min-max
problem:

Min-Max : min
(xxx,yyy)∈Z

max
ccc∈U

(CCCxxx+ cccyyy) = min
(xxx,yyy)∈Z

(CCCxxx+ max
ccc∈U

cccyyy).

By using well known min-max relations, the optimal objective value of Min-Max is an upper
bound on opt. Because U0 ⊆ U , we conclude that

UB = min
(xxx,yyy)∈Z

(CCCxxx+ max
ccc∈U0

cccyyy)

is also an upper bound on opt. Given yyy, the inner problem maxccc∈U0 cccyyy can easily be solved
by allocating the largest possible part of the budget Γ to the costs of the elements in I(yyy).
Hence, either the whole budget is allocated or the allocation is blocked by the upper bounds
on the second stage costs of I(yyy). We thus get

max
ccc∈U0

cccyyy = min{cccyyy + Γ, (ccc+ ddd)yyy}.

In consequence

UB = min
(xxx,yyy)∈Z

(CCCxxx+ min{cccyyy + Γ, (ccc+ ddd)yyy}) = min
(xxx,yyy)∈Z

min{CCCxxx+ cccyyy + Γ,CCCxxx+ (ccc+ ddd)yyy} =

= min{Rec(ccc) + Γ,Rec(ccc+ ddd)}.

Hence, in order to compute UB, it is enough to solve two recoverable problems. We now
investigate the quality of the solutions (xxx,yyy) ∈ Z and (xxx,yyy) ∈ Z obtained by solving Rec(ccc)
and Rec(ccc+ ddd), respectively. We will choose better of xxx and xxx as an approximate first stage
solution to Rob-Rec, i.e. we choose xxx if Eval(xxx) ≤ Eval(xxx) and xxx, otherwise. Observe that

Eval(xxx) ≤ CCCxxx+ max
ccc∈U0

cccyyy ≤ CCCxxx+ cccyyy + Γ = Rec(ccc) + Γ

14

and
Eval(xxx) ≤ CCCxxx+ max

ccc∈U0
cccyyy ≤ CCCxxx+ (ccc+ ddd)yyy = Rec(ccc+ ddd).

Hence
min{Eval(xxx),Eval(xxx)} ≤ UB. (20)

Since Rec(ccc) is a lower bound on opt for each ccc ∈ U , we get

UB

opt
≤ min{Rec(ccc) + Γ,Rec(ccc+ ddd)}

Rec(ccc)
= ρ(ccc), ∀ccc ∈ U . (21)

Notice that we get the smallest ratio ρ∗ = minccc∈U ρ(ccc) by choosing ccc ∈ U maximizing Rec(ccc),
i.e. by solving the adversarial problem discussed in Section 5.1. Using (20) we get

min{Eval(xxx),Eval(xxx)} ≤ ρ∗ · opt,

so the better of solutions xxx and xxx has an approximation ratio of ρ∗.
The value of ρ∗ depends on the problem data. Furthermore, its precise evaluation requires

solving recoverable and adversarial problems, which can be time consuming. We now show
several estimations of the ratio ρ∗ from above, which can be computed more efficiently. We
will use the following lemma:

Lemma 1. Let (xxx∗, yyy∗) ∈ Z be an optimal solution to Rec(ccc0) for a fixed scenario ccc0 ∈ U .
We then have

ρ∗ ≤ min

{
CCCxxx∗ + cccyyy∗ + Γ

CCCxxx∗ + ccc0yyy∗
,
CCCxxx∗ + (ccc+ ddd)yyy∗

CCCxxx∗ + ccc0yyy∗

}
. (22)

Proof. Using (21), we get

ρ∗ ≤ ρ(ccc0) = min

{
Rec(ccc) + Γ

Rec(ccc0)
,
Rec(ccc+ ddd)

Rec(ccc0)

}
Now (22) follows from the inequalities Rec(ccc) ≤ CCCxxx∗ + cccyyy∗, Rec(ccc + ddd) ≤ CCCxxx∗ + (ccc + ddd)yyy∗

and equality Rec(ccc0) = CCCxxx∗ + ccc0yyy
∗.

Lemma 2. If
ci+di
ci
≤ σ, for each i ∈ [n], then ρ∗ ≤ σ

Proof. By setting ccc0 = ccc ∈ U in (22), we get (xxx∗, yyy∗) = (xxx,yyy) and

ρ∗ ≤
CCCxxx+ (ccc+ ddd)yyy

CCCxxx+ cccyyy
≤

CCCxxx+ (ccc+ ddd)yyy

CCCxxx+ (1/σ)(ccc+ ddd)yyy
≤

CCCxxx+ (ccc+ ddd)yyy

(1/σ)(CCCxxx+ (ccc+ ddd)yyy)
= σ,

where the second inequality follows from (ccc+ddd)yyy ≤ σcccyyy and the third inequality follows form

the fact that 1
σ ≤ 1.

The value of σ in Lemma 2 can be interpreted as the maximal factor by which the second
stage costs can increase. For example, when σ = 2, then the second stage costs can increase
by at most 100% from their nominal values, and in this case ρ∗ ≤ 2. It is reasonable to assume
that in many practical applications σ is not large, which results in good approximation ratio.

15

Lemma 3. If

Γ ≤ β ·
(

min
xxx∈X

CCCxxx+ max
ccc∈U

min
yyy∈X

cccyyy

)
for β ≥ 0 then ρ∗ ≤ 1 + β.

Proof. Let ccc0 = ccc∗ ∈ U be scenario maximizing Rec(ccc) and let (xxx∗, yyy∗) ∈ Z be an optimal
solution to Rec(ccc∗). Using the first term in the minimum in (22) we get

ρ∗ ≤ 1 +
Γ

CCCxxx∗ + ccc∗yyy∗
.

Since

Rec(ccc∗) = CCCxxx∗ + ccc∗yyy∗ = max
ccc∈U

(
min
xxx∈X

CCCxxx+ min
yyy∈Xαxxx

cccyyy

)
≥ max

ccc∈U

(
min
xxx∈X

CCCxxx+ min
yyy∈X

cccyyy

)
=

= min
xxx∈X

CCCxxx+ max
ccc∈U

min
yyy∈X

cccyyy

the lemma follows.

Lemma 3 shows that ρ∗ is not large if the budged is not large in comparison with the first
and second stage solution costs. The value of minxxx∈X CCCxxx can be computed in polynomial
time if P is polynomially solvable. Also, the value of maxccc∈U minyyy∈X cccyyy can be sometimes
computed efficiently by dualizing the inner minimization problem and solving a resulting LP
formulation.

The next two lemmas are valid only for the uncertainty set U0.

Lemma 4. Assume that the uncertainty set is U0. If

Γ ≥ β ·
∑
i∈[n]

di = β ·D

for β ∈ (0, 1], then ρ∗ ≤ 1
β .

Proof. Choose scenario ccc′ ∈ U0 such that c′i = min{ci+di, ci+Γdi
D} for i ∈ [n]. It is clear that

ccc′ ∈ U0, because
∑n

i=1 δ
′
i ≤

∑n
i=1 Γdi

D = Γ. Let (xxx∗, yyy∗) ∈ Z be an optimal solution to Rec(ccc′).
Consider the second term in the minimum in (22). Because CCCxxx∗ ≥ 0 and (ccc+ddd)yyy∗ ≥ ccc′yyy∗, we
get the following estimation:

ρ∗ ≤ (ccc+ ddd)yyy∗

ccc′yyy∗
=

∑
i∈[n](ci + di)y

∗
i∑

i∈[n] min{ci + di, ci + Γdi
D}y

∗
i

.

Let I1 = {i ∈ I(yyy∗) : ci + di ≤ ci + Γdi
D} and I2 = I(yyy∗) \ I1. We get

ρ∗ ≤
∑

i∈I1∪I2(ci + di)∑
i∈I1(ci + di) +

∑
i∈I2(ci + Γdi

D)
≤

∑
i∈I1∪I2(ci + di)∑

i∈I1(ci + di) +
∑

i∈I2(ci + βdi)
.

Because β ∈ (0, 1],

ρ∗ ≤
∑

i∈I1∪I2(ci + di)

β(
∑

i∈I1(ci + di) +
∑

i∈I2(ci + di))
=

1

β
.

16

Lemma 4 shows that ρ∗ is not large if the budget Γ is not significantly smaller than D,
which denotes the maximum amount of the uncertainty which can be allocated to the second
stage item costs.

Lemma 5. Assume that the uncertainty set is U0. Let q = |{i ∈ [n] : di > 0}|. Then, the
inequality ρ∗ ≤ q + 1 holds. Furthermore, if P is an equal cardinality problem and di ≥ Γ/n
for each i ∈ [n], then ρ∗ ≤ n

m + 1.

Proof. Choose scenario ccc′ ∈ U0 such that c′i = min{ci + di, ci +
Γ
q } for i ∈ [n]. Indeed, ccc′ ∈ U0,

because
∑

i∈[n] δ
′
i =

∑
{i∈[n]:di>0} δ

′
i ≤ q · Γ

q = Γ. Let (xxx∗, yyy∗) ∈ Z be an optimal solution to

Rec(ccc′). Using the first term in the minimum in (22) we get

ρ∗ ≤ 1 +
Γ

CCCxxx∗ + ccc′yyy∗
≤ 1 +

Γ

ccc′yyy∗
= 1 +

Γ∑
i∈[n] min{ci + di, ci + Γ

q }y
∗
i

.

Let I1 = {i ∈ I(yyy∗) : ci + di ≤ ci + Γ
q } and I2 = I(yyy∗) \ I1. We get

ρ∗ ≤ 1 +
Γ∑

i∈I1(ci + di) +
∑

i∈I2(ci + Γ
q)
.

If I2 = ∅, then we obtain ρ∗ = 1 by using the second term in the minimum in (22). So |I2| ≥ 1
and we can estimate

ρ∗ ≤ 1 +
Γ
Γ
q

= 1 + q.

If di ≥ Γ
n for each i ∈ [n] and P is an equal cardinality problem, then q = n, I1 = ∅, |I2| = m

and

ρ∗ ≤ 1 +
Γ∑
i∈I2

Γ
n

= 1 +
n

m
.

We can now apply Lemma 5 to several special cases of problem P under U0, with di ≥ Γ
n

for each i ∈ [n]. If P is the selection problem discussed in [11], then ρ∗ ≤ 1 + n
p . If P is the

minimum spanning tree problem in a sparse graph, in which |E| ≤ θ|V | for some constant

θ ≥ 1, then ρ∗ ≤ 1+ θ|V |
|V |−1 ∼ 1+θ for large graphs. If P is the minimum assignment problem,

then ρ∗ ≤ 1 +
√
n.

7 Experiments

In this section we will show the results of some experiments. We will test the lower bounds
and approximate solutions using two problems, namely the assignment and the knapsack
ones. The assignment problem is polynomially solvable and has the equal cardinality property.
Hence we can apply all the lower bounds, proposed in Section 5, to this problem. On the other
hand, the knapsack problem is NP-hard and does not posses the equal cardinality property.
In consequence, only the adversarial and cardinality selection constraint lower bounds will be
used for this problem. We will use scenario set U0, i.e. the continuous budgeted uncertainty.
The experiments were executed on a 2 GHz computer equipped with 80 Intel(R) Xeon(R)

CPU E7-4850 processors. We used IBM ILOG CPLEX 12.8.0.0 optimizer [15] to solve the
MIP formulations.

17

7.1 The minimum assignment

In this section we will show the results of experiments when P is the following assignment
problem:

min
∑

i∈[m]

∑
j∈[m]Cijxij∑

i∈[m] xij = 1 j ∈ [m]∑
j∈[m] xij = 1 i ∈ [m]

xij ∈ {0, 1} i, j ∈ [m]

The experiment was performed for m ∈ {10, 25, 100}, so the number of variables n ∈
{100, 625, 10 000}. The parameters were generated in the following way:

1. The first stage costs Cij , nominal second stage costs cij are random integers uniformly
distributed in [1, 20].

2. The maximal deviations dij are random integers uniformly distributed in [0, 100].

3. The budget Γ = 0.1
∑

i,j∈[n] dij , hence it is equal to 10% of the total uncertainty of the
second stage cots.

4. α ∈ {0.1, 0.2, . . . , 0.9}.

5. The accuracy ε in Algorithm 1 and Algorithm 2 was set to 0.01 and both algorithms
were terminated if the running time exceeds 600 seconds. The accuracy of computing
the Lagrangian lower bound by a version of golden search method was set to 0.1. The
maximal time of solving the problem (18) was set to 600 seconds. After this time the
computations of the bound were terminated.

For each parameters setting, we have generated 10 random instances. In the first experi-
ment we have computed, for every instance, the ratio

ρ(ccc0) =
min{Rec(ccc) + Γ,Rec(ccc+ ddd)}

Rec(ccc0)
, (23)

where ccc0 is the heuristic scenario proposed in Section 5.1. Computing this ratio requires
solving three recoverable problems. Recall that the better of the solutions xxx or xxx has an
approximation ratio at most ρ(ccc0).

The average ratios ρ(ccc0) for various m and the average times required to compute it for
m = 100 are shown in Figure 2. Observe first, that ρ(ccc0) can be computed efficiently. The
average time required to compute ρ(ccc0), for m = 100, is less than 25 seconds. It can be
observed that the time is significantly smaller for larger α. The average ratios ρ(ccc0) are less
than 2. Interestingly, the ratio ρ(ccc0) is smaller for larger m (for m = 100 the average ratios
ρ(ccc0) are less than 1.2). This fact is true for the particular method of data generation and
may be different for other settings (verifying this requires more tests).

We now investigate the cases m = 10 and m = 25 in more detail. For each instance we
computed: the adversarial lower bound LBAdv by executing Algorithm 2, the lower bound
LBh = Rec(ccc0) for scenario ccc0 ∈ U , proposed in Section 5.1, the cardinality selection con-
straint lower bound LBSel by solving the MIP formulation (14) constructed in Section 5.2 and
the Lagrangian lower bound LBLag constructed in Section 5.3. Notice that LBh ≥ LBAdv
for every instance, as we start Algorithm 2 from the initial scenario ccc0. We also computed

18

0.2 0.4 0.6 0.8

1.2

1.4

1.6

1.8

av
er

ag
e

ra
tio

(c

)

m = 10
m = 25
m = 100

0.2 0.4 0.6 0.8

10.0

12.5

15.0

17.5

20.0

av
er

ag
e

tim
e

(s
)

m = 100

Figure 2: The average ratios ρ(ccc0) for the assignment problem with m ∈ {10, 25, 100} and
the average running times of computing ρ(ccc0) for m = 100.

the first stage solutions xxx and xxx (see Section 6), and the quantities Eval(xxx) and Eval(xxx) by
using Algorithm 1. We have computed the average ratios

ρk =
min{Eval(xxx),Eval(xxx)}

LBk
, (24)

for each lower bound LBk. We also measured the average running times of computing the
ratios.

0.2 0.4 0.6 0.8
1.0

1.2

1.4

1.6

1.8

av
er

ag
e

ra
tio

Adv

h

Sel

Lag

0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

av
er

ag
e

tim
e

(s
)

Adv

Sel

Lag

Figure 3: The average ratios ρk and the average times for computing them for the assignment
problem with m = 10.

The results for m = 10 are shown in Figure 3. For m = 10, all the quantities were solved
to optimality, or with the assumed accuracy ε, when Algorithms 1 and 2 were used. One can
observe in Figure 3 that one of xxx or xxx is always a good approximate solution. The best lower
bound can be computed by using the Lagrangian relaxation technique (the bound LBLag).
On can also see in Figure 3 that the evaluation and all lower bounds can be computed in
reasonable time. The best lower bound is LBLag. As one can expect, the lower bound LBSel
is better than LBAdv for smaller α and worse for larger. Notice, however, that LBSel can be
computed very efficiently.

Figure 4 shows the results for m = 25. We can still observe an improvement of LBAdv
over LBh. For this case, not all solutions xxx and xxx were evaluated exactly. For some instances

19

Algorithm 2 was terminated after the time of 600 seconds was exceeded. In this case we
obtained upper bounds on Eval(xxx) and Eval(xxx). The Lagrangian lower bound LBLag was
harder to compute than for m = 10. In Figure 4, in the brackets the number of instances,
for which LBLag was computed successfully, is shown. But, as for m = 10, it outperforms all
the remaining lower bounds and suggests that the approximate solutions behave well. The
cardinality selection constraint lower bound LBSel outperforms LBAdv for α ≤ 0.5. The time
required to compute LBSel is again small.

0.2 0.4 0.6 0.8
1.0

1.1

1.2

1.3

1.4

1.5

av
er

ag
e

ra
tio

(8) (6) (6) (5) (5)
(6) (5) (7) (8)

Adv

h

Sel

Lag

0.2 0.4 0.6 0.8

500

1000

1500

2000

av
er

ag
e

tim
e

(s
)

Adv

Sel

Lag

Figure 4: The average ratios ρk and the average times for computing them for the assignment
problem with m = 25. The numbers in brackets denote the number of instances for which
the value of LBLag was computed successfully.

7.2 The minimum knapsack

In this section we will show the results of experiments when P is the following minimum
knapsack problem:

min
∑

i∈[n]Cixi∑
i∈[n]wixi ≥W

xi ∈ {0, 1} i ∈ [n]

The test were performed for n ∈ {100, 400, 1000}, with the following parameter setting:

• The first stage costs Ci, nominal second stage costs ci, and weights wi are random
integers uniformly distributed in [1, 20]. The knapsack capacity W = 0.3

∑
i∈[n]wi.

• The maximal deviations di are random integers uniformly distributed in [0, 100].

• The budget Γ = 0.1
∑

i∈[n] di.

• α ∈ {0.1, 0.2, . . . , 0.9}.

• The accuracy in Algorithm 1 and Algorithm 2 was set to 0.01. Algorithm 1 and Algo-
rithm 2 were terminated after the time limit of 600 seconds was exceeded. Also, the time
limit on the MIP formulation (14), for computing the cardinality selection constraint
lower bound, was set to 600 seconds. If this time was exceeded, then an estimation from
below for this lower bound was returned.

20

For each parameters settings, we have generated 10 random instances. In the first experi-
ment we computed the ratio ρ(ccc0) by using (23). The average ratios and the average running
time of computing them for n = 1000 are shown in Figure 5.

0.2 0.4 0.6 0.8

1.900

1.925

1.950

1.975

av
er

ag
e

ra
tio

(c

)

n = 100
n = 400
n = 1000

0.2 0.4 0.6 0.8
0

25

50

75

100

av
er

ag
e

tim
e

(s
)

n = 1000

Figure 5: The average ratios ρ(ccc0) for the knapsack problem with n ∈ {100, 400, 1000} and
the average times of computing ρ(ccc0) for the knapsack problem with n = 1000.

Observe first that the ratio ρ(ccc0) can be computed efficiently. The largest running times
were observed for α = 0.3. The average value of this ratio is less than 2.0 and for smaller n
the figure is more chaotic. For n = 1000, the average value of ρ(ccc0) is close to 1.975 for all α.
This behavior is different than for the assignment problem (see Figure 2), where the ratio is
significantly smaller for larger instances and slightly decreases when α increases.

0.2 0.4 0.6 0.8
1

2

3

4

av
er

ag
e

ra
tio

Adv

h

Sel

0.2 0.4 0.6 0.8

500

750

1000

1250

1500

1750

av
er

ag
e

tim
e

(s
)

Adv

Sel

Figure 6: The average ratios ρk and the average times for computing them for the knapsack
problem with n = 100.

We next considered the case with n = 100. Figure 6 shows the average ratios ρAdv, ρh and
ρSel for n = 100 (see (24)) and the average times for computing these ratios for various α.
One can observe that the approximation algorithm proposed in Section 6 performs well for
the tested instances. By using better of LBAdv and LBSel, the average ratio for each α was
not greater than 1.5. There is also an improvement of ρAdv over ρh. The cardinality selection
constraint lower bound is better than the adversarial one for α < 0.4 and worse for α > 0.4.
Observe that computing ρSel for the knapsack problem is more time consuming than for the
assignment.

In Figure 7 the results for n = 400 are shown. One can observe similar relation between

21

0.2 0.4 0.6 0.8

1.5

2.0

2.5

3.0

3.5

4.0

4.5

av
er

ag
e

ra
tio

Adv

h

Sel

0.2 0.4 0.6 0.8
1200

1400

1600

1800

av
er

ag
e

tim
e

(s
)

Adv

Sel

Figure 7: The average ratios ρk and the average times for computing them for the knapsack
problem with n = 400. The time required to compute ρH is negligible.

ρSel and ρAdv as for the smaller problem with n = 100. However, the adversarial lower bound
is now harder to compute and most instances were not solved to optimality (Algorithm 1 was
terminated after the time of 600 seconds was exceeded). Observe that there is no significant
improvement of ρAdv over ρh.

7.3 Summary of the tests

Let us briefly summarize the results of the tests. For the assumed method of data generation,
the ratio ρ(ccc0) is almost always not greater than 2. Furthermore ρ(ccc0) can be computed
efficiently for quite large instances, with thousands of variables. This suggests that the better
of solutions xxx, xxx has, for the tested instances, the empirical approximation ratio less than 2.
One can conclude that this ratio is indeed significantly smaller than 2, by using better lower
bounds. However, computing these lower bounds is more time consuming and can be done
efficiently for smaller instances.

The solutions xxx, xxx can be computed by solving the recoverable problem. For the assign-
ment and knapsack problem, the recoverable problem is not particularly difficult to solve by
CPLEX. However, the evaluation problem is more difficult, as we have to use the relaxation
algorithm to perform this task. For large instances, we should assume more time for executing
Algorithm 1. We can then choose the solution among xxx, xxx, which has better upper bound on
the value of Eval(xxx).

Notice that the techniques proposed in this paper are general. For specific problem P,
the incremental, recoverable and evaluation problems can be solved by specialized algorithms
(even in polynomial time). So, one can obtain better estimations for larger instances.

8 Conclusions

In this paper we considered a general class of 0-1 optimization problems, which can be poly-
nomially solvable or NP-hard. The recoverable robustness concept was applied to take into
account the possibility of performing a recourse action on the current first-stage solution. We
proposed to use a polyhedral uncertainty representation. This model of uncertainty, contain-
ing the continuous interval budgeted uncertainty as a special case, can be easy to provide

22

in practical applications. Moreover, it may lead to more tractable problems than other un-
certainty representations. Unfortunately, the resulting min-max-min problem can be still
complex to solve. Instead of solving the problem to optimality, we proposed to use some
approximate solutions. The quality of these solutions can be estimated by using various lower
bounds. One can apply this approach to quite large instances of the recoverable version of any
0-1 programming problem. In this paper we did not consider any particular 0-1 optimization
problem. The computations can be done more efficiently if a polynomial algorithm is known
for the incremental or recoverable problem. However, this is the case only for very specific
problems such as selection or minimum spanning tree.

Acknowledgements

This work was supported by the National Science Centre, Poland, grant 2017/25/B/ST6/00486.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: theory, algorithms, and
applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] I. Averbakh. On the complexity of a class of combinatorial optimization problems with
uncertainty. Mathematical Programming, 90:263–272, 2001.

[3] A. Bar-Noy, A. S. Khuller, and B. Schieber. The complexity of finding most vital arcs
and nodes. Technical Report CS-TR-3539, Institute for Advanced Studies, University of
Maryland, College Park, MD, 1995.

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton Series in
Applied Mathematics. Princeton University Press, Princeton, NJ, 2009.

[5] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions
of uncertain linear programs. Mathematical Programming A, 99:351–376, 2004.

[6] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming, 98:49–71, 2003.

[7] C. Buchheim and J. Kurtz. Min-max-min robust combinatorial optimization. Mathe-
matical Programming A, 163:1–23, 2017.

[8] C. Büsing. Recoverable robustness in combinatorial optimization. PhD thesis, Technical
University of Berlin, Berlin, 2011.

[9] C. Büsing. Recoverable robust shortest path problems. Networks, 59:181–189, 2012.

[10] A. Chassein and M. Goerigk. On the recoverable robust traveling salesman problem.
Optimization Letters, 10:1479–1492, 2016.

[11] A. Chassein, M. Goerigk, A. Kasperski, and P. Zieliński. On recoverable and two-stage
robust selection problems with budgeted uncertainty. European Journal of Operational
Research, 265:423–436, 2018.

23

[12] O. Şeref, R. K. Ahuja, and J. B. Orlin. Incremental network optimization: theory and
algorithms. Operations Research, 57:586–594, 2009.

[13] M. Hradovich, A. Kasperski, and P. Zieliński. Recoverable robust spanning tree prob-
lem under interval uncertainty representations. Journal of Combinatorial Optimization,
34:554–573, 2017.

[14] M. Hradovich, A. Kasperski, and P. Zieliński. The recoverable robust spanning tree
problem with interval costs is polynomially solvable. Optimization Letters, 11:17–30,
2017.

[15] IBM ILOG CPLEX Optimization Studio. CPLEX User’s manual. https://www.ibm.com.

[16] A. Kasperski and P. Zieliński. Robust recoverable and two-stage selection problems.
Discrete Applied Mathematics, 233:52–64, 2017.

[17] P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, 1997.

[18] C. Liebchen, M. E. Lübbecke, R. H. Möhring, and S. Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. In Robust and Online
Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 1–
27. Springer-Verlag, 2009.

[19] K. Lin and M. S. Chern. The most vital edges in the minimum spanning tree problem.
Information Processing Letters, 45:25–31, 1993.

[20] E. Nasrabadi and J. B. Orlin. Robust optimization with incremental recourse. CoRR,
abs/1312.4075, 2013.

[21] B. Zeng and L. Zhao. Solving two-stage robust optimization problems using a column
and constraint generation method. Operation Research Letters, 41:457–461, 2013.

24

	1 Introduction
	2 Problem formulation
	3 The computational complexity of problems
	4 Solving the problems by MIP formulations
	5 Lower bounds
	5.1 Adversarial lower bound
	5.2 Cardinality selection constraint lower bound
	5.3 Lagrangian lower bound

	6 Upper bounds and approximate solutions
	7 Experiments
	7.1 The minimum assignment
	7.2 The minimum knapsack
	7.3 Summary of the tests

	8 Conclusions

