
Dynamic Multi-Priority, Multi-Class Patient Scheduling with Stochastic

Service Times
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Abstract

E�cient patient scheduling has significant operational, clinical and economical benefits on health

care systems by not only increasing the timely access of patients to care but also reducing costs.

However, patient scheduling is complex due to its stochastic nature, the existence of multiple stages

of care, and the multiple interdependencies between these stages. Patient appointment (allocation)

scheduling refers to the assignment of specific appointment start times to a set of patients scheduled

for a particular day while advance patient scheduling refers to the assignment of future appointment

days to patients. These two problems have generally been addressed separately despite each being

highly dependent on the form of the other. This paper develops a framework that seeks to bridge

the two problems. It incorporates random arrivals with multiple patient types and priorities as

well as random appointment durations. We take into account the waiting time until the day of

service as well as the idle time and overtime of medical resources on the day of service. We use

approximate dynamic programming and determine advance schedules with stochastic appointment

durations. We first extend the current literature by providing theoretical and numerical results for

the case with multi-class, multi-priority patients and deterministic service times. We then adapt the

model to incorporate stochastic service times and perform a comprehensive numerical analysis on

a number of scenarios. We compare policies obtained from our models against benchmark policies

used in practice. In addition, we present results based on a medium-size clinic in Ontario, Canada.
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1. Introduction

The large body of literature associated with patient scheduling can broadly be divided into

two streams: appointment (or allocation) scheduling and advance scheduling. Advance scheduling

refers to the allocation of future service capacity to demand as it arrives. It is most often done

on a daily basis. Appointment scheduling, on the other hand, refers to the assignment of specific

appointment times and resources to patients but only once all patients for a given service day have

been identified. While there is a significant stream of literature regarding both types of scheduling

problem, little work has been done that attempts to combine the two despite the potential of

their being highly dependent on each other. A typical advance scheduling model will use resource

utilization or overtime as a relevant performance metric. However, in the presence of stochastic

service times, overtime is clearly dependent on the form of the appointment schedule. Conversely,

the key input to an appointment scheduling problem is the number of patients to be served, which

is precisely the output of an advance scheduling model. This interdependency of the two scheduling

problems provides the impetus for this research that looks to determine the advantage of solving

them as a single problem.

Advance scheduling problems typically assume that patients can be classified into multiple types

according to their capacity requirements and urgency, that there is (at least) one resource that has

a fixed regular-hour capacity, that there exists the possibility of using overtime or an alternative

source of surge capacity, and that service durations are deterministic. The aim is to identify

e↵ective ways of allocating available service capacity to incoming appointment requests while either

maximizing the service level (the number of patients booked within medically acceptable wait times)

in a cost-e↵ective manner or else maximizing revenue or throughput. Application areas include the

scheduling of diagnostic tests such as MRIs (Schütz and Kolisch, 2012) or CT scans (Patrick et al.,

2008) as well as radiation therapy treatments (Sauré et al., 2012). Papers in the area of advance

scheduling mostly use dynamic programming, or approximate dynamic programming, due to the

sequential nature of the scheduling decisions.

Appointment (or allocation) scheduling problems typically consider a single resource with high

idle time and overtime costs. The objective is to determine appointment times (sequence) and

appointment durations such that some combination of the costs associated with patient within-day

waits, resource idle time and overtime is minimized. Appointment times are needed before the

service day. The challenge comes from uncertain service times. There are many applications for

appointment scheduling with two significant applications being surgery and physician appointment
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scheduling (Begen and Queyranne, 2011). Stochastic programming, queuing theory, simulation and

simulation-optimization are commonly used methodologies to solve this type of problem.

In advance scheduling problems, the assumption of deterministic service times is largely made

for convenience and in the general hope that, over time, average service times will work fairly

well as an approximation. This assumption allows overtime or idle time to be easily calculated

as the number of appointments booked on a given day times the appointment length minus the

regular-hour capacity. In the absence of this assumption, the performance metrics of the advance

schedule (namely overtime and idle time) are dependent on the appointment schedule being used.

The purpose of this research is to test whether or not using average service times works well as an

approximation.

To that end, we begin with the advance scheduling model provided in Patrick et al. (2008).

Patients request service on a daily basis and are categorized based on urgency into multiple priority

classes, each class with its own wait time target (medically acceptable wait time). The aim of the

scheduler is to ensure that as many patients as possible are served within their wait time targets

and with as little overtime as possible. The model penalizes scheduling a patient past his/her wait

time target but does not prohibit it. Patrick et al. (2008) model this problem as a Markov Decision

Process (MDP). However, the size of the state space and the corresponding action sets prohibit the

determination of a solution via traditional methods. Instead, they resort to the linear programming

approach to Approximate Dynamic Programming (ADP). In this approach, the value function

in the MDP model is approximated by a function that is a�ne in the state variables and then

the optimal approximation parameter values are determined using mathematical programming.

The authors were able to determine the form of the optimal a�ne approximation under mild

conditions on the availability of su�cient regular-hour and overtime capacity. This allowed for the

characterization of the approximate optimal policy without having to solve an optimization model

every time scheduling decisions were required. The result was an easy-to-implement heuristic policy

that performs well in practice.

One of the limiting assumptions of Patrick et al. (2008) is that service times are homogeneous.

The first contribution of this paper is to remove that assumption and allow for patient classifi-

cation both by priority and by resource consumption. Initially, we maintain the assumption that

resource consumption is deterministic. In this setting, we are able to show that the optimal a�ne

approximation continues to have a predictable (though di↵erent) form and thus the approximate

optimal policy can again be characterized and implemented without recourse to an optimization

3



model. The proof of this theoretical result is provided in the online supplement.

The addition of stochastic service times significantly complicates the advance scheduling prob-

lem due to the fact that the computation of overtime now depends on the appointment schedule

that defines the appointment time for each patient. For the purposes of this paper, we focus on the

case where the only performance metric of interest for the appointment schedule is the overtime

or idle time that results at the end of the service day. This assumption is reasonable in settings

such as surgical scheduling where patient wait times on the day of service are not considered a

major factor and where the possibility of resource idle time between appointments is removed by

requiring patients to arrive well before their scheduled surgery times. The value of this simplifying

assumption is that the calculation of the performance metrics does not depend on the sequencing of

patients but only on their service times. Thus, the MDP model continues to evaluate the scheduling

policy based on a combination of meeting the wait time target for each patient and minimizing the

overtime and idle time at the end of the day of service. However, the calculation of the overtime

or idle time is now based on a method described in Begen and Queyranne (2011) that determines

the optimal appointment schedule as a function of known stochastic service time distributions.

We consider service times with discrete probability distributions. Thus, the expected cost on

the service day (e.g., idle time or overtime cost) can be computed e�ciently by using recursive

equations for a given number of patients. Expected cost computations are fast (i.e., polynomial

in the number of patients and in the largest service time) and can be done easily on an as-needed

basis. Furthermore, these computations are flexible. We can either work with discrete probability

distributions, if they are available, or samples of service durations. In the case of samples, we can

work with correlated durations. Expected service-day costs are computed and incorporated into

the MDP model.

In this paper, we describe a model setting that seeks to bridge advance and appointment schedul-

ing problems. We obtain theoretical and numerical results for the advance scheduling problem with

deterministic service times in the case of multi-class and multi-priority patients. Next, we incorpo-

rate stochastic service times into our model. We conduct a comprehensive analysis to compare the

performance of the model with stochastic service durations to that of the model with deterministic

service durations as well as against the performance of benchmark policies used in practice. In

addition, we provide an extensive literature review of the advance and appointment scheduling

problems. Last but not least, we present results based on a medium-size clinic in Ontario, Canada

and quantify potential savings.
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The rest of the paper is organized as follows. In Section 2, we provide an exhaustive overview of

the relevant literature. In Section 3, we describe an enhanced version of the MDP model presented

in Patrick et al. (2008) that can be used to incorporate patient classes di↵erentiated by both prior-

ity and resource consumption as well as stochastic service times. In Section 4, we first characterize

the model with deterministic service times and then the model with stochastic service times. In

particular, we state the theoretical results for the deterministic model with multiple service classes

and show how stochastic service durations are incorporated. Then, in Section 5, we present exten-

sive numerical results designed to determine the impact of incorporating stochastic service times

and compare the performance of the resulting scheduling policies to that of benchmark policies

used in practice. We also present results from a practical application based on data provided by a

medium-size clinic. Finally, in Section 6, we provide a discussion and review our main conclusions.

2. Related Literature

Patient scheduling is complex due to its stochastic nature, the existence of multiple stages of

care, scarce resources and multiple interdependencies between di↵erent stakeholders. As much as

it is complex, it is also critical to have good and e↵ective schedules to ensure that patients receive

timely access to medical services in a cost-e�cient manner. This is especially important now that

health care costs and demand for medical services are on the rise and almost all countries are under

constant pressure to improve health care e�ciency while reducing costs.

Two important challenges in patient scheduling are the presence of random patient arrivals

and the existence of random resource requirements. To address these challenges, researchers have

mostly focused on one source of uncertainty at a time. Advance scheduling models deal with random

patient arrivals whereas appointment scheduling models consider random service durations. Next,

we provide an extensive literature survey on advance and appointment scheduling.

Appointment scheduling has been studied extensively over the last 50 years, starting with

the well-known paper by Bailey (1952). This paper recommends booking two patients at the

beginning of the day and patients equally spaced thereafter in order to avoid any idle time for

doctors. Application areas of appointment scheduling include surgery scheduling (Denton et al.,

2007; Begen and Queyranne, 2011) and physician appointment scheduling (Robinson and Chen,

2009; Kaandoorp and Koole, 2007). The main objective in appointment scheduling is to determine

how much time to reserve for each appointment (Wang, 1993; Robinson and Chen, 2009; Denton

and Gupta, 2003; Begen and Queyranne, 2011; Mancilla and Storer, 2012) and/or the number of
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appointments to book at each pre-determined time interval (Bosch et al., 1999; Kaandoorp and

Koole, 2007; Muthuraman and Lawley, 2008; Chakraborty et al., 2010; Zeng et al., 2009; Cayirli

et al., 2012) in order to minimize a weighted combination of the expected overtime and idle time

of the resource (e.g., doctor’s time or operating room hours) and the expected waiting time for

patients. Almost all papers in the literature focus on the optimization of expected costs or rewards

though there are some studies that consider other objectives. For example, Mittal et al. (2014)

consider the worst-case scenario of the realized service times and Sang et al. (2017) the minimization

of a percentile of the total cost.

In appointment scheduling, the total number of patients is assumed to be known in advance and

planned appointment times are needed before any patient is served. The main challenge comes from

uncertain appointment durations. Most papers in the literature use continuous probability distri-

butions to describe service durations. However, there are some important advantages to considering

discrete distributions instead (Begen and Queyranne, 2011). Discrete probability distributions en-

able e�cient expected value computations and polynomial time algorithms for optimizing schedules.

In addition, they can be easily used to incorporate no-shows and, to a certain extent, emergencies

(Begen and Queyranne, 2011). There are also a few papers in the literature that discuss settings

with partial, limited or no information on the service time distributions (Begen et al., 2012; Ge

et al., 2013; Kong et al., 2013; Mak et al., 2014).

Although most studies assume that a fixed sequence of patients is given, and only determine

an optimal schedule, the optimal sequencing of patients at the same time and in addition to

determining the optimal appointment times is also considered in the literature. The problem,

however, increases in complexity as the number of possible sequences grows quickly with the number

of patients. Unsurprisingly, this problem is NP-hard (Mancilla and Storer, 2009). Some results

exist on the optimal sequencing of two patients. For example, it has been demonstrated that

scheduling patients in increasing order of service time variance is optimal (Weiss, 1990; Denton

et al., 2007; Gupta, 2007). For a higher number of patients, the problem seems to be open and it

is very unlikely that a universal optimal sequencing rule could be found unless some restrictions

on the service time distributions and costs are imposed. For example, a recent paper by Guda

et al. (2016) demonstrated that the shortest-variance-first rule is optimal for the single-machine

earliness/tardiness problem if the earliness and tardiness cost parameters are the same for all the

jobs and there is a dilation ordering of the processing times. The authors discuss the application

of this rule to the appointment scheduling problem with sequencing in the case where idling is not
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allowed. Although an optimal sequencing rule for the general problem is not yet available, Denton

et al. (2007) show that ordering patients by increasing service time variance works well. In addition,

Chen and Robinson (2014) describe heuristic policies that work well in the presence of two classes

of patients. Mak et al. (2014) show, using inventory approximations, that sequencing jobs based on

increasing (standard deviation)/(overtime cost)� , where � 2 {1, 0.5}, performs better than simply

ordering based on increasing variance.

While it is common to assume that both medical resources (e.g., doctors) and patients are

punctual, there is substantial evidence suggesting that this assumption is often unwarranted. Fur-

thermore, doctors’ schedules can be interrupted by other, sometimes more urgent, tasks. Motivated

by these considerations, there are a few papers that study the e↵ect of unpunctuality and inter-

ruptions on the optimal appointment schedule (Klassen and Yoogalingam, 2009; Luo et al., 2012;

Klassen and Yoogalingam, 2014; Samorani and LaGanga, 2015). There are also papers that consider

the potential impact of patient no-shows, overbooking, and cancellations. Some of these papers

resemble appointment scheduling, others come closer to advance scheduling.

The main techniques used for appointment scheduling are stochastic programming (Robinson

and Chen, 2009; Denton and Gupta, 2003; Denton et al., 2007; Begen and Queyranne, 2011; Mancilla

and Storer, 2012), the newsvendor approach (Weiss, 1990), queuing theory (Wang, 1993; Klassen

and Rholeder, 1996; Kaandoorp and Koole, 2007), simulation (Santibáñez et al., 2007; White et al.,

2011; Ma et al., 2016), and simulation-optimization (Klassen and Yoogalingam, 2008, 2009).

Advance scheduling di↵ers from appointment scheduling in that arrivals are random while ser-

vice durations are generally assumed to be deterministic (i.e., fixed). Advance scheduling thus

deals with patient waiting times until the day of service (e.g., days until an MRI appointment or

surgery), whereas appointment scheduling deals with costs incurred on the day of service (e.g.,

waiting time penalties, overtime and idle time costs). In advance scheduling one needs a booking

(capacity allocation) policy to be used continuously, whereas in appointment scheduling one needs

an appointment schedule before any patient is served.

Advance scheduling can be viewed as a stochastic capacity allocation problem in which the trade-

o↵ between capacity utilization and waiting times or between revenue and service levels are modelled

for di↵erent types of patients (Patrick et al., 2008; Erdelyi and Topaloglu, 2009; Dobson et al.,

2011; Sauré et al., 2012; Truong, 2015). Alternatively, it can be considered a revenue management

problem in which the main decision is to determine whether or not to accept an incoming service

request (Schütz and Kolisch, 2012, 2013). While most studies in advance scheduling focus on a
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single resource (Patrick et al., 2008; Dobson et al., 2011), there are others that consider multiple

resources (Gocgun and Ghate, 2012; Truong, 2015; Astaraky and Patrick, 2015). Other than in

a few cases (Gupta and Denton, 2008; Wang and Gupta, 2011; Feldman et al., 2014), patient

preferences have not been considered.

No-shows, in both appointment and advance scheduling, have received a significant amount of

attention from researchers in the last few years (Liu, 2016; Tsai and Teng, 2014; Tang et al., 2014).

High no-show rates can significantly paralyze a service and cause the double negative e↵ect of

low resource utilization and high waiting times. To overcome these negative outcomes, researchers

have considered overbooking (Huang and Zuniga, 2012; LaGanga and Lawrence, 2012; Zacharias

and Pindeo, 2014), studied the relationship between panel size and no-show rates (Green and

Savin, 2008; Liu, 2016), and examined the impact of open-access policies (Robinson and Chen,

2010; Patrick, 2012). Open-access policies are also known as “same-day” policies. Patients call

on the day of their appointments or only a few days before. There are also studies that consider

cancellations (Liu et al., 2009; Schütz and Kolisch, 2012) and daily no-show estimates (Samorani

and LaGanga, 2015).

Papers in the area of advance scheduling mostly use dynamic programming or approximate

dynamic programming due to the stochastic nature of the appointment request arrivals and the se-

quential nature of the decision process (Patrick et al., 2008; Sauré et al., 2012; Schütz and Kolisch,

2012, 2013; Sauré et al., 2015; Truong, 2015). Some of the objectives considered in these stud-

ies are: maximizing the number of patients booked within their medically acceptable wait times

(Patrick et al., 2008; Sauré et al., 2012; Sauré et al., 2015), maximizing revenue (Gupta and Denton,

2008; Schütz and Kolisch, 2013), improving resource utilization (Santibáñez et al., 2009), satisfying

specific appointment date windows (Gocgun and Puterman, 2014), taking patient preferences into

account (Gupta and Denton, 2008; Wang and Gupta, 2011; Feldman et al., 2014), and reducing

wait times (Green et al., 2006). Application areas of advance scheduling include the scheduling of

diagnostic tests such as MRI/CT scans (Green et al., 2006; Patrick et al., 2008; Schütz and Kolisch,

2012), radiation therapy treatment scheduling (Sauré et al., 2012), primary care clinics (Green and

Savin, 2008; Dobson et al., 2011; Liu, 2016), and surgical scheduling (Astaraky and Patrick, 2015).

To the best of our knowledge, most related to our work are the papers of Muthuraman and

Lawley (2008), Zeng et al. (2009), Chakraborty et al. (2010), and Erdogan and Denton (2013).

In Muthuraman and Lawley (2008), the authors consider an advance scheduling problem with no-

shows and determine the number of appointments per day required to maximize revenue. They
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assume appointments slots of fixed length and exponentially distributed service times. Zeng et al.

(2009) and Chakraborty et al. (2010) extend Muthuraman and Lawley (2008)’s work to the case of

heterogeneous no-show probabilities and general service time distributions, respectively. To some

degree, these three papers combine advance scheduling with appointment scheduling. However, the

authors assume that appointment durations are fixed, of equal length, and determined exogenously.

Except for no-show rates, patients are homogeneous (i.e., same service time and priority) and the

admission decisions are made at the time of the booking requests. In Erdogan and Denton (2013),

the authors use stochastic programming to formulate a dynamic appointment scheduling problem

with uncertain demand and homogeneous patients. The maximum number of patients that can be

scheduled is known and each appointment request is probabilistic given the state of the previous

one. The authors only consider single-period models and provide a conceptual multi-stage stochastic

programming formulation for the case of probabilistic appointment requests. They provide some

structural properties and numerical results for the case of deterministic patient arrivals with no-

shows. None of these four papers attempts to characterize the optimal solution. Except for these

papers, we are not aware of any other studies that combine both random patient arrivals and

random service times in the context of appointment scheduling.

In this paper, we develop a framework that seeks to bridge advance and appointment scheduling

problems. We consider random appointment requests coming from multiple types of patients as

well as random appointment durations. Patients are classified on the basis of resource consumption

and priority (given by urgency level or maximum recommended wait time). We take into account

the wait until the day of service as well as the medical resource (e.g., operating room or surgeon)

idle time and overtime at the end of the day of service. Patients’ waiting within the day of service

is not considered.

3. An MDP Formulation for the Patient Scheduling Problem

In this section, we formulate a discounted infinite-horizon MDP model for the problem under

study. We assume that demand for service has been broken down into I priority classes and J

service classes. Service classes are di↵erentiated by the service time probability distribution or by

the mean service time in the deterministic case. For notational simplicity, we let [A] = {1, ..., A}.

We denote a vector by bolding it, such as s.
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3.1. Decision Epochs and the Booking Horizon

We consider a system that has a capacity of CR regular time units and C

OT overtime units

per day. At a specific point of time every day, referred to as the decision epoch, the scheduler

observes the number of booked appointments from each service class on each future day over an

N -day booking horizon and the number of cases in each priority class-service class pairing waiting

to be scheduled. The booking horizon is defined by the maximum number of days in advance that

the scheduler is allowed to schedule patients.

We assume that the number of patients scheduled into a given service day is known prior to the

start of the day. This, for example, reflects a hospital that chooses to reserve capacity for emergency

surgeries rather than impinge on the elective surgical schedule. Our model is complicated by the

fact that the booking horizon is not static but rolling. Thus, day n at the current decision epoch

becomes day n � 1 at the subsequent decision epoch. Since no patient is scheduled more than N

days in advance, at the beginning of each decision epoch, the N th day has no appointments booked.

3.2. The State Space

As mentioned above, we assume that demand for service is broken down into multiple priority

classes, based on urgency, and multiple service classes, based on the probability distribution of the

length of service. Our state takes the form s = (x,y), where xjn is the number of patients from

service class j already booked on day n and yij is the number of priority i patients from service class

j waiting to be booked. The state space needs to capture the number of patients of each service

class booked into each day of the booking horizon as the service class mix will play a key role in

determining overtime and idle time costs and the optimal appointment schedule, particularly in

the scenario with stochastic service times. In contrast, prioritization does not need to be tracked

once a patient has been scheduled to a specific day as the value of any late booking penalty is

determined at the time of booking.

3.3. The Potential Action Sets

The scheduler’s task is to decide at each decision epoch on which day to schedule each of the

patients waiting to be booked. Thus, a vector of possible actions can be written as a, where aijn

is the number of priority i patients from service class j to book on day n. To accommodate the

potential for overtime, bookings are allowed to exceed the daily regular-hour capacity up to a limit

C

OT of overtime units. To be valid, the number of bookings cannot exceed the number of patients

waiting,
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NX

n=1

aijn  yij 8(i, j) 2 [I]⇥ [J ], (1)

and the overtime capacity cannot be exceeded,

JX

j=1

µj

 
xjn +

IX

i=1

aijn

!
 C

R + C

OT 8n 2 [N ], (2)

where µj is the number of time units required by a patient of service class j. For the stochastic

case, µj can represent either the average service time or else some percentile of the service time

depending on how conservative the scheduler wants to be. Finally, all actions are constrained to

be positive and integer,

a 2 Z
[I]⇥[J ]⇥[N ]

. (3)

We define the action set A(s), for any given state s, as the set of actions a satisfying equations

(1) to (3).

3.4. Transition Probabilities

Once decisions are made, the only stochastic element in the transition to the next state of the

system is due to the number of new appointment requests in each priority class-service class pairing.

Demand that is not booked today re-appears in tomorrow’s demand. If the number of new patient

arrivals is represented by y

0, then

xjn ! xj,n+1

+
IX

i=1

aij,n+1

8(j, n) 2 [J ]⇥ [N ],

yij ! y

0
ij + yij �

NX

n=1

aijn 8(i, j) 2 [I]⇥ [J ],

where xij,N+1

= aij,N+1

= 0. We assume demand from each patient priority class-service class

pairing is independent and that each day’s demand is independent as well. Expected demand

values are denoted by �ij .
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3.5. Immediate Costs

The cost associated with a given state-action pair derives from three sources: penalties associ-

ated with booking patients beyond the priority-specific wait time targets, a cost associated with the

day of service (overtime or idle time), and penalties associated with delaying the booking decision

for some of the waiting demand. We write the immediate cost function as

c(s,a) =
X

(i,n)2[I]⇥[N ]

f

WT (i, n)
X

j2[J ]

aijn + f

AS(s,a) +
X

(i,j)2[I]⇥[J ]

f

D(i)(yij �
X

n2[N ]

aijn), (4)

where f

WT (i, n) is the penalty associated with booking a priority i patient on day n and f

AS(s,a)

is the cost associated with the appointment schedule. The latter could consist of a combination

of within-day wait times of patients as well as idle time and overtime at the end of the day. This

cost will be discussed further in Section 4 as we look at both the deterministic and the stochastic

version of the model separately. fD(i) is the penalty associated with delaying a priority i patient’s

booking one day. We represent the wait time target for priority i by T (i). The choice of fWT (i, n),

though arbitrary, should consider certain characteristics. It is clearly reasonable to assume that it

should be decreasing in i and zero if n  T (i). Furthermore, it would seem advisable to ensure

that the penalty associated with delaying a patient’s booking k days and then booking him/her

within the corresponding wait time target should be equal to the penalty associated with booking

the patient k days late initially. Thus, a natural form for the wait time penalty is

f

WT (i, n) =

8
>><

>>:

n�T (i)X

k=1

�

k�1

f

D(i), for all n > T (i);

0, otherwise.

,

where � is the daily discount factor.

The immediate cost function c(s,a) explicitly balances the cost to the patients in wait times

and the cost to the system in having to resort to overtime (or having idle time). The scheduler’s

role is to maintain reasonable patient wait times in a cost-e↵ective manner.

3.6. The Structure of the Bellman Equation

The value function v of the MDP specifies the minimum expected discounted cost over the

infinite horizon for each state and satisfies the following optimality equations:
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v(s) = min
a2A(s)

⇢
c(s,a) + �

X

y02D
p(y0)v

✓
x

12

+
IX

i=1

ai12, ..., xJN +
IX

i=1

aiJN , 0;

y

0
11

+ y

11

�
NX

n=1

a

11n, ..., y
0
IJ + yIJ �

NX

n=1

aIJn

◆�
8s 2 S, (5)

where D is the set of all possible incoming demand streams and p(y0) is the probability of a vector

y

0 of new demand.

4. Deterministic and Stochastic Models

The formulation presented in the previous section provides a comprehensive model that in-

corporates multiple patient classes with a flexible function f

AS(s,a) for within-day costs. In this

section, we show how f

AS(s,a) can be computed for the deterministic case and the stochastic case

and describe an ADP version of the model.

4.1. Deterministic Model

In the deterministic case, the within-day costs are reduced to overtime and idle time costs and

can be computed as

f

AS(s,a) = h

 JX

j=1

µj

✓
xj1 +

IX

i=1

aij1

◆
� C

R

�
+

+ u


C

R �
JX

j=1

µj

✓
xj1 +

IX

i=1

aij1

◆�
+

(6)

where h is the overtime cost per time unit, u is the idle time cost per time unit, and [a]+ = max(0, a).

Even in the deterministic case, the size of the state space and the size of the corresponding

action sets require that we approximately solve our model via ADP. To that end, we assume that

the value function in our formulation can be adequately represented by an a�ne approximation

architecture in the form:

V (s) = V

0

+
X

(j,n)2
[J]⇥[N ]

Vj,nxjn +
X

(i,j)2
[I]⇥[J]

Wijyij 8s 2 S V,W � 0, V
0

2 R. (7)

There are two main options in seeking to solve an MDP model using ADP. Simulation-based

ADP iteratively produces simulated runs of the model to approximate the value function at a

subset of initial states while using a form of least squares regression or a recursive update function
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to converge on a good approximation (e.g., see Sauré et al., 2015). The other option is to transform

the MDP model into an equivalent linear program and then substitute into it the value function

approximation of choice. This is the approach taken here and in Patrick et al. (2008).

Once the approximation given in Equation (7) is substituted into the LP formulation of the

discounted MDP, we get the following approximate linear program (ALP):

min
V,W�0,
V02R

X

s2S
↵(s)

✓
V

0

+
X

(j,n)2
[J]⇥[N ]

Vjnxjn +
X

(i,j)2
[I]⇥[J]

Wijyij

◆
(8)

subject to

(1� �)V
0

+
X

(j,n)2
[J]⇥[N ]

0

@
xjn � �xj,n+1

� �

X

i2[I]

aij,n+1

1

A
Vjn+

X

(i,j)2
[I]⇥[J]

0

@(1� �)yij + �

X

n2[N ]

aijn � �E[Yij ]

1

A
Wij � c(s,a) 8(s,a) 2 S ⇥A(s),

where ↵ is any positive-valued vector. In traditional MDP theory, the choice of ↵ is arbitrary as

any ↵ > 0 will lead to the same solution. This turns out not to be the case when using ADP as the

choice of ↵ plays a key role in the solution. The value of ↵ is best interpreted as the probability

distribution over the initial state of the system.

While the ALP remains intractable due to the existence of a constraint for every state-action

pair, its dual can be solved via column generation. The dual of the ALP can be written as:

max
X�0

X

(s,a)2
S⇥A(s)

X(s,a)c(s,a) (9)

subject to

(1� �)
X

(s,a)2
S⇥A(s)

X(s,a) = 1,

X

(s,a)2
S⇥A(s)

X(s,a)

 
xjn � �xj,n+1

� �

IX

i=1

aij,n+1

!
� E↵[Xjn] 8(j, n) 2 [J ]⇥ [N ],

X

s,a2
S⇥A(s)

X(s,a)

0

@(1� �)yij + �

X

n2[N ]

aijn � �E[Yij ]

1

A � E↵[Yij ] 8(i, j) 2 [I]⇥ [J ].

The dual variable X(s,a) can be interpreted as the frequency of taking action a when in state

s. Following our earlier comment regarding ↵, one can interpret E↵[Xjn] as the expected number of
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patients of type j booked into day n and E↵[Yij ] as the expected number of new arrivals of priority

class i and service class j both associated with the initial state of the system.

Once the optimal value function approximation has been determined then the approximate

optimal decision policy is derived by determining the argmin of the optimality equation given in

Equation (5), with the optimal approximation inserted in the place of the value function. If the

regular-hour capacity on day 1 is full, that is
P

j2[J ] µj

✓
xj1 +

P
i2[I] aij1

◆
� C

R
> 0, then a

⇤ is

given by

min
a2A(s)


C +

X

(i,j)2
[I]⇥[J]

✓
hµj � f

D(i)� �W

⇤
ij

◆
aij1 +

X

(i,j)2
[I]⇥[J]

NX

n=2

✓
f

WT (i, n) + �V

⇤
j,n�1 � f

D(i)� �W

⇤
ij

◆
aijn

�
.

(10)

Otherwise, if there is regular-hour capacity available on day 1, then a

⇤ is given by

min
a2A(s)


C +

X

(i,j)2
[I]⇥[J]

✓
� uµj � f

D(i)� �W

⇤
ij

◆
aij1 +

X

(i,j)2
[I]⇥[J]

NX

n=2

✓
f

WT (i, n) + �V

⇤
j,n�1 � f

D(i)� �W

⇤
ij

◆
aijn

�
,

(11)

where C is a constant independent of the action taken. The coe�cients in equations (10) and (11)

have a nice intuitive explanation. In the case where day 1’s capacity is full, the bookings on day

1 trade o↵ the cost associated with overtime for the cost of delaying a booking and having an

additional patient in the wait list tomorrow. In the case where there is excess capacity on day 1,

there is only a benefit to making use of that capacity as it reduces the idle time cost. Thus, the

coe�cients for bookings on day 1 are negative. The bookings on day n > 1 trade o↵ a potential

wait time penalty plus the cost of having less available capacity on day n� 1 tomorrow for the cost

of delaying a booking and having an additional patient in the wait list tomorrow.

Somewhat surprisingly but as a natural extension to Patrick et al. (2008), the form of the

optimal a�ne value function approximation can be proven under certain conditions on the cost

values and the available capacity as outlined in Theorem 1. The wait time targets for each priority

class, T (i), are assumed to increase with i as a high priority patient is, by definition, a patient who

must be served sooner. We define the indicator function I(·) as

I(X > x) =

8
<

:
1, X > x;

0, otherwise.

to ease the presentation.
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Theorem 1. Assuming that T (i) is non-decreasing in i, that the wait time penalties are non-

decreasing in n and non-increasing in i, and that the following conditions are satisfied:

f

D(i) >
⇣
�

T (i)�1 � �

T (i)
⌘
µjh 8(i, j) 2 [I]⇥ [J ] (12)

X

j2J
µj

"
IX

i=1

�

T (i)�1

I(T (i) > 1)�ij

1� �

+
NX

m=1

�

m�1

E↵[Xjm]

#
>

C

R

1� �

(13)

X

j2J
µj

"
IX

i=1

�

T (i)�n
I(T (i) > n)�ij

1� �

+
NX

m=n

�

m�n
E↵[Xjm]

#
<

C

R + C

OT

1� �

8n 2 [N ] (14)

Then, the optimal a�ne value function approximation for the discounted MDP will be given by

V

⇤
jn =

8
>>><

>>>:

µjh, n=1;

�V

⇤
j,n�1

, 2  n  N � 1;

0, n = N .

(15)

W

⇤
ij =

8
<

:
V

⇤
jT (i), �ij > 0;

0, �ij = 0.
(16)

V

⇤
0

=
1

1� �

0

B@
X

(i,j)2
[I]⇥[J]

�

T (i)
µjhE[Yij ] + hC

R

1

CA . (17)

Conditions (12) to (14) have a nice intuitive appeal. Condition (12) ensures that the cost

of delaying a booking decision is greater than the di↵erence between serving a patient through

overtime T (i) days from now versus T (i)� 1 days from now. If this condition is not satisfied then

the optimal action is simply not to book patients unless there is regular capacity available. In other

words, the cost of overtime is prohibitive. If ↵ is viewed as a probability distribution on the initial

state of the system then the left-hand side of Condition (13) can be seen as the present value of

the expected demand over the infinite horizon plus the initial bookings (all in time units). This is

required to be greater than the present value of the regular-hour capacity over the infinite horizon.

Satisfying this condition ensures that there is in fact a congestion problem. If it is not satisfied then

a first-come, first-served booking policy would work equally well as regular-hour capacity would

be su�cient. Finally, Condition (14) ensures that, for any given day n, the present value of the

expected future demand with wait time targets greater than n over the infinite horizon plus the

initial bookings on days that are greater than n (all in time units) are less than the present value
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of the combined overtime and regular-hour capacity. In other words, it guarantees that there is

su�cient overtime capacity to deal with the fluctuations in demand. This condition is particularly

appealing as it provides a capacity requirement to ensure that the resulting booking policy will

work well in practice. The proof of Theorem 1 is provided in the online supplement.

4.2. Stochastic Model

As mentioned earlier in this paper, we only consider the end-of-day overtime and idle time costs

to determine the within-day cost. Thus, in the stochastic case, we can compute f

AS(s,a) as

f

AS(s,a) = h

⇥
D(s,a)� C

R
⇤
+

+ u

⇥
C

R �D(s,a)
⇤
+

, (18)

where D(s,a) is the sum of the durations of all the appointments booked on day 1 after taking

action a in state s. That is D(s,a) =
PK(s,a)

k=1

dk, where dk is the duration of appointment k and

K(s,a) =
PJ

j=1

�
xj1+

PI
i=1

aij1

�
is the total number of appointments booked on day 1. We assume

dk to be bounded from above and below so that dk  dk  d̄k 8k.

We use discrete probability distributions to model appointment durations and the algorithm in

Begen and Queyranne (2011) to compute the probability distribution of D(s,a) and the expected

value of fAS(s,a), 8(s,a) 2 S ⇥A(s), when the service time distributions are known and indepen-

dent. When the probability distributions are unknown and only samples of D(s,a) are available,

then we can use the approach in Begen et al. (2012) instead. In this case, we do not require any

independence assumption as we can work with correlated appointment durations as well. It is also

important to note that, in the case of known probability distributions, there are other methods for

computing the probability distribution of D(s,a) (e.g., see Drew et al., 2008).

To compute the expected value of fAS(s,a) when the duration of appointment k follows a known

discrete probability distribution Pr{dk = m}, dk  m  d̄k, we first need to determine the proba-

bility distribution of D(s,a). If we let Dab =
Pb

t=a dt 8a, b then this is equivalent to computing the

probability distribution of D
1K(s,a). To that end, we start by computing the probability distribu-

tion of D
11

= d

1

, then we find the probability distribution of D
12

= d

1

+ d

2

, D
1k = D

1(k�1)

+ dk,

. . . , D
1K = D

1(K�1)

+ dK , recursively. For example,
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Pr{D
1b = k} = Pr{D

1(b�1)

+ db = k} 8k

=

¯dkX

m=dk

Pr{D
1(b�1)

= k �m, db = m} 8k

=

¯dkX

m=dk

Pr{D
1(b�1)

= k �m|db = m}Pr{db = m} 8k

=

¯dkX

m=dk

Pr{D
1(b�1)

= k �m}Pr{db = m} (independence) 8k

We must repeat these steps for all possible values of b and k as indicated in the pseudo-code

presented in the online supplement. These computations are polynomial in K and d̄

max

, where

d̄

max

= max{d̄
1

, d̄

2

, ..., d̄K}.

Once we have the probability distribution of D(s,a), that is Pr{D
1K(s,a) = m} 8m, we can

compute the expectation of fAS(s,a) by using Equation (18) as follows:

X

kCR

u(CR � k) Pr{D
1K = k}+

X

k>CR

h(k � C

R) Pr{D
1K = k} (19)

As mentioned above, we can also use a sampling approach to compute the expected value of

f

AS(s,a) when the service time probabilities are unknown. Let us assume that we have access to

N samples {Dt}Nt=1

of D(s,a), then the expected within-day cost can be computed in polynomial

time as

1

N

"
NX

t=1

h(Dt � C

R)+ + u(CR �Dt)
+

#
. (20)

After the expected within-day cost is computed for all possible patient service class combinations

on day 1, we can use the same ADP approach as for the deterministic case. The implementation of

the column generation algorithm and the optimization model employed to identify the approximate

optimal actions was performed in GAMS 24.2 with CPLEX 12.6 as the solver. The algorithm used

to compute the expected within-day costs was implemented in Java.

5. Numerical Results

To explore the impact of incorporating stochastic service times into the MDP model described

in Section 3, we performed an extensive numerical analysis under a number of scenarios. Scenarios
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are categorized into four problem settings. These settings were designed to reflect common observed

practices in health systems as well as situations where stochastic service times might reasonably

be expected to have a higher impact. Next, we compare the performance of the appointment

scheduling policies suggested by the proposed approach, that are greedy with respect to the final

a�ne value function approximations, to that of the two other policies described below:

• First Available Slot (FAS): Patients are booked as soon as possible, in increasing priority class

and service class order, according to their expected service times and the available regular-hour

capacity. This policy resorts to overtime only when there is no available regular-hour capacity

within the booking horizon. Overtime is then booked starting with day 1 and working up to day

N .

• Myopic (M): Patients are booked as soon as possible, in increasing priority class and service

class order, according to their expected service times and the available regular-hour capacity.

Unlike the previous policy, this policy resorts to overtime for patients of type i only when there

is no available regular-hour capacity within the first ni days of the booking horizon, where

ni = max {n : fWT (i, n) < h}. Overtime is then booked starting with day 1 and working up to

day N .

These two policies are the most common representations of actual scheduling practices reported

in the literature and observed in practice. The approximate optimal policies obtained from the

deterministic and the stochastic version of our model are denoted by AOPD and AOPS, respectively.

The AOPD policy can be viewed as a revised version of the policy described in Patrick et al. (2008)

since our model extends the MDP model in Patrick et al. (2008) to include multiple service classes.

Although the MDP model described in Section 3 is formulated in terms of the expected dis-

counted cost (DC) over the infinite horizon, the di↵erent patient scheduling policies are also com-

pared in terms of mean daily average cost (AC), mean daily average capacity utilization (ACU),

mean average time to first available appointment slot (ATFAS), mean average wait times (AWTs)

and mean service levels (SLs). The ATFAS is computed for each service class as the time to the

first day for which the available regular-hour capacity exceeds the corresponding expected service

time. The SL is computed for each priority class as the percentage of patients booked within the

corresponding wait time target.

To compare the performance of the di↵erent patient scheduling policies we ran 100 replications

of a simulation of the scheduling process with a length of 1500 days and a warm-up period of
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1000 days. We used a computer with a 3.00 GHz Quad Core CPU and 16 GB of RAM for all the

numerical experiments in this paper. The simulation model was implemented using GAMS Java

Application Program Interface (API) with common patient arrivals and service durations.

5.1. Problem Setting 1: Base Case

We first consider a system with a regular-hour capacity of 18 appointment slots per day. The

overtime capacity is set at 9 appointment slots per day. The system divides demand into three

priority classes, with wait time targets of 4, 8 and 12 days, and three service classes, with expected

service times of 2, 3 and 4 appointment slots. Demand from each priority class-service class com-

bination is assumed to be Poisson with the means given in Table 1. The total expected demand

is equal to the regular-hour capacity. We consider service time probability distributions that are

geometric, negative binomial, Poisson and uniform. The overtime cost is 100 per appointment

slot, the idle time cost is 50 per appointment slot, the postponement penalties are 20, 10 and 5

per patient for each priority class, and the discount factor is 0.99. We assume that no patient is

scheduled more than 12 days in advance.

Table 1: Arrival rate for each priority class-service class combination for Problem Setting 1 (Base Case).

Priority Class
Service Class

Total
1 2 3

1 1.0 1.0 1.0 3.0
2 1.0 1.0 – 2.0
3 – – 1.0 1.0

Total 2.0 2.0 2.0 6.0

The simulation results are summarized in Table 2 for initial states generated using the FAS

policy and negative binomial service time distributions. The results for initial states generated

using the M policy, included in the online supplement, are similar, suggesting that the simulation

outcomes could be independent of the warm-up policy. Table 3 shows the mean discounted cost for

the di↵erent discrete service time distributions.

Although the AOPS policy tended to outperform the AOPD policy in the simulation, the

di↵erence in the mean discounted cost was minor (around 1%) even for service time distributions

with high variance. On the other hand, both ADP policies outperform the FAS and M policies by

significant margins. In particular, for the higher priority patients, the service levels and average

wait times provided by the ADP policies are dramatically better. The ability of the booking policy

obtained from the deterministic model to almost match the performance of the one coming from the
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Table 2: Summary of the simulation results for Problem Setting 1 (Base Case). The bold font indicates the policy
(policies) that provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05)

.

Metric
Priority/Service Policy

Class AOPD AOPS FAS M

DC – 34054 ± 667 33802 ± 699 58312 ± 2482 46793 ± 1422

AC – 314.46 ± 1.83 312.13 ± 1.76 589.87 ± 13.82 439.34 ± 7.82

ACU – 18.05 ± 0.05 18.05 ± 0.05 18.00 ± 0.05 18.03 ± 0.05

ATFAS
1 1.26 ± 0.01 1.28 ± 0.01 2.27 ± 0.02 2.19 ± 0.02
2 1.30 ± 0.01 1.33 ± 0.01 2.82 ± 0.03 2.66 ± 0.03
3 1.35 ± 0.01 1.38 ± 0.01 3.60 ± 0.05 3.29 ± 0.04

AWT
1 2.02 ± 0.02 2.18 ± 0.02 8.72 ± 0.19 6.27 ± 0.11
2 5.51 ± 0.04 5.50 ± 0.04 8.85 ± 0.18 7.02 ± 0.13
3 9.49 ± 0.05 9.64 ± 0.05 8.68 ± 0.15 7.45 ± 0.13

SL
1 99.89 ± 0.03 99.84 ± 0.04 9.64 ± 1.73 23.32 ± 1.84
2 100.00 ± 0.00 100.00 ± 0.00 36.22 ± 2.77 67.55 ± 1.85
3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table 3: Percent deviation from the lowest mean discounted cost (DC*) for Problem Setting 1 (Base Case) assuming
di↵erent discrete service time distributions. The bold font indicates the policy that provides the best value for each
probability distribution.

Probability Distributions
Geometric Neg. Binomial Poisson Uniform

AOPD 0.8% 0.7% 0.7% 1.0%
AOPS 0.0% 0.0% 0.0% 0.0%
FAS 60.3% 72.5% 79.3% 76.3%
M 32.9% 38.4% 41.2% 39.9%

DC* 42809 ± 767 33802 ± 699 29878 ± 674 30989 ± 708

stochastic version is perhaps surprising but also encouraging as it implies that advance schedules

based on average service times are in fact reasonably e↵ective. Below we present a number of

scenarios to determine if similar success for the deterministic case can be seen in other settings.

5.2. Problem Setting 2: Increased Di↵erence between Service Classes

In the second setting, we increase the di↵erence in the expected service time and in the standard

deviation of the service time between classes. We now consider a system with regular-hour capacity

of 14 appointment slots per day. The overtime capacity is 7 appointment slots per day. The system

divides demand into only two service classes, with expected service times of 2 and 5 appointment

slots and standard deviations of the service time of 1.01 and 3.03 appointment slots, respectively.

Thus, one class has a relatively short service time without much variance while the other has a

significantly higher average service time and variance. Both service classes are assumed to have

negative binomial service time distributions. Demand from each priority class-service class combi-
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nation is assumed to be Poisson with means given in Table 4. All the other parameters remain the

same as in the Base Case scenario.

Table 4: Arrival rate for each priority class-service class combination for Problem Setting 2.

Priority Class
Service Class

Total
1 2

1 1.0 1.0 2.0
2 – 1.0 1.0
3 1.0 – 1.0

Total 2.0 2.0 4.0

The intent of choosing this problem setting was to pick a scenario that should more likely lead

to di↵erences between the performance of the policies coming from the two versions of our model

and yet even here the two policies appear to do equally well with the stochastic version only slightly

outperforming the deterministic one (di↵erence of around 3%). Both continue to outperform the

two comparator policies though by smaller margins perhaps due to the more limited flexibility in

a setting with only two service classes. The simulation results are summarized in Table 5.

Table 5: Summary of the simulation results for Problem Setting 2. The bold font indicates the policy (policies) that
provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05).

Metric
Patient Policy
Class AOPD AOPS FAS M

DC – 34547 ± 694 34283 ± 709 39287 ± 1561 35654 ± 1084

AC – 331.73 ± 1.82 327.88 ± 1.80 387.00 ± 5.50 342.07 ± 3.27

ACU – 14.00 ± 0.04 14.00 ± 0.04 13.98 ± 0.04 13.99 ± 0.04

ATFAS
1 1.34 ± 0.01 1.44 ± 0.01 1.98 ± 0.02 1.90 ± 0.02
2 1.56 ± 0.01 1.71 ± 0.02 3.38 ± 0.06 3.06 ± 0.04

AWT
1 2.22 ± 0.02 2.45 ± 0.02 5.77 ± 0.12 4.44 ± 0.07
2 5.77 ± 0.03 6.26 ± 0.03 7.54 ± 0.12 6.66 ± 0.09
3 8.80 ± 0.05 8.89 ± 0.05 4.49 ± 0.12 3.82 ± 0.08

SL
1 99.72 ± 0.06 99.35 ± 0.08 41.16 ± 1.54 53.45 ± 1.22
2 99.94 ± 0.01 99.99 ± 0.01 55.59 ± 1.75 70.97 ± 1.29
3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

5.3. Problem Setting 3: Varying the Ratio between Idle Time and Overtime Costs

In the third setting, we set the average service times to be the same between service classes

but keep a significant di↵erence in their standard deviations. We consider two service classes,

with expected service times of 4 appointment slots each and standard deviations of 0.71 and 2.72

appointment slots, respectively. All the other parameters, including the patient arrival rates, remain

the same as in the previous setting.
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The simulation results are summarized in Table 6. It is worth noting that even though the

di↵erences between the comparator and the ADP policies are reduced in these last two settings,

the ADP policies continue to provide much higher service levels for the high priority patients.

Should the value placed on meeting wait time targets be increased (currently set quite low in

comparison to the idle time and overtime costs), the di↵erence in performance between the AOPD

and AOPS policies and the comparators would undoubtedly increase accordingly.

Table 7 shows the mean discounted cost for di↵erent idle time and overtime cost values for the

problem setting described above. Here we see the greatest divergence in performance between the

two ADP policies with the greatest discrepancy observed when the idle time and overtime costs are

equal. Nonetheless, even in this setting, the di↵erences are less than 4%.

Table 6: Summary of the simulation results for Problem Setting 3. The bold font indicates the policy (policies) that
provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05)

.

Metric
Patient Policy
Class AOPD AOPS FAS M

DC – 32256 ± 825 31407 ± 828 36751 ± 2139 32715 ± 1394

AC – 302.82 ± 1.74 295.07 ± 1.73 361.25 ± 8.42 310.21 ± 4.46

ACU – 16.01 ± 0.04 16.01 ± 0.04 15.99 ± 0.04 16.00 ± 0.04

ATFAS 1 & 2 1.50 ± 0.01 1.50 ± 0.01 3.67 ± 0.08 3.34 ± 0.07

AWT
1 2.29 ± 0.02 2.51 ± 0.02 6.37 ± 0.21 4.92 ± 0.12
2 5.83 ± 0.03 5.68 ± 0.04 6.60 ± 0.20 5.53 ± 0.13
3 9.95 ± 0.05 8.81 ± 0.06 6.67 ± 0.19 5.77 ± 0.14

SL
1 99.83 ± 0.06 99.76 ± 0.06 33.92 ± 2.71 45.24 ± 2.20
2 99.99 ± 0.01 99.99 ± 0.02 66.18 ± 2.45 82.75 ± 1.37
3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table 7: Percent di↵erence between the mean discounted cost (DC) associated with the AOPD policy and that
associated with the AOPS policy for Problem Setting 3 assuming di↵erent idle time and overtime cost values.

Overtime Cost/Idle Time Cost
$100/$0 $100/$25 $100/$50 $100/$75 $100/$100

1.03% 1.88% 2.70% 2.57% 2.94%

5.4. Problem Setting 4: A Practical Application

Finally, we consider a practical example based on data provided by a medium-size clinic in

Ontario, Canada. The clinic divides demand into four priority classes with wait time targets of 4,

8, 12 and 24 days and three service classes with expected service times of 4, 6 and 8 appointments

slots. Each appointment slot is 5 minutes in length. Demand from each priority class-service class
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Figure 1: Service time histograms for a practical setting based on data provided by a medium-size clinic in Ontario,

Canada. The clinic divides demand into three service classes with mean services times of 20, 30 and 40 minutes,

respectively. Each appointment slot is 5 minutes in length.

combination is assumed to be Poisson with arrival rates given in Table 8. Service times follow the

empirical discrete probability distributions shown in Figure 1. The regular-hour capacity is set at

144 appointment slots, which is equal to the average daily demand and equivalent to two identical

medical resources operating six hours a day. The overtime capacity is 24 appointment slots or one

extra hour per medical resource. The postponements penalties are 25, 20 , 15 and 10 per patient.

All the other parameters remain the same as in the previous settings. We assume that no patient

is scheduled more than 24 days in advance.

Table 8: Arrival rate for each priority class-service class combination for a practical application.

Priority Class
Service Class

Total
1 2 3

1 0.0 1.0 1.0 2.0
2 1.0 1.0 1.0 3.0
3 1.0 2.0 1.0 4.0
4 6.0 8.0 2.0 16.0

Total 8.0 12.0 5.0 25.0

The corresponding simulation results are summarized in Table 9. For this setting, each policy

was simulated for 1000 days with statistics collected for each of 30 simulation runs after a warm-up

period of 250 days. The AOPS again shows a slight improvement in the mean discounted cost over

the AOPD (around 3.5%) and both continue to outperform the comparator policies in terms of this

metric as well as others.
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Table 9: Summary of the simulation results for Problem Setting 4. The bold font indicates the policy (policies) that
provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05).

Metric
Patient Policy
Class AOPD AOPS FAS M

DC – 65424 ± 2944 63210 ± 2982 140154 ± 15821 105573 ± 8156

AC – 536.56 ± 9.26 512.74 ± 9.17 1618.69 ± 183.20 700.96 ± 29.14

ACU – 142.84 ± 0.32 142.76 ± 0.32 142.04 ± 0.15 144.01 ± 0.34

ATFAS
1 1.13 ± 0.02 1.14 ± 0.02 2.26 ± 0.04 2.24 ± 0.07
2 1.15 ± 0.02 1.16 ± 0.03 2.88 ± 0.06 2.73 ± 0.10
3 1.16 ± 0.03 1.17 ± 0.03 3.89 ± 0.12 3.37 ± 0.13

AWT

1 1.30 ± 0.04 1.39 ± 0.05 15.11 ± 1.26 5.76 ± 0.30
2 2.31 ± 0.15 2.45 ± 0.16 15.17 ± 1.25 6.93 ± 0.39
3 4.95 ± 0.31 5.05 ± 0.31 15.36 ± 1.25 7.18 ± 0.39
4 18.93 ± 0.48 18.74 ± 0.52 15.70 ± 1.25 7.55 ± 0.39

SL

1 99.41 ± 0.17 99.36 ± 0.18 1.35 ± 1.93 24.79 ± 6.22
2 99.81 ± 0.11 99.82 ± 0.11 4.85 ± 5.98 84.41 ± 2.34
3 99.96 ± 0.04 99.98 ± 0.03 21.43 ± 10.91 98.33 ± 0.67
4 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

6. Discussion and Conclusion

Through this research we have begun to bridge the advance and the appointment scheduling

problems – two problems that have been treated separately in past research despite their significant

interdependencies.

This paper provides three contributions to the literature. First, we describe a model that sched-

ules patients with varying capacity requirements and urgency levels to a single resource and that

can be adapted for either deterministic or stochastic service times. Second, we provide solutions and

insights for multiple problem settings assuming deterministic and stochastic appointment durations

with extensive numerical analyses. For the deterministic case, we present analytical results that

prove the form of the optimal a�ne approximation in our approach under reasonable conditions.

The conditions provide limits on the available capacity in order for the resulting policies to work

e↵ectively. For the stochastic version, we provide numerical results that suggest that the determin-

istic version of the model works reasonably well (within 4% in our numerical experiments) even

in cases where the service time distributions demonstrate significant variability and when service

classes vary significantly in both the mean service time and the standard deviation of the service

time. Third, we provide an extensive literature review of advance and appointment scheduling.

It is, however, possible that the success of the policies obtained from the deterministic model

in (almost) matching the performance of those obtained using the stochastic version may be at-
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tributable to either the use of an a�ne approximation architecture (possibly curtailing the advan-

tage of incorporating stochastic service times) or the fact that we concentrated our e↵orts on a

setting where within-day waiting/idle time was of little consequence. Thus, two further avenues of

research are the implementation of a non-linear approximation architecture similar to Sauré et al.

(2015) as well as the incorporation of the sequencing of patients into the MDP model in order to

address scenarios where the within-day waiting/idle time is relevant.
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Online Supplement

Appendix A. Algorithm used to compute the probability distribution of D(s, a).

Figure A.1: Pseudo-code of the algorithm used to compute the probability distribution of D(s,a) = D1K(s,a).

1: for b = 1 to K � 1 do

2: for k =

(b+1)X

t=1

db to

(b+1)X

t=1

d̄b do

3: for m = db+1 to d̄b+1 do

4: Pr{D1(b+1) = k} = Pr{D1(b+1) = k}+ Pr{D1b = k �m}⇥ Pr{db+1 = m}

5: end for

6: end for

7: end for

1



Appendix B. Simulation results for initial states generated using the M policy.

Table B.1: Summary of the simulation results for Problem Setting 1 (Base Case). The bold font indicates the policy
(policies) that provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05).

Metric
Patient Policy
Class AOPD AOPS FAS M

DC – 32352 ± 536 32055 ± 559 50616 ± 2506 43213 ± 1525

AC – 313.17 ± 1.77 310.83 ± 1.71 578.74 ± 14.14 435.71 ± 7.92

ACU – 18.03 ± 0.05 18.03 ± 0.05 17.98 ± 0.05 18.01 ± 0.05

ATFAS
1 1.25 ± 0.01 1.27 ± 0.01 2.26 ± 0.02 2.19 ± 0.02
2 1.29 ± 0.01 1.32 ± 0.01 2.80 ± 0.03 2.65 ± 0.03
3 1.34 ± 0.01 1.37 ± 0.01 3.57 ± 0.05 3.27 ± 0.04

AWT
1 2.01 ± 0.02 2.17 ± 0.02 8.56 ± 0.20 6.23 ± 0.11
2 5.50 ± 0.04 5.49 ± 0.04 8.71 ± 0.18 6.96 ± 0.14
3 9.47 ± 0.05 9.63 ± 0.05 8.56 ± 0.15 7.39 ± 0.14

SL
1 99.98 ± 0.01 99.94 ± 0.02 10.85 ± 1.81 23.89 ± 1.87
2 100.00 ± 0.00 100.00 ± 0.00 38.60 ± 2.86 68.41 ± 1.87
3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table B.2: Percent deviation from the lowest mean discounted cost (DC*) for Problem Setting 1 (Base Case) assuming
di↵erent discrete service time distributions. The bold font indicates the policy that provides the best value for each
probability distribution.

Policy
Probability Distributions

Geometric Neg. Binomial Poisson Uniform

AOPD 1.0% 0.9% 0.9% 1.5%
AOPS 0.0% 0.0% 0.0% 0.0%
FAS 48.4% 57.9% 63.3% 61.3%
M 30.0% 34.8% 37.3% 36.5%

DC* 41190 ± 704 32055 ± 559 27994 ± 510 29088 ± 531
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Table B.3: Summary of the simulation results for Problem Setting 2. The bold font indicates the policy (policies)
that provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05).

Metric
Patient Policy
Class AOPD AOPS FAS M

DC – 33907 ± 634 33636 ± 651 37577 ± 1410 34579 ± 984

AC – 331.25 ± 1.81 327.40 ± 1.79 385.34 ± 5.44 341.16 ± 3.24

ACU – 13.99 ± 0.04 13.99 ± 0.04 13.97 ± 0.04 13.98 ± 0.04

ATFAS
1 1.34 ± 0.01 1.43 ± 0.01 1.98 ± 0.02 1.90 ± 0.02
2 1.56 ± 0.01 1.70 ± 0.02 3.37 ± 0.06 3.05 ± 0.04

AWT
1 2.22 ± 0.02 2.44 ± 0.02 5.73 ± 0.12 4.43 ± 0.07
2 5.76 ± 0.03 6.26 ± 0.03 7.51 ± 0.12 6.64 ± 0.09
3 8.79 ± 0.05 8.88 ± 0.05 4.47 ± 0.12 3.80 ± 0.08

SL
1 99.76 ± 0.05 99.40 ± 0.08 41.57 ± 1.55 53.68 ± 1.22
2 99.95 ± 0.01 100.00 ± 0.00 56.16 ± 1.77 71.30 ± 1.28
3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table B.4: Summary of the simulation results for Problem Setting 3. The bold font indicates the policy (policies)
that provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05).

Metric
Patient Policy
Class AOPD AOPS FAS M

DC – 31293 ± 696 30364 ± 707 34006 ± 1844 31131 ± 1261

AC – 302.11 ± 1.71 294.29 ± 1.71 357.80 ± 8.21 308.73 ± 4.39

ACU – 15.99 ± 0.04 15.99 ± 0.04 15.98 ± 0.04 15.99 ± 0.04

ATFAS 1 & 2 1.49 ± 0.01 1.49 ± 0.01 3.64 ± 0.08 3.32 ± 0.06

AWT
1 2.29 ± 0.02 2.50 ± 0.02 6.29 ± 0.21 4.89 ± 0.12
2 5.83 ± 0.03 5.67 ± 0.04 6.53 ± 0.20 5.49 ± 0.13
3 9.94 ± 0.05 8.80 ± 0.06 6.61 ± 0.19 5.73 ± 0.14

SL
1 99.89 ± 0.04 99.82 ± 0.05 34.83 ± 2.66 45.76 ± 2.19
2 99.99 ± 0.00 100.00 ± 0.00 67.10 ± 2.42 83.21 ± 1.34
3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table B.5: Percent di↵erence between the mean discounted cost (DC) associated with the AOPD policy and that
associated with the AOPS policy for Problem Setting 3 assuming di↵erent idle time and overtime cost values.

Overtime Cost/Idle Time Cost
$100/$0 $100/$25 $100/$50 $100/$75 $100/$100

1.36% 2.25% 3.06% 2.84% 3.13%
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Table B.6: Summary of the simulation results for Problem Setting 4. The bold font indicates the policy (policies)
that provides (provide) the best mean performance for each metric in a statistical sense (↵ = 0.05).

Metric
Patient Policy
Class AOPD AOPS FAS M

DC – 59376 ± 1495 57284 ± 1426 62489 ± 4128 60674 ± 3465

AC – 534.09 ± 8.59 509.91 ± 9.19 787.80 ± 91.60 604.83 ± 27.79

ACU – 141.57 ± 0.30 141.51 ± 0.30 141.90 ± 0.10 142.72 ± 0.32

ATFAS
1 1.05 ± 0.01 1.05 ± 0.01 2.15 ± 0.07 2.12 ± 0.07
2 1.06 ± 0.01 1.06 ± 0.01 2.65 ± 0.11 2.59 ± 0.10
3 1.07 ± 0.01 1.07 ± 0.02 3.34 ± 0.19 3.15 ± 0.15

AWT

1 1.18 ± 0.03 1.23 ± 0.04 8.40 ± 1.02 5.76 ± 0.38
2 1.93 ± 0.13 2.02 ± 0.13 8.46 ± 1.01 6.29 ± 0.47
3 4.04 ± 0.27 4.05 ± 0.27 8.64 ± 1.02 6.46 ± 0.47
4 17.09 ± 0.45 16.65 ± 0.49 9.01 ± 1.02 6.82 ± 0.47

SL

1 100.00 ± 0.00 99.99 ± 0.01 14.24 ± 8.71 24.61 ± 8.11
2 100.00 ± 0.01 100.00 ± 0.00 49.44 ± 12.79 92.41 ± 2.34
3 100.00 ± 0.00 100.00 ± 0.00 88.08 ± 7.07 100.00 ± 0.00
4 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
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Appendix C. A proof of the form of the optimal a�ne value function approximation

in the case with deterministic service times

We present a proof of the form of the optimal a�ne value function approximation in the case

with deterministic service times. The wait time targets, T (i), for each priority class are assumed

to increase with i as a high priority patient is, by definition, a patient who must be served sooner.

For completeness, we restate the theorem before giving its proof.

Restating the Theorem

Assuming that T (i) is non-decreasing in i, that the wait time penalties are non-decreasing in n

and non-increasing in i, and that the following conditions are satisfied:

f

D(i) >

✓
�

T (i)�1 � �

T (i)

◆
µjh 8(i, j) 2 [I]⇥ [J ] (C.1)

X

j2J
µj

 IX

i=1

�

T (i)�1
I(T (i) > 1)�ij

1� �

+

NX

m=1

�

m�1
E↵[Xjm]

�
>

C

R

1� �

(C.2)

X

j2J
µj

 IX

i=1

�

T (i)�n
I(T (i) > n)�ij
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+
NX

m=n

�

m�n
E↵[Xjm]

�
<

C

R + C

OT

1� �

8n 2 [N ] (C.3)

Then, the optimal a�ne value function approximation for the discounted MDP will be given by:

V

⇤
jn =

8
>>><

>>>:

µjh, n=1;

�V

⇤
j(n�1), 2  n  N � 1;

0, n = N .

(C.4)

W

⇤
ij =

8
<

:
V

⇤
jT (i), �ij > 0;

0, �ij = 0.
(C.5)

V

⇤
0 =

1

1� �

✓ X

(i,j)2
[I]⇥[J]

�

T (i)
µjhE[Yij ] + hC

R

◆
, (C.6)

where µj is the number of time units required by a patient of service class j, h is the overtime cost

per time unit, � is the daily discount factor, �ij is the expected demand from priority class i and

service class j patients, and C

R
is the system regular-hour capacity in time units.
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The Proof

The outline of the proof is as follows:

1. Prove the primal feasibility of the proposed solution.

2. Determine necessary and su�cient conditions under which a dual solution, together with the

proposed primal solution, would satisfy complementary slackness.

3. Demonstrate that there exists a dual solution satisfying the necessary and su�cient condi-

tions.

The existence of a dual solution that together with the proposed primal solution satisfies com-

plementary slackness is su�cient to prove the optimality.

Proving Primal feasibility

We begin by proving the feasibility of the hypothesized primal solution. Clearly, it gives non-

negative values for ~

V and ~

W . With a little algebraic manipulation, the constraint for the primal

LP can be written as:

(1� �)V0  f

AS(s,a) +
X

(i,j,n)2
[I]⇥[J]⇥[N ]

✓
f

WT (i, n) + �Vj,n�1 � �Wij � f

D(i)

◆
aijn

+
X

(j,n)2
[J]⇥[N ]

✓
�Vj,n�1 � Vjn

◆
xjn +

X

(i,j)2
[I]⇥[J]

✓
�Wij + f

D(i)�Wij

◆
yij + �

X

(i,j)2
[I]⇥[J]

WijE[Yij ]

For state-action pairs for which
P

j2[J ] µj(xj1 +
P

i2[I] aij1) > C

R, this equates to:

(1� �)V0 +
X

(i,j,n)2
[I]⇥[J]⇥[N ]

✓
f

WT (i, n) + hµjI(n = 1) + �Vj,n�1 � �Wij � f

D(i)

◆
aijn

+
X

(j,n)2
[J]⇥[N ]

✓
hµjI(n = 1) + �Vj,n�1 � Vjn

◆
xjn +

X

(i,j)2
[I]⇥[J]

✓
�Wij + f

D(i)�Wij

◆
yij

+ �

X

(i,j)2
[I]⇥[J]

WijE[Yij ]� hC

R

If we substitute into the above equation the hypothesized solution for the approximate value

function, we get:
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(1� �)V0 
X

(i,j,n)2
[I]⇥[J]⇥[N ]

✓
f

WT (i, n) + hµjI(n = 1) + �

n�1
µjh� �

T (i)
µjh� f

D(i)

◆
aijn

+
X

(j,n)2
[J]⇥[N ]

✓
�

T (i)
µjh+ f

D(i)� �

T (i)�1
µjh

◆
yij + �

X

(i,j)2
[I]⇥[J]

WijE[Yij ]� hC

R

Since the coe�cient of yij is positive by Equation (C.1), we can substitute
P

n2[N ] aijn = yij to

get:

(1� �)V0 
X

(i,j,n)2
[I]⇥[J]⇥[N ]

✓
f

WT (i, n) + hµjI(n = 1) + (�n�1 � �

T (i)�1)µjh

◆
aijn

+
X

i,j2
[I]⇥[J]

�

T (i)
µjhE[Yij ]� hC

R

Again, by Equation (C.1), we can see that the coe�cient of aijn is greater than 0 with equality

only if n = T (i). Thus, for state-action pairs that satisfy
P

j2[J ] µj(x11 +
P

i2[I] aij1) > C

R the

state action pair that provides the minimum of the right-hand side of the constraint for the primal

LP will have aijn = 0 for all n 6= T (i) and yield:

V0 
1

1� �

✓ X

(i,j)2
[J]⇥[N ]

�

T (i)
µjhE[Yij ]� hC

R

◆
(C.7)

which is true with equality for the hypothesized value of V0.

For state-action pairs where
P

j2[J ] µj(xj1 +
P

i2[I] aij1)  C

R the primal constraint simplifies

to:

(1� �)V0 
X

(i,j,n)2
[I]⇥[J]⇥[N ]

✓
f

WT (i, n) + hµjI(n = 1) + (�n�1 � �

T (i))µjh

◆
aijn

+
X

j2[J ]

✓
� (u+ h)µj

◆
xj1 +

X

(i,j)2
[I]⇥[J]

�

T (i)
µjhE[Yij ] + uC

R

The right-hand side takes its minimum value when
P

j2[J ] µjxj1 = C

R and yields:
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V0 
1

1� �

✓ X

(i,j)2
[J]⇥[N ]

�

T (i)
µjhE[Yij ]� hC

R

◆

This is the same lower bound for V0 as in Equation (C.7) and thus is satisfied by the hypothesized

value with equality when
P

j2[J ] µjxj1 = C

R. This proves the primal feasibility of the hypothesized

solution under the given conditions with tight constraints for state-action pairs where:

X

j2[J ]

µjxj1 � C

R
, (C.8)

X

n2[N ]

aijn = yij 8(i, j) 2 [I]⇥ [J ], and (C.9)

aijn = 0 8(i, j) 2 [I]⇥ [J ] and n 6= T (i) (C.10)

We can now turn to the second stage of the proof where we demonstrate the existence of a dual

solution that together with the hypothesized primal solution satisfies complementary slackness. To

do so, we need to demonstrate the existence of a dual solution that is zero for all state-action pairs

that do not satisfy the Conditions (C.8) to (C.10) and for which all the dual constraints are tight

(since all the primary variables are non-zero). To ease the proof we impose the further condition

that a dual variable is positive for a given state-action pair only if µjxjn and µjaijn equal either

zero or CR + C

OT for all i, j and n > 1. We first re-state the dual constraints:

(1� �)
X

(s,a)2
S⇥A(s)

X(s,a) = 1 (C.11)

X

(s,a)2
S⇥A(s)

X(s,a)

✓
xjn � �xj,n+1 � �

X

i2[I]

aij,n+1

◆
= E↵[Xjn] (C.12)

X

(s,a)2
S⇥A(s)

X(s,a)

✓
yij � �E[Yij ]

◆
= E↵[Yij ] (C.13)

We let B = {(s,a) 2 S ⇥ A(s)|X(s,a) > 0}. For n = N and imposing the conditions above on

the dual solution, Equation (C.12) yields:
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X

(s,a)2B

X(s,a)xjN = E↵[XjN ] 8j 2 [J ]

)
X

(s,a)2B

X

jN

>0

=
E↵[XjN ]

C

R + C

OT

Proceeding similarly for n = N � 1, Equation (C.12) yields:

X

(s,a)2B

X(s,a)(Xj,N�1 � ↵XjN ) = E↵[Xj,N�1]

)
X

(s,a)2B

X

j,N�1>0

X(s,a)xj,N�1 = E↵[Xj,N�1] + ↵

X

(s,a)2B

X

jN

>0

X(s,a)xjN

)
X

(s,a)2B

X

j,N�1>0

X(s,a) =
µj

C

R + C

OT

✓
E↵[Xj,N�1] + �E↵[XjN ]

◆

Proceeding similarly, for all n > T (I)� 1 we get:

X

(s,a)2B

X

jn

>0

X(s,a) =
µj

C

R + C

OT

NX

m=n

�

m�n
E↵[Xjm]

For n = T (I) � 1 there is the added complication that aIj,T (I) may be non-zero. Equation

(C.12) now yields:

X

(s,a)2B

X(s,a)

✓
xj,T (I)�1 � �(xj,T (I) + aIj,T (I))

◆
= E↵[Xj,T (I)�1]

which implies that:

X

(s,a)2B

X

j,T (I)�1>0

X(s,a)xj,T (I)�1 = E↵[Xj,T (I)�1] + �

X

(s,a)2B

X

j,T (I)>0

X(s,a)xj,T (I) + �

X

(s,a)2B

a

Ij,T (I)>0

X(s,a)aIj,T (I)

(C.14)

However, Equations (C.11) and (C.13) yield:
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X

(s,a)2B

a

Ij,T (I)>0

X(s,a)aIj,T (I) =
X

(s,a)2B

a

Ij,T (I)>0

X(s,a)yIj = E↵[YIj ] +
�Ij

1� �

where �Ij is the arrival rate for patients of priority class I and service class j.

Assuming µjyIj = C

R + C

OT and E↵[YIj ] is set equal to �Ij we get:

X

(s,a)2B

a

Ij,T (I)>0

X(s,a) =
1

1� �

✓
µj�Ij

C

R + C

OT

◆

Thus, substituting back into Equation (C.14) we get:

X

(s,a)2B

x

j,T (I)�1>0

X(s,a) =
µj

C

R + C

OT

✓ NX

m=T (I)�1

�

m�T (I)+1
E↵[Xjm] +

�

1� �

�Ij

◆

Thus, in general, for n > 1 we get:

X

(s,a)2B

x

jn

>0

X(s,a) =
µj

C

R + C

OT

✓ NX

m=n

�

m�n
E↵[Xjm] +

IX

i=1

�

T (i)�n

1� �

I(n < T (i))�ij

◆
(C.15)

For n = 1, Equation (C.12) still yields:

X

(s,a)2B

x

j1>0

X(s,a)xj1 = E↵[Xj1] + �

X

(s,a)2B

x

j2>0

X(s,a)xj2

=
NX

m=1

�

m�1
E↵[Xjm] +

IX

i=1

�

T (i)�1

1� �

I(1 < T (i))�ij (C.16)

However, unlike for the cases with n > 1 we cannot simply set xj1 equal to C

R+C

OT or 0 since

we need to enforce by Condition (C.8) that
P

j2J µjxj1 � C

R for all (s,a) 2 B. Thus, along with

satisfying Equation (C.16), our dual solution must also satisfy:

X

(s,a)2B

X(s,a)
X

j2J
µjxj1 �

C

R

1� �

)
X

j2[J ]

µj

✓ NX

m=1

�

m�1
E↵[Xjm] +

IX

i=1

�

T (i)�1

1� �

I(1 < T (i))�ij)

◆
� C

R

1� �

(C.17)

which is enforced by Condition (C.2).
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The Existence of a Dual Solution Satisfying Complementary Slackness

The above argument suggests a weighting scheme for a dual feasible solution that, together with

the proposed primal solution, satisfies complementary slackness. It remains to prove that a dual

solution satisfying the above weighting scheme must exist. We can determine the state-action pairs

with positive dual weight starting on day 1 and working up to day N . A dual solution exists if:

1. The total dual weight available 1
1�� given by Equation (C.11) does not exceed the combined

weight assigned to all states where xjn or
PI

i=1 aijn are greater than zero for any n.

2. The total weight assigned to dual variables where
PN

n=1 aijn is positive and is equal to the

weight assigned to dual variables where yij is positive.

This turns out to be straightforward as it is easy to show that, under the above weighting

scheme and using Equation (C.3),

X

x
jn

>0

(X(s,a)µjxjn +

IX

i=1

X

a
ijn

>0

X(s,a)µjaijn) 
CR + C

OT

1� �

)
X

x
n

>0

X(s,a) +
IX

i=1

X

a
in

>0

X(s,a)  1

1� �

for all n 2 [N ] and

NX

n=1

X

(s,a2B|a
ijn

>0

X(s,a)aijn =
X

(s,a2B|y
ij

>0

X(s,a)yij

for all (i, j) 2 [I] ⇥ [J ]. Thus, there exist admissible state-action pairs that satisfy the above

weighting scheme proving the existence of the required dual solution.
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