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The case for the use of Multiple Imputation missing data methods in Stochastic Frontier Analysis 

with illustration using English Local Highway data 

Alexander D. Stead and Phill Wheat 

June 2019 

Abstract 

Multiple Imputation (MI) methods have been widely applied in economic applications as a robust 

statistical way to incorporate data where some observations have missing values for some variables. 

However in Stochastic Frontier Analysis (SFA), application of these techniques has been sparse and the 

case for such models has not received attention in the appropriate academic literature. This paper fills 

this gap and explores the robust properties of MI within the stochastic frontier context. From a 

methodological perspective, we depart from the standard MI literature by demonstrating, conceptually 

and through simulation, that it is not appropriate to use imputations of the dependent variable within 

the SFA modelling, although they can be useful to predict the values of missing explanatory variables. 

Fundamentally, this is because efficiency analysis involves decomposing a residual into noise and 

inefficiency and as a result any imputation of a dependent variable would be imputing efficiency based 

on some concept of average inefficiency in the sample. A further contribution that we discuss and 

illustrate for the first time in the SFA literature, is that using auxiliary variables (outside of those 

contained in the SFA model) can enhance the imputations of missing values. Our empirical example 

neatly articulates that often the source of missing data is only a sub-set of components comprising a 

part of a composite (or complex) measure and that the other parts that are observed are very useful in 

predicting the value.  

 

Keywords: Production; stochastic frontier analysis; missing data; multiple imputation; efficiency 

analysis 

 

 

A.D. Stead* 

Room LG.06, Institute for Transport Studies, University of Leeds, Leeds, LS2 9LJ, UK 

e-mail: a.d.stead@leeds.ac.uk 

P. Wheat 

Room 1.03, Institute for Transport Studies, University of Leeds, Leeds, LS2 9LJ, UK 

e-mail: p.e.wheat@its.leeds.ac.uk 

*Corresponding author 

mailto:a.d.stead@leeds.ac.uk
mailto:p.e.wheat@its.leeds.ac.uk


2 

 

1 Introduction 

Missing data is an issue that arises frequently in many statistical analyses, and many competing methods 

exist to deal with it. Our focus here is on the appropriateness of the application of the bank of techniques 

developed for missing data to stochastic frontier analysis (SFA), as missing data in this context has 

received relatively little attention to date. Our paper aims to make the case for Multiple Imputation (MI) 

methods in SFA. We highlight that MI methods are relatively easy to implement in SFA and explore, 

through a mix of theory, simulation and empirical example, the robustness of the parameter estimates 

and efficiency predictions obtained, compared to those from alternative methods.  

By far the most common practice in the empirical literature is to proceed by only including observations 

if data on all explanatory variables are available, so called complete case analysis. However if data are 

taken from a variety of information sources, such a requirement can often be a high hurdle to clear, and 

it could be the case that an observation is excluded if only one of a number of explanatory factors is 

missing. This is the case in our empirical example which we draw on to illustrate the approach, where 

nearly 20% of observations have a missing value related to one attribute (road condition). Developing 

a solution, the focus of this paper, would ideally lead to more precise parameter estimates for the cost 

frontier and thus more precise efficiency predictions for the complete cases, and also provide efficiency 

predictions for the incomplete cases (observations with missing data). 

The focus of this paper is on the plausibility of results obtained via MI, in terms of imputations, 

parameter estimates (both point estimate values and precision of estimation), and efficiency predictions. 

The plausibility of efficiency predictions is determined by the plausibility of the imputations, either 

directly in the case of those observations with missing values or indirectly as the imputations are used 

to estimate the frontier parameters. As such, a key consideration is whether the relationships identified 

between the observed variables and those variables with missing data are plausible. Indeed a positive 

feature of some MI methods, such as the Multiple Imputation by chained equations (MICE), is that they 

provide a clear way to evaluate such plausibility through estimation of imputation equations. Building 

on this, we explore the inclusion of auxiliary variables which have a clear a priori relationship with the 

missing data in the imputation model, and consider whether this results in improved imputations. 

The layout of this paper is as follows: Section 2 discusses the key challenges that missing data imposes 

on efficiency analysis.  Section 3 gives an overview of missing data methods in general, with a particular 

focus on imputation methods and why they are appropriate in the context of SFA. In Section 4, we 

undertake a Monte Carlo simulation study to explore the statistical robustness of MI techniques in SFA, 

focusing on comparison with results obtained via listwise deletion (LD), as well as considering whether 

imputed values of the dependent variable should be used in estimation. Section 5 outlines our empirical 

example of a stochastic cost frontier using data on English local authorities’ highways maintenance 
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activities1. This sets out our missing data structure and the imputation models used, then discusses the 

parameter estimates resulting from the implementation of the various MI approaches and finally 

discusses the resulting efficiency predictions. Section 8 concludes and provides our recommendations 

for how MI methods should be used in SFA. 

2 Missing data in efficiency analysis: Challenges 

Efficiency analysis can be traced back to the seminal work by Farell (1957) who considered 

measurement of the extent to which decision making units failed to maximise output for given inputs 

(technical inefficiency) or when faced with a budget constraint (economic (or cost) efficiency).  

Stochastic Frontier Analysis (SFA) is a parametric, statistical approach to efficiency analysis. Proposed 

by Aigner et al. (1977) and Meeusen and van Den Broeck (1977), a standard stochastic cost frontier 

model for cross sectional data can be written as 

 𝑙𝑛𝑐𝑖 = 𝑥𝑖′𝛽 + 𝜀𝑖     𝑖 = 1,… ,𝑁 (1) 

 𝜀𝑖 = 𝑢𝑖 + 𝑣𝑖  

where 𝑐 is a cost variable 𝑥 is a vector of independent variables, and 𝛽 is a vector of coefficients. The 

cost frontier describes the efficient cost of producing a given vector of outputs with the cost-minimising 

combination of inputs, and is a function of output quantities and input prices (Shephard, 1953). 

Therefore 𝑥𝑖′  should include ouput quantity and input price variables, as well as other ‘hedonic’ 

variables affecting costs. The error term 𝜀 is composed of a symmetric noise component 𝑣 – usually 

assumed to follow a normal distribution – and an inefficiency component 𝑢, which assumed to follow 

some one-sided distribution, e.g. half normal or exponential. The subscript 𝑖 denotes the observation 

number. Efficiency predictions are obtained following estimation of the frontier parameters, based on 

the distribution of 𝑢𝑖|𝜀𝑖. The usual approach is to take the mean of the distribution, as proposed by 

Jondrow et al. (1982) and Battese and Coelli (1988). 

The formulation of SFA and the nature of a comparative efficiency benchmarking exercise present a 

number of challenges for dealing with missing data: 

1) The analysis primarily focuses on predicting the efficiency for a given observation. This in turn 

requires prediction of the error in the model. In practice, the residual for an observation is used as 

a proxy for the unobserved realised error. Methods thus need to be able to predict the residual with 

precision, which requires precise parameter estimates. Furthermore, methods that do not allow for 

prediction of the residual for those observations with missing data are of limited use in this context.  

                                                      
1  We provide a Stata .do file with a code template that can be used for the application of MI to SFA at 

https://www.its.leeds.ac.uk/bear  

https://www.its.leeds.ac.uk/bear
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Deletion methods in response to missing data are the most commonly used methods for estimation 

in the literature. However, these do not use all the data available and so may not produce the most 

precise parameter estimates, and these estimates maybe biased if the data is not missing completely 

at random (MCAR) (see Section 3). As such listwise deletion (LD) may not predict the residual 

with greatest precision i.e. efficiency predictions even for observations with no missing data maybe 

imprecise. However, they are easily understood and implementable hence their popularity.  

In the case of LD, there does also exist a pragmatic approach at the prediction stage of the modelling 

exercise to predict efficiency for observations with missing data by using some heuristics, such as 

linear interpolation. This has been used in applications such as earlier work on the dataset used in 

this study. Given the popularity of this approach, in our empirical example we contrast this approach 

with that from the multiple imputation approaches.  

2) Given the focus on the residual, it is difficult to justify predicting efficiency for observations with 

missing values for the dependent variable in the context of performance benchmarking. This is 

because the difference between the dependent variable and the modelled relationship (𝑥𝑖′𝛽) is the 

residual prediction and which is, in turn, monotonically related to the efficiency prediction. Any 

imputation approach for the dependent variable would distort this difference (there would be some 

element of the difference that would reflect imputation error) and as such distort the efficiency 

measure.  

3) However, as discussed in Section 3, there may be some benefit in including the dependent variable 

in the imputation phase of the missing data methods as the dependent variable could be a useful 

predictor for the missing independent variables. In our empirical study we do include the dependent 

variable as a covariate in the imputations models for the missing variables.  

4) A more vexing question is whether the imputed missing dependent variable data should be used in 

the SFA model estimation i.e. to estimate the cost or production frontier, even if it is clear that 

efficiency should not be predicted for those observations. There may be precision gains to be had 

with respect to the frontier parameters (as there is more observations to base the estimation on), 

however the variance parameters are of central interest in efficiency analysis, and following 

reasoning along that discussed in 2) above, introducing observation with imputed dependent 

variables could bias the estimates of the variance parameters and distort efficiency predictions. We 

undertake a simulation study to investigate this issue.  

5) In efficiency analysis, and specifically benchmarking, models are often developed with engineering 

stakeholders and comprise a simplified representation of the underlying cost relationship. The 

variables used in the model are often proxies for wider phenomena (e.g. asset condition in this 

application) and are underpinned by aggregation of more detailed data. Missing values can often 

arise because some, but not all, of the underlying data is missing for an observation. This is the case 

in our example where ‘road condition’ is an aggregate measure of the condition of various 

categories of road. As such there are often natural “auxiliary” predictors of missing data which are 
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ripe for exploitation. This is a compelling reason to use MI, since it exploits all the information 

available to the researcher. 

3 Missing Data Methods 

In this section we review the literature on missing data. We start by considering the broad set of methods 

available and motivate MI techniques. We review key results from the literature on the statistical 

properties of these techniques. We then discuss the two MI techniques that we consider appropriate for 

SFA. We also begin to address the issues considered in section 2, namely the use of additional auxiliary 

variables for imputation and whether observations with imputed values for the dependent variable 

should be used in the analysis stage.  Finally in this section, we review the limited applications of MI 

in SFA applications. 

3.1 Overview of Missing Data Methods 

In general, the suitability of a given missing data method depends on the missing data mechanism and 

the pattern of the missing data. The missing data mechanism describes the relationship between 

‘missingness’ and the missing and observed values. Data may be missing completely at random 

(MCAR), missing at random (MAR), or missing not at random (MNAR). If data are MCAR, 

missingness is unrelated to the missing or observed values. If data are MAR, then missingness is 

unrelated to the missing values, but related to observed values. Finally, if the data are MNAR, 

missingness is related to the missing values, and possibly also to the observed values. Patterns of 

missing data can be univariate, meaning only one variable has missing values, monotone, meaning that 

when the value of variable 𝑝 is missing, variables 𝑝 + 1,… , 𝑘 are also missing, or there may be a 

general pattern of missing data. 

Missing data approaches to linear modelling are grouped by Little (1992) into six categories: complete-

case analysis, available-case analysis, analysis of imputed data, maximum likelihood (ML) methods, 

Bayesian methods, and multiple imputation (MI). The first two of these, also known as listwise deletion 

(LD) and pairwise deletion (PD), are based on the exclusion of missing data, while ML, Bayesian 

methods, and MI are described by Little (1992) and Little and Rubin (2002) as model based approaches.  

Given our context of efficiency analysis, and the desire to obtain efficiency predictions for observations 

with missing data, we mainly discuss imputation procedures, following a brief discussion of deletion-

based and model-based procedures. 

3.1.1 Deletion-based and Model-based Methods 

The most common approach to dealing with missing data is LD, in which we simply exclude all 

observations containing missing values from the analysis. The advantage of this approach, aside from 

its simplicity, is that the resulting parameter estimates are not biased if the data are MCAR, since 

ordinary least squares (OLS) regression analysis – and this also applies to SFA – conditions on the 
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values of the covariates (Glynn and Laird, 1986). However, if the data are only MAR rather than 

MCAR, LD can result in bias since the relationship between the covariates and missingness is not 

accounted for. Even if the data are MCAR, LD has drawbacks in terms of the loss of information from 

dropping incomplete observations, and a resulting loss of precision in estimation. The greater the 

fraction of missing data, the greater the potential bias and loss of information from using LD. 

PD attempts to overcome this disadvantage by using all of the available data. Regression with PD, as 

proposed by Glasser (1964), works by replacing the covariance 𝜎𝑗𝑘  used to calculate estimated 

coefficients with the pairwise covariance 𝜎𝑗𝑘(𝑗𝑘) calculated using all observations for which 𝑥𝑗 and 𝑥𝑘 

are present. For example, if we have a regression of 𝑦  on 𝑘  dependent variables, the estimated 

coefficients can be expressed in terms of variances and covariances like so 

 𝛽 = 𝐶−1Σ𝑥𝑦′  (2) 

 𝛽0 = 𝑦̅ − 𝑥̅𝛽  

Where 𝛽 is a vector of slope coefficients, 𝐶 is a 𝑘 × 𝑘 matrix of variances and covariances between the 

independent variables, Σ𝑥𝑦 is a vector of covariances between the regressand and each of the regressors,  𝛽0 is the estimated intercept, 𝑦̅ is the mean of the dependent variable, and 𝑥̅ is a vector containing the 

means of the independent variables. Under PD, we simply calculate each of the variances and 

covariances in 𝐶  and 𝐶𝑜𝑣(𝑥𝑖, 𝑦)  pairwise. Given that OLS yields unbiased estimates of the slope 

parameters in a frontier, this approach may be taken to estimate the frontier parameters. 

Although PD makes use of all the available data, there are drawbacks. As pointed out by Little (1992), 

the covariance matrix of the 𝑋 variables is not necessarily positive-definite, and indeterminate slope 

parameters can result when it is not. Haitovsky (1968) finds that this problem is most severe when the 

independent variables are highly correlated. There are also issues around the calculation of standard 

errors under pairwise deletion, discussed by Little (1992). However, the main disadvantage of both LD 

and PD in the context of efficiency analysis is the inability to obtain efficiency predictions for 

observations with missing data. 

The ML approach to missing data, proposed by Rubin (1976), involves assuming a joint distribution 

for the data and integrating out the missing values to form a likelihood function. The distribution of the 

missing data mechanism can be taken into account, or may be ignored if the data are MAR and the 

parameters of the model and of the missing data mechanism have distinct spaces, in the sense that their 

joint parameter space is simply the product of their individual parameter spaces. Bayesian inference is 

based on the posterior distribution obtained by combining the same likelihood function with prior 

distributions for the parameters of the model and of the missing data mechanism. 
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The ML and Bayesian approaches are potentially promising, in that they could be used to obtain 

efficiency predictions for each observation. However, they are relatively demanding in that new models 

would have to be developed for each stochastic frontier specification. For this reason, we adopt the 

approach of imputation of missing values, which is more readily adapted to any frontier method. 

3.2 Imputation of Missing Values 

This section discusses the general approach of replacing missing values with imputed values. In the 

context of efficiency analysis, this approach is preferable for two main reasons: first, it enables us to 

derive efficiency scores for observations with missing values. Second, once imputed values have been 

obtained, any complete data method – whether econometric, such as SFA, or deterministic, such as Data 

Envelopment Analysis (DEA, see Charnes et al. (1978)) – may be applied. There are however many 

alternative methods of imputation, each of which has its own advantages and disadvantages. These are 

discussed below. 

3.2.1 Single Imputation Methods 

The simplest imputation methods involve replacing each missing value with only one imputation. Little 

and Rubin (2002) group single imputation methods into two categories: explicit modelling approaches, 

based on formal statistical models with explicit assumptions, and implicit modelling approaches based 

on algorithms, in which the statistical model and its assumptions are only implicit. 

Implicit modelling approaches are mainly appropriate for longitudinal survey data of a sort not generally 

used in efficiency analyses, and therefore we do not go into detail on these approaches. They include 

hot deck imputation, which substitutes values from similar responding units, substitution in which non-

responding units are replaced by similar units at the fieldwork stage, and cold deck imputation in which 

missing values are replaced by a value from some external source, such as data from a previous survey. 

Explicit modelling approaches include mean imputation which substitutes means, e.g. sample means, 

means over time for a particular unit, or means across a class of units or observations, regression 

imputation in which replaces missing values of a given variable by predictions from a regression of that 

variable on a vector of independent variables, and stochastic regression imputation (Herzog and Rubin, 

1983) which replaces missing values by regression imputation plus a residual which is a random draw 

from the estimated error distribution, and reflects the uncertainty in prediction from the regression. 

The main disadvantages of single imputation methods, aside from the issue of choosing between 

imputation methods, are the bias introduced by errors in the independent variables, and the difficulty of 

deriving estimates standard errors that take into account the added uncertainty as a result of the inclusion 

of imputed values. Little and Rubin (2002) note three approaches to doing so under single imputation 

methods: applying explicit variance formula, which could be very difficult under certain imputation 

methods, modifying imputations such that valid standard errors may be derived, which may 
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compromise the quality of the imputations, and resampling methods such as bootstrapping and 

jackknifing, which rely on large datasets. A more general technique, which may be used in a variety of 

applications, is multiple imputation, discussed below. 

3.2.2 Multiple Imputation and its statistical properties 

Multiple imputation (MI) – see Rubin (1978a; 1978b; 1986; 1996) – is a method in which we replace 

each missing value with a vector of 𝐷 ≥ 2 imputed values, thereby creating 𝐷 imputed datasets. MI 

was developed as a method for dealing with missing data in a wide variety of contexts – not limited to 

linear regression, but also for estimating means, standard deviations, and skewness of distributions, and 

for the estimation of nonlinear models. Indeed, many differing MI methods have been proposed 

appropriate to a range of modelling contexts – linear regression for imputing values of continuous 

variables – see Schenker and Taylor (1996) – truncated regression for values of variables restricted to 

a certain range (see Raghunathan et al. (2001), logistic regression for values of binary variables (see 

Rubin (1987) and Raghunathan et al. (2001)). Raghunathan et al. (2001) and van Buuren (2007) also 

suggest the use of Poisson regression models to impute values for count variables, ordered logistic 

regression to impute values of ordinal variables, and multinomial logistic regression to impute values 

of nominal variables. 

 MI methods have therefore been used in many different contexts – discrete choice modelling (Steimetz 

and Brownstone, 2005; Raghunathan and Siscovick, 1996), Poisson regression (Smith and Cummings, 

2004; Böhning et al., 2002), and as we discuss later in more detail, stochastic frontier analysis. As such, 

MI is applicable in many different settings, and its validity, as we discuss below, is determined by the 

appropriateness of the MI method used to the problem at hand. 

As Little and Rubin (2002) note, any single imputation method that involves taking draws from a 

predictive distribution – e.g. stochastic regression imputation – can be used to impute multiple datasets. 

Rubin (1987) recommends drawing from a Bayesian posterior predictive distribution, and MI is usually 

motivated from a Bayesian perspective. Nonetheless resulting inferences can be shown to have good 

sampling properties (Little and Rubin, 2002). In discussing the validity of MI from a frequentist 

perspective, Rubin (1987) follows Neyman (1934) in distinguishing two versions of frequentist validity: 

randomisation validity, and confidence validity. The former is achieved when, for an interval estimate, 

the nominal interval coverage is equal to the actual interval coverage, and for hypothesis tests the 

nominal rejection equals the actual rejection rate, while the latter is achieved when nominal interval 

coverage and nominal rejection rates are less than or equal to actual interval coverage and actual 

rejection rates, respectively. 

As Rubin (1996) points out, when the sampling distribution of a complete data estimate 𝜃  is 

asymptotically normal, randomisation validity is theoretically achievable. Result 4.1 in Rubin (1987) 
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shows that, if the complete data inference is randomisation-valid and the MI method is proper – as 

defined by the author – then MI leads to randomisation-valid inference as 𝐷 → ∞. An analogous result 

regarding confidence validity is given by Rubin (1996). MI is suitable for application to a wide class of 

models – see Schenker and Welsh (1988) and Kim (2004) for a discussion of the properties of MI 

estimators in the linear modelling context.  

Regarding proper imputation, Rubin (1987; 1996) argues that: 

“If imputations are drawn to approximate repetitions from a Bayesian posterior distribution … [of the 

missing data] … under the posited response mechanism and an appropriate model for the data, then in 

large samples the imputation method is proper.” 

The above discussion suggests that MI has desirable properties for large 𝐷 if an appropriate imputation 

method. This raises the questions of appropriate choice of 𝐷 in practice, and of the performance of MI 

when the imputation method is inappropriate. The former is addressed by Rubin and Schenker (1986), 

who show that in many cases, when the fraction of missing data is modest – 30% or less – interval 

estimates using 𝐷 = 2 have coverages very close to their nominal coverages. Rubin (1987) shows that 

the large sample relative efficiency, in terms of standard errors of an estimate based on 𝐷 imputations 

is approximately (1 + 𝛾 𝐷⁄ )−1 2⁄ , where 𝛾 is the fraction of missing information defined by (5). That 

is, the standard error of an estimate based on 𝐷 imputations is √1 + 𝛾 𝐷⁄ − 1 times larger than it would 

be if based on infinite imputations (von Hippel, 2005). 

Regarding the appropriateness of the MICE and MVN methods in the context of SFA, note that the SF 

model differs from the basic linear regression model only in the skewness of the error term. As such, 

unbiased estimates of the frontier parameters may be obtained via least squares, with the exception of 

the intercept, which yields an unbiased estimate of 𝛽0 + 𝐸(𝑢𝑖). We therefore argue that the use of 

techniques appropriate to linear regression may be applied to impute missing data for SF models without 

introducing serious biases. 

3.2.3 Multiple Imputation Methods 

In simple cases, when only one variable contains missing values, univariate imputation models may be 

used in which we regress the variable with missing values on a vector of covariates, and then simulate 

new parameters from their joint posterior distribution under an uninformative or improper prior and 

predict values 𝐷 times. 

In many cases, the presence of missing values is not restricted to a single variable. If the missing data 

pattern is monotone, then the missing values may be imputed sequentially by independent univariate 

imputation models, before multiple imputations are taken from a ‘final’ model estimated using earlier 

imputations. However, in cases with an arbitrary missing data pattern, an iterative approach is needed. 
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One approach to MI with a general pattern of missing data is multiple imputation by chained equations 

(MICE) as proposed by van Buuren et al. (1999), under which regression models are specified for each 

variable with missing values, and these are estimated in turn using available cases for the dependent 

variable and imputed values for the independent variables. Imputations are updated at each iteration 

until convergence is achieved. 

An alternative to MICE is to assume that all variables in the imputation model jointly follow a 

multivariate normal (MVN) distribution. As described by Schafer (1997), imputed values can be 

obtained from the multivariate normal model using a Markov chain Monte Carlo (MCMC) algorithm. 

The EM algorithm may be used to obtain starting values of the parameters of the MVN distribution.  

The main advantages of MICE over the MVN model are firstly that each regression equation can be 

specified according to the nature of the dependent variable, e.g. linear regression for a continuous 

variable, logistic regression for a binary variable, or multinomial logistic regression for an ordinal 

variable. Second, MICE it does not require the assumption of multivariate normality. On the other hand, 

MICE lacks the same theoretical justification as MVN MI, since the fitting of a series of conditional 

distributions may not be consistent with a proper joint distribution, i.e. the regression specifications 

may be incompatible – see Arnold et al. (1999; 2001) – which may cause issues in convergence. 

However, simulation evidence from van Buuren et al. (2006) indicates that even with strongly 

incompatible specifications, there is little impact on estimated parameters. Furthermore, Schafer (1997) 

and Little and Rubin (2002) suggest that the MVN model can provide reasonable estimates even when 

multivariate normality does not hold. Of course, in some cases it is possible to transform variables so 

that the assumption that their marginal distributions are normal is more appropriate, e.g. by taking logs 

of variables that only take on positive values. 

A number of studies have compared the performance of MVN MI to MICE: van Buuren (2007) finds 

that MICE is preferred when the assumption of multivariate normality is not realistic, and Yu et al. 

(2007) finds that MICE also performs better than MVN MI when the data are highly skewed due to a 

large number of zero values. A simulation study by Lee and Carlin (2010) finds that MVN MI slightly 

outperforms MICE in terms of coverage, even when binary variables are included, and that both 

methods outperform LD. On the other hand, another simulation study by Kropko et al. (2014) finds that 

MICE is more accurate than MVN MI when binary variables are included and the data are MAR. 

In a panel data setting, an additional consideration is the need to take into account clustering in the data 

when obtaining imputations. One approach would be to add indicator variables into the chained 

equations under MICE, or to the MVN model if we use MVN MI, although in the latter case this may 

be problematic given the assumption of multivariate normality. Another is to impute data separately for 

each DMU. However if 𝑇 – the number of time periods – is small, this severely limits the number of 

variables that may be used in the imputation model. A third alternative, as suggested by Allison (2002), 
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is to reshape the data so that for each DMU there is only one observation, with values of the same 

variable at different points in time treated as distinct variables. This allows any given variable at any 

given point in time to be used as a predictors for any other variable at any other point in time. This 

method can work with many MI models, but requires that 𝑇 be small relative to 𝑁, the number of 

DMUs. 

Once we have obtained our imputations, we then apply standard complete data methods to each imputed 

dataset, obtaining 𝐷 sets of results. The sampling variation of these results is then taken into account 

when calculating standard errors. Then, if 𝛽𝑗𝑑 is an estimated coefficient obtained by using dataset 𝑑, 

our estimate of the same coefficient under multiple imputation is 

 𝛽𝑗 = 1𝐷∑𝛽𝑗𝑑𝐷
𝑑=1  (3) 

The total variability associated with this estimate is 

 𝑉𝑗 = 1𝐷∑𝑊𝑗𝑑𝐷
𝑑=1 + 1𝐷 − 1∑(𝛽𝑗𝑑 − 𝛽𝑗)𝐷

𝑑=1  (4) 

Where 𝑊𝑗𝑑 is the standard error of 𝛽𝑗 obtained by estimating the model with imputed dataset 𝑑  i.e. the 

overall standard error associated with 𝛽𝑗 is the sum of an average within-imputation variance and a 

between-imputation component. The fraction of information about the true parameter value missing 

due to missing data is estimated by: 

 𝛾 = 1𝐷 − 1 1𝐷 − 1∑ (𝛽𝑗𝑑 − 𝛽𝑗)𝐷𝑑=11𝐷∑ 𝑊𝑗𝑑𝐷𝑑=1 + 1𝐷 − 1∑ (𝛽𝑗𝑑 − 𝛽𝑗)𝐷𝑑=1  (5) 

For large sample sizes, Rubin and Schenker (1986) show that the distribution of the t statistic follows a 

Student’s t distribution with degrees of freedom: 

 𝑣 = (𝐷 − 1) [1 + 𝐷 − 1𝐷(𝐷 + 1) ∑ 𝑊𝑗𝑑𝐷𝑑=1∑ (𝛽𝑗𝑑 − 𝛽𝑗)𝐷𝑑=1 ]2 (6) 

while for small samples, Barnard and Rubin (1999) show that the expression for small samples is 

 𝑣∗ = [1𝑣 + (1 − 𝛾) (𝑣𝑐𝑜𝑚 + 1𝑣𝑐𝑜𝑚 + 3)] (7) 

where 𝑣𝑐𝑜𝑚 is the degrees of freedom when there are no missing values. 
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3.2.4 The use of auxiliary variables in imputations 

An important consideration is the choice of variables to include in the imputation model. Allison (2002) 

points out that it is important to include all variables in the analysis in the imputation model, so that the 

relationships between the variables are fully taken into account. However, there is no need to limit 

ourselves to variables used in the final analysis: in many cases, it may be advantageous to include 

additional auxiliary variables if these are correlated with the missing variables. Auxiliary variables 

could include, for example, anything that serves as a reasonable proxy for the variable(s) with missing 

values, for example lagged or lead values of those variables. Allison (2002) shows examples in which 

reduced standard errors result from the inclusion of appropriate auxiliary variables in the imputation 

model. The use of auxiliary variables is potentially very attractive in the frontier analysis application, 

because it is often the case that there exists a priori information from either economics or engineering 

as to what explains the missing variables.  

In our empirical example there are indeed natural auxiliary variables and so we use these in the 

imputation phase of our MI procedures.  

3.2.5 The inclusion of observations with imputed dependent variable in the analysis stage  

There has been some discussion in the literature as to whether imputed values of the dependent variable 

should be included in the analysis stage. On one hand, when independent variables are complete and 

the dependent variable is MAR, Little (1992) states that the incomplete cases contribute no additional 

information, implying that LD should be used. In the more general case where there are also missing 

values among the independent variables, von Hippel (2007) argues that observations in which the 

dependent variable is missing  should be used in the imputation model, since this may improve 

imputation of missing independent variables in other observations, but that they add nothing but noise 

to the subsequent analysis. Von Hippel (2007) proposes an approach of Multiple Imputation, then 

Deletion (MID) – under which missing values of the dependent and independent variables are jointly 

imputed as usual but observations with imputed values for the independent variable are excluded from 

the analysis step – and provides evidence from simulated data that MID yields more efficient estimates 

than MI when imputation and analysis models are the same. 

However, when imputation and analysis models differ due to the presence of auxiliary variables in the 

former, standard MI may outperform MID, as acknowledged by von Hippel (2007), who shows that the 

advantage of MI over MID is greater the stronger the correlation between auxiliary and dependent 

variables, and the smaller the proportion of missing values. Furthermore, simulations by Sullivan et al. 

(2015) examines the relative performance of MI and MID in the presence of auxiliary variables under 

two assumptions: first, that missingness of the dependent variable is unrelated to the auxiliary variable, 

and second, that the auxiliary variable is associated with missingness of the dependent variable. In the 
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latter case, Sullivan et al. (2015) find serious biases in the parameter estimates under MID, and in the 

former case that MI tends to produce more efficient estimates.  

We return to this issue in our Monte Carlo simulations in section 4 to make conclusions on a preferred 

approach for SFA. 

3.3 Methods used in SFA efficiency analysis 

In the preceding sub-sections we have surveyed missing data methods. We now consider existing 

development and implementations in efficiency analysis. Little attention has been given to the issue of 

missing values in the context of SFA, with LD being the approach taken in almost every case despite 

its disadvantages. 

A small number of applications of SFA briefly mention having made use of MI to handle missing 

values, but contain little or no further details or discussion. Two studies of the technical and cost 

efficiency of German physician practices, by Heimeshoff et al. (2014) and Kwietniewski and Schreyögg 

(2018) state that they use MI as a sensitivity check, but do not contain any further discussion of MI and 

the imputation method(s) used, and do not report the results obtained using MI. Likewise, Bhandari et 

al. (2015) and Qushim et al. (2016) analyse the technical efficiency of US beef and lamb farms, 

respectively, and make brief references to having used MI. In the latter case, the authors state that a 

truncated regression model was used, but no further details are given. Smith and Forster (2013) apply 

MICE and ‘hot deck’ MI in a study of the technical efficiency of agent-managed versus owner-managed 

sugar plantations in early 19th century St. Vincent and the Grenadines. 

Several other studies go into greater detail. A series of studies of the technical efficiency of German 

firms using the IAB establishment panel dataset use MI in a stochastic frontier setting. Jensen et al. 

(2010) use truncated regression imputation model to impute censored wage data. Kölling and Rässler 

(2004) and Jensen and Rässler (2006; 2007) each use MVN MI models with uninformative priors, and 

apply transformations to address non-normality of variables, e.g. log transformations to right-skewed 

variables, and logit transformations to variables bounded by zero and one. Kölling and Rässler (2004) 

find that using this MI method leads to considerably different findings regarding the relative efficiency 

of East and West German firms, compared to LD. Depending on whether MI or LD is used, Jensen and 

Rässler (2006; 2007) obtain differing findings on effects of exports and collective bargaining – 

respectively – on efficiency and productivity. 

Shaik and Tokovenko (2013), who apply the MVN MI approach to impute missing values of capital 

and fertiliser inputs in a Food and Agriculture Organization of the United Nations dataset on country-

level agricultural production. The authors note that missingness of the data is associated with countries’ 

income levels. Under various different assumptions about the distribution of 𝑢𝑖, the authors find some 

significant differences in average efficiency predictions across income groups under the MI and LD. 
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These latter studies highlight the potential usefulness of MI in SFA, given that its use can lead to 

different conclusions regarding efficiency, for example when the data are MAR rather than MCAR. 

4 Monte Carlo Simulations 

In this section, we analyse the performance of MI and MID methods for dealing with missing data in a 

stochastic frontier setting via a set of Monte Carlo simulation exercises. There are already a number of 

such simulation studies analysing the performance of MI under different data generating processes 

(DGPs) in a variety of modelling contexts – see for example Bentler (2000), von Hippel (2007), and 

Rubright et al. (2014). Ours is the first, however, to examine the performance of MI in the context of 

SFA, and as such we focus discussion on results particularly important in this context, e.g. the estimated 

scale parameters and their impact on efficiency prediction. We consider four data generating processes 

(DGPs) with two differing missing data mechanisms (MCAR and MAR), and different proportions of 

observations with missing data. We compare the results with those obtained via LD. Below, we outline 

the DGPs used. 

4.1 Simulation design  

Below we discuss how we generate the missing data and our simulations. The rationale behind what 

may appear a rather convoluted DGPs is as follows: for the data to be MCAR, we need to ensure that 

missingness is uncorrelated with any of the variables in the model. This is relatively simple. However, 

to ensure that the data are MAR, missingness of a given variable may be related to values of other 

variables, but not to the value of the variable itself. Since data are rarely MCAR (Rubin, 1976), it is 

important to consider the case in which the data are MAR. In the case of two or more variables with 

missing data, simulating data to be MAR without being MNAR is relatively complex. Examples of 

similar simulation studies which both MCAR and MAR missing data mechanisms include those 

mentioned above.  As discussed in section 3.2, the literature indicates that the difference between MI 

and LD will increase as the missing data process departs from MCAR. 

Under both DGPs, the dependent variable, 𝑐𝑖,  is given by 

 𝑐𝑖 = 𝑥1𝑖 + 𝑥2𝑖 + 𝑥3𝑖 + 𝑧𝑖 + 1 + 𝑣𝑖 + 𝑢𝑖, 𝑢𝑖 = |𝑤𝑖| (8) 

Where the right-hand side variables are drawn from a multivariate normal distribution, such that 

 

( 
   
 𝑥1𝑖𝑥2𝑖𝑚𝑦𝑖𝑥3𝑖𝑚𝑧𝑖𝑧𝑖𝑣𝑖𝑤𝑖 ) 

   
 ~𝑁8(𝟎, 𝚺) (9) 
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Where 𝑁8 denotes a eight-dimensional multivariate distribution, 𝟎 is a 8 × 1 vector of zero means, 𝑚𝑦𝑖 
and 𝑚𝑧𝑖 are variables which determine whether or not 𝑦𝑖 and 𝑧𝑖, respectively, are missing – the precise 

mechanism is explained further below – and the 8 × 8 covariance matrix 𝚺 is given by 

 𝚺 = 𝛔𝐏𝛔′ (10) 

Where 𝛔 is an 8 × 1 vector of standard deviations, such that, with the exception that 𝜎𝑣 = 0.5, each 

standard deviation is one2. 

 𝛔′ = (1 1 1 1 1 1 0.5 1) (11) 

And 𝐏 is an 8 × 8 correlation matrix, given by 

 

Ρ =
( 
   
  
1 0 0 0 0 0.75 0 00 1 𝜌𝑚𝑦,𝑥2 0 0 0 0 00 𝜌𝑚𝑦,𝑥2 1 0 0 0 0 00 0 0 1 𝜌𝑚𝑧,𝑥3 0 0 00 0 0 𝜌𝑚𝑧,𝑥3 1 0 0 00.75 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1) 

   
  

 (12) 

That is, every variable is uncorrelated with every other variable, with the following a few exceptions. 

The first exception is that 

 𝜌𝑥1,𝑧 = 0.75 (13) 

This is so that one of the right-hand side variables, 𝑥1, is useful for imputation of missing values of 𝑧𝑖. 
Second, when the data are MAR 

 𝜌𝑚𝑦,𝑥2 = 𝜌𝑚𝑧,𝑥3 = 0.75 (14) 

That is, when the data are MAR, the missingness of 𝑦𝑖 is correlated with 𝑥2𝑖, and the missingness of 𝑧𝑖 
is correlated with 𝑥3𝑖. On the other hand, we have 

 𝜌𝑚𝑦,𝑥2 = 𝜌𝑚𝑧,𝑥3 = 0 (15) 

for our DGPs in which the data are MCAR, by necessity. Note that the DGP is a stochastic frontier 

model where we have missing data on costs, 𝑐𝑖, and one of the independent variables, 𝑧𝑖. 
We use two different proportions of missing data: one in which 10% of observations have missing 

values - in either 𝑦𝑖 or 𝑧𝑖 or both – and one in which 50% of observations have missing values. The 

observations with missing values are chosen as follows. First, draws from a uniform distribution are 

                                                      
2 We have set 𝜎𝑣, the standard deviation of the noise term 𝑣𝑖, to 0.5 so that we have a relatively large signal-to-

noise ratio, which reduces incidences of ‘wrong skew’. Since convergence of ML estimation of SF models can be 
slow in cases of wrong skew, this was a practical measure to speed up the Monte Carlo simulations. 
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taken, and both 𝑦𝑖 and 𝑧𝑖 are set to missing in observations in which the highest 2% or 10% of values 

of  these draws are found. Then, the remaining 98% or 90% of observations are partitioned into two 

halves: one in which 𝑦𝑖 may be missing, and the other in which 𝑧𝑖 may be missing. Within these, values 

are set to missing in observations with the largest values of 𝑚𝑦𝑖 or 𝑚𝑧𝑖, respectively, are found, until 

either 10% or 50% of observations, depending on the DGP in question, contain missing values. Both 

the imputation models and subsequent stochastic frontier models are estimated using Stata 13.13. 

4.2 Simulation Results: The benefits of MI over LD 

Table 1 contains results from replications in which 10% of observations have values MCAR. Table 2 

shows results for 50% of observations with values MCAR. Table 3 shows results for 10% of 

observations with values MAR. Finally, Table 4 shows results for 50% of observations MAR. In each 

case, the mean and median parameter estimates are shown, along with the bias according to both mean 

and median estimate. The root mean squared error (RMSE) is given in each case to compare the 

precision of the various methods. The final three columns provide, for each parameter, comparisons of 

the magnitudes of the biases relative to those under LD, and the ratio of the RMSE to that obtained via 

LD.  

                                                      
3 We used Stata’s MI command, which enables the use of MI in conjunction with a wide range of commands for 

estimating specific models, including the frontier command, which is used to estimate SF models. The MI 

command imputes 𝑀 datasets according to a use-specified imputation model, estimates the model using each 

dataset, and combines the estimates as described in Section 3.2. 
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Table 1: Monte Carlo simulation results, MCAR data, 10% of observations have missing values 

 

 Mean Median 
Bias 

(Mean) 

Bias 

(Median) 
RMSE 

Mean bias 

vs. LD 

Median 

bias vs. LD 

RMSE vs. 

LD 

L
D

 

𝛽1 1.000562 1.001272 0.000562 0.001272 0.128651 - - - 𝛽2 1.000030 1.000945 0.000030 0.000945 0.084830 - - - 𝛽3 0.999934 1.000312 -0.000066 0.000312 0.087222 - - - 𝛽𝑧 0.999222 0.997815 -0.000778 -0.002185 0.132681 - - - 𝛼 1.065605 1.006251 0.065605 0.006251 0.301456 - - - 𝜎𝑣 0.456263 0.459472 -0.043738 -0.040528 0.178812 - - - 𝜎𝑢 0.910936 0.984032 -0.089064 -0.015968 0.365637 - - - 

M
N

V
 M

I 

𝛽1 1.003461 1.003940 0.003461 0.003940 0.125890 0.002899 0.002668 0.978533 𝛽2 0.999477 0.999174 -0.000523 -0.000826 0.082111 0.000493 -0.000120 0.967949 𝛽3 1.000251 1.001111 0.000251 0.001111 0.084432 0.000185 0.000799 0.968017 𝛽𝑧 0.996524 0.996473 -0.003476 -0.003527 0.129761 0.002698 0.001342 0.977993 𝛼 1.092834 1.040371 0.092834 0.040371 0.290124 0.027229 0.034119 0.962408 𝜎𝑣 0.480124 0.487275 -0.019877 -0.012725 0.166049 -0.023861 -0.027802 0.928624 𝜎𝑢 0.855391 0.944581 -0.144609 -0.055419 0.391661 0.055546 0.039451 1.071173 

M
V

N
 M

ID
 

𝛽1 1.003834 1.003850 0.003834 0.003850 0.125585 0.003272 0.002578 0.976162 𝛽2 0.999870 1.000462 -0.000130 0.000462 0.082423 0.000100 -0.000483 0.971629 𝛽3 1.000440 1.000507 0.000440 0.000507 0.084403 0.000374 0.000195 0.967674 𝛽𝑧 0.996147 0.994207 -0.003853 -0.005793 0.129361 0.003075 0.003608 0.974982 𝛼 1.078817 1.022936 0.078817 0.022936 0.289404 0.013212 0.016685 0.960019 𝜎𝑣 0.469089 0.475786 -0.030911 -0.024214 0.170723 -0.012827 -0.016314 0.954766 𝜎𝑢 0.883453 0.963960 -0.116547 -0.036040 0.371967 0.027483 0.020073 1.017311 

M
IC

E
 

𝛽1 1.003183 1.005143 0.003183 0.005143 0.126275 0.002621 0.003872 0.981530 𝛽2 0.999800 1.000896 -0.000201 0.000896 0.082471 0.000171 -0.000050 0.972195 𝛽3 1.000570 1.001346 0.000570 0.001346 0.084467 0.000504 0.001034 0.968417 𝛽𝑧 0.996626 0.996035 -0.003374 -0.003965 0.130374 0.002596 0.001780 0.982612 𝛼 1.093898 1.040778 0.093898 0.040778 0.295603 0.028293 0.034526 0.980583 𝜎𝑣 0.478504 0.484501 -0.021496 -0.015499 0.167719 -0.022242 -0.025029 0.937964 𝜎𝑢 0.855109 0.946167 -0.144891 -0.053833 0.395013 0.055827 0.037865 1.080340 

M
ID

C
E

 

𝛽1 1.002678 1.004988 0.002678 0.004988 0.126313 0.002116 0.003716 0.981825 𝛽2 0.999809 0.998883 -0.000191 -0.001117 0.082744 0.000161 0.000171 0.975414 𝛽3 1.000592 0.999532 0.000592 -0.000468 0.084099 0.000526 0.000156 0.964189 𝛽𝑧 0.996933 0.994972 -0.003067 -0.005028 0.130446 0.002289 0.002843 0.983160 𝛼 1.080336 1.024864 0.080336 0.024864 0.294972 0.014731 0.018613 0.978491 𝜎𝑣 0.468893 0.474533 -0.031107 -0.025467 0.170863 -0.012631 -0.015061 0.955547 𝜎𝑢 0.879265 0.962012 -0.120735 -0.037988 0.381173 0.031672 0.022021 1.042490 
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Table 2: Monte Carlo simulation results, MCAR data, 50% of observations have missing values 

 

 Mean Median 
Bias 

(Mean) 

Bias 

(Median) 
RMSE 

Mean bias 

vs. LD 

Median 

bias vs. LD 

RMSE vs. 

LD 

L
D

 

𝛽1 1.003477 1.002050 0.003477 0.002050 0.180337 - - - 𝛽2 1.001135 1.000545 0.001135 0.000545 0.120006 - - - 𝛽3 1.002043 1.001060 0.002043 0.001060 0.121010 - - - 𝛽𝑧 0.996480 0.992628 -0.003520 -0.007372 0.188728 - - - 𝛼 1.097890 1.008190 0.097890 0.008190 0.388256 - - - 𝜎𝑣 0.393723 0.421581 -0.106277 -0.078419 0.268511 - - - 𝜎𝑢 0.871220 0.986872 -0.128780 -0.013128 0.473280 - - - 

M
N

V
 M

I 

𝛽1 1.016073 1.016044 0.016073 0.016044 0.162654 0.012596 0.013994 0.901946 𝛽2 1.002449 1.003444 0.002449 0.003444 0.104665 0.001314 0.002899 0.872169 𝛽3 1.000594 1.000349 0.000594 0.000349 0.105482 -0.001449 -0.000711 0.871679 𝛽𝑧 0.978286 0.979661 -0.021714 -0.020339 0.170230 0.018194 0.012967 0.901989 𝛼 1.253462 1.217277 0.253462 0.217277 0.380296 0.155572 0.209088 0.979500 𝜎𝑣 0.564749 0.570381 0.064749 0.070381 0.162085 -0.041528 -0.008038 0.603642 𝜎𝑢 0.553174 0.668827 -0.446826 -0.331173 0.618859 0.318046 0.318044 1.307595 

M
V

N
 M

ID
 

𝛽1 1.017466 1.017916 0.017466 0.017916 0.158501 0.013989 0.015866 0.878916 𝛽2 1.001830 1.003742 0.001830 0.003742 0.103371 0.000695 0.003197 0.861387 𝛽3 1.001820 1.000384 0.001820 0.000384 0.101822 -0.000223 -0.000676 0.841436 𝛽𝑧 0.976563 0.976278 -0.023437 -0.023722 0.166966 0.019918 0.016351 0.884693 𝛼 1.185671 1.122651 0.185671 0.122651 0.361007 0.087781 0.114461 0.929819 𝜎𝑣 0.492229 0.518643 -0.007771 0.018643 0.199622 -0.098506 -0.059776 0.743440 𝜎𝑢 0.675193 0.813673 -0.324807 -0.186327 0.551836 0.196027 0.173199 1.165983 

M
IC

E
 

𝛽1 1.011320 1.011225 0.011320 0.011225 0.161028 0.007843 0.009175 0.892927 𝛽2 1.001229 1.002799 0.001229 0.002799 0.103888 0.000094 0.002254 0.865697 𝛽3 1.002692 1.002755 0.002692 0.002755 0.105397 0.000649 0.001695 0.870974 𝛽𝑧 0.984719 0.980740 -0.015281 -0.019260 0.166128 0.011761 0.011888 0.880254 𝛼 1.249447 1.217927 0.249447 0.217927 0.377186 0.151557 0.209737 0.971489 𝜎𝑣 0.556961 0.569283 0.056961 0.069283 0.164928 -0.049316 -0.009136 0.614233 𝜎𝑢 0.563845 0.693745 -0.436155 -0.306255 0.609643 0.307375 0.293127 1.288125 

M
ID

C
E

 

𝛽1 1.011760 1.013097 0.011760 0.013097 0.158757 0.008283 0.011047 0.880335 𝛽2 1.001692 1.002819 0.001692 0.002819 0.102093 0.000557 0.002274 0.850734 𝛽3 1.003104 1.001404 0.003104 0.001404 0.102408 0.001061 0.000344 0.846276 𝛽𝑧 0.983612 0.980352 -0.016388 -0.019648 0.163683 0.012868 0.012277 0.867300 𝛼 1.183009 1.124238 0.183009 0.124238 0.359344 0.085119 0.116048 0.925533 𝜎𝑣 0.486909 0.516395 -0.013091 0.016395 0.203206 -0.093186 -0.062024 0.756789 𝜎𝑢 0.677240 0.813916 -0.322760 -0.186084 0.551272 0.193980 0.172956 1.164791 
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Table 3: Monte Carlo simulation results, MAR data, 10% of observations have missing values 

 

 Mean Median 
Bias 

(Mean) 

Bias 

(Median) 
RMSE 

Mean bias 

vs. LD 

Median 

bias vs. LD 

RMSE vs. 

LD 

L
D

 

𝛽1 0.994872 0.994412 -0.005128 -0.005588 0.131084 - - - 𝛽2 0.996871 0.996737 -0.003130 -0.003263 0.087556 - - - 𝛽3 1.000070 1.000528 0.000070 0.000528 0.088451 - - - 𝛽𝑧 1.006048 1.006423 0.006048 0.006423 0.132172 - - - 𝛼 1.052813 1.004158 0.052813 0.004158 0.290016 - - - 𝜎𝑣 0.450624 0.456004 -0.049377 -0.043996 0.179419 - - - 𝜎𝑢 0.930306 0.999667 -0.069694 -0.000333 0.351685 - - - 

M
N

V
 M

I 

𝛽1 0.999718 0.999391 -0.000282 -0.000609 0.126146 -0.004846 -0.004979 0.962330 𝛽2 0.996416 0.997594 -0.003584 -0.002406 0.085852 0.000454 -0.000857 0.980539 𝛽3 1.000932 1.001391 0.000932 0.001391 0.085512 0.000862 0.000863 0.966773 𝛽𝑧 1.001963 1.006254 0.001963 0.006253 0.126941 -0.004085 -0.000170 0.960426 𝛼 1.088494 1.037311 0.088494 0.037311 0.285921 0.035681 0.033153 0.985882 𝜎𝑣 0.476341 0.482943 -0.023659 -0.017057 0.165852 -0.025718 -0.026938 0.924383 𝜎𝑢 0.866231 0.953437 -0.133770 -0.046563 0.386134 0.064075 0.046231 1.097952 

M
V

N
 M

ID
 

𝛽1 0.999515 1.001451 -0.000486 0.001451 0.126920 -0.004643 -0.004137 0.968239 𝛽2 0.996563 0.996388 -0.003437 -0.003612 0.085437 0.000308 0.000350 0.975802 𝛽3 1.000967 1.000919 0.000967 0.000919 0.085259 0.000897 0.000391 0.963911 𝛽𝑧 1.001742 1.003584 0.001742 0.003584 0.127508 -0.004306 -0.002839 0.964715 𝛼 1.070557 1.023041 0.070557 0.023041 0.281799 0.017744 0.018883 0.971668 𝜎𝑣 0.463449 0.469935 -0.036551 -0.030065 0.172508 -0.012825 -0.013931 0.961480 𝜎𝑢 0.897357 0.971547 -0.102643 -0.028453 0.364727 0.032949 0.028120 1.037082 

M
IC

E
 

𝛽1 0.998660 0.999441 -0.001340 -0.000559 0.128650 -0.003788 -0.005029 0.981436 𝛽2 0.997556 0.998789 -0.002444 -0.001211 0.085924 -0.000685 -0.002052 0.981363 𝛽3 1.000949 0.999847 0.000949 -0.000153 0.084919 0.000879 -0.000375 0.960064 𝛽𝑧 1.002296 1.004450 0.002296 0.004450 0.128377 -0.003752 -0.001974 0.971291 𝛼 1.086656 1.030080 0.086656 0.030080 0.285446 0.033843 0.025922 0.984241 𝜎𝑣 0.476632 0.481388 -0.023368 -0.018612 0.163798 -0.026008 -0.025383 0.912935 𝜎𝑢 0.870600 0.954206 -0.129400 -0.045794 0.379456 0.059706 0.045461 1.078963 

M
ID

C
E

 

𝛽1 0.998531 0.999042 -0.001469 -0.000958 0.127969 -0.003659 -0.004630 0.976241 𝛽2 0.996871 0.997598 -0.003129 -0.002402 0.084816 -0.000001 -0.000861 0.968710 𝛽3 1.000850 1.001191 0.000850 0.001191 0.084818 0.000780 0.000663 0.958924 𝛽𝑧 1.002250 1.004563 0.002250 0.004563 0.127781 -0.003798 -0.001860 0.966775 𝛼 1.071989 1.019107 0.071989 0.019107 0.284716 0.019176 0.014950 0.981727 𝜎𝑣 0.464059 0.467489 -0.035941 -0.032511 0.171403 -0.013436 -0.011485 0.955324 𝜎𝑢 0.896319 0.976920 -0.103681 -0.023080 0.366844 0.033987 0.022747 1.043104 
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Table 4: Monte Carlo simulation results, MAR data, 50% of observations have missing values 

 

 Mean Median 
Bias 

(Mean) 

Bias 

(Median) 
RMSE 

Mean bias 

vs. LD 

Median 

bias vs. LD 

RMSE vs. 

LD 

L
D

 

𝛽1 0.987244 0.987526 -0.012756 -0.012474 0.187677 - - - 𝛽2 0.997444 0.995768 -0.002556 -0.004232 0.130236 - - - 𝛽3 0.998000 0.999247 -0.002000 -0.000753 0.129027 - - - 𝛽𝑧 1.010020 1.010474 0.010020 0.010474 0.187636 - - - 𝛼 1.086678 1.002620 0.086678 0.002620 0.378165 - - - 𝜎𝑣 0.387920 0.409128 -0.112080 -0.090872 0.272122 - - - 𝜎𝑢 0.891933 1.011283 -0.108067 0.011283 0.458337 - - - 

M
N

V
 M

I 

𝛽1 1.007226 1.007329 0.007226 0.007329 0.164329 -0.005530 -0.005145 0.875594 𝛽2 0.997105 0.996530 -0.002895 -0.003470 0.109292 0.000339 -0.000762 0.839186 𝛽3 1.000554 1.000183 0.000554 0.000183 0.109596 -0.001446 -0.000571 0.849402 𝛽𝑧 0.987033 0.990970 -0.012967 -0.009030 0.168795 0.002947 -0.001445 0.899585 𝛼 1.239056 1.198541 0.239056 0.198541 0.369848 0.152378 0.195921 0.978008 𝜎𝑣 0.561379 0.567512 0.061379 0.067512 0.158377 -0.050702 -0.023360 0.582005 𝜎𝑢 0.570387 0.702199 -0.429613 -0.297801 0.605758 0.321547 0.286518 1.321644 

M
V

N
 M

ID
 

𝛽1 1.008478 1.011768 0.008478 0.011768 0.160772 -0.004278 -0.000706 0.856644 𝛽2 0.994668 0.996699 -0.005332 -0.003301 0.105512 0.002775 -0.000931 0.810165 𝛽3 1.001150 1.000284 0.001150 0.000284 0.106825 -0.000850 -0.000470 0.827925 𝛽𝑧 0.985261 0.990912 -0.014739 -0.009088 0.165652 0.004719 -0.001386 0.882834 𝛼 1.170764 1.115120 0.170764 0.115120 0.353253 0.084086 0.112500 0.934125 𝜎𝑣 0.484022 0.512783 -0.015978 0.012783 0.205965 -0.096102 -0.078089 0.756883 𝜎𝑢 0.700531 0.840493 -0.299469 -0.159507 0.537015 0.191402 0.148225 1.171661 

M
IC

E
 

𝛽1 1.002561 1.000952 0.002561 0.000952 0.165101 -0.010195 -0.011522 0.879710 𝛽2 0.995902 0.995176 -0.004098 -0.004824 0.108454 0.001542 0.000592 0.832753 𝛽3 1.000637 1.000278 0.000637 0.000278 0.109381 -0.001363 -0.000475 0.847737 𝛽𝑧 0.992914 0.998356 -0.007086 -0.001644 0.168079 -0.002934 -0.008830 0.895773 𝛼 1.234964 1.196989 0.234964 0.196989 0.364267 0.148286 0.194369 0.963251 𝜎𝑣 0.556353 0.565833 0.056353 0.065833 0.161681 -0.055728 -0.025039 0.594150 𝜎𝑢 0.588384 0.725401 -0.411616 -0.274599 0.588253 0.303549 0.263317 1.283452 

M
ID

C
E

 

𝛽1 1.004409 1.003522 0.004409 0.003522 0.161451 -0.008347 -0.008952 0.860259 𝛽2 0.995121 0.996682 -0.004879 -0.003318 0.105064 0.002323 -0.000914 0.806719 𝛽3 1.001555 1.000838 0.001555 0.000838 0.105671 -0.000445 0.000085 0.818988 𝛽𝑧 0.991485 0.993785 -0.008515 -0.006215 0.163361 -0.001505 -0.004260 0.870626 𝛼 1.169637 1.114548 0.169637 0.114548 0.351688 0.082959 0.111928 0.929986 𝜎𝑣 0.482901 0.509326 -0.017099 0.009326 0.205173 -0.094982 -0.081546 0.753972 𝜎𝑢 0.706234 0.854157 -0.293766 -0.145843 0.530393 0.185700 0.134560 1.157212 
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When the data are MCAR as in Table 1 and Table 2, we see as expected that there seems to be no clear 

pattern in terms of biases, comparing MI and MID methods to LD. However, there are improvements 

in precision when using MI or MID in terms of reducing RMSEs – greater when the proportion of 

observations with missing values increases. In both cases, 𝜎𝑢 and 𝛼 are exceptions: estimates of these 

parameters appear to be both more biased and less precise under MI and MID than under LD. In the 

former case, the bias is negative, while in the latter case, the bias is positive. A possible explanation for 

this result is that, since the MIV and MICE imputation models do not explicitly account for the skewness 

of the error term, the resulting imputed data have the effect of reducing the skewness of the errors in 

the data overall. This would explain the fact that the biases in the estimation of 𝜎𝑢 are negative, while 

the biases in the estimation of 𝛼 are positive. 

Looking at Table 3 and Table 4, we again see that when the data are MAR, the case for MI over LD 

becomes stronger. In these cases, the reductions in RMSEs relative to LD are greater. This tendency is 

clearer when the proportion of observations with missing values is larger, i.e. when comparing Table 2 

and Table 4. In terms of biases, estimates of 𝛽1, 𝛽2, 𝛽𝑧, and 𝜎𝑢 tend to be less biased, while again biases 

in the estimates of 𝛼 and 𝜎𝑢 appear greater under MI and MID methods than under LD.  

Overall these simulation results indicate that MI methods, particularly MID methods (see section 4.3 

below) exhibit greater precision in estimation of the parameters than LD. This increases as the missing 

data mechanism moves away from MCAR to MAR and when the proportion of missing values 

increases. One issue identified is that there is a bias in the estimation of the variance of the inefficiency 

error term, however broadly there is a clear benefit to using MI over LD in SFA. 

4.3 Simulation Results: Choice between MI and MI then Deletion 

A noticeable result in every case is that MID methods yield better results than simple MI. Biases with 

respect to 𝑎, 𝜎𝑣, and 𝜎𝑢 tend to be significantly smaller in magnitude when using MID rather than MI, 

and there is also nearly a universal improvement in RMSEs, suggesting greater precision. This implies 

that MID should be preferred over MI in the context of SFA; that is, imputed values of the dependent 

variable should not be used in estimation of the SFA model. This seems to support arguments by Little 

(1992) and von Hippel (2007), and complement Monte Carlo simulation evidence from the latter – in a 

linear regression setting – that cases with missing values of the dependent variable do not contain any 

information about the model parameters, and that their inclusion in the estimation of the model adds 

nothing but noise. As a result, as shown by von Hippel (2007), MID results in more precise parameters, 

smaller standard errors, and improved coverage of confidence intervals. 

The advantages of MID over MI seem particularly important in the context of SFA. Comparing MI and 

MID results when the proportion of observations with missing values is large, we see that the bias in 𝜎𝑣 is not only smaller – in terms of magnitude – under MID than MI, but that the bias under MI is 

always positive, which demonstrates the way in which use of imputed values of the dependent variable 
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in the estimation of the model adds noise. Under LD, on the other hand, we see significant negative 

biases in 𝜎𝑣 in these cases. The estimate of the noise variance, while not of direct interest in the context 

of linear regression, is of great importance in SFA since it directly influences the deconvolution of 

estimated residuals into noise and inefficiency components – see for example Wang and Schmidt 

(2009). 

When we also consider the clear advantage of MID over MI in terms of the estimation of 𝜎𝑢, particularly 

evident when the fraction of missing observations is large, MID emerges as clearly preferable to MI in 

terms of efficiency prediction. The smaller downward biases in the estimation of 𝜎𝑢  under MID 

compared to MI may also be explained with reference to von Hippel (2007), who shows that the 

advantage of MID over MI is particularly acute when imputations of the dependent variable are 

problematic. As discussed previously, imputation of the dependent variable under a model that does not 

account for the skewness of the overall error would appear to be contributing disproportionately to the 

observed downward bias in the estimation of 𝜎𝑢 under MI, such that MID mitigates this effect. 

Thus we recommend Multiple Imputation and then Deletion (MID) methods for use in the SFA context. 

5 Empirical Application to Highway Maintenance Costs in England 

The previous section provided an introduction to SFA and its motivations as well as reviewing 

approaches to accounting for missing data. We now apply these methods to a dataset analysed using 

SFA on English highways authorities’ road maintenance cost, using MI to deal with the presence of 

missing data. The purpose of this application is to illustrate the power of MI to address missing data 

and to evaluate the positive and negative aspects of various imputation approaches. 

We describe the model and data used, before subsequent sections discuss the models used for MI, and 

compare parameter estimates and efficiency scores derived using several different approaches. 

Our dataset consists of data on 87 English highways authorities that were members of the CQC network 

in 2016-17, covering the financial years 2009-10 to 2015-16. Data on total expenditure on highway 

maintenance was collected from each member individually according to definitions agreed by a working 

group of CQC members. Data on the lengths, conditions, and traffic densities of local authority 

maintained roads were constructed from publically available Department for Transport (DfT) sources, 

and data on the land area of each authority in km2 was collected from the Standard Area Measurements 

(SAM) dataset published by the Office for National Statistics (ONS). We also collected data on regional 

median gross hourly wages in the civil engineering industry from the Annual Survey on Hours and 

Earnings (ASHE), also published by the ONS, and a national index of materials prices in road 

construction that were published by the former Department for Business, Innovation and Skills (BIS). 

Variable names, definitions and summary statistics are given in Table 5 below. 
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We also include year indicator variables to control for neutral technical change. Each independent 

variable is mean-centred so that the first-order coefficients on the scale and density variables may be 

interpreted as elasticities at the sample means.  

Table 5: Description of variables and summary statistics (2009-10 to 2015-16) 

Variable Description Mean* St. Dev.* 𝑇𝑂𝑇𝐸𝑋 Total expenditure on road highway maintenance (£)** 11,639,665 11,378,166 𝐿𝐴𝑁𝐷 Local authority area size (km2) 123,957.930 168,051.340 𝑅𝐿 Total length of local authority roads (road km) 2,520.708 2,440.156 𝑇𝑅𝐴𝐹𝐹𝐼𝐶 Traffic density (vehicle km/ road km) 1121.228 336.012 𝑅𝐷𝐶 Proportion of roads in need of maintenance (%) 12.374 5.436 𝐷𝑅𝐷𝐶 Change in 𝑅𝐷𝐶 from previous year (%) 0.178 2.895 𝑊𝐴𝐺𝐸 Regional gross wage in civil engineering (£/hr) 12.690 1.021 𝑅𝑂𝐶𝑂𝑆𝑀 Road construction materials cost index (1995=100) 262.450 23.099 
 

* Excluding missing values. 

**Nominal prices. 

 

We estimate a stochastic cost frontier. Our cost variable is ln 𝑇𝑂𝑇𝐸𝑋𝑖𝑡, and our output variables are ln 𝐿𝐴𝑁𝐷𝑖𝑡 and ln 𝑅𝐿𝑖𝑡, which capture the size of the authority’s network. Our input price variables are ln𝑊𝐴𝐺𝐸𝑖𝑡 and ln 𝑅𝑂𝐶𝑂𝑆𝑀𝑖𝑡, labour and materials prices, respectively. No suitable capital price was 

available. We impose linear homogeneity of degree one in input prices by normalising our total 

expenditure and wage variables by the materials price index. We include ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶𝑖𝑡, a measure of 

traffic density, since increased traffic density leads to increased wear-and-tear damage to the network, 

increasing maintenance costs. Finally, we include 𝑅𝐷𝐶𝑖𝑡, an inverse measure of network condition, to 

capture the relationship between network quality and maintenance costs, and 𝐷𝑅𝐷𝐶𝑖𝑡 (the change in 

the latter from the previous year) to capture the cost impact of improvements (or deterioration) in 

network condition. Finally, a set of year dummies (excluding the final year) are included to capture 

technical change over time. 

The purpose of this paper is not to discuss in detail how the final model was established; rather it is 

focused on the issue of accounting for missing data. A discussion about the background to the empirical 

model (and the interpretation of equation (16) below), can be found in Wheat (2017), Stead et al. (2018), 

and Wheat et al. (2019) who have analysed this, or earlier versions of this dataset (drawing on complete 

cases only). The precise specification of the estimated cost frontier is: 

 ln(𝑇𝑂𝑇𝐸𝑋𝑖𝑡 ln 𝑅𝑂𝐶𝑂𝑆𝑀𝑖𝑡⁄ ) = 𝛽0 + 𝛽1 ln 𝐿𝐴𝑁𝐷𝑖𝑡 + 𝛽2 ln 𝑅𝐿𝑖𝑡 +𝛽3(ln 𝐿𝐴𝑁𝐷𝑖𝑡)2 + 𝛽4(ln𝑅𝐿𝑖𝑡)2 + 𝛽5 ln 𝐿𝐴𝑁𝐷𝑖𝑡 ln 𝑅𝐿𝑖𝑡 + 𝛽6 ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶𝑖𝑡 +𝛽7𝑅𝐷𝐶𝑖𝑡 + 𝛽8𝐷𝑅𝐷𝐶𝑖𝑡 + 𝛽9 ln(𝑊𝐴𝐺𝐸𝑖𝑡 ln𝑅𝑂𝐶𝑂𝑆𝑀𝑖𝑡⁄ ) + 𝛽10𝑌𝐸𝐴𝑅1𝑖𝑡 
(16) 
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+𝛽11𝑌𝐸𝐴𝑅2𝑖𝑡 + 𝛽12𝑌𝐸𝐴𝑅3𝑖𝑡 + 𝛽13𝑌𝐸𝐴𝑅4𝑖𝑡 + 𝛽14𝑌𝐸𝐴𝑅5𝑖𝑡 + 𝛽15𝑌𝐸𝐴𝑅6𝑖𝑡+ 𝛽16𝑌𝐸𝐴𝑅7𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 
The 𝑖 and 𝑡 subscripts denote authority 𝑖 in year 𝑡. Note the change from (1), since we are using panel 

data. The error terms 𝑣𝑖𝑡 and 𝑢𝑖𝑡 are respectively assumed to follow a normal distribution with standard 

deviation 𝜎𝑣 and an exponential distribution with scale parameter 𝜎𝑢. That is, we use a pooled cross-

sectional normal-exponential stochastic frontier specification Aigner et al. (1977). Missing values are 

found in the dependent variable, due to non-reporting of expenditure, and also in the 𝑅𝐷𝐶 and 𝐷𝑅𝐷𝐶 

variables. The missing data pattern is non-monotone, therefore necessitating methods compatible with 

a general pattern of missing data. The precise pattern of missingness is discussed, along with the 

imputation models, in the next section.  

5.1 Imputation Models 

Given one of our contributions to the literature is to compare different MI approaches for a stochastic 

frontier application, we utilise two different approaches – discussed in section 3.2.2 – to MI. Each 

approach is appropriate for a general pattern of missing data such as ours, namely, MVN MI and MICE. 

We have chosen these approaches based upon their wide usage in the MI literature – including their use 

in the limited set of existing SFA applications, as discussed in Section 3.3 – and their appropriateness 

to imputing values of continuous variables. 

As discussed in the previous section, we have three variables containing missing values: 𝑇𝑂𝑇𝐸𝑋, 𝑅𝐷𝐶, 

and 𝐷𝑅𝐷𝐶. Given that 𝑇𝑂𝑇𝐸𝑋 may only take on positive values, this enters the imputation models – 

as it enters the final analyses – in log form, as ln 𝑇𝑂𝑇𝐸𝑋, so that the distributional assumptions of the 

imputation models are more appropriate, and so that the models do not produce negative imputations. 

In the case of the 𝑅𝐷𝐶 variable, the log transformation is not sufficient to ensure that imputations fall 

within the required range, between 0 and 100. Another consideration is that 𝑅𝐷𝐶 is in fact a weighted 

index of three different variables: 

 𝑅𝐷𝐶𝑖𝑡 = 𝑤𝐴𝑖𝑡𝑅𝐷𝐶𝐴𝑖𝑡 +𝑤𝐵𝐶𝑖𝑡𝑅𝐷𝐶𝐵𝐶𝑖𝑡 +𝑤𝑈𝑖𝑡𝑅𝐷𝐶𝑈𝑖𝑡 (17) 

where 𝑅𝐷𝐶𝐴, 𝑅𝐷𝐶𝐵𝐶, and 𝑅𝐷𝐶𝑈 are condition indices and 𝑤𝐴𝑖𝑡 , 𝑤𝐵𝐶𝑖𝑡 , and 𝑤𝑈𝑖𝑡  weightings for an 

authority’s A, B and C, and U roads, respectively. A Roads are the highest standard if roads, followed 

by B and then C roads. U roads are the classification of all other roads that are of lower standard than 

A, B and C. The weightings – shares in total network length – are known, and therefore the missingness 

of 𝑅𝐷𝐶 is explained by the missingness of one or more of 𝑅𝐷𝐶𝐴, 𝑅𝐷𝐶𝐵𝐶, or 𝑅𝐷𝐶𝑈. Given that we 

expect conditions across different road classifications to be correlated, and that we do not want to 



25 

 

discard known values of two (one) components of 𝑅𝐷𝐶 when one (two) are missing, there is therefore 

a gain from imputing missing values of the three components of 𝑅𝐷𝐶 separately.  

In order to ensure that imputed values of 𝑅𝐷𝐶𝐴, 𝑅𝐷𝐶𝐵𝐶, and 𝑅𝐷𝐶𝑈 fall between 0 and 100, and that 

they can be modelled as normally distributed random variables in the imputation models, we divide the 

variables by 100 and transform them via the quantile function for the standard normal distribution, i.e. 

we define the variables 

 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 = Φ−1 (𝑅𝐷𝐶𝐴𝑖𝑡100 ) , 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 = Φ−1 (𝑅𝐷𝐶𝐵𝐶𝑖𝑡100 ) , 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 = Φ−1 (𝑅𝐷𝐶𝑈𝑖𝑡100 ) (18) 

to be used in the imputation models, where Φ−1  is the standard normal quantile function. When 

imputations have been obtained, these are then be retransformed via the standard normal cumulative 

density function in order to recover the original values and imputations between 0 and 100. The final 𝑅𝐷𝐶 variable is therefore 

 𝑅𝐷𝐶𝑖𝑡 = 100[𝑤𝐴𝑖𝑡Φ(𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡) + 𝑤𝐵𝐶𝑖𝑡Φ(𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡) + 𝑤𝑈𝑖𝑡Φ(𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡)] (19) 

where Φ is the standard normal cumulative density function. Where one or more of the components of 𝑅𝐷𝐶𝑖𝑡 are imputed, there will be 𝐷 different versions of 𝑅𝐷𝐶𝑖𝑡, which we consider as imputations. 

Rather than separately imputing values of 𝐷𝑅𝐷𝐶𝑖𝑡, which is by definition 𝑅𝐷𝐶𝑖𝑡 − 𝑅𝐷𝐶𝑖𝑡−1, we then 

impute it, where necessary, using the imputed values of 𝑅𝐷𝐶𝑖𝑡  and 𝑅𝐷𝐶𝑖𝑡−1  to ensure consistency 

between the two variables. Of course, in order to calculate values for 2010, we therefore need 𝑅𝐷𝐶 

values from 2009, which may have to be imputed. We deal with this by including 𝑅𝐷𝐶 values back to 

2008 – the earliest data available on road conditions – in auxiliary variables in the imputation models. 

Overall, our approach to imputation of the RDC and DRDC variables described above has the following 

properties: 

 Imputations bounded by the appropriate range: Our imputations for the components of RDC 

(RDCA, RDCBC and RDCU) are bounded between 0-100 i.e. the limits of applicable bounds 

of the data.  

 Complete data cases unaffected: Our transforms recover exactly the values of RDC and DRDC 

for those observations with no missing data. 

 Relationships between explanatory variables maintained: The relationship between RDC and 

DRDC is maintained i.e. DRDC is the change in RDC from one period to another rather than 

an independent variable. 
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We consider that these three properties are important for any imputation strategy. In particular this 

transformation approach is a convenient way of modifying the distributional assumptions in the 

imputation model, such that the assumed marginal distribution of a particular variable is more 

appropriate, and the resulting imputations are improved. This is a common approach in the literature, 

see e.g. Raghunathan et al. (2001), Allison (2002), Schafer and Graham (2002). This means that the use 

of imputation methods such as MVN MI, that have been criticised for the possibly inappropriate 

distributional assumptions made, need not be inconsistent with the distribution of the missing variables. 

In the case of the MVN MI model, we account for the panel structure of the data by the data reshaping 

approach suggested by Allison (2002) – and explained previously in Section 3.2.3 – i.e. pooling all the 

observations on a given DMU together into a single observation. Given that we have seven years’ worth 

of data, this results in seven times fewer observations – 87 from 588 – and seven versions of each 

variable, each corresponding to a particular year, so that 𝑅𝐷𝐶𝐴𝑖𝑡  becomes 𝑅𝐷𝐶𝐴2010𝑖, 𝑅𝐷𝐶𝐴2011𝑖, … , 𝑅𝐷𝐶𝐴2016𝑖  and so on. Each of the year-specific versions of our 

variables with missing values enters the model as a dependent variable, with four exceptions: 𝑅𝐷𝐶𝐴2014𝑖 , 𝑅𝐷𝐶𝐴2015𝑖 , 𝑅𝐷𝐶𝐵𝐶2014𝑖  and 𝑅𝐷𝐶𝐵𝐶2015𝑖 , which have no missing values; these 

variables are therefore included as independent variables in the imputation model. 

In the case of the MICE model, we specify equations for ln 𝑇𝑂𝑇𝐸𝑋𝑖𝑡 , 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 , 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡, 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 , 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1, 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1, 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1, 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2, 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2, and 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2. In the equations relating 

to each of these variables, all the others are included as independent variables, along with a set of fixed 

effects and all remaining variables from the final analysis model, with the exceptions of 𝑅𝐷𝐶𝑖𝑡 and 𝐷𝑅𝐷𝐶𝑖𝑡 . The lagged transformed condition variables are included as auxiliary variables, and for 

imputing 𝐷𝑅𝐷𝐶𝑖𝑡. This approach makes intuitive sense, since we know from the complete cases that 

past road condition is a good predictor of current road condition, and that within authorities, there is a 

strong relationship between road condition statistics across classifications. 

The specifications for both MI models are shown in Table 6 and Table 7, respectively. 

Table 6: MVN MI model specification 

Dependent variables Independent variables ln 𝑇𝑂𝑇𝐸𝑋2010𝑖 , … , ln 𝑇𝑂𝑇𝐸𝑋2016𝑖𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 2008𝑖, … , 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 2013𝑖,  𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 2016𝑖, 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2016𝑖  𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2008𝑖, … , 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2013𝑖 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 2008𝑖, … , 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 2016𝑖 
 

ln 𝐿𝐴𝑁𝐷2010𝑖 , ln 𝑅𝐿2010𝑖 , ln 𝑅𝐿2016𝑖 , (ln 𝐿𝐴𝑁𝐷2010𝑖)2, ln 𝐿𝐴𝑁𝐷2010 ln 𝑅𝐿2010𝑖 , ln 𝐿𝐴𝑁𝐷2016 ln𝑅𝐿2016𝑖 (ln 𝑅𝐿2010𝑖)2, ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶2010𝑖 − ln𝑇𝑅𝐴𝐹𝐹𝐼𝐶2016𝑖 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 2014𝑖, 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 2015𝑖, 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2014𝑖, 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2015𝑖 ln𝑊𝐴𝐺𝐸2010𝑖 − ln𝑊𝐴𝐺𝐸2016𝑖 , 𝑃𝑅𝑂𝑃_𝑈𝐴𝑖 , 𝑃𝑅𝑂𝑃_𝑈𝐵𝑖 , 𝑃𝑅𝑂𝑃_𝑈𝐶𝑖, 𝑃𝑅𝑂𝑃_𝑈𝑈𝑖 , 𝑃𝑅𝑂𝑃_𝑅𝐴𝑖, 𝑃𝑅𝑂𝑃_𝑅𝐵𝑖, 𝑃𝑅𝑂𝑃_𝑅𝐶𝑖 
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Table 7: MICE model specification 

Equation Dependent variable Independent variables 

1 ln 𝑇𝑂𝑇𝐸𝑋𝑖𝑡 ln 𝑇𝑂𝑇𝐸𝑋𝑖𝑡∗(1) , ln 𝐿𝐴𝑁𝐷𝑖𝑡 , ln 𝑅𝐿𝑖𝑡 , (ln 𝐿𝐴𝑁𝐷𝑖𝑡)2,  (ln𝑅𝐿𝑖𝑡)2, ln 𝐿𝐴𝑁𝐷𝑖𝑡 ln 𝑅𝐿𝑖𝑡 , ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶𝑖𝑡 , ln𝑊𝐴𝐺𝐸𝑖𝑡 , 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡∗(2), 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡∗(3), 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡∗(4),  𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1∗(5) , 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1∗(6) , 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1∗(7) , 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2∗(8) ,  𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2∗(9) , 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2∗(10),  
Authority indicator variables 

 

2 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 
3 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 
4 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 
5 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 

6 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 
7 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 

8 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 

9 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 
10 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 

*(n): Except equation n. 

Given that we have data from 84 authorities over 7 years, we have a total of 588 observations. The 

numbers of missing values for each of the incomplete variables is shown in Table 8 below. The highest 

number of missing values in a particular variable is 98, or around 16.7% of observations4, while the 

variable with the least number of missing observations is ln 𝑇𝑂𝑇𝐸𝑋𝑖𝑡 with 82 missing values, or around 

13.9% of observations. We chose 𝐷 = 10  as the number of imputed datasets and a ridge prior 

distribution for the MVN MI model. Following discussed in Section 3.2.2, this is a relatively large 

number of imputations, and below Table 10, we discuss the relative efficiency of our parameter 

estimates, in light of the choice of 𝐷 = 10. 

Auxiliary variables are included in the imputation models in the form of disaggregated road condition 

indices (by different road types) which are highly correlated with one another and hence useful in 

predicting in cases where one is missing. Lagged and lead values referring to past and future road 

condition values – including values pre-dating the start of the sample period – are also included on the 

basis that, for a given year, they are useful for predicting present road condition. Preliminary regressions 

using LD – not reported here – confirmed that this is the case, and furthermore that the condition of 

other road classifications, and in some cases lagged values of these, were also significant predictors. 

The presence of these auxiliary variables therefore significantly improves the quality of the imputation 

models with respect to imputing missing values of our condition variables. In the MVN MI model, 

proportion variables describing the composition of an authority’s road network are also included, since 

                                                      
4 This is the number of missing values for 𝐷𝑅𝐷𝐶𝑖𝑡 , the change in road condition, which is ultimately driven by 

missingness of the components of the condition index. Note that the number of missing values in 𝐷𝑅𝐷𝐶𝑖𝑡  cannot 

be deduced by the numbers of missing values of the components of the condition index (as shown in Table 8) 

because the pattern of missingness is non-monotone, and very general. 
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these were likewise found significant in predicting road condition variables; these proportion variables, 

being time-invariant, are excluded from the MICE model due to the inclusion of indicator variables. 

Table 8: Complete and imputed values 

Variable Complete values Imputed values Total values ln 𝑇𝑂𝑇𝐸𝑋 506 82 588 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 576 12 588 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 574 14 588 𝑅𝐷𝐶𝑈𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅  541 47 588 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 570 18 588 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 571 17 588 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 536 52 588 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 568 20 588 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 566 22 588 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 534 54 588 

 

5.2 Imputation model results 

Results from the imputation models consist of parameter estimates and, in the case of the MVN MI 

model, covariances between the dependent variables. We do not report the MVN MI model results, 

since given the reshaping of each variable into seven year-specific variables, there are far too many 

parameters and covariances to summarise in any meaningful way. Also the latter are difficult to interpret 

except in that a positive (negative) sign denotes a positive (negative) correlation. The MICE model, 

however, results in a far more manageable number of parameters. 

The estimated parameters of the four key equations of the MICE imputation model are presented in 

Table 9. The equations relating to the lagged values of the road condition indicators are omitted, as are 

parameters relating to the authority indicator variables, of which there are many. However, the presence 

of the authority indicator variables should be taken into account when interpreting the estimated 

parameters, particularly those relating to variable such as land area, road length, and traffic: these 

variables show little to no variation over time, and their impacts are likely being picked up primarily by 

the authority indicator variables, several of which are found to be statistically significant. 

Table 9 shows that, as expected, lagged values of our condition variables seem to be statistically 

significant in predicting current values. This is intuitively sensible, and coincides with our preliminary 

investigation discussed previously, which indicated that lagged values of road condition are useful in 

predicting present values. First order lags of 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ , 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅  all have positive estimated 

coefficients, significant at the 1% level in their respective equations. In each case, these seem to be the 

most important predictors in terms of magnitude and statistical significance, and hence the most useful 
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in prediction. Second order lags are less significant, and some have negative signs, while the conditions 

of other road classifications – and in some cases their lags – are also significant in some cases; in 

particular, 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅  seems to have value in predicting 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and vice versa. In addition, land area, road 

length, and traffic density all seem to be significant predictors of 𝑅𝐷𝐶𝐵𝐶𝑖𝑡 . 𝑅𝐷𝐶𝑈𝑖𝑡  appears to be 

significant in predicting 𝑙𝑛𝑇𝑂𝑇𝐸𝑋𝑖𝑡, and vice versa. Much of this information would be lost under a 

simpler procedure, such as linear interpolation. 

 The transparency in this respect afforded by the MICE method is important from a stakeholder 

engagement perspective, as it gives confidence to stakeholders that missing data is imputed in a sensible 

manner.  

It should be noted that, given the nonlinear transformations applied to the road condition variables, their 

associated coefficients cannot be interpreted as marginal effects. The marginal effect of, e.g. 𝑅𝐷𝐶𝐴𝑖𝑡−1 

on 𝑅𝐷𝐶𝐴𝑖𝑡 is given by 

 𝜕𝑅𝐷𝐶𝐴𝑖𝑡𝜕𝑅𝐷𝐶𝐴𝑖𝑡−1 = 𝛽2,2  𝜙(𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡)𝜙(𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1) (20) 

In the absence of a substantial change in 𝑅𝐷𝐶𝐴 from the previous year, 𝛽2,2 is approximately equal to 

the marginal effect of 𝑅𝐷𝐶𝐴𝑖𝑡−1 on 𝑅𝐷𝐶𝐴𝑖𝑡, since 𝜙(𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡) ≈ 𝜙(𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1). On the other hand, 

the marginal effect of 𝑅𝐷𝐶𝐵𝐶𝑖𝑡 on 𝑅𝐷𝐶𝐴𝑖𝑡 is given by 

 𝜕𝑅𝐷𝐶𝐴𝑖𝑡𝜕𝑅𝐷𝐶𝐵𝐶𝑖𝑡 = 𝛽2,5  𝜙(𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡)𝜙(𝑅𝐷𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡) (21) 

and, given that 𝑅𝐷𝐶𝐵𝐶𝑖𝑡 tends to be larger than 𝑅𝐷𝐶𝐴𝑖𝑡, i.e. A roads tend to be in better condition than 

B and C roads, the marginal effect will tend to be less than 𝛽2,5. It follows that the marginal effect of 𝑅𝐷𝐶𝐴𝑖𝑡 on 𝑅𝐷𝐶𝐵𝐶𝑖𝑡 will tend to be less than 𝛽3,2, and so on.  
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Table 9: MICE imputation model equations (authority indicator variables omitted) 

 𝑙𝑛𝑇𝑂𝑇𝐸𝑋𝑖𝑡  𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡  𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡  𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡  𝑙𝑛𝑇𝑂𝑇𝐸𝑋𝑖𝑡 -  
0.041 

(0.02) 
** 

-0.013 

(0.02) 
 

-0.08 

(0.031) 
** 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 0.203 

(0.109) 
* - - 

0.533 

(0.038) 
*** 

0.003 

(0.069) 
 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 

0.148 

(0.112) 
 

0.276 

(0.044) 
*** 

-0.095 

(0.045) 
** 

0.082 

(0.069) 
 𝑅𝐷𝐶𝐴̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 

0.025 

(0.123) 
 

-0.091 

(0.048) 
* 

-0.054 

(0.047) 
 

0.086 

(0.071) 
 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 -0.087 

(0.109) 
 

0.542 

(0.039) 
***   

0.081 

(0.07) 
 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 

-0.135 

(0.119) 
 

-0.141 

(0.05) 
*** 

0.379 

(0.046) 
*** 

0.011 

(0.077) 
 𝑅𝐷𝐶𝐵𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 

0.043 

(0.119) 
 

0.038 

(0.047) 
 

-0.065 

(0.046) 
 

-0.008 

(0.075) 
 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡 -0.212 

(0.079) 
*** 

-0.008 

(0.031) 
 0.04 (0.03)    𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−1 

0.190 

(0.08) 
** 

-0.006 

(0.033) 
 

0.062 

(0.032) 
* 

0.477 

(0.044) 
*** 𝑅𝐷𝐶𝑈̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑡−2 

0.052 

(0.078) 
 

0.028 

(0.032) 
 

-0.108 

(0.031) 
*** 

-0.036 

(0.047) 
 ln 𝐿𝐴𝑁𝐷𝑖𝑡 -0.698 

(3.623) 
 

1.629 

(1.499) 
 

4.757 

(1.469) 
*** 

-3.892 

(2.238) 
* ln 𝑅𝐿𝑖𝑡 2.923 

(4.154) 
 

-2.251 

(1.71) 
 

-4.327 

(1.684) 
*** 

3.853 

(2.547) 
 (ln 𝐿𝐴𝑁𝐷𝑖𝑡)2 

-0.874 

(1.614) 
 

1.191 

(0.627) 
* 

-1.366 

(0.62) 
** 

0.028 

(0.973) 
 (ln𝑅𝐿𝑖𝑡)2 -1.913 

(4.823) 
 

2.187 

(1.901) 
 

-6.606 

(1.86) 
*** 

0.393 

(2.932) 
 ln 𝐿𝐴𝑁𝐷𝑖𝑡 ln 𝑅𝐿𝑖𝑡 3.460 

(5.779) 
 

-3.244 

(2.245) 
 

8.401 

(2.195) 
*** 

-2.058 

(3.516) 
 ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶𝑖𝑡 -0.882 

(0.811) 
 

-0.239 

(0.32) 
 

-1.085 

(0.313) 
*** 

-0.411 

(0.48) 
 ln𝑊𝐴𝐺𝐸𝑖𝑡 0.339 

(0.186) 
* 

0.175 

(0.072) 
** 

0.116 

(0.072) 
 

-0.025 

(0.11) 
 

         𝑅2 0.947  0.840  0.853  0.811  

* 90% confidence level, ** 95% confidence level, *** 99% confidence level 

5.3 Frontier Parameter Estimates 

Parameter estimates for the cost frontier are shown in Table 10, corresponding to three alternative 

approachesː LD, MVN MID, and MIDCE. Parameter estimates and standard errors shown are derived 

using Rubin’s rules as described in section 3.2.2. Each 𝛽 parameter corresponds to an independent 
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variable as shown in (16), i.e. 𝛽0 is a constant, 𝛽1 corresponds to ln 𝐿𝐴𝑁𝐷𝑖𝑡, 𝛽2 corresponds to ln 𝑅𝐿𝑖𝑡, 
and so on. 

We only present parameter estimates from the Multiple Imputation then Deletion methods, given that 

the Monte Carlo Simulation results (section 4) clearly showed that this approach minimised bias relative 

including observations with missing dependent variable data in the SFA model estimation stage. Table 

11 confirms this finding as it shows the variance parameter estimates across all five potential estimation 

approaches which the estimates from the models which include all observations do appear to be out of 

line with the other estimates. Full parameter estimates are given in Appendix A5. 

Table 10: Estimated cost frontier parameters 

Parameter Variable LD  MIDCE  MVN MID  𝛽0 

 
 

-0.673 

(0.088) 
*** 

-0.717 

(0.078) 
*** 

-0.534 

(0.068) 
*** 𝛽1 

 
ln 𝐿𝐴𝑁𝐷 

0.666 

(0.110) 
*** 

0.763 

(0.102) 
*** 

0.740 

(0.100) 
*** 𝛽2 

 
ln 𝑅𝐿 

0.122 

(0.133) 
 

0.007 

(0.126) 
 

0.164 

(0.122) 
*** 𝛽3 

 
(ln 𝐿𝐴𝑁𝐷)2 

0.542 

(0.106) 
*** 

0.653 

(0.096) 
*** 

0.646 

(0.093) 
*** 𝛽4 

 
(ln 𝑅𝐿)2 

1.279 

(0.240) 
*** 

1.472 

(0.222) 
*** 

1.433 

(0.215) 
*** 𝛽5 

 
ln 𝐿𝐴𝑁𝐷 ln𝑅𝐿 

-1.616 

(0.314) 
*** 

-1.897 

(0.287) 
*** 

-1.900 

(0.28) 
*** 𝛽6 

 
ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶 

0.586 

(0.099) 
*** 

0.629 

(0.093) 
*** 

0.632 

(0.092) 
*** 𝛽7 

 
𝑅𝐷𝐶 

0.018 

(0.004) 
*** 

0.021 

(0.003) 
*** 

0.007 

(0.001) 
*** 𝛽8 

 
𝐷𝑅𝐷𝐶 

-0.014 

(0.007) 
* 

-0.017 

(0.006) 
*** 

-0.004 

(0.001) 
*** 

𝛽9 ln𝑊𝐴𝐺𝐸 
1.800 

(0.327) 
*** 

1.655 

(0.278) 
*** 

1.461 

(0.278) 
*** 𝛽10 

 
𝑌𝐸𝐴𝑅2 

0.148 

(0.078) 
* 

0.171 

(0.071) 
** 

0.157 

(0.07) 
*** 𝛽11 

 
𝑌𝐸𝐴𝑅3 

0.247 

(0.089) 
*** 

0.267 

(0.078) 
*** 

0.243 

(0.076) 
*** 𝛽12 

 
𝑌𝐸𝐴𝑅4 

0.226 

(0.094) 
** 

0.222 

(0.084) 
*** 

0.202 

(0.082) 
*** 

                                                      
5 We also note that standard errors tend to be largest under the MI approaches, smallest under the MID approaches, 

and intermediate under LD. This suggests that MID can help to increase the precision of parameter estimates – by 

increasing the number of observations – relative to LD. However, the additional uncertainty when observations 

in which the dependent variable is imputed outweighs this advantage, increasing the imprecision of parameter 

estimates. This is yet another reason to prefer MID methods over MI, over and above any bias issues.  
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𝛽12 

 
𝑌𝐸𝐴𝑅5 

0.294 

(0.086) 
*** 

0.242 

(0.078) 
*** 

0.224 

(0.077) 
*** 𝛽13 

 
𝑌𝐸𝐴𝑅6 

0.271 

(0.086) 
*** 

0.262 

(0.078) 
*** 

0.240 

(0.076) 
*** 𝛽14 

 
𝑌𝐸𝐴𝑅7 

0.250 

(0.098) 
** 0.24 (0.087) *** 

0.204 

(0.085) 
*** 𝜎𝑣 

 
 

0.306 

(0.021) 
 

0.309 

(0.019) 
 

0.288 

(0.019) 
 𝜎𝑢 

 
 

0.259 

(0.034) 
 0.257 (0.03)  

0.279 

(0.029) 
 

        𝑁  425  506  506  

* 90% confidence level, ** 95% confidence level, *** 99% confidence level 

 

Table 11: Estimated variance parameters across all methods 

Parameter Variable LD  MIDCE  
MVN 

MID 
 MICE  MVN MI  𝜎𝑣 

 
 

0.306 

(0.021) 
 

0.309 

(0.019) 
 

0.288 

(0.019) 
 

0.336 

(0.031) 
 

0.326 

(0.029) 
 𝜎𝑢 

 
 

0.259 

(0.034) 
 

0.257 

(0.03) 
 

0.279 

(0.029) 
 

0.260 

(0.038) 
 

0.369 

(0.037) 
 

            𝑁  425  506  506  588  588  

 

Turning back to Table 10, the parameter estimates appear broadly similar across the three models. There 

are however some differences in the statistical significance of some parameter estimates, most notably 

the fact that 𝛽8 which relates to the 𝐷𝑅𝐷𝐶 variable – which is constructed from variables containing 

missing values – appears insignificant under LD, but significant or at least weakly significant under all 

other MI based approaches. This highlights one of the advantages of MI approaches when important 

auxiliary variables are included in the imputation models.  

Regarding the relative efficiency of our parameter estimates under the two MID approaches , our largest 

fraction of missing information for any parameter – as defined by (5) – and the corresponding relative 

efficiency of the parameter estimate using the expression derived by Rubin (1987). This puts a lower 

bound on the relative efficiency of our parameter estimates, given our choice of 𝐷 = 10. Table 12shows 

that, given the highest fraction of missing information from each model, the relative efficiency of 

parameter estimates using 𝐷 = 10 are close to 100%. The gains from adding additional imputations are 

marginal.  
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Table 12: Largest fractions of missing information and corresponding relative efficiencies 

 
Largest fraction of missing information: 𝜸 

Relative large sample efficiency: (𝟏 + 𝜸 𝑫⁄ )−𝟏 𝟐⁄ , 𝑫 = 𝟏𝟎 

   

MIDCE 0.0416 99.8% 

MVN MID 0.0701 99.7% 

 

Returns to scale (RTS) at sample mean are an important property of a cost function and so we predict 

them by noting 

 𝑅𝑇𝑆𝑖𝑡 = 1𝛽1 + 𝛽2 + 2(𝛽3 ln 𝐿𝐴𝑁𝐷𝑖𝑡 + 𝛽4 ln 𝑅𝐿𝑖𝑡) + 𝛽5(ln 𝐿𝐴𝑁𝐷𝑖𝑡 + ln𝑅𝐿𝑖𝑡) (22) 

It should be noted that, since the independent variables are mean-centred – the means being calculated 

by pairwise deletion for all applications – comparable estimates of RTS at the sample mean are obtained 

by simply taking the inverse of 𝛽1 + 𝛽2.  Table 9 shows that estimated RTS at sample means across the 

5 different approaches are all above 1, implying in each case increasing RTS at sample means. 

Table 13: Returns to scale at sample means 

 LD MIDCE MVN MID 

RTS 1.270 1.298 1.106 

 

The five models also give similar estimates for RTS on an observation-by-observation basis. As shown 

in Table 14, observation-specific estimates of RTS across the 5 models are highly correlated. In terms 

of the scale characteristics of the model, there is therefore very little difference between the estimates 

obtained using the 5 different approaches. 

Table 14: Correlation matrix of returns to scale estimates 

 LD MIDCE MVN MID 

LD 1.0000   

MIDCE 0.994 1.0000  

MVN MID 0.948 0.927 1.0000 

 

Estimated elasticities with respect to traffic density are also similar in each of the 5 models, falling 

between 0.586 and 0.632, with the exception of a slightly lower estimate of 0.434 from the MVN MI 

model. These estimates imply that for a 1% increase in traffic density, there is an increase in cost of 

around 0.6%. 
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Perhaps most importantly, each model also gives very similar estimates of the coefficients relating to 𝑅𝐷𝐶𝑖𝑡 and 𝐷𝑅𝐷𝐶𝑖𝑡, our independent variables with missing values. These estimates suggest that for a 

1-point increase in the proportion of roads that should be considered for maintenance, there is around a 

0.006% increase in costs, but that a 1-point improvement from the previous year is associated with an 

approximately 0.004% increase in cost. The models therefore imply that improving network condition 

is costly, but that maintaining the network at a given level costs more the worse the condition of the 

network. Thus there is a saving from investing in improved road condition following a period of extra 

expenditure. This result is the same as in previous analyses of this dataset, such as in Wheat et al. (2019). 

5.4 Efficiency Predictions 

We now turn our attention to the prediction and comparison of efficiency scores from each model. As 

mentioned previously, efficiency prediction in SFA is typically based on the distribution of 𝑢𝑖|𝜀𝑖, and 

specifically the mean of this distribution, 𝐸(𝑢𝑖|𝜀𝑖), as proposed by Jondrow et al. (1982). In the case of 

a normal-exponential stochastic cost frontier such as we have estimated, 𝐸(𝑢𝑖|𝜀𝑖) is 

 𝐸(𝑢𝑖|𝜀𝑖) = 𝜎𝑣 [𝜙(− 𝜀𝑖 𝜎𝑣⁄ + 𝜎𝑣 𝜎𝑢⁄ )Φ(𝜀𝑖 𝜎𝑣⁄ + 𝜎𝑣 𝜎𝑢⁄ ) + 𝜀𝑖 𝜎𝑣⁄ + 𝜎𝑣 𝜎𝑢⁄ ] (23) 

In the case of MI models, since each imputed dataset yields different estimates of the parameters 𝜎𝑣 and 𝜎𝑢 and of the residual 𝜀𝑖, it is not immediately clear how to proceed to predict efficiency using this 

framework. White et al. (2011) suggest obtaining separate predictions from each imputed dataset, then 

combining the predictions using Rubin’s rules in the same manner as parameter estimates, obtaining 

average and standard errors of predictions. Another approach which seems more consistent with the 

parameter estimates presented, is to use the combined estimates of the 𝜎𝑣 and 𝜎𝑢 parameters – as shown 

in Table 10– together with a combined estimate of 𝜀𝑖. We report the latter approach, although we note 

there is little difference between the two when we implemented the alternative. 

In the following sub-sections, we compare efficiency predictions obtained under MIDCE, MVN MID 

and LD approaches.  We first compare prediction for complete cases, i.e. those with no missing data, 

and then compare predictions in the cases where there are missing data. 

5.4.1 Comparison of Complete Cases 

We now compare efficiency predictions for complete cases. From a practitioner’s point of view, we 

would ideally like to see that prediction is not unduly sensitive to the method used in these particular 

cases. Given the absence of missing data in these observations, variation in efficiency predictions 

between the various methods is purely driven by differences in the estimated parameters. 



35 

 

The differences in parameter estimates between the various methods will affect efficiency predictions 

in two ways. First, given that in the normal-exponential model the relationship between 𝜀𝑖 and 𝐸(𝑢𝑖|𝜀𝑖) 
is monotonic, any differences in the ranking of efficiency predictions is driven entirely by the 

differences in the estimated frontier parameters. Second, and more importantly, the average efficiency 

score is driven by the parameter 𝜎𝑢, while the degree of shrinkage of each prediction toward this mean 

is determined by 𝜎𝑣. These latter parameters therefore determine the differences in the mean efficiency 

score, and the spread of efficiency scores, from each model. 

 

Figure 1 compares efficiency predictions from 

the MID models to those obtained via LD for all complete cases. We can see that for the two MID 

models, the efficiency predictions are very highly correlated. However, across the two MID models, the 

predicted efficiencies for each complete observation is lower than that obtained via LD. This may be 

explained by the effect of the observations with missing values on the spread of efficiency predictions. 

Correlations between the efficiency predictions for complete cases obtained via MI methods are shown 

in Table 15 below; as can be seen, the predictions obtained under the different methods are all highly 

correlated. 

Table 15: Correlation of Efficiency Predictions (Complete Cases Only) 

 LD MIDCE MVN MID 

LD 1.0000   

MIDCE 0.9694 1.0000  

MVN MID 0.9758 0.9771 1.0000 

 

We find that there is a higher concentration of observations with missing values of the dependent 

variables among the lower efficiency scores and rankings. This is particularly the case with the 

efficiency predictions from the MI models. Accordingly, the estimated scales of the inefficiency 

Figure 1: Comparison of efficiency predictions for complete cases 
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distributions are greater in these models, so that the mean efficiency predictions are bound to be lower 

than that from the LD model. We also see from Table 11 that the signal to noise ratio 𝜎𝑢 𝜎𝑣⁄  is greater 

in the MI and MID models than in the LD. The fact that 𝐸(𝑢𝑖|𝜀𝑖) is a shrinkage predictor of 𝑢𝑖, and the 

degree of shrinkage is inversely related to 𝜎𝑢 𝜎𝑣⁄ , explains why the scatter plots in Figure 1 bend 

towards the 45-degree line at the tails. 

5.4.2 Comparison of Incomplete Cases 

We now turn our attention to prediction for those observations with missing values. In these cases, in 

addition to the variation in scores as a result of differing parameter estimates between the various 

approaches, there is the additional variation resulting from differing imputations of the missing values. 

Our interest here is twofold: first, we are interested in the sensitivity of efficiency predictions for these 

cases to the imputation model used. Second, we are interested in the comparison of efficiency 

predictions for these observations to those out-of-sample predictions under LD (using some simple 

method of single imputation). 

Figure 2 compares efficiency predictions for those observations with missing values of independent 

variables only. For the types of observations considered above, the sensitivity of efficiency predictions 

to the imputation method used is due solely to differences in the imputed values of the missing 

independent variables, both indirectly, through differences in the resulting parameter estimates, and 

directly, through the impact of the imputed values on the estimated residuals. Figure 2 shows a very 

high correlation between the predictions from the different models, and that most observations lie close 

the 45-degree line, so that the magnitudes of the efficiency predictions from the different MID models 

are very similar. There is one noticeably outlying observation, however, for which the MVN MID 

models predict 42.4% efficiency and the MIDCE models predict 80.9% efficiency. 

 

Figure 2: Comparison of efficiency predictions when independent variables are missing 
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Figure 3 below compares efficiency predictions obtained under both of our MID models to those using 

out-of-sample prediction under LD. In the latter case, we used a simple linear interpolation (and 

extrapolation) method to fill in missing values of the independent variables. This is a simple approach 

but one that would seem an obvious candidate (as discussed in Section 2). Clearly interpolation only 

uses temporally adjacent values of the same variable (the year before and after RDC values) to impute 

missing values and not the broad set of variables that are included in the MVN MID and MIDCE 

approaches. As such we would expect the multiple imputation approaches to give superior imputations 

and thus better predictions of efficiency. 

We find that the correlations between the efficiency predictions under MID and LD (and linear 

interpolation) are relatively close although there are some large exceptions. Comparing LD and 

MIDCE, the R-squared is only slightly lower than that for complete cases which is shown in Figure 1, 

although in terms of magnitude, there are some relatively large differences. Thus there is a difference 

in using imputations based on a full set of potential variables rather than relying on simple linear 

interpolation, and as discussed in the previous paragraph we prefer those from the MI techniques, 

particularly when accuracy for each observation is important as it is in efficiency analysis. 

Figure 3: Efficiency prediction under MI and linear interpolation 
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MI offers a robust alternative to the standard listwise deletion (LD) approach. We demonstrate this by 

reviewing the statistical properties of MI techniques applied to a general set of models and undertake 

Monte Carlo simulation to verify that the results hold in the SFA case. We then provide an empirical 

example, which provides a comprehensive illustration of the feasibility and intuitive results of MI 

techniques applied to SFA.  

We find the following results: 

1) In our simulation exercise, MI methods have been shown to increase precision of the estimated 

model parameters relative to LD, although there does seem to be a greater bias in the 

inefficiency error variance relative to LD (discussed below). The benefit in MI over LD is clear 

as the proportion of missing data increases and as the missing data mechanism departs from 

Missing Completely at Random (MCAR). The later circumstance is important, because missing 

data tends not to be MCAR and Missing at Random (MAR) is a more realistic assumption. Our 

simulation results provide a clear rationale for use of MI methods in this case. 

As mentioned above, we find a greater bias in the variance of the inefficiency error component 

when undertaking MI methods compared to LD. We return to this issue in point 5 below. 

Despite this, we prefer MI over LD for two reasons. First, maximum likelihood estimation of 

the SFA model is known to have small sample bias particularly for the variance parameters 

(Olson et al., 1980). Thus, LD techniques still have bias, as we find in our simulations. Second, 

when comparing MI to LD, the increase in the root mean squared error (RMSE) –which 

encompasses both imprecision and bias – for the variance of the inefficiency is small, whereas 

all other parameters are estimated with substantially lower RMSEs. Thus overall, MI represents 

an improvement over LD.  

2) We have shown how MI methods can exploit auxiliary data (data not used in the SFA model) 

to enhance the precision of imputations. The MICE method is particularly attractive since it 

produces a set of imputation equations which expose the influence of each variable to external 

scrutiny. In our highway maintenance example, the results are clear that the immediate past 

value of road condition is of great value in predicting the current value as we would expect, but 

there are other factors such as the condition of other road types which have predictive power 

on the value of the missing road condition variable. In our empirical example, we also 

demonstrate methods of taking into account the panel structure of our data, and transformations 

to restrict the imputed values to a required range, in order to improve the quality of imputations.  

Through our simulation exercise, and confirmed in our empirical application, we have shown 

that there is a clear benefit of using MI approaches with deletion (MID approaches) of 

observations with imputed dependent variables. Whilst using observations with missing 

dependent variable in the imputation stage is useful, these observations should not be taken 

forward to the SFA model estimation stage. This is because doing so results in biased estimates 
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of the variance parameters in the SFA model and thus biased predictions of efficiency. In 

addition, MID is shown to yield more precise estimates of model parameters in terms of 

RMSEs. 

3) Turning to the efficiency predictions, LD, MVN MID and MIDCE are shown to yield very 

similar efficiency predictions for complete observations. This is in itself a reassuring finding, 

as it confirms that the MI approaches are consistent with results of more simplistic, and more 

widely used approaches to deal with missing data. Furthermore, given the reduction in standard 

errors for the parameter estimates when applying MI relative to LD, it is likely that the residuals 

computed from the MI approaches are more reflective of the realised (but unobserved) values 

of the error than from the LD models. The key message here is that the use of MI can improve 

efficiency predictions for complete observations due to greater precision in the estimated 

frontier as we implicitly use all available information in estimating the frontier. 

For observations with missing values among the independent variables, MVN MI and MICE 

are likewise shown to lead to very similar efficiency predictions. A key benefit of MICE is that 

the analyst can develop and test explicit relations between variables when modelling the 

missing data. This in turn provides some assurance that missing variable imputations are 

intuitive which would seem to be an important criterion in choosing between the two 

approaches, particularly when there is often strong economic and/or engineering expectation of 

certain linkages between missing and observed data (such as the road condition data in our 

example). The MICE models are therefore preferred in our setting. 

4) Overall we summarise our findings on the recommended approach to using MI methods in SFA 

in Figure 4. It sets out the stages involved in implementing MI approaches and highlights the 

use of auxiliary data, the recommendation to use MID rather than MI, and our preferred 

approach to compute efficiency from the combined parameter estimates across the set of 𝐷 

estimated SFA models.  

5) In terms of future research opportunities, we consider that the skewness of the assumed SFA 

error distribution may lend itself to none symmetric error distributions in the imputation 

models. Adopting such distribution might eliminate the greater bias in MI approaches relative 

to LD for the inefficiency variance estimate. A possible avenue for future research would 

therefore be to see if the use of alternative imputation models, e.g. which allow for skewness 

in the imputation model, could result in reduced bias in the estimation of the constant and the 

parameter(s) of the one-sided distribution. Another possible avenue for future research would 

be to examine the performance of MI under alternative SFA specifications. 
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Figure 4 Recommended approach for applying Multiple Imputation in SFA 
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Appendix – Full parameter estimates 

Table 16: Estimated cost frontier parameters including MICE and MVN MI 

Parameter Variable LD  MIDCE  
MVN 

MID 
 MICE  MVN MI  𝛽0 

 
 

-0.673 

(0.088) 
*** 

-0.717 

(0.078) 
*** 

-0.534 

(0.068) 
*** 

-0.650 

(0.091) 
*** 

-0.669 

(0.079) 
*** 𝛽1 

 
ln 𝐿𝐴𝑁𝐷 

0.666 

(0.110) 
*** 

0.763 

(0.102) 
*** 

0.740 

(0.100) 
*** 

0.667 

(0.125) 
*** 

0.562 

(0.118) 
*** 𝛽2 

 
ln 𝑅𝐿 

0.122 

(0.133) 
 

0.007 

(0.126) 
 

0.164 

(0.122) 
*** 

0.124 

(0.163) 
 

0.349 

(0.141) 
** 𝛽3 

 
(ln 𝐿𝐴𝑁𝐷)2 

0.542 

(0.106) 
*** 

0.653 

(0.096) 
*** 

0.646 

(0.093) 
*** 

0.538 

(0.193) 
** 

0.588 

(0.115) 
*** 𝛽4 

 
(ln 𝑅𝐿)2 

1.279 

(0.240) 
*** 

1.472 

(0.222) 
*** 

1.433 

(0.215) 
*** 

1.206 

(0.416) 
*** 

1.332 

(0.263) 
*** 𝛽5 

 
ln 𝐿𝐴𝑁𝐷 ln𝑅𝐿 

-1.616 

(0.314) 
*** 

-1.897 

(0.287) 
*** 

-1.900 

(0.28) 
*** 

-1.550 

(0.571) 
** 

-1.756 

(0.342) 
*** 𝛽6 

 
ln 𝑇𝑅𝐴𝐹𝐹𝐼𝐶 

0.586 

(0.099) 
*** 

0.629 

(0.093) 
*** 

0.632 

(0.092) 
*** 

0.587 

(0.094) 
*** 

0.434 

(0.118) 
*** 𝛽7 

 
𝑅𝐷𝐶 

0.018 

(0.004) 
*** 

0.021 

(0.003) 
*** 

0.007 

(0.001) 
*** 

0.020 

(0.004) 
*** 

0.006 

(0.001) 
*** 𝛽8 

 
𝐷𝑅𝐷𝐶 

-0.014 

(0.007) 
* 

-0.017 

(0.006) 
*** 

-0.004 

(0.001) 
*** 

-0.020 

(0.006) 
*** 

-0.004 

(0.002) 
* 

𝛽9 ln𝑊𝐴𝐺𝐸 
1.800 

(0.327) 
*** 

1.655 

(0.278) 
*** 

1.461 

(0.278) 
*** 

1.569 

(0.292) 
*** 

1.526 

(0.338) 
*** 𝛽10 

 
𝑌𝐸𝐴𝑅2 

0.148 

(0.078) 
* 

0.171 

(0.071) 
** 

0.157 

(0.07) 
*** 

0.133 

(0.07) 
* 

0.201 

(0.080) 
** 𝛽11 

 
𝑌𝐸𝐴𝑅3 

0.247 

(0.089) 
*** 

0.267 

(0.078) 
*** 

0.243 

(0.076) 
*** 

0.236 

(0.078) 
*** 

0.306 

(0.087) 
*** 𝛽12 

 
𝑌𝐸𝐴𝑅4 

0.226 

(0.094) 
** 

0.222 

(0.084) 
*** 

0.202 

(0.082) 
*** 

0.185 

(0.087) 
* 

0.268 

(0.096) 
*** 𝛽12 

 
𝑌𝐸𝐴𝑅5 

0.294 

(0.086) 
*** 

0.242 

(0.078) 
*** 

0.224 

(0.077) 
*** 

0.205 

(0.081) 
** 

0.261 

(0.088) 
*** 𝛽13 

 
𝑌𝐸𝐴𝑅6 

0.271 

(0.086) 
*** 

0.262 

(0.078) 
*** 

0.240 

(0.076) 
*** 

0.208 

(0.08) 
*** 

0.282 

(0.089) 
*** 𝛽14 

 
𝑌𝐸𝐴𝑅7 

0.250 

(0.098) 
** 

0.24 

(0.087) 
*** 

0.204 

(0.085) 
*** 

0.191 

(0.089) 
** 

0.244 

(0.102) 
** 𝜎𝑣 

 
 

0.306 

(0.021) 
 

0.309 

(0.019) 
 

0.288 

(0.019) 
 

0.336 

(0.031) 
 

0.326 

(0.029) 
 𝜎𝑢 

 
 

0.259 

(0.034) 
 

0.257 

(0.03) 
 

0.279 

(0.029) 
 

0.260 

(0.038) 
 

0.369 

(0.037) 
 

            𝑁  425  506  506  588  588  

* 90% confidence level, ** 95% confidence level, *** 99% confidence level 

 


