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Abstract. We propose a dynamic network model where two mechanisms control the probability of
a link between two nodes: (i) the existence or absence of this link in the past, and (ii) node-specific
latent variables (dynamic fitnesses) describing the propensity of each node to create links. Assuming a
Markov dynamics for both mechanisms, we propose an Expectation-Maximization algorithm for model
estimation and inference of the latent variables. The estimated parameters and fitnesses can be used to
forecast the presence of a link in the future. We apply our methodology to the e-MID interbank network
for which the two linkage mechanisms are associated with two different trading behaviors in the process
of network formation, namely preferential trading and trading driven by node-specific characteristics.
The empirical results allow to recognise preferential lending in the interbank market and indicate how
a method that does not account for time-varying network topologies tends to overestimate preferential
linkage.

Introduction

In recent years there has been a growing interest in the study of complex networks [1, 2]. One of the
reasons is that many natural and artificial systems are characterized by the presence of a sparse structure
of interactions, i.e. only a small fraction of the possible pairs of elements mutually interact (at least at
each time). Thus the topology of the network of interactions plays an important role in understanding
the aggregate behavior of many complex systems. Moreover most of the investigated systems evolve over
time and the structure of the network is generically not constant but new links are formed and old ones
are destroyed at each time. Understanding and modeling network dynamics is therefore of paramount
importance in many disciplines as testified by the recent literature (see below for a review).
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From a modeling perspective there are several mechanisms that can lead to link formation and destruc-
tion. The presence of a link may depend on present node properties of the system but also on previous
network states. Consider as an example a trading network such as the interbank network studied in
the empirical application below. The probability of a link between two nodes representing a transaction
between the corresponding entities depends generically on the current supply and demand of the two
entities, as well as on the existence (or absence thereof) of a link in the past between the two entities.
The former driver is associated with node-specific properties (supply and demand) which evolve in time
with their own dynamics, possibly dependent also on the network state. The latter driver, instead, is
associated with a link specific property, namely the persistence of links which describes the tendency to
interact with whom we have interacted with in the past.

The objective of this paper is to introduce a dynamic network model where both mechanisms are
present and to propose a statistical estimation technique which allows to disentangle the importance of
the two mechanisms for each link in the network. The estimation method is based on an Expectation-
Maximization scheme for maximum likelihood estimation. As we will show, the estimation of the model
allows also to forecast the probability of the existence of a specific link in the future when the model
parameters and the past network history are known.

More specifically, in our model we define a Markovian process on link dynamics combined with an
autoregressive model for the latent variables governing the link probability. There is a latent variable in
each node and it is termed the fitness of the node. Thus at each time-step a link can be created - or
not - either as a consequence of a copying process of the past link state or as a consequence of a random
sampling whose probability depends on the current value of the latent variables of the two considered
nodes. Clearly both mechanisms give rise to time correlation of the link state, even if its origin is quite
different in the two cases. Being able to disentangle the role in link persistence due to explicit copy from
the past or to fitness dynamics allows to identify genuine patterns of preferential linkage.

As a specific application in this paper we study the interbank market, which is an important in-
frastructure of the financial system. Banks borrow and lend money in the interbank market to meet
liquidity shortages or to allocate liquidity surpluses on a daily basis. The decision of whom to trade with
is complex but certainly two aspects play an important role: first, the internal state (e.g. balance sheet,
liquidity available or needed) of the bank and second the knowledge of the counterpart. Concerning
this last aspect, all else being equal a bank will prefer to trade with someone who was a counterpart in
the past, since lending money requires some trust on the borrower’s solvability. This behavior is known
as preferential trading [3] and has been documented in many empirical papers [4]. Our model is able
to assess the importance of preferential trading between two banks when the (possibly time-varying)
internal states of the two banks are taken into account. It is important to stress that the same argument
can be made for social networks where the copying mechanism favors extant links due to a minor social
cost of entertaining new relationships.
Related Literature. The literature on statistical models of temporal networks is rapidly growing and
there are several dynamic network models that have been investigated. Each model tries to capture
different aspects of spatial and time dependencies in temporal networks and the main aims are the de-
scription of how network topology evolves through time and the prediction of links. From a mathematical
point of view, there exist two principal approaches: (i) description of the graph dynamics using (gen-
eralized) Markov chains on network observables (ii) description of the graph dynamics using models of
latent variables whose dynamics determines the evolution of the network topology. We briefly describe
both approaches in the following.

Concerning the first stream of literature, a milestone study is represented by the work of Hanneke et
al. [5] where Exponential Random Graphs (ERG) model has been adapted to temporal networks. The
method is called Temporal Exponential Random Graphs (TERG) and aims to model several metrics
involving two consecutive network snapshots in a similar fashion to ERG. Krivitsky and Handcock [6]
investigated further TERG by studying a specific parametrization allowing maximum likelihood estima-
tion of the model. More recently, Peixoto and Rosvall [7] have proposed an extension of the Stochastic
Block Model (SBM) to temporal networks by modeling a n-th order Markov chain with suitable transi-
tion probabilities which generate the time sequence of links. The aim is to select the most appropriate
Markov order and number of communities. Zhang et al. [8] have proposed generalizations of a number of
standard network models, including the classic random graph, the configuration model as well as SBM,
to the case of dynamic networks in a similar fashion to [7]. Furthermore, in this stream of literature
several works have focused on the problem of link prediction in time-evolving graphs. One example is
the work of Richard et al. [9] where authors propose to describe the time series of graph snapshots
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with a vector autoregressive process. Furthermore, they propose an efficient model estimation based on
proximal methods.

However, this first kind of approach has been criticized because it can not fully capture the time-
varying patterns of the network structure. This opens to a second stream of literature which aims to
describe these patterns with models having time-varying (latent) parameters that capture how network
topology changes in time, see [10] for a review. A milestone work is represented by the study of Sarkar
and Moore [11] that generalized the latent space model introduced in [12] to dynamic networks. The
dynamics of the network structure is modelled through random effects in a latent space. Sewell and
Chen [13] proposed a Markov Chain Monte Carlo (MCMC) algorithm to estimate the model parameters
and latent positions of the nodes in the network. Durante and Dunson [14] proposed a further extension
of the model in [11] by describing a latent space model for dynamic networks in which latent node
positions evolves in time via stochastic differential equations. They introduced also an efficient MCMC
algorithm for Bayesian inference to learn model parameters [15]. Giraitis et al. [16] proposed a novel
methodology for dynamic modeling of temporal networks with application to interbank networks. They
describe the link dynamics with a Tobit model, allowing for deterministic or stochastic time-varying
parameters that take into account the possibility of structural changes in network dynamics. Brauning
and Koopman [17] have applied the dynamic factors model to the case of dynamic networks. Depending
on the number of factors, the model allows to reduce the dimensionality of the problem and to describe
cross-sectional dependencies in network data. Lee at al. [18] have recently introduced a generalization
of TERG, called varying-coefficient exponential random graph model, that characterizes the evolution
of network topologies through smoothly time varying parameters whose dynamics can capture temporal
heterogeneity of dynamic networks. Finally, in this stream of literature we can also include all the
generalizations [19, 20, 21, 22, 23] of SBM which account for time evolving community memberships
and/or link persistence. However, these works are more focused on the problem of community detection
when dynamic effects are considered.

The methodology we propose in this paper exploits both of the aspects that characterize the two
streams of literature. From one side, we describe link persistence coming from the mechanism of copying
from the past by modeling a Markov chain for link stability, i.e. the tendency of a link that does (or
does not) exist at time t − 1 to continue existing (or not existing) at time t, similarly to [5]. From the
other side, we describe the stochastic dynamics of node-specific latent variables that we call fitnesses,
with a similar aim of [17, 18]. The node fitness describes the tendency of a node in creating links and
its evolution determines how the degree of the node changes in time.

From the point of view of generative network models, link stability tends to capture preferential linkage
mechanism between the nodes of the network while the fitness dynamics accounts for the evolving network
topology. The main goal of this work is to disentangle the two temporal patterns generated by the two
linkage mechanisms in network data. Hence, we apply our methodology to the financial network of
electronic Market of Interbank Deposit (e-MID) where the two linkage mechanisms are associated with
two different trading behaviors, i.e. random and preferential trading [24], in the process of network
formation.

The remainder of this paper is organized as follows. In Section 1 we describe three different models
of temporal networks. In Section 2 we present a novel Expectation-Maximization algorithm for model
estimation and in Section 3 we run a Monte Carlo exercise to assess the goodness of fit of our estimation
method. In Section 4 we apply our methodology to the network of the electronic Market of Interbank
Deposit. Finally, we conclude with a discussion of our method and open areas for future research in
Section 5.

1. The models

In this Section, we introduce three models of temporal networks: (i) in the first one, the presence or
absence of a link can be a copy of the past with a given probability or can be sampled according to a
Bernoulli marginal distribution; (ii) in the second model, each graph snapshot does not have an explicit
dependence from the past snapshots but the link probability depends on node-specific latent dynamical
variables, i.e. the node fitnesses, which evolve stochastically in time with memory of past information;
(iii) the third network model combines the copying mechanism of the first model with dynamic node
fitnesses of the second model.

We define a temporal network as a time series of graphs, that is the set (V, {At}t=0,1,...,T ) with
|V | = N nodes and adjacency matrices {At}t=0,1,...,T . A network snapshot is the observed graph at a
given time t and is described by the adjacency matrix At which has entry Atij = 1 if the edge from node
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i to node j is present at time t and zero otherwise. In our models, we exclude graphs with self loops,
i.e. the diagonal of At is null for all t. The adjacency matrix can be symmetric (undirected graphs)
or not (directed ones). In the following, we refer to the undirected case for notational simplicity. The
generalization is straightforward and is indeed used in the empirical analysis of the interbank market of
Section 4.

In our framework, a temporal network is the observable of the following hidden Markov chain:
{

P(Θt|Θt−1,Φ) = h(Θt,Θt−1,Φ)

P(At|At−1,Θt,β) = g(At,At−1,Θt,β)
(1.1)

where {Θt}t=0,1,...,T represents the set of dynamic parameters, which are also called latent variables of
the Markov chain. Their dynamics is determined by the one-step transition probability h, whereas g
represents the likelihood for the network snapshot at time t given the information about the previous
network snapshot, as well as the latent variables Θt. Finally Π ≡ {β,Φ} represents the set of static
parameters.

Since the Markov chain in Eq. 1.1 has a high-dimensional set of parameters, we reduce the dimen-
sionality by assuming that the node-specific latent variables evolve independently and that there are no
explicit spatial correlations among links. Nevertheless, spatial correlations between links are implicitly
induced by the latent dynamics.

As mentioned above, in the following, we consider three different specifications of Eq. 1.1.

1.1. Discrete AutoRegressive Graphs (DAR(1)). We model link stability with the following dis-
crete autoregressive process,

Atij = V tijA
t−1
ij + (1− V tij)Y

t
ij ∀i, j = 1, ..., N and j > i (1.2)

where V tij ∼ B(αij) with αij ∈ [0, 1], Y tij ∼ B(χij) with χij ∈ [0, 1] and B indicates the Bernoulli

distribution. In the process of Eq. 1.2, the value of Atij is copied from the past value with probability
αij or obtained by tossing a coin according to the marginal distribution B(χij) with probability 1−αij .
Highly persistent links (or no-links) are described by high values of αij . As a consequence, networks
characterized by high values of α ≡ {αij}i,j=1,...,N tend to preserve the past structure through time.

The Markov chain described by Eq. 1.2 is the first order process DAR(1), belonging to the more
general class of discrete autoregressive processes DAR(p) [25]. Here, we do not consider the hidden
dynamics associated with the latent variables.

Hence, the specification of Eq. 1.1 for this model is the following,

P(At|At−1,α,χ) =
∏

i,j>i

P(Atij |A
t−1
ij , αij , χij) =

∏

i,j>i

(

αijIAtijA
t−1
ij

+ (1 − αij)χ
Atij
ij (1− χij)

1−Atij

)

,

(1.3)
where IAtijA

t−1
ij

is the indicator function taking value equal to 1 if Atij = At−1
ij and zero otherwise.

Eq. 1.3 describes
(

N
2

)

independent Markov chains for each link. This model of temporal networks is
fully determined by the N(N − 1) parameters {α,χ} ≡ {αij , χij}i=1,...,N ;j>i and we estimate them by
maximum likelihood method.

The persistence pattern of this model can be quantified by the autocorrelation functions (ACF) of
the links. It is the one of a standard autoregressive process AR(1) but with non negative autoregressive
coefficient αij , i.e. the DAR(1) graph model is able to describe only non negative ACF. The generalization
of this model to directed networks is simply obtained by considering not symmetric adjacency matrices.

1.2. Temporally Generalized Random Graphs (TGRG). The second model is a generalization
of the fitness network model [26, 27] to a dynamic setting that accounts for time evolving node fitness.
Fitness is a node property determining its capability of creating links. We assume that each node i is
characterized by the fitness θi which evolves in time by following a covariance stationary autoregressive
process AR(1),

θti = φ0,i + φ1,iθ
t−1
i + ǫti , ∀i = 1, ..., N (1.4)

where φ0,i ∈ R, |φ1,i| < 1 and the i.i.d. variables ǫti ∼ N (0, σ2
i ). This choice is consistent with the

Markovian assumption in Eq. 1.1. Moreover, the hidden node state θti evolves in R between timesteps,
but large changes are unlikely because of the Gaussian transition probabilities. This is consistent with
the idea that the network topology changes smoothly in time. Finally, assuming a Gaussian transition
probability represents a simplification for model estimation.
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The conditional probability for the network at time t is

P(At|Θt) =
∏

i,j>i

eAij(θ
t
i+θ

t
j)

1 + e(θ
t
i+θ

t
j)
, (1.5)

where Θt ≡ {θti}i=1,...,N is the vector of time-varying parameters. In Eq. 1.5 we assume that each link is
independently sampled and the probability of a link between node i and node j at time t is determined
by the corresponding θti and θtj . The larger is θti , the larger is the probability for all links incident to
node i.

We refer to this model as Temporally Generalized Random Graphs (TGRG) and the specification of
Eq. 1.1 for the TGRG is the following,







P(θti |θ
t−1
i ,Φi) = f(θti |φ0,i + φ1,iθ

t−1
i , σ2

i ) ∀i = 1, ..., N

P(At|Θt) =
∏

i,j>i P(A
t
ij |θ

t
i , θ

t
j) =

∏

i,j>i
e
Atij (θ

t
i+θ

t
j)

1+e
(θt
i
+θt
j
)

(1.6)

and P(Θt|Θt−1,Φ) =
∏N
i=1 P(θti |θ

t−1
i ,Φi) according to the hypothesis of independence, where f(θti |φ0,i+

φ1,iθ
t−1
i , σ2

i ) is the density of normal variable with mean φ0,i+φ1,iθ
t−1
i and variance σ2

i . The set of static
parameters is Φ ≡ {Φi}i=1,...,N with Φi ≡ {φ0,i, φ1,i, σi}.

The TGRG model is fully determined by the 3×N static parameters Φ. In the next Section we propose
an Expectation-Maximization scheme to estimate the model parameters and time-varying parameters.
It alternates between an Expectation step where we fit the time-varying parameters {Θt}t=0,1,...,T and
the Maximization step where we maximize the log-likelihood of the static parameters conditional on the
expectations {Θ̂t}t=0,1,...,T .

Time autocorrelated node fitnesses may induce link persistence. In fact, the probability of a link

between two specific nodes e(θ
t
i+θ

t
j)/(1 + e(θ

t
i+θ

t
j)) is persistent if θti and θtj are autocorrelated. Note

that link persistence occurs as a consequence of node properties. For TGRG, the two-point distribution
function for lagged links and the ACF of link state can be semi-analytically computed (see the Appendix).

The generalization of the TGRG model for directed networks can be accomplished by distinguishing
between the out-degree and the in-degree and by introducing two fitnesses for each node i, i.e. θt,outi

and θt,ini . The probability of a link from node i to node j at time t given the latent variables θt,outi

and θt,inj is P(Atij |θ
t,out
i , θt,inj ) = e

Atij(θ
t,out
i

+θ
t,in
j

)

1+e
(θ
t,out
i

+θ
t,in
j

)
. Then, everything follows similarly to the undirected

case with the exception that P(At|Θt) is invariant under a linear transformation for the hidden node

states: θt,outi 7→ θt,outi + ct ∀i = 1, ..., N , θt,inj 7→ θt,inj − ct ∀j = 1, ..., N , where {ct}t=0,1,...,T ∈ R
T+1.

This symmetry arises because the total number of outgoing links has to be equal to the total number
of ingoing links at each time. This degeneracy can be simply removed by taking one of the fitnesses as
constant in time.

Finally, let us notice that we can interpret TGRG as an extension of Exponential Random Graphs
(ERG) [28] to the dynamic case. ERG ensembles are probability distributions of networks obtained by
maximizing the Shannon entropy under some constraints on the average value of a set of network observ-
ables. If this set is the degree sequence, the Lagrange multipliers of the entropy constrained optimization
can be directly linked to the latent variables of our model. Differently from other dynamic extension of
ERG (see for example [5]) where dynamical (i.e. two-time) observables are used as constraints, here we
choose a dynamical model for the latent variable, namely the AR(1) process, and introduce an estimation
method for them.

1.3. Discrete AutoRegressive Temporally Generalized Random Graphs (DAR-TGRG). The
persistence pattern associated with the copying mechanism described by Eq. 1.2 can coexist with the
node fitnesses evolving in time according to Eq. 1.4. This can be captured by the following specification
of the model in Eq. 1.1,







P(θti |θ
t−1
i ,Φi) = f(θti |φ0,i + φ1,iθ

t−1
i , σ2

i ) ∀i = 1, ..., N

P(At|At−1,Θt,α) =
∏

i,j>i

(

αij IAtijA
t−1
ij

+ (1− αij)
e
Atij (θ

t
i+θ

t
j)

1+e
(θt
i
+θt
j
)

)

(1.7)

and P(Θt|Θt−1,Φ) =
∏N
i=1 P(θti |θ

t−1
i ,Φi) according to the hypothesis of independence, where f(θti |φ0,i+

φ1,iθ
t−1
i , σ2

i ) is the density of a normal variable with mean φ0,i + φ1,iθ
t−1
i and variance σ2

i , αij ∈ [0, 1]
and α ≡ {αij} ∀i, j = 1, ..., N with αij = αji for undirected networks, Φ ≡ {φ0,i, φ1,i, σi}i=1,...,N with
φ0,i ∈ R, |φ1,i| < 1 and σi > 0 ∀i, and θti ∈ R ∀i, t.
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This model can be interpreted as a mixture of the two mechanisms, i.e. the one of copying the presence
or absence of a link from the past with probability αij and the one of time evolving marginals described by
the TRGR model with probability 1−αij . Let us stress that the temporal pattern generated by the fitness
dynamics does not concern a specific link but it is a node property. Thus under this mechanism, links
incident on the same node tend to have similar persistence properties. On the contrary, the persistence
of the copying mechanism is a link property, and links incident on the same node can have very different
persistence properties. The parameter αij disentangles the importance of these two effects in determining
the dynamics of the link (i, j).

The model in Eq. 1.7 is fully determined by the
(

N
2

)

parameters α and the 3 × N parameters Φ,
which can be estimated by the Expectation-Maximization algorithm we propose in the next Section.

2. Estimation method

We now describe the procedure for the estimation of the DAR-TGRG model. We propose an
Expectation-Maximization method based on a Bayesian inference approach. The estimation method
for TGRG model is simply obtained by setting parameters αij ∀i, j = 1, ..., N equal to zero in the
following equations.

Let denote Θ ≡ {Θt}t=1,...,T , A ≡ {At}t=0,1,...,T and Π ≡ {Φ,α}. The Bayesian approach considers
the posterior distribution of the latent variables

P(Θ|A,Π) =
P(A,Θ|Π)

∫

[dΓ]P(A,Γ|Π)
= Z−1

Π P(A,Θ|Π), (2.1)

where [dΓ] represents the measure over the probability space for Θ, for inferring a set of statistically

significant fitnesses Θ̂ and the posterior distribution over the static parameters

P(Π|A) =
P(Π)

P(A)

∫

[dΓ]P(A,Γ|Π) ∝ P(Π)ZΠ (2.2)

to learn the most likely set of parameters Π̂ given the data. Using smooth priors P(Π), Π̂ is obtained by
extremizing over Π the log-likelihood l(Π) ≡ logP(Π|A), i.e. by solving the equations

∂Πl(Π) = ∂Π logZΠ = ∂Π log

∫

[dΓ]P(A,Γ|Π) =

∫

[dΓ]∂ΠP(A,Γ|Π)
∫

[dΓ]P(A,Γ|Π)
= 0. (2.3)

Since maximizing the likelihood in Eq. 2.2, i.e. solving Eq. 2.3, needs computing expectations with
respect to the posterior in Eq. 2.1, this is an Expectation-Maximization (EM) method [29].

2.1. Inference of time-varying parameters. Let us assume to know the static parameters Π. We do
not solve the inference problem for the time series of dynamic parameters Θ overall, i.e. by maximizing
Eq. 2.1. Instead, we infer step by step the parameters Θt by conditioning on the expectations Θ̂t−1,
that are the one step backward estimates1 for Θt−1.

Let us focus on the inference at the generic time t 6= 0 when the previous network snapshot is observed
and let F t ≡ {At−1,Π} be the information set for the considered problem. From the Bayes’ theorem, it
is

P(Θt|At,Θt−1,F t) =
P(At|Θt,F t)P(Θt|Θt−1,F t)P(Θt−1|F t)

P(At,Θt−1|F t)
. (2.4)

Hence, by conditioning on the expectation for Θt−1, i.e. Θ̂t−1, the inference problem can be solved by
maximizing the following likelihood for Θt,

P(Θt|At,At−1, Θ̂t−1,Π) ∝ P(At|At−1,Θt,α)P(Θt|Θ̂t−1,Φ) , ∀t = 1, ..., T. (2.5)

Maximizing Eq. 2.5 is equivalent to solve the following problem

Θ̂t = argmax
γ

(

logP(At|At−1, γ,α) + logF (γ|Θ̂t−1,Φ)
)

, (2.6)

where F (Θt|Θt−1,Φ) ≡
∏N
i=1 f(θ

t
i |φ0,i + φ1,iθ̂

t−1
i , σ2

i ) is the Gaussian probability density function as-
sociated with the transition probability for the latent variables. Eq. 2.6 is equivalent to the following

1Here, we are assuming to know the expectation for Θ0, i.e. Θ̂0. Below, we explain how to infer the initial point for
the latent dynamics.
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system of non linear equations,






∑

j 6=i







(1− αij)
e
Atij (θ

t
i+θ

t
j)

1+e
(θt
i
+θt
j
)

αijIAtijA
t−1
ij

+ (1 − αij)
e
At
ij

(θt
i
+θt
j
)

1+e
(θt
i
+θt
j
)







(

−Atij +
e(θ

t
i+θ

t
j)

1 + e(θ
t
i+θ

t
j)

)






−
θti − φ0,i − φ1,iθ̂

t−1
i

σ2
i

= 0, ∀i = 1, ..., N.

(2.7)
This system can be solved by the following iterative proportional fitting procedure: (i) assume any

starting point θ̂ti ∀i = 1, ..., N for the node fitness2; (ii) then, solve one by one the equations in Eq. 2.7

by conditioning on θ̂tj ∀j 6= i; (iii) update the value for θ̂ti with the solution of the corresponding equation;
(iv) repeat until convergence.

The proposed method for the inference of the time-varying parameters is a statistical filtering al-
gorithm. Filtering is an operation that involves the extraction of information about a latent quantity
of interest at time t by using data measured up to and including t [30], like in Kalman filter and its
extensions. However, differently from Kalman filter, we study the case of a Hidden Markov Model with
continuous-valued state space, i.e. continuous-valued state vector Θt, but binary measurement matrix,
i.e. At. Finally, let us notice that the proposed method can be used for on-line inference: once the
off-line learning of the static parameters is completed, we can solve the filtering problem for Θt in Eq.
2.6 whenever the new measurement At is available. On-line inference is particularly useful for link pre-
diction: let At be the observation at the current time and we want to construct the one-step-ahead
forecast, i.e. E[At+1|At]. Once Θ̂t is inferred on-line by solving Eq. 2.6, the one-step-ahead forecast is
constructed by averaging over the probability distribution

P(At+1|At, Θ̂t,Π) =

∫

[dΘt+1]P(At+1|At,Θt+1,α)P(Θt+1|Θ̂t,Φ)

obtained by projecting the latent state. In Section 4 we show an application of this procedure.

2.2. Learning α. Let assume to know the static parameters Φ and consider the problem of learning α.
The most likely estimate for α is obtained by maximizing the associated posterior in Eq. 2.2, that is

P(α|A) ∝

∫

[dΘ]P(A,Θ|α,Φ) =

∫ T
∏

t=1

[

dΘt
]

P(At|At−1,Θt,α)F (Θt|Θt−1,Φ). (2.8)

However, the integral in Eq. 2.8 is infeasible because of the nonlinearity of the probability distribution
of the network. Hence, we maximize an approximated likelihood where the transition probabilities for
the latent variables are conditioned on the expectations at the previous step, i.e.

lα ≡

∫ T
∏

t=1

[

dΘt
]

P(At|At−1,Θt,α)F (Θt|Θt−1,Φ) ≈
T
∏

t=1

∫

[

dΘt
]

P(At|At−1,Θt,α)F (Θt|Θ̂t−1,Φ) ≡ l̃α,

(2.9)

where θ̂t−1
i is the expectation of θt−1

i that we obtained by solving Eq. 2.7.
Let us focus on the learning of parameter αij . When we aim to obtain the solution for αij , the only

time-varying parameters that are involved in the learning are the ones associated with node i and node
j, i.e. {θti}

t=1,...,T and {θtj}
t=1,...,T . Hence, the most likely estimate for αij is the value that maximizes

the following log-likelihood

S̃αij = log l̃αij =

T
∑

t=1

log

∫

dxdy

(

αijIAtijA
t−1
ij

+ (1− αij)
eA

t
ij(x+y)

1 + e(x+y)

)

f(x|φ0,i+φ1,iθ̂
t−1
i , σ2

i )f(y|φ0,j+φ1,j θ̂
t−1
j , σ2

j ).

(2.10)
In the learning procedure, the following double integral is involved,

IAtij (θ̂
t−1
i , θ̂t−1

j ,Φi,Φj) = (2.11)

∫

dxdy
eA

t
ij(x+y)

1 + e(x+y)
f(x|φ0,i + φ1,iθ̂

t−1
i , σ2

i )f(y|φ0,j + φ1,j θ̂
t−1
j , σ2

j ),

which can be solved numerically. However, we propose to apply the following integral identity proposed
by Polson et al. [31]

(eψ)a

(1 + eψ)b
= 2−be(a−

b
2 )ψ

∫ ∞

0

e−
ωψ2

2 pPG(ω)dω (2.12)

2A possible choice is θ̂ti = φ0,i + φ1,iθ̂
t−1
i
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where b > 0, a, ψ ∈ R, and pPG : [0,∞) 7→ [0, 1) is the density of the Pólya-Gamma distribution.
There is no a closed-form expression for pPG but we evaluate it numerically. A method for sampling
Pólya-Gamma random variates can be found in [32]. The double integral in Eq. 2.11 is equivalent to the
following integral,

IAtij (θ̂
t−1
i , θ̂t−1

j ,Φi,Φj) ≡

∫ ∞

0

dω

2
pPG(ω)KAtij (ω, θ̂

t−1
i , θ̂t−1

j ,Φi,Φj) (2.13)

where

KAtij (ω, θ̂
t−1
i , θ̂t−1

j ,Φi,Φj) =

exp

(

σ2
i+σ

2
j+4(φ0,i+φ1,iθ̂

t−1
i +φ0,j+φ1,j θ̂

t−1
j )(2Atij−1−ω(φ0,i+φ1,i θ̂

t−1
i +φ0,j+φ1,j θ̂

t−1
j ))

8(1+ω(σ2
i+σ

2
j ))

)

√

1 + ω(σ2
i + σ2

j )
.

We propose to evaluate numerically the integral in Eq. 2.13. This gives the advantage of computing a
single integral.

Then αij is estimated by solving the equation ∂αij S̃αij = 0, which can be explicitly rewritten as

T
∑

t=1

IAtijA
t−1
ij
− IAtij (θ̂

t−1
i , θ̂t−1

j ,Φi,Φj)

αijIAtijA
t−1
ij

+ (1− αij)IAtij (θ̂
t−1
i , θ̂t−1

j ,Φi,Φj)
= 0. (2.14)

The solution of Eq. 2.14 represents the most likely estimate α̂ij given the data.

2.3. Learning Φ. Let assume to know the static parameters α and consider the problem of learning
Φ. Similarly to the previous Subsection, we use conditions on the expectations for the latent variables
to obtain an approximated log-likelihood for Φ,

S̃Φ =

T
∑

t=1

log

∫

[

N
∏

k=1

dxk f(xk|φ0,k + φ1,kθ̂
t−1
k , σ2

k)

]





∏

i,j>i

αij IAtijA
t−1
ij

+ (1− αij)
eA

t
ij(xi+xj)

1 + e(xi+xj)



 . (2.15)

Let us focus on the learning of parameters Φi ≡ {φ0,i, φ1,i, σi}. Because of the marginal distribution,
each time-varying parameter θti is coupled with all the others and this prevents the valuation of the
multiple integral in Eq. 2.15. Hence, we adopt the following approximation for the probability measure,

N
∏

k=1

dxk f(xk|φ0,k+φ1,k θ̂
t−1
k , σ2

k) ≈ dxi f(xi|φ0,i+φ1,iθ̂
t−1
i , σ2

i )
∏

k 6=i

dxk δ(xk− θ̂
t
k)f(xk|φ0,k+φ1,k θ̂

t−1
k , σ2

k),

i.e. we condition on the expectations at time t for all the latent variables with the exception of θti . Then
we maximize the following quantity,

S̃Φi
=

T
∑

t=1

log

∫ ∞

−∞

dxi f(xi|φ0,i + φ1,iθ̂
t−1
i , σ2

i )





∏

j 6=i

αij IAtijA
t−1
ij

+ (1− αij)
eA

t
ij(xi+θ̂

t
j)

1 + e(xi+θ̂
t
j)



 , (2.16)

i.e. we estimate Φi by solving the system of equations ∂Φi S̃Φi
= 0. Let us define the following partition

function ∀t = 1, ..., T ,

Zt
Φi
≡

∫ +∞

−∞

dx f(xi|φ0,i + φ1,iθ̂
t−1
i , σ2

i )





∏

j 6=i

αij IAtijA
t−1
ij

+ (1− αij)
eA

t
ij(x+θ̂

t
j)

1 + e(x+θ̂
t
j)



 (2.17)

and let µt
Φi

and Σt
Φi

be the first and the second moment of the distribution, respectively.

The system of equations ∂Φi S̃Φi
= 0 reads explicitly as















〈µΦi
〉 − φ0,i − 〈Lθ̂i〉φ1,i = 0

1
T
(Lθ̂⊺

i µΦi
)− 〈Lθ̂i〉φ0,i −

1
T
(Lθ̂⊺

i Lθ̂i)φ1,i = 0

σ2
i −

(

〈ΣΦi
〉+ φ20,i +

1
T
(Lθ̂⊺

i Lθ̂i)φ
2
1,i − 2〈µΦi

〉φ0,i − 2 1
T
(Lθ̂⊺

i µΦi
)φ1,i + 2〈Lθ̂i〉φ0,iφ1,i

)

= 0

(2.18)
where bold symbols represent T -dimensional vectors, i.e. x = (x1, x2, ..., xT )′, angle brackets denote time

average, i.e. 〈x〉 ≡ 1
T

∑T
t=1 x

t, and L is the lag operator, i.e. Lxt = xt−1. Let us notice that Lθ̂1i = θ̂0i
represents the latent state at the initial time (see below).

The system of nonlinear equations can be solved with the following iterative proportional fitting
procedure: (i) assume any starting point Φ

0
i ; (ii) compute µt

Φ
0
i

and Σt
Φ

0
i

∀t = 1, ..., T ; (iii) solve the
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N = 100 N = 250 N = 500 N = 1000

time (h) 2.8(5) 11(1) 45(4) 151(12)

Table 1. The average time of convergence for the EM algorithm applied to the DAR-
TGRG model in the case of undirected networks with T = 200. In the model simulations,
the parameters are randomly determined as explained in Section 3. The simulations were
performed using a Matlab code executed on an ordinary dual-core Intel Core i5, with 8
GB RAM.

system of equation in Eq. 2.18 by substituting µt
Φ

0
i

→ µt
Φi

and Σt
Φ

0
i

→ Σt
Φi
∀t = 1, ..., T ; (iv) update the

values for Φ
0
i and continue until convergence.

2.4. The algorithm. The estimation procedure consists in alternating the inference of the latent vari-
ables in the Expectation step and the learning of the static parameters in the Maximization step until
convergence. As a starting point of the method, the time-varying parameters {Θt}t=0,1,...,T can be
estimated by single snapshot inference, i.e. given the network snapshot at time t and by assuming

P(At|γ) =
∏

i,j>i
e
Atij (γi+γj)

1+e(γi+γj)
, we solve snapshot by snapshot the following problem,

Θ̃t = argmax
γ

logP(At|γ) ∀t = 0, 1, ...T (2.19)

and we obtain a naive estimation {Θ̃t}t=0,1,...,T of the hidden states of the Markov chain in Eq. 1.7. In

particular, we infer the latent state at the initial time, i.e. Θ̂0 ≡ Θ̃0.
Then, we estimate the process in Eq. 1.4 for the naively inferred {Θ̃t}t=0,1,...,T to obtain a naive

estimation of the static parameters Φ̃. Finally, the naive estimate α̃ for the probabilities of copying
can be obtained by solving Eq. 2.14 with naively inferred {Θ̃t}t=0,1,...,T and Φ̃. We refer to this naive
estimation method as the Single Snapshot Inference (SSI) of the model.

Hence, we apply the following iterative algorithm:

(1) Assume as starting point Θ̃ and Π̃ = {Φ̃, α̃}.

(2) Infer Θ̂ ≡ {Θ̂t}t=1,...T by solving Eq. 2.7 with Π̃.

(3) Learn α̂ by solving Eq. 2.14 for each possible couple of nodes with previously inferred Θ̂ and Φ̃.

(4) Learn Φ̂ by solving Eq. 2.18 for each i with previously inferred Θ̂ and α̂.

(5) Update Θ̃← Θ̂.

(6) Update Π̃← Π̂.
(7) Repeat until convergence.

This is an Expectation-Maximization learning algorithm [33], where we use a generalization of the RAS
algorithm [34] for the expectation step (line 2). The RAS algorithm is usually adopted to solve the
problem of estimating nonnegative matrices from marginal data3 and is preferred to other methods due
to its computational speed, numerical stability and algebraic simplicity. In Subsection 2.1 we generalize
the RAS algorithm to the case of time-varying parameters. The main cycle of the algorithm takes
O(N × T ) time. The number of iterations needed for the generalized RAS algorithm to converge is not
deterministic similarly to the original one. However, we observe numerically it takes O(100÷1) iterations
when N is O(102÷3). The number of operations needed for the maximization step (lines 3 and 4) is, in
general, a more complicated question. Learning α takes O(N2) steps, one for each αij , and each step
takes T + 1 operations, the numerical evaluation of T single integrals and finding the zero of a function.
Learning Φ takes N steps, one for each Φi, but each step takes a non deterministic number of cycles
in order to solve the system of integral equations in Eq. 2.18. In average, each step takes O(101÷2)
cycles when T is O(102). Each cycle takes 3×T operations, i.e. the numerical evaluation of 3×T single
integrals. Finally, the number of iterations for the EM algorithm to converge is not deterministic but we
observe numerically that it is quite constant in the size of the system. Table 1 shows how much time the
EM algorithm takes in average to converge.

3The problem in Eq. 2.19 can be solved with the RAS algorithm where the generic entry of the matrix is e
γi+γj

1+e
γi+γj

and

the marginal data are represented by the degree sequence.
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T = 100 T = 200 T = 500 T = 1000

χij 0.28 0.21 0.16 0.10
αij 0.29 0.19 0.12 0.08

Table 2. The mean absolute relative error of the estimates of parameters of the DAR(1)
model as a function of the length T of time series. We simulate the DAR(1) model 100
times.

N θti φ0,i φ1,i σi

SSI 100 0.30 0.58 0.46 0.69
EM 100 0.22 0.13 0.13 0.06

SSI 200 0.20 0.31 0.27 0.31
EM 200 0.10 0.10 0.10 0.05

Table 3. The mean absolute relative error of the estimates of parameters for the TGRG
model in the case of undirected networks. We set T = 200 and simulate the model 100
times. We compare the proposed Expectation-Maximization algorithm (EM) with the
Single Snapshot Inference (SSI).

N θ
t,out(in)
i φ

out(in)
0,i φ

out(in)
1,i σ

out(in)
i

SSI 100 0.31 0.59 0.47 0.71
EM 100 0.23 0.12 0.12 0.06

SSI 200 0.21 0.33 0.29 0.33
EM 200 0.10 0.11 0.10 0.05

Table 4. The mean absolute relative error of the estimates of parameters for the TGRG
model in the case of directed networks. We set T = 200 and simulate the model 100
times. We compare the proposed Expectation-Maximization algorithm (EM) with the
Single Snapshot Inference (SSI).

3. Monte Carlo simulations

Before applying our methodology to real data, we run Monte Carlo simulations to study the perfor-
mance of the proposed estimation method when applied both to undirected and to directed networks.
Data are generated according to the described models with randomly chosen static parameters. In the
case of undirected networks, the DAR(1) model parameters are sampled uniformly in the unit interval.
For TGRG we sample φ1,i ∼ U(−1, 1), σi ∼ U(0, 1) and φ0,i ∼ N (0, 1). For DAR-TGRG, αij ∼ U(0, 1).
For both models time-varying parameter θti follows the stationary AR(1) process of Eq. 1.4. We estimate
the models with the proposed Expectation-Maximization (EM) algorithm and compare the results also
with the Single Snapshot Inference (SSI). For each simulation, we estimate Φi for each node i. For

DAR-TGRG model we obtain also
(

N
2

)

estimates for αij , one for each possible couple of nodes (i, j).

For both models, we infer the time series of the latent variables {θti}
t=0,1,...,T
i=1,...,N . We simulate each model

100 times. In evaluating the goodness of fit of the proposed estimation method, we report the mean
absolute relative error for the estimate of parameters. The mean is obtained by averaging over the nodes
and the number of simulations. For the time-varying parameters we consider also the time average of
the absolute relative errors. A similar study is performed for the case of directed networks, with the
exception that for each node we have two fitnesses, θt,outi and θt,ini , and as a consequence two sets of
static parameters Φ ≡ {Φout,Φin}. For DAR-TGRG model, we obtain N(N − 1) estimates for αij , one
for each possible couple of ordered nodes.

10



αij θti φ0,i φ1,i σi

SSI 0.22 0.29 0.27 0.18 0.22
EM 0.18 0.14 0.15 0.10 0.06

Table 5. The mean absolute relative error of the estimates of parameters for the DAR-
TGRG model in the case of undirected networks. We compare the EM algorithm with
the single snapshot inference SSI. We set N = 200, T = 200 and simulate the model 100
times.

αij θ
t,out(in)
i φ

out(in)
0,i φ

out(in)
1,i σ

out(in)
i

SSI 0.22 0.30 0.28 0.18 0.23
EM 0.17 0.14 0.14 0.10 0.05

Table 6. The mean absolute relative error of the estimates of parameters for the DAR-
TGRG model in the case of directed networks. We compare the EM algorithm with the
single snapshot inference SSI. We set N = 200, T = 200 and simulate the model 100
times.
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Figure 1. Left panels: estimated density of relative errors of αij , φ0,i, φ1,i and σi.
We compare the EM method (solid line) with SSI (dotted line). Right panel: latent
dynamics for a generic θti compared with the inferred one according to EM and SSI.

The simulation results are summarized in Tables 2, 3, 4, 5 and 6. In Table 2 we show the results for
the maximum likelihood estimation of the DAR(1) process in Eq. 1.2. The remaining Tables show that
the EM method greatly outperforms the single snapshot inference SSI. Furthermore, we find that the
mean absolute relative error for both EM and SSI declines with the number of nodes N since the number
of observations increases as N2, while the number of parameters increases linearly with N . Figure 1
shows the estimated density of the relative errors of the static parameters of the DAR-TGRG model
in the case of undirected networks by applying both EM and SSI estimation methods. The SSI leads
to biased estimation of the static parameters Φi, while the estimation obtained with the proposed EM
method is unbiased. For illustrative purposes, in the right panel of figure 1 we show a typical sample
realization and the estimate of time-varying parameter θti . Clearly, the values inferred with EM track
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T = 300 T = 500 T = 1000

θti 0.13 0.13 0.12
αij 0.13 0.10 0.08
φ0,i 0.10 0.09 0.07
φ1,i 0.09 0.08 0.07
σi 0.05 0.04 0.04

Table 7. Mean absolute relative error of the parameters for the DAR-TGRG model
estimated via the EM algorithm. The network is undirected. We set N = 200 and the
number of simulations is equal to 100.

φ1,i
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Figure 2. Mean Absolute Relative Error (MARE) of the estimates of αij as a function
of the autoregressive coefficient φ1,i for the time-varying parameters θti . In the simulation
of the DAR-TGRG model for the case of undirected networks, αij , φ0,i and σi are
randomly sampled while φ1,i are equal for all i. We compare the goodness of fit of the
estimates of αij via the EM method for the DAR-TGRG model (solid line) with the
Maximum Likelihood (ML) estimates of αij according to the DAR(1) model (dotted
line). We set N = 200 and T = 400.

the simulated data fairly closely. Table 7 shows how the mean absolute relative error of the parameters
of the DAR-TGRG model of a dynamic undirected graph decreases with the length of the time series.

When the dynamics of the link is affected both by link persistence and by dynamic fitness, neglecting
the last one can lead to an overestimation of the importance of the persistence. To show this we simulate
a DAR-TGRG model for undirected networks taking φ1,i equal for all time-varying parameters θti

4. Then
we estimate αij according to a DAR(1) model (which neglects dynamic fitness) and to a DAR-TGRG
model. Figure 2 shows the mean absolute error of αij for the two estimations as a function of φ1,i. When
this parameter is small both the DAR(1) model and the DAR-TGRG model perform quite equivalently.
On the contrary, when the dynamic fitness has a significant persistence due to a high value of φ1,i, the
DAR(1) model wrongly imputes this to a link persistence which now has a large bias with respect to the
DAR-TGRG model.

4. Empirical application: understanding link persistence in the interbank market

Trading and credit networks are a natural application case for dynamic networks with persistence,
like the one described by our model. Financial institutions lend mutually money on a daily basis and
interbank markets are considered an important channel of propagation of systemic risk. While there is a
vast literature on the static case, only few papers deal with the dynamic property of interbank networks.
The static fitness model has been proved to characterize quantitatively several topological properties of

4φ1,i determines the autocorrelation of node fitness and as a consequence the link persistence associated with the

time-varying marginal.
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the e-MID network [35, 36], to outperform other network models in the problem of reconstructing the
e-MID network from limited information [37, 38] and to give useful insights for systemic risk analysis
of the interbank market [39]. The ability of the fitness model to describe the static interbank network
indicates that the size of two banks correlates with the existence of a credit between them. However
it has been documented [40] the presence of memory effects in the process of network formation for
interbank markets, according to the idea that a borrower, having asked for a loan many times to a lender
in the past, is more likely to borrow from that lender again in the future than from other lenders, with
which the borrower has never (or infrequently) interacted.

In this section we estimate our dynamic model on data of an interbank market to disentangle the
relative importance of fitness and link persistence in determining the future state of the network. This
will allow also to perform a forecasting exercise to predict the existence of a credit relation between two
banks.

4.1. Data. We investigate data from the electronic Market of Interbank Deposit (e-MID), a market
where banks extend loans to one another for a specified term and/or collateral. A significant fraction
of interbank loans are for maturities of one week or less, the majority being overnight. The e-MID is
an electronic market in the Euro Area and it was founded in Italy in 1990 for Italian Lira transactions
and denominated in Euros in 1999. According to the “Euro Money Market Study 2006" published by
the European Central Bank in February 2007, e-MID accounted for 17% of total turnover in unsecured
money market in the Euro Area. More recently the amount of overnight lending in e-MID has significantly
declined, especially around the sovereign debt crisis [41]. The e-MID network has been thoroughly studied
to understand bank liquidity management, as for instance in [41, 42, 43].

The dataset contains the edge list of all credit transactions in each day from March 9th, 2012 to
February 27th, 2015. In our analysis, we investigate the interbank network aggregated weekly. Each
network snapshot of interbank deposits is constructed from the list of transactions where a bank, the
lender, extends a loan to another bank, the borrower, that repays the loan in seven days, at most. Hence,
we exclude loans with a term larger than a week. However, we account approximately for the 92% of
all the traded volume in the market since there are few credit relations with longer maturity. Then, we
describe the e-MID weekly network with the unweighted and directed adjacency matrix At: a generic
element Atij is 1 if the bank i lends money at least once to bank j during the week t, 0 otherwise. We

do not consider banks that interact less than 5% of times in the considered period, i.e. in a period of
T = 156 weeks a bank has at least a credit relation for more than 7 weeks. Hence, the credit network is
formed by N = 98 banks.

4.2. Estimated fitness and link persistence in e-MID. We estimate the three models on the time
series of e-MID networks. Figure 3 shows the estimated density of the αij link parameters (left panel)
and of the φ1,j node parameters (right panel) for the different model. We see that the DAR(1) model
estimates larger αij parameters, i.e. larger link persistence, than the DAR-TGRG model. Similarly, the
TGRG model estimates larger φ1,j , i.e larger fitness persistence, than the complete DAR-TGRG model.
Thus the full model balances the relative role of the two persistence mechanisms.

Node fitness is a latent variable whose time evolution is not observed but inferred according to models
of temporal networks. However it is interesting to ask if there exists an observable quantity correlated
with it. We show that for the considered dataset, node fitness is correlated with the bank exposure in
the e-MID interbank market5.

In fact we observe that the quantity x
t,out(in)
i ≡ eθ

t,out(in)
i ∀i = 1, ..., N estimated on data for both

TGRG and DAR-TGRG models is strongly correlated with the corresponding bank’s exposure in e-MID
for the considered week t, see the top left panel in Figure 4. This result suggests that, at a given

time, banks with larger exposures are the nodes with larger fitnesses θ
t,out(in)
i or equivalently with larger

degrees. Furthermore, the time-varying fitness of a node is correlated significantly with its bank exposure
(see the top right panel of Figure 4). Finally, in the bottom panel of Figure 4 we show an example of
this behavior for node 3 whose correlation coefficient is ρxt3,st3 ≈ 0.90. Thus the dynamic fitness model
can be seen as a procedure allowing to have some insights on bank exposures having only information
on the binary network.

5Exposure of bank i is defined as the strength of node i in the weighted network. We refer to it as s
t,out(in)
i for generic

node i. The node out-strength corresponds to the bank asset exposure in e-MID while the node in-strength to the liability.
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Figure 3. Left panel: distributions of αij estimated via EM on e-MID data. The solid
line refers to the DAR-TGRG model while the dotted line refers to the DAR(1) model.
Right panel: distribution of parameters φ1,i estimated via EM. The black line refers to
DAR-TGRG while the blue line to TGRG. The dotted lines represent the mean of the
two distributions.
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right panel) Spearman correlation between the inferred x
t,out(in)
i ≡ eθ

t,out(in)
i and the

corresponded bank exposure sti in e-MID. Bottom panel: an example of time-varying
fitness compared with the bank exposure for node ‘3’. The parameter δ is chosen in such
a way that the maxima of the two time series correspond.

4.3. Link stability and preferential trading in e-MID. For credit networks like e-MID, the preferen-
tial linkage mechanism reflects the presence of banks which trade preferentially each others. Preferential
trading between banks can be detected by comparing empirically observed trading relationships with a
null hypothesis that assumes random trading. Hatzopoulos et al. [24] have introduced a statistical test
to assess the statistical significance of the observed interbank transactions in order to reveal preferential
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Figure 5. Fraction of statistically validated links according to the test in Hatzopoulos
et al. [24] conditional to the value of the estimated αij parameter measuring the link
persistence in the TGRG-DAR model.

credit relationships among banks. We apply the same statistical test to show that preferential trading
relations in e-MID are associated with link stability.

Following [24] we apply the test to the weekly aggregated e-MID data split in time windows of 3-
maintenance periods6 In each time window and for each link (i, j) we count the number of times nlbij
bank j borrowed money from bank i. Then, let nli be the number of times bank i lent money to
any other banks and let nbj be the number of times bank j borrowed money from any other bank.
Finally, let us define NT as the total number of trades among banks in the system for the considered
3-maintenance period. Under the null hypothesis of random trading, nlbij follows the hypergeometric

distribution H
(

nlbij |n
l
i, n

b
j , NT

)

. Hatzopoulos et al. associate preferential trading with over-expressed
number of links with respect to the null hypothesis of random trading, i.e. they use the hypergeometric
distribution to associate a p-value with the observed number nlbij . Preferential trading relations i → j
are the ones rejected according to the statistical test, i.e. with a p-value smaller than the threshold value
0.05
a

where a is the Bonferroni correction to avoid a large number of false positive validated links because
of the multiple hypothesis testing (see [24] for more details).

Figure 5 shows the frequency of rejection for the statistical test of Ref. [24] conditional to the estimated
αij parameter measuring the link persistence in the TGRG-DAR model. The clear monotonic behavior
indicates that link stability is statistically associated with preferential trading detected according to [24].

4.4. Forecasting links. Finally we compare the proposed network models in their out-of-sample link
forecasting performance. We use the first 106 weekly network observations for model estimation and
the last 50 as our out-of-sample period. In the training phase we estimate the static parameters for the
three models and then we adopt the following forecast scheme based on on-line inference. Rolling over
the out-of-sample period, at each week t we use the new observed snapshot At to infer the expected Θ̂t

via Eq. 2.6. Then, for DAR-TGRG model we produce the one-step-ahead forecast for each link as

E[At+1
ij |A

t
ij , θ̂

t
i , θ̂

t
j ] =

∫

dθt+1
i dθt+1

j P[At+1
ij = 1|Atij , θ

t+1
i , θt+1

j ]n(θt+1
i |θ̂ti)n(θ

t+1
j |θ̂tj) =

= αijA
t
ij + (1 − αij)

∫ ∞

0

dω

2
pPG(ω)

e

−4ω(φ0,i+φ1,iθ̂
t
i+φ0,j+φ1,j θ̂

t
j)

2+(σ2i+σ
2
j )+4(φ0,i+φ1,iθ̂

t
i+φ0,j+φ1,j θ̂

t
j)

8(1+ω(σ2
i
+σ2
j
))

√

1 + ω(σ2
i + σ2

j )
,

(4.1)

where we have applied the result of Polson et al. [31] as before. The one-step-ahead forecast for the
TGRG model is simply obtained by putting αij equal to 0 in Eq. 4.1. The one-step-ahead forecast for
DAR(1) model is a standard result of time series analysis given by

E[At+1
ij |A

t
ij ] = αijA

t
ij + (1 − αij)χij . (4.2)

6The period of time in which credit institutions have to comply with the minimum reserve requirements is called the
reserve maintenance period. Each reserve maintenance period is equivalent to one calendar month and we aggregate the
maintenance periods in groups of three. Hence, we consider 12 3-maintenance periods ranging from April 2nd, 2012 to
February 27th, 2015.

15



Specificity
0 0.2 0.4 0.6 0.8 1

S
en

si
tiv

ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TGRG
(AUC≈ 0.83)

DAR-TGRG
(AUC≈ 0.85)

DAR(1)
(AUC≈ 0.80)

threshold value for α
ij

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
U

C

0.65

0.7

0.75

0.8

0.85

0.9

0.95

TGRG

DAR-TGRG

DAR(1)
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Finally, we compare the Receiving Operating Characteristic (ROC) curves obtained for the three network
models (see [29] for the definition of ROC curve).

The results are summarized in Figure 6. In the left plot, we compare the three ROC curves and we can
notice how the DAR-TGRG model (slightly) outperforms the other models. Furthermore, in the right
plot we show the area under the curve (AUC) as a function of a threshold for α̂ij estimated according
to DAR-TGRG model. In other words, we compare the AUC considering only the links for which the
α̂ij estimated by the the DAR-TGRG model is larger than a threshold value. We find that taking
into account both of fitness dynamics and preferential linkage better forecast links, i.e. DAR-TGRG
outperforms always the other models. When we consider links with both high and low persistence, the
TGRG model outperforms the DAR(1) network model, that is the evolution of the network topology
is more important than preferential linkage in determining the average characteristics of the e-MID
network. However, the link copying mechanism associated with the DAR(1) model characterizes better
than the fitness dynamics the persistence pattern associated with a smaller set of links representing the
preferential relations among banks. In fact, there exists a value of the threshold (around 0.4) after which
the AUC associated with the DAR(1) model is larger than the one for TGRG.

5. Conclusions

In this paper we introduce a novel state-of-the-art statistical methodology to describe link persistence
and fitness dynamics in temporal networks. We model a Markov dynamics for both observed and
unobserved time-varying states which drive the evolution of the network. The analytic tractability of
the autoregressive network ensemble we propose allows us to easily calibrate our parameters from the
data with a general likelihood maximization iterative procedure. The introduction of the autoregressive
dynamics permits link forecasting by taking account of memory properties of the network system. Then,
the estimation method we introduce allows online-inference of the time-varying parameters which is
particularly useful from a computational point of view to face the problem of link prediction.

The contribution of the paper is twofold. First, the introduction of autoregressive endogenous com-
ponents displays the clear advantage of describing the network evolution via time-varying states which
reproduce the network topology as well as capturing the local property of link persistence, thus going
beyond a single snapshot analysis where parameters are chosen for each network snapshot, indepen-
dently. Second, the analysis on real data from the eMID interbank network from 2012 to 2015 (weekly
aggregated) displays the statistical equivalence between link stability, identified by positive value of the
persistence parameter, and preferential trading, identified by over-expressed number of trades between
counterparties. Hence, our methodology permits to disentangle preferential trading from random trading
in dynamic trading networks such as the eMID money market. Finally, the forecasting performance of
the model points out both fitness dynamics and link persistence as linkage mechanisms in the process of
network formation for the credit market.

As future outlooks, the formalism discussed in the paper could be also be applied to more general
memory kernel function of the autoregressive model governing the evolution of the system as well as
it could permit the introduction of exogenous factors driving the fitness dynamics or the local link
probability. Furthermore, a challenging issue is the introduction of a dependence structure for the
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dynamic fitnesses. We also note that the estimation method we introduce to obtain our results for
dynamic networks is quite general, and could be used to obtain similar results for other types of fitness
dynamics.

Acknowledgment

We acknowledge financial support from the grant SNS16LILLB “Financial networks: statistical models,
inference, and shock propagation”. FL acknowledges support by the European Community’s H2020 Pro-
gram under the scheme INFRAIA-1- 2014-2015: Research Infrastructures, grant agreement no. 654024
SoBigData: Social Mining & Big Data Ecosystem.

References

[1] Newman, Mark EJ, Steven H. Strogatz, and Duncan J. Watts. "Random graphs with arbitrary degree distributions
and their applications." Physical review E 64.2 (2001): 026118.

[2] Holme, Petter, and Jari Saramäki. "Temporal networks." Physics reports 519.3 (2012): 97-125.
[3] Weisbuch, Gerard, Alan Kirman, and Dorothea Herreiner. "Market organisation and trading relationships." The eco-
nomic journal 110.463 (2000): 411-436.

[4] Cocco, Joao F., Francisco J. Gomes, and Nuno C. Martins. "Lending relationships in the interbank market." Journal
of Financial Intermediation 18.1 (2009): 24-48.

[5] Hanneke, Steve, Wenjie Fu, and Eric P. Xing. "Discrete temporal models of social networks." Electronic Journal of
Statistics 4 (2010): 585-605.

[6] Krivitsky, Pavel N., and Mark S. Handcock. "A separable model for dynamic networks." Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 76.1 (2014): 29-46.

[7] Peixoto, Tiago P., and Martin Rosvall. "Modeling sequences and temporal networks with dynamic community struc-
tures." Nature Communications 8.582 (2017).

[8] Zhang, Xiao, Cristopher Moore, and Mark EJ Newman. "Random graph models for dynamic networks." The European
Physical Journal B 90.10 (2017): 200.

[9] Richard, Emile, Stéphane Gaiffas, and Nicolas Vayatis. "Link prediction in graphs with autoregressive features." Journal
of Machine Learning Research 15.1 (2014): 565-593.

[10] Kim, B., Lee, K., Xue, L., & Niu, X. "A Review of Dynamic Network Models with Latent Variables." arXiv preprint
arXiv:1711.10421 (2017).

[11] Sarkar, Purnamrita, and Andrew W. Moore. "Dynamic social network analysis using latent space models." ACM
SIGKDD Explorations Newsletter 7.2 (2005): 31-40.

[12] Hoff, Peter D., Adrian E. Raftery, and Mark S. Handcock. "Latent space approaches to social network analysis."
Journal of the american Statistical association 97.460 (2002): 1090-1098.

[13] Sewell, Daniel K., and Yuguo Chen. "Latent space models for dynamic networks." Journal of the American Statistical
Association 110.512 (2015): 1646-1657.

[14] Durante, Daniele, and David B. Dunson. "Bayesian dynamic financial networks with time-varying predictors." Statis-

tics & Probability Letters 93 (2014): 19-26.
[15] Durante, Daniele, and David B. Dunson. "Locally adaptive dynamic networks." The Annals of Applied Statistics 10.4
(2016): 2203-2232.

[16] Giraitis, Liudas, et al. "Estimating the dynamics and persistence of financial networks, with an application to the
Sterling money market." Journal of Applied Econometrics 31.1 (2016): 58-84.

[17] Brauning, Falk, and Siem Jan Koopman. "The Dynamic Factor Network Model with an Application to Global Credit-
Risk." (2016).

[18] Lee, Jihui, Gen Li, and James D. Wilson. "Varying-coefficient models for dynamic networks." arXiv preprint
arXiv:1702.03632 (2017).

[19] Yang, Tianbao, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. "Detecting communities and their evolutions
in dynamic social networks: a Bayesian approach." Machine learning 82, no. 2 (2011): 157-189.

[20] Xu, Kevin S., and Alfred O. Hero. "Dynamic stochastic blockmodels for time-evolving social networks." IEEE Journal
of Selected Topics in Signal Processing 8, no. 4 (2014): 552-562.

[21] Xu, Kevin. "Stochastic Block Transition Models for Dynamic Networks." In AISTATS. (2015).
[22] Ghasemian, A., Zhang, P., Clauset, A., Moore, C., & Peel, L. "Detectability thresholds and optimal algorithms for
community structure in dynamic networks." Physical Review X, 6(3), 031005. (2016).

[23] Barucca, P., Lillo, F., Mazzarisi, P., & Tantari, D. "Disentangling group and link persistence in dynamic stochastic
block models". arXiv preprint arXiv:1701.05804. (2017).

[24] Hatzopoulos, V., Iori, G., Mantegna, R. N., Miccichè, S., & Tumminello, M. "Quantifying preferential trading in the
e-MID interbank market". Quantitative Finance, 15(4), 693-710. (2015).

[25] Jacobs, Patricia A., and Peter AW Lewis. "Discrete Time Series Generated by Mixtures. III. Autoregressive Processes
(DAR (p))." No. NPS55-78-022. NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF, (1978).

[26] Caldarelli, G., Capocci, A., De Los Rios, P., & Munoz, M. A. "Scale-free networks from varying vertex intrinsic
fitness." Physical review letters, 89(25), 258702. (2002).

[27] Garlaschelli, Diego, and Maria I. Loffredo. "Fitness-dependent topological properties of the world trade web." Physical
review letters 93.18 (2004): 188701.

[28] Park, Juyong, and Mark EJ Newman. "Statistical mechanics of networks." Physical Review E 70.6 (2004): 066117.
[29] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. "The elements of statistical learning." Vol. 1. Springer,
Berlin: Springer series in statistics, (2001).

17



[30] Chen, Zhe. "Bayesian filtering: From Kalman filters to particle filters, and beyond." Statistics 182.1 (2003): 1-69.
[31] Polson, Nicholas G., James G. Scott, and Jesse Windle. "Bayesian inference for logistic models using Pólya-Gamma
latent variables." Journal of the American statistical Association 108.504 (2013): 1339-1349.

[32] Windle, Jesse, Nicholas G. Polson, and James G. Scott. "Sampling Pólya-Gamma random variates: alternate and
approximate techniques." arXiv preprint arXiv:1405.0506 (2014).

[33] Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from incomplete data via the EM
algorithm." Journal of the royal statistical society. Series B (methodological) (1977): 1-38.

[34] Bacharach, Michael. "Estimating nonnegative matrices from marginal data." International Economic Review 6.3
(1965): 294-310.

[35] De Masi, Giulia, Giulia Iori, and Guido Caldarelli. "Fitness model for the Italian interbank money market." Physical
Review E 74.6 (2006): 066112.

[36] Musmeci, N., Battiston, S., Caldarelli, G., Puliga, M., & Gabrielli, A. "Bootstrapping topological properties and
systemic risk of complex networks using the fitness model." Journal of Statistical Physics, 151(3-4), 720-734. (2013).

[37] Gabrielli, A., Battiston, S., Caldarelli, G., Musmeci, N., & Puliga, M. "Reconstructing topological properties of
complex networks from partial information using the Fitness Model." In APS March Meeting Abstracts. (2014).

[38] Mazzarisi, Piero, and Fabrizio Lillo. "Methods for Reconstructing Interbank Networks from Limited Information: A
Comparison." Econophysics and Sociophysics: Recent Progress and Future Directions. Springer, Cham, (2017). 201-215.

[39] Cimini, G., Squartini, T., Garlaschelli, D., & Gabrielli, A. "Systemic risk analysis on reconstructed economic and
financial networks." Scientific reports, 5. (2015).

[40] Iori, G., Mantegna, R. N., Marotta, L., Miccichè, S., Porter, J., & Tumminello, M. "Networked relationships in the
e-MID Interbank market: A trading model with memory." Journal of Economic Dynamics and Control, 50, 98-116. (2015).

[41] Barucca, Paolo, and Fabrizio Lillo. "The organization of the interbank network and how ECB unconventional measures

affected the e-MID overnight market." F. Comput Manag Sci, 1-21 (2017).
[42] Iori, G., De Masi, G., Precup, O. V., Gabbi, G., & Caldarelli, G. "A network analysis of the Italian overnight money
market." Journal of Economic Dynamics and Control, 32(1), 259-278. (2008).

[43] Finger, Karl, Daniel Fricke, and Thomas Lux. "Network analysis of the e-MID overnight money market: the informa-
tional value of different aggregation levels for intrinsic dynamic processes." Computational Management Science 10.2-3
(2013): 187-211.

Appendix A. Two-point distribution function for TGRG

In the TGRG model, the node fitness is autocorrelated in time when φi,1 6= 0. An autocorrelated
fitness reflects the autocorrelation of the degree and ultimately of all links incident to the node7. A
positive autocorrelated fitness is associated with persistence of links. This effect can be characterized by
studying the two-point distribution function or equivalently the autocorrelation function. In the TGRG
model we can compute semi-analytically the the two-point distribution function,

P(Atij = 1, At−τij = 1) =

∫

dθtidθ
t
jdθ

t−τ
i dθt−τj P(Atij = 1|θti , θ

t
j)P(A

t−τ
ij = 1|θt−τi , θt−τj )p(θti , θ

t−τ
i )p(θtj , θ

t−τ
j ) =

=

∫

dθt−τi dθt−τj

1

1 + e−(θt−τi +θt−τj )
n(θt−τi )n(θt−τj )×

×

∫
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a=i,j

n(θt−τ+qa |θt−τ+(q−1)
a )dθt−τ+qa
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t
j
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1 + e−(θti+θ
t
j)
n(θti |θ

t−1
i )n(θtj |θ

t−1
j ) =

=
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dθt−τi dθt−τj
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1 + e−(θt−τi +θt−τj )
n(θt−τi )n(θt−τj )

∫ ∞

0

dω

2
pPG(ω)K

τ (ω|θt−τi , θt−τj )

(A.1)

where we have applied the result of Polson et al. [31] as before and

Kτ (ω|θt−τi , θt−τj ) =
e

−4ω(µτi +µτj )2+((στi )2+(στj )2)+4(µτi +µτj )

8(1+ω((στ
i
)2+(στ

j
)2))

√

1 + ω((στi )
2 + (στj )

2)

with

µτa = φ0,a

(

τ−1
∑

t=0

(φ1,a)
t

)

+ (φ1,a)
τθt−τa a = i, j

(στa)
2 = σ2

a(
τ−1
∑

t=0

(φ21,a)
t) a = i, j.

7This is always true in the case of finite network size.
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The last recursive formulas are obtained by integrating over the Gaussian transition probabilities in Eq.
A.1. Let us notice that µτa and (στa )

2 converge to the mean and the variance of the marginal distribution
for θta in the limit τ →∞ as we can expect for the standard AR(1) process.

Then, the two-point distribution function can be obtained by integrating over the Gaussian marginals,
i.e. n(θt−τi ) and n(θt−τj ), and finally by performing the numerical integration over the probability density

function associated with the Polya-Gamma distribution. Let µ̃a ≡
φ0,a

1−φ1,a
and σ̃2

a ≡
σ2
a

1−φ2
1,a

a = i, j be

the mean and the variance of the Gaussian marginal distribution for θt−τa . It is
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where we have defined for notational simplicity
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Finally, the ACF can be obtained by noticing that E[AtijA
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