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Abstract

Constrained quasiconvex optimization problems appear in many fields, such
as economics, engineering, and management science. In particular, frac-
tional programming, which models ratio indicators such as the profit/cost
ratio as fractional objective functions, is an important instance. Subgradi-
ent methods and their variants are useful ways for solving these problems
efficiently. Many complicated constraint sets onto which it is hard to com-
pute the metric projections in a realistic amount of time appear in these
applications. This implies that the existing methods cannot be applied to
quasiconvex optimization over a complicated set. Meanwhile, thanks to fixed
point theory, we can construct a computable nonexpansive mapping whose
fixed point set coincides with a complicated constraint set. This paper pro-
poses an algorithm that uses a computable nonexpansive mapping for solving
a constrained quasiconvex optimization problem. We provide convergence
analyses for constant diminishing step-size rules. Numerical comparisons
between the proposed algorithm and an existing algorithm show that the
proposed algorithm runs stably and quickly even when the running time of
the existing algorithm exceeds the time limit.

Keywords: Nonlinear programming, Fractional programming

1. Introduction

This paper considers the constrained quasiconvex optimization problem.
This problem is composed of a quasiconvex objective functional and a closed
convex constraint set. We call a functional of which any slice is convex a
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quasiconvex functional, and the class of this functional is a generalization
of convex functionals. Quasiconvex functionals inherit some nice proper-
ties of convex functionals [13]. However, they do not have all the important
properties of convex functionals, such as convexity of the sum of convex func-
tionals, or give a guarantee of the coincidence of local optimality and global
optimality. Therefore, the constrained quasiconvex optimization problem is
difficult to solve in general.

Fractional programming is an important instance of constrained quasi-
convex optimization problems. In economics, there are various situations
in which one optimizes ratio indicators, such as the debt/equity ratio (in
financial and corporate planning), inventory/sales and output/employee ra-
tios (in production planning), and cost/patient and nurse/patient ratios (in
health care and hospital planning) [35]. Under certain conditions, these
ratio indicators, fractional objective functionals in other words, have qua-
siconvexity [22, Lemma 3]. Therefore, these problems can be dealt with as
constrained quasiconvex optimizations. Here, we will examine the numeri-
cal behaviors of the existing and proposed algorithms when they are applied
to the Cobb-Douglas production efficiency problem [3, Problem (3.13)], [11,
Problem (6.1)], [35, Section 1.7], which is an instance of a fractional pro-
gramming and constrained quasiconvex optimization problem. Furthermore,
the demand for techniques to solve optimization problems is nowadays not
only limited to convex objectives. In particular, optimization problems
whose objective functionals are quasiconvex have appeared in economics,
engineering, and management science [11, 13]. Therefore, this paper builds
an algorithm that can efficiently solve constrained quasiconvex optimization
problems even if they have some complexity.

Subgradient methods with the usual Fenchel subdifferential, an expan-
sion of the gradient for nonsmooth functionals, are useful for solving prob-
lems in convex optimization [2, Section 8.2], [16, 17, 18, 19, 25]. We need to
use an alternative notion of the usual Fenchel subdifferential since the usual
Fenchel subdifferential is defined for a convex functional [4, Subsection 2.1],
[22, Subsection 2.2], [33, Proposition 8.12]. Indeed, the usual Fenchel sub-
differential may be empty even for a differential nonconvex functional [4,
Subsection 2.1]. This implies that we cannot use it directly to solve qua-
siconvex optimization problems. Fortunately, various, extended subdiffer-
entials for nonconvex functionals have been proposed [31, Section 4], [33,
Definition 8.3]. As an instance of them, we can define subdifferentials for
quasiconvex or more general functionals by the procedure described in [31,
Section 4] to construct them with directional derivatives. These subdiffer-
entials inherit some of the properties, called axioms for subdifferentials [31,
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Axioms (S1–S4)], from the usual Fenchel subdifferential for convex function-
als; however, they may not be easily computable. Furthermore, an essential
issue is that a local minimizer might not coincide with the global minimizer
in quasiconvex optimization. This issue reduces the subdifferential till it
contains only one vector, i.e., the zero vector, meaning that the methods
lose any clue as to the direction of the global minimizer. Hence, we cannot
ensure the convergence of the generated sequence to the global minimizer of
the quasiconvex optimization problem when the usual subgradient methods
are used. For the unconstrained quasiconvex optimization problem, Konnov
[23] introduced a subgradient method that uses a normalized normal vector
to the slice at a current approximation as a subgradient. This idea over-
comes the above issue, since there certainly exists a nonzero normal vector
to the slice which indicates the direction to the minimizer even if the current
approximation is a non-global local minimizer.

Kiwiel [22] proposed a subgradient method that uses a normalized nor-
mal vector to the slice as a subgradient (we will call it a subgradient through-
out this paper) for solving the constrained quasiconvex optimization prob-
lem. Hu et al. [11] analyzed its convergence properties when inexact subgra-
dients are used and/or when it includes computational errors. Furthermore,
a number of subgradient-method variants exist for solving quasiconvex op-
timization problems, such as the conditional subgradient methods [13] and
the stochastic subgradient method [12].

The existing methods assume the computability of the metric projection
onto the constraint set, because they use the metric projection to guarantee
that the solution is in the constraint set. The metric projection onto the
constraint set is defined as a mapping which translates a given point into
the nearest point inside the constraint set. Therefore, in general, we have
to solve a subproblem of minimizing the distance from a given point subject
to the solution being in the constraint set. Certainly, there are some sets
onto which the metric projections can be computed easily, such as boxes
[1, Proposition 29.15], closed balls [1, Example 3.18 and Proposition 3.19],
[34, Section 4], and closed half-spaces [1, Example 29.20]. However, various
complicated sets on which computing the metric projections is difficult ap-
pear in practical problems [6, 14, 19, 20, 37]. Therefore, we have to develop
a new algorithm that can run lightly and quickly even when it is difficult to
compute the metric projection onto the constraint set.

On the other hand, if the constraint set can be expressed as a fixed
point set of or the intersection of some fixed point sets of nonexpansive
mapping(s), there are algorithms that use these nonexpansive mappings in-
stead of the metric projection for convex optimization [16, 17, 18, 19]. Fixed
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point sets of nonexpansive mappings have great powers of expression. Any
metric projection onto a closed convex set is also a nonexpansive mapping
whose fixed point set coincides with these sets [1, Proposition 4.16]. We
can build a nonexpansive mapping whose fixed point set coincides with the
intersection of the fixed point sets of two or more given nonexpansive map-
pings [1, Proposition 4.9, 4.47]. Furthermore, there are complicated convex
sets called generalized convex feasible sets that are defined by closed convex
sets whose intersection may be empty. They can also be expressed using
concrete nonexpansive mappings [19, Definition (8)], [37, Definition (50)].
The algorithms listed at the beginning of this paragraph use nonexpansive
mappings instead of metric projections onto the constraint sets. Therefore,
if these nonexpansive mappings can be more easily computed than the met-
ric projections, it can also be expected that their algorithms will run more
efficiently than algorithms which use metric projections directly.

The existing algorithms for solving convex optimization problems over
fixed point sets of nonexpansive mappings are realized by combining a fixed
point iterator, which generates a sequence converging to some fixed point of
a given nonexpansive mapping, with the existing subgradient methods. The
Krasnosel’skii-Mann iterator [24, 27] and Halpern iterator [9] are useful fixed
point iterators for finding a fixed point of given nonexpansive mapping. Both
generate a sequence converging to some fixed point of a given nonexpansive
mapping.

In contrast to the existing literature, this paper proposes a novel algo-
rithm which minimizes a given quasiconvex functional over the fixed point
set of a given nonexpansive mapping. To realize this algorithm, we com-
bine the Krasnosel’skii-Mann iterator [24, 27] with the existing subgradient
method [22] for solving quasiconvex optimization problems. The goal of
this paper is to show that our algorithm can solve constrained quasiconvex
optimization problems whose constraint set is too complex for the existing
algorithms to solve in a realistic amount of time.

This paper offers three contributions. The first is to provide a widely
applicable algorithm for solving constrained quasiconvex optimization prob-
lems. The nonexpansive mappings are an extended notion of the metric
projection, since the metric projection is also nonexpansive. Therefore, this
paper allows more varied modeling for constrained quasiconvex optimization
problems.

The second contribution is to present the theoretical convergence proper-
ties of our algorithm. We analyzed the convergence properties for constant
and diminishing step-size rules. These results show by how much the er-
ror increases when a constant step-size rule is adopted what conditions are
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required for the generated sequence to converge to the solution of the opti-
mization problem.

The last contribution is to overcome the issue of the existing methods;
that is, we show that the proposed algorithm can solve problems whose met-
ric projections onto constraint sets cannot be easily computed. We conduct
a numerical comparison of our algorithm and the existing algorithm. The
results show that our algorithm can solve actual problems even when the
constraint sets are too complex to find the metric projection onto them and
when the existing algorithm cannot run in a realistic amount of time.

This paper is organized as follows. Section 2 gives the mathematical
preliminaries. Section 3 defines our algorithm and presents its convergence
analyses. Section 4 shows numerical comparisons between the proposed
algorithm and the existing subgradient method, by solving a constrained
quasiconvex optimization problem named the Cobb-Douglas production ef-
ficiency problem. Section 5 concludes this paper. The Appendices include
miscellaneous propositions, lemmas, and their proofs.

2. Mathematical Preliminaries

First, we present the main problem considered in this paper, i.e., Prob-
lem 2.1, which is called a constrained quasiconvex optimization problem.

Problem 2.1. Let H be a real Hilbert space with inner product 〈·, ·〉 and its
induced norm ‖·‖, and let f be a continuous functional on H. In addition,
suppose that the functional f has quasiconvexity, i.e. f((1 − α)x + αy) ≤
max{f(x), f(y)} holds for any x, y ∈ H and for any α ∈ [0, 1]. Let X,D be
nonempty closed convex subsets of H. Then, we would like to

minimize f(x) subject to x ∈ X ∩D.

We define the set of minima and the minimum value of Problem 2.1 by
X? := argminx∈X∩D f(x) and f? := infx∈X∩D f(x), respectively.

We use the following notation in this paper. N is the set of natural
numbers without zero, and R is the set of real numbers. B := {x ∈ H :
‖x‖ ≤ 1} is the unit ball in Hilbert space, and S := {x ∈ H : ‖x‖ = 1} is the
unit sphere in that space. Id is the identity mapping of H onto itself. The
boundary of a set C ⊂ H is denoted by bdC, and the closure of this set is
denoted by clC. The metric projection onto a closed, convex set C ⊂ H is
denoted by PC and defined as PC(x) ∈ C and ‖x−PC(x)‖ = infy∈C‖x− y‖
for any x ∈ H. For any α ∈ R, the α-slice of a functional f : H → R is
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denoted by lev<α f := {x ∈ H : f(x) < α}. The fixed point set of a mapping
T : H → H is denoted by Fix(T ) := {x ∈ H : T (x) = x}.

This paper makes full use of the nonexpansivity of some mapping for
analyzing the convergence of the proposed algorithm. Hence, let us define
two kinds of nonexpansive condition. A mapping T : H → H is said to be
nonexpansive if ‖T (x) − T (y)‖ ≤ ‖x − y‖ for any x, y ∈ H, and it is said
to be firmly nonexpansive if ‖T (x) − T (y)‖2 + ‖(Id−T )x − (Id−T )y‖2 ≤
‖x − y‖2 for any x, y ∈ H. Obviously, a firmly nonexpansive mapping is
also a nonexpansive mapping [1, Subchapter 4.1]. The properties of these
nonexpansivities are described in detail in [1, Chapter 4], [36, Chapter 6].

Useful algorithms for solving Problem 2.1 were proposed in [11, 13, 22,
23]. However, they assume that the metric projection onto the set X can
be computed explicitly. Unfortunately, there are many complicated convex
sets onto which constructing and/or computing the projection are difficult
[6, 19, 20, 37]. This paper assumes a weaker and expanded condition for
the constraint set X, only requiring the existence of a certain nonexpan-
sive mapping expressing this set. Below, we list the conditions assumed
throughout in this paper.

Assumption 2.1. We suppose that

(A1) the effective domain dom(f) := {x ∈ H : f(x) < ∞} coincides with
the whole space H;

(A2) there exists some firmly nonexpansive mapping T : H → H whose
fixed point set Fix(T ) coincides with the constraint set X;

(A3) the constraint set X = Fix(T ) and the feasible set X∩D are nonempty
and there exists at least one minima, i.e. X? 6= ∅.

Assumptions (A2–3) mean that any closed convex sets which can be
expressed as a fixed point set of some (firmly) nonexpansive mapping are
accepted as constraint sets. Fixed point sets of nonexpansive mappings can
express a variety of constraint sets, including not only the sets onto which the
metric projections can be calculated such as is used in the existing literature
[11, 13, 22], but also complicated sets onto which metric projections cannot
be easily calculated [6, 19, 20, 37].

We can construct more complex sets by combining simpler nonexpan-
sive mappings. The following proposition gives the fundamental, variously
applicable transformations for building nonexpansive mappings.
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Proposition 2.1. Let T1, T2, . . . , TN : H → H be nonexpansive mappings
(including metric projections onto some convex sets), and suppose that the
intersection of these fixed point sets is nonempty. Let PC be a metric
projection onto a nonempty, closed, convex set C ⊂ H, and assume that
C ∩ Fix(T1) 6= ∅. Let α ∈ (0, 1/2]. Then,

(T1) the mapping
∑N

i=1 Ti/N is also a nonexpansive mapping, and its fixed

point set coincides with
⋂N
i=1 Fix(Ti) [1, Propositions 4.9 and 4.47];

(T2) the mapping α Id +(1− α)T1 is firmly nonexpansive mapping, and its
fixed point set coincides with Fix(T1) [1, Remark 4.37 and Proposi-
tion 4.47].

The transformation (T1) ensures that we can make a nonexpansive map-
ping whose fixed point set coincides with the intersection of the fixed point
sets of two or more nonexpansive mappings. The transformation (T2) pro-
vides us with a way to convert any nonexpansive mapping into a firmly non-
expansive mapping whose fixed point sets correspond with the given one.
Our GitHub repository (URL: https://github.com/iiduka-researches/
201811-kaz) provides these implementations of the transformations (T1 and
T2) as higher-order functions average and firm up in Python. By using
our code, the reader can easily make a nonexpansive mapping expressing his
or her desired constraint set.

Furthermore, let us examine an instance of convex sets that can be ex-
pressed as fixed point sets of some nonexpansive mappings, called the gen-
eralized convex feasible sets [19, Definition (10)], [37, Subsection 4.B]. Here,
let us consider several closed convex sets Xi ⊂ H for i = 0, 1, . . . ,K, and
suppose that the metric projections {PXi}Ki=0 onto these convex sets {Xi}Ki=0

can be easily calculated. If the intersection of these sets is not empty, we
can use the transformation and construction procedures described before
to make a nonexpansive mapping whose fixed point set coincides with it.
Hence, let us consider the opposite case; that is, there is a possibility that
the intersection of the sets {Xi}Ki=1 is empty. Then, we cannot use the
straightforward way because the emptiness of the constraint set violates
Assumption (A3). To design an alternative constraint set, let us define a
functional [19, Definition (8)], [37, Definition (50)]

g(x) :=
1

2

K∑
i=1

wi

(
min
y∈Xi

‖x− y‖
)2

(x ∈ H), (1)

where
∑K

i=1wi = 1. This functional g stands for the mean square value
from the point x to the sets {Xi}Ki=1 with respect to the weights {wi}Ki=1.
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Therefore, we can consider the set of points which minimize this functional
[19, Definition (10)], [37, Definition (50)],

Xg :=

{
x ∈ X0 : g(x) = min

y∈X0

g(y)

}
,

as an alternative constraint set in terms of the mean square norm. This set is
called the generalized convex feasible set. We can construct a nonexpansive
mapping whose fixed point set coincides with this set, and thus, we can
deal with the minimization problem over this constraint set by using the
algorithm presented later. The way to construct this nonexpansive mapping
is described in [19, Definition (9)], [37, Definition (50)].

Various subdifferentials have been proposed for quasiconvex functionals,
such as the classical subdifferential [22, Definition (10)], the Greenberg-
Pierskalla subdifferential [8, Section 3] and its variants such as the star sub-
differential [4, Definition 7], Plastria’s lower subdifferential [32, Section 2],
and so on [4, Subsection 2.1], [22, Definition (6)–(9)], [31, Section 5]. The
Greenberg-Pierskalla subdifferential is one of the most important concepts
of subdifferentials for generalized convex functionals because it is a general
notion that can be easily handled [31, Section 5]. However, it does not
account for the norm of its subgradients and gives only directions. Plas-
tria’s lower subdifferential is proposed as another important concept whose
properties are closer to those of the usual Fenchel subdifferential for convex
functionals [31, Section 5]. In this paper, conforming to [11, 13, 23], we use
the subdifferential defined as the normal cones to the slice of the functional
f . That is, given a point x ∈ H, we call the set

∂?f(x) := {g ∈ H : 〈g, y − x〉 ≤ 0 (y ∈ lev<f(x) f)}

the subdifferential of the quasiconvex functional f at a point x ∈ H [11,
Definition 2.3], [13, Definition 2.1], [22, Definition (9)], [23, Section 1]. We
also call its element a subgradient.

This subdifferential ∂?f(·) has some favorable properties, as listed in the
following proposition.

Proposition 2.2 ([1, Proposition 6.2.4], [22, Lemma 3], [31, Propositions 6
and 8]). Suppose that Assumption 2.1 holds, and assume that f is a contin-
uous quasiconvex functional. Then, the following hold.

(P1) ∂?f(·) coincides with the closure of the Greenberg-Pierskalla subdiffer-
ential, i.e., the union of the Greenberg-Pierskalla subdifferential and
the singleton set {0}.
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(P2) The Greenberg-Pierskalla subdifferential, Plastria’s lower subdifferen-
tial, and the usual Fenchel subdifferential are contained in the subdif-
ferential ∂?f(x) for any x ∈ H.2

(P3) For any x ∈ H, the subdifferential ∂?f(x) is nonempty, and also con-
tains some nonzero vector.

(P4) ∂?f(·) is a nonempty closed convex cone.

First, we defined the subdifferential ∂?f(·) as the closure of the Greenberg-
Pierskalla subdifferential, such as is shown in Proposition (P1). This implies
that the subdifferential ∂?f(·) is an extension of the Greenberg-Pierskalla
subdifferential, and some properties of this subdifferential can also be used.
For example, ∂?f(x) coincides with the whole space H if x is a minimizer
of f . This proposition ensures that the subdifferential ∂?f(·) coincides with
the closure of the Greenberg-Pierskalla subdifferential, which is not always
closed [11, Subsection 2.1]. Hence, this subdifferential ∂?f(·) overcomes the
problem of the non-closedness of the Greenberg-Pierskalla subdifferential; it
has been used in the recent literature [11, 12, 13]. Furthermore, as shown
in Proposition (P2), the subdifferential is also a superset of Plastria’s lower
subdifferential and the usual Fenchel subdifferential. Since the subdifferen-
tial ∂?f(·) is a cone as shown in Proposition (P4), this property ensures that
every arbitrarily scaled element of the Plastria’s lower subdifferential or the
usual Fenchel subdifferential can be used as a subgradient in the discussion
of this paper. Proposition (P3) ensures the existence of nonzero subgradi-
ents at all points. This fact guarantees that the algorithm described later
can always find a subgradient, which is required for the computation. In
addition, Proposition (P4) shows that the normalized vector of a subgradi-
ent is also a subgradient. Our algorithm implicitly uses this property for
choosing a subgradient whose norm is 1.

A subgradient in ∂?f(·) is computable when, for example, the func-
tional is formed as a fractional function, a typical instance of a quasiconvex
function, with concrete conditions. The following proposition gives the con-
ditions for the quasiconvexity and subgradient computability of fractional
functions.

2Furthermore, the other four kinds of subdifferential presented in [31, Section 5] are
also contained in the subdifferential ∂?f(x). Please refer to [31, Proposition 6] for more
details.
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Proposition 2.3 ([22, Lemma 3 (i), 4]). Let a be a convex functional on
H, and let b be a finite, positive functional on H. Suppose that f(x) :=
a(x)/b(x) for any x ∈ H, the interior of dom(f) is convex, and one of the
following conditions holds:

(i) b is affine;

(ii) a is nonnegative on the interior of dom(f) and b is concave;

(iii) a is nonpositive on the interior of dom(f) and b is convex.

Then, the functional f is a quasiconvex functional on the interior of dom(f).
Furthermore, the functional (a−αb)(·) is convex and ∂(a−αb)(x) ⊂ ∂?f(x)
for any x ∈ H, where α := f(x) and ∂(a− αb) is the usual Fenchel subdif-
ferential of the functional (a− αb)(·).

The following defines a property named the Hölder condition of a func-
tional. This property is used in turn to describe some of the properties of the
quasi-subgradient and to establish the convergence of subgradient methods
[13, Section 2].

Definition 2.1 (Hölder condition [23, Definition 1]). A functional f : H →
R is said to satisfy the Hölder condition with degree β > 0 at a point x ∈ H
on a set M ⊂ H if there exists a number L ∈ R such that

|f(z)− f(x)| ≤ L ‖z − x‖ β (z ∈M).

The Hölder condition with degree 1 is equivalent to Lipschitz continu-
ity. Furthermore, when f is a convex functional, it is also equivalent to the
bounded subgradient assumption frequently assumed in convergence anal-
yses of subgradient methods for solving convex optimization problems [13,
Section 2]. For more details on this property, see Example 3.1 described
later.

The following Proposition 2.4 is a key lemma which relates the distance
to the set of minima to its functional value. While nearly the same assertion
in Euclidian spaces is presented in [23, Proposition 2.1], this proposition
extends it to Hilbert spaces. We should remark that the condition for a
point x is slightly modified from the original one for the later discussion.
Nevertheless, we can similarly prove this proposition.

Proposition 2.4 ([23, Proposition 2.1]). Suppose that the functional f sat-
isfies the Hölder condition with degree β > 0 at a point x? ∈ X? on the set
cl(lev<f(x) f) for some point x ∈ H such that f? < f(x). Then, we have

f(x)− f? ≤ L 〈g, x− x?〉 β (g ∈ ∂?f(x) ∩ S).
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The following propositions are used to prove the theorems presented
later.

Proposition 2.5 ([30, Lemma 1]). Let {xk} be a sequence in the Hilbert
space H and suppose that it converges weakly to x. Then for any y 6= x,
lim infk→∞‖xk − x‖ < lim infk→∞‖xk − y‖.

Proposition 2.6 ([1, Proposition 10.25]). Every quasiconvex continuous
functional on a real Hilbert space H has weakly lower semicontinuity. That
is to say, we have f(x) ≤ lim infn→∞ f(xn) for any sequence {xn} ⊂ H
which converges weakly to a point x ∈ H if the functional f is a quasiconvex
continuous functional on a real Hilbert space H.

Proposition 2.7 ([1, Proposition 11.8]). Let C be a convex subset of H,
and let f be a strictly quasiconvex functional on the Hilbert space H, i.e.,
f(αx + (1 − α)y) < max{f(x), f(y)} for any α ∈ (0, 1) and for any two
distinct points x, y ∈ H. Then, f has at most one minimizer over C.

3. Quasiconvex Subgradient Method over a Fixed Point Set

We propose the following Algorithm 1 for solving Problem 2.1 with As-
sumption 2.1. This algorithm iteratively generates the next point xk+1 from

Algorithm 1 Fixed Point Quasiconvex Subgradient Method for Solving
Problem 2.1

Require:
f : H → R, T : H → H, D ⊂ H;
{vk} ⊂ (0,∞), {αk} ⊂ (0, 1].

Ensure:
{xk} ⊂ D.

1: x1 ∈ D.
2: for k = 1, 2, . . . do
3: gk ∈ ∂?f(xk) ∩ S.
4: xk+1 := PD(αkxk + (1− αk)T (xk − vkgk)).
5: end for

the current approximation xk in order to improve it. Specifically, step 3 of
this algorithm finds a regularized subgradient of the functional f at the cur-
rent approximation xk. Step 4 is composed of two improving iterators: one
is the subgradient method iterator xk−vkgk to improve approximations with
respect to the functional value, and the other is the Krasnosel’skĭı-Mann it-
erator [24, 27] αk Id +(1− αk)T to improve approximations with respect to
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the distance to the fixed point set Fix(T ). To ensure that the generated
sequence is contained in the set D, we project each generated point onto
this set (this operation is optional because the metric projection operator
PD coincides with the identity mapping Id if the set D is the whole space
H). By repeating steps 3–4, this algorithm generates a sequence converging
to a point in the solution set X?.

Before moving on to the convergence analyses, we will give the assump-
tions and lemmas describing the fundamental properties of Algorithm 1.

Assumption 3.1. (A4) For any k ∈ N such that f? < f(xk) and for all
x? ∈ X?, the functional f satisfies the Hölder condition with degree
β > 0 at the point x? on the set cl(lev<f(xk) f).

(A5) The generated sequence {xk} is bounded.

(A6) The real sequence {αk} ⊂ (0, 1] satisfies 0 < lim infk→∞ αk ≤ lim supk→∞ αk <
1.

In the following, we have to ensure that Assumption (A5), i.e., the
boundedness of the sequence generated by Algorithm 1, holds. If we know
the estimated range of the solution candidates, the simplest way to bound
the generated sequence is to let the set D be a ball with a large enough
diameter. We can compute the metric projection onto a closed ball easily
[1, Example 3.18]. For example, giving 1016B as the set D to Algorithm 1
satisfies Assumption (A5). Even when the boundedness of the set D cannot
be guaranteed, we can ensure the boundedness of the generated sequence if
the objective functional is coercive. A detailed discussion and proof of this
fact is given in Appendix A.

Here let us give some examples which satisfy Assumption 3.1. The first
example shows the applicability of Algorithm 1 to constrained convex opti-
mization problems.

Example 3.1 ([1, Remark 4.34.(iii), Propositions 4.47 and 16.20]). Sup-
pose that f is a continuous, convex functional on H, T̃ is a nonexpansive
mapping of H into itself, and D is a closed, bounded, convex subset of H.
Set T := (Id +T̃ )/2. Furthermore, assume that the feasible set Fix(T ) ∩D
is nonempty. Set αk := 1/2 for every k ∈ N. If H is finite-dimensional, or
if the usual Fenchel subdifferential of f maps every bounded subset of H to
a bounded set, then T is a firmly nonexpansive mapping, Fix(T ) coincides
with the intersection Fix(T ), and Assumption 3.1 holds.

This example shows that, if the set D is bounded, our algorithm can be
applied to nonsmooth convex optimization problems over fixed point sets of
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nonexpansive mappings [16, 17, 18, 19]. The following discussion is predi-
cated upon Assumption (A5), i.e., that the generated sequence is bounded,
since it is required for evaluating the distance between the generated se-
quence and the fixed point set (Lemma 3.2). Indeed, the existing analysis
of the fixed point subgradient method for convex optimization assumes the
generated sequence is bounded [15, Assumption (A2)], [16, Assumption 3.1].
However, we can guarantee the boundedness. As we described above, the
simplest D that satisfies the requirements is a ball with a large enough
diameter.

The transformation T̃ 7→ (Id +T̃ )/2 converts the given nonexpansive
mapping T̃ into a corresponding firmly nonexpansive mapping T whose fixed
point set coincides with the given one [1, Remark 4.37 and Proposition 4.47].
This implies that any nonexpansive mapping whose fixed point set coincides
with the constraint set can be used as T̃ . Of course, since any metric pro-
jection operator is a firmly nonexpansive mapping [1, Proposition 4.16], we
can solve an optimization problem over the constraint set onto which the
metric projection can be computed. In Section 4, we will describe a concrete
example of constructing a firmly nonexpansive mapping. Furthermore, our
algorithm extends the existing subgradient methods for convex optimization,
since any of the usual Fenchel subgradients of a convex functional is also a
subgradient as defined in this paper. Hence, the convergence analyses of
our algorithm (described later) will be very useful for not only quasiconvex
optimization [11, 13, 22, 23] but also convex optimization [16, 17, 18, 19].

Let us consider the simplest example of a (nonconvex) quasiconvex ob-
jective functional. The next example shows that a typical quasiconvex
functional, called the capped-l1 norm, appearing in sparse regularization
of machine learning tasks [5, Equation (25)], [38, Appendix C.3.1] can be
minimized using Algorithm 1.

Example 3.2. Let f(x) := min{‖x‖, α} for some α > 0, and let T := Id.
Set {vk} ⊂ (0, α] and αk := 1/2 for all k ∈ N. Use gk := xk/‖xk‖ ∈
∂?f(xk)∩ S for each k ∈ N until xk reaches the solution. Then, this setting
satisfies Assumption 3.1.

Here we should remark that Assumption 3.1 does not guarantee that
the sequence generated by Algorithm 1 converges to some optimum. For
example, let us consider the case where f(x) := min{|x|, 1} for any real x ∈ R
and the initial point x1 := 3/2. Even though it violates the assumption of
Example 3.2, let us assume vk := 2 for all k ∈ N. Then, this setting still
satisfies Assumption 3.1. However, as illustrated in Figure 1, we can see
that the generated sequence does not converge to an optimum. In each
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Figure 1: Illustration of case where the generated sequence repeats 1/2 and −1/2 and
does not converge to the origin.

step, the approximation is moved in the direction of the origin by 1. In this
counterexample, the first step moves the initial point 3/2 to the point 1/2.
After that, the algorithm eternally iterates so as to move approximations to
their symmetric point with respect to the origin. Therefore, the generated
sequence repeats 1/2 and −1/2 and does not converge to the optimum 0.
The convergence theorems presented later describes what is required to make
the generated sequence converge to the optimum and/or how much error can
occur in the solution.

Finally, we present a concrete application that can be dealt with as a
quasiconvex optimization problem. The following fractional programming
problem is called the Cobb-Douglas production efficiency problem and sat-
isfies Assumption 3.1.

Example 3.3 ([3, Problem (3.13)], [11, Problem (6.1))], [35, Section 1.7]).
Let us consider the problem in Euclidean space; i.e., suppose that H := Rn.
Set D := [0,M ]n for some M > 0, and set αk := 1/2 for any k ∈ N. We
give two positive scalars a0, c0 > 0 and two n-dimensional positive vectors
in advance, a, c ∈ (0,∞)n such that

∑n
i=1 ai = 1. Let

f(x) :=

−a0
∏n
j=1 x

aj
j

〈c,x〉+c0 (x ∈ [0,∞)n),

0 (otherwise),

and assume that T is a nonexpansive mapping from Rn to itself and Fix(T )∩
D 6= ∅ holds. Run Algorithm 1 with an initial point x1 ∈ [0,M ]n. Then,
Assumption 3.1 holds.

In Section 4, we will define the Cobb-Douglas production efficiency prob-
lem and show the numerical behavior of Algorithm 1 when it solves a con-
crete instance of this problem. Hence, we will put off explaining the problem
in detail till later and limit ourselves here to a brief description.

14



The Cobb-Douglas production efficiency problem was introduced by Bradley
and Frey [3]. Hu, Yang, and Sim proposed an algorithm for solving this prob-
lem by regarding it as a constrained quasiconvex optimization problem [11].
The fact that the objective functional f is quasiconvex allows us to treat
it as a quasiconvex optimization problem. The study by Hu et al. [11] is
also based on this fact; it ensures the quasiconvexity of the objective func-
tional. However, the existing results including that of [11] assume that the
projection onto the constraint set is easily computable.

Let us consider the meaning of this objective function. The numera-
tor expresses the total profit defined by the production factors xj for each
j = 1, 2, . . . , n. This numerator is modeled with the Cobb-Douglas produc-
tion function. In this problem, we consider the total cost for the production
activities to be an affine function with respect to the production factors
{xj}nj=1. This cost function is set as the denominator of the objective func-
tion. Hence, the objective function f represents the ratio of the total profit
and the total cost. In addition, it is known that the numerator, i.e., the
Cobb-Douglas production function, is convex [26, Section 2], and therefore,
Proposition 2.3 guarantees that f is quasiconvex.

The sequence generated by Algorithm 1 must be contained in the box
[0,M ]n, because its complement includes points that make the denominator
of the function f zero. Therefore, we set the domain to D = [0,M ]n ⊂
[0,∞)n. However, from the definition of f , setting f(x) := 0 when x is out
of the set [0,∞)n makes it possible to expand its domain to the whole space
while maintaining continuity.

The following lemmas show the fundamental properties of Algorithm 1.

Lemma 3.1. Let {xk} ⊂ H be a sequence generated by Algorithm 1. Sup-
pose that Assumptions 2.1 and (A4) hold. Then, for any k ∈ N that satisfies
f? < f(xk), the following inequality holds.

‖xk+1 − x?‖ 2 ≤ ‖xk − x?‖ 2 − 2vk(1− αk)
(
f(xk)− f?

L

) 1
β

+ (1− αk)v2
k.

Similar lemmas are presented in the literature that discuss algorithms
which use the metric projection onto the constraint set [12, Lemma 3.1],
[13, Lemma 3.2], [22, Lemma 6]. This implies that the generated sequence
is guaranteed to be contained in the constraint set. Therefore, the proofs
of these lemmas use a property which ensures xk ∈ X ∩D and f? ≤ f(xk).
However, the algorithm presented here generates a sequence that may not be
in the fixed point set of T , in other words, it may be out of the feasible set.
The convergence analyses are carefully divided into cases where f? < f(xk)

15



holds and cases where it does not hold. The above lemma describes that
the existing results hold for the proposed algorithm only if the positive case
f? < f(xk) holds and even if the containedness of the generated sequence in
the fixed point set cannot be guaranteed.

Proof. See Appendix C for the proof of this lemma.

Lemma 3.2. Let {xk} ⊂ H be a sequence generated by Algorithm 1. Sup-
pose that Assumptions 2.1 and (A5) hold and the real sequence {vk} is
bounded. Then, for each x ∈ Fix(T ) ∩D, there exists M1 ≥ 0 such that

‖xk+1 − x‖ 2 ≤ ‖xk − x‖ 2 − (1− αk) ‖xk − T (xk − vkgk)‖ 2 + vkM1 (k ∈ N).

Proof. See Appendix C for the proof of this lemma.

3.1. Constant step-size rule

The following theorem shows how precise the generated solution is when
the constant step-size rule is used.

Theorem 3.1. Let v > 0 and vk := v for all k ∈ N and {xk} ⊂ H be a
sequence generated by Algorithm 1. Suppose that Assumptions 2.1 and 3.1
hold. Then, the sequence {xk} satisfies

lim inf
k→∞

f(xk) ≤ f? + L
(v

2

)β
, and lim inf

k→∞
‖xk − T (xk)‖ 2 ≤Mv

for some M ≥ 0.

Proof. See Appendix D for the proof of this theorem.

3.2. Diminishing step-size rule

Finally, we prove the weak convergence theorem of Algorithm 1. To let
the generated sequence weakly converge to some optimum, we can use a spe-
cific step-size called a diminishing step-size. The following theorem describes
this condition and shows that the generated sequence weakly converges.

Theorem 3.2. Let {xk} ⊂ H be a sequence generated by Algorithm 1.
Suppose that

(i) Assumptions 2.1 and 3.1 hold,

(ii) and the real sequence {vk} ⊂ (0,∞) satisfies

lim
k→∞

vk = 0, and
∞∑
k=1

vk =∞.
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Then, there exists a subsequence of the generated sequence {xk} which con-
verges weakly to a point in X?. In addition, if

(iii) the whole space H is an N -dimensional Euclidean space RN ,

(iv) and the solution x? ∈ X? is unique,

then, the whole sequence {xk} converges to this unique solution x?.

Assumption (A3) and Proposition 2.7 show that the strict quasiconvexity
of the objective function is a sufficient condition for the uniqueness of the
solution x? ∈ X?.

Before proving the above theorem, we prove the following lemma which
will be needed later.

Lemma 3.3. Suppose that Assumptions 2.1 and 3.1 hold, and suppose that
the real sequence {vk} ⊂ (0,∞) satisfies

lim
k→∞

vk = 0, and
∞∑
k=1

vk =∞.

Let {xk} ⊂ H be the sequence generated by Algorithm 1 with this real se-
quence {vk}. Then,

lim inf
k→∞

f(xk) ≤ f?

holds.

Proof. See Appendix E for the proof of this theorem.

Now let us prove Theorem 3.2 with the above result.

Proof of Theorem 3.2. Let the limit superior of the real sequence {αk} be
denoted by ᾱ ∈ (0, 1). Fix x? ∈ X? arbitrarily. We will prove the assertion
by separating the problem into two cases: the case where there exists a
number k0 ∈ N such that ‖xk+1 − x?‖ ≤ ‖xk − x?‖ for all k ≥ k0, and its
negation.

First, let us consider the positive case; i.e., there exists a number k0 ∈ N
such that ‖xk+1 − x?‖ ≤ ‖xk − x?‖ for all k ≥ k0. The property of the
limit superior guarantees the existence of a number k1 ≥ k0 such that αk <
ᾱ + (1− ᾱ)/2 for all k ≥ k1. Therefore, applying this relationship between
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ᾱ and αk to Lemma 3.2, an estimate of ‖xk − T (xk − vkgk)‖ for any k ≥ k1

can be obtained as follows:

1

2
(1− ᾱ) ‖xk − T (xk − vkgk)‖ 2 ≤ (1− αk) ‖xk − T (xk − vkgk)‖ 2

≤ ‖xk − x?‖ 2 − ‖xk+1 − x?‖ 2 + vkM1.
(2)

In this case, the monotonicity and boundedness of the subsequence {‖xk −
x?‖}k≥k1 are assured. Hence, this subsequence converges to some nonnega-
tive real. Since we have assumed that the real sequence {vk} converges to
zero, the left-hand side of inequality (2) converges to zero. On the other
hand, ‖xk − T (xk)‖ for each k ∈ N can be expanded with the triangle in-
equality and by noting the nonexpansivity of T as follows:

‖xk − T (xk)‖ ≤ ‖xk − T (xk − vkgk)‖+ ‖T (xk − vkgk)− T (xk)‖
≤ ‖xk − T (xk − vkgk)‖+ vk.

From the assumption of this theorem and the previous discussion, both terms
on the right-hand side above converge to zero with respect to k. Hence, we
find that the real sequence {‖xk − T (xk)‖} converges to zero.

The property of the limit inferior of the real sequence {f(xk)} guaran-
tees the existence of a subsequence {f(xki)} converging to lim infk→∞ f(xk).
Note that Lemma 3.3 asserts that this limit inferior is less than or equal to
the minimum value f?. There exist a point u ∈ H and a subsequence
{xkij } ⊂ {xki} converging weakly to the point u, since {xki} is a bounded

sequence in H. Now, suppose that u is not a fixed point of T . Since the
real sequence {‖xk − T (xk)‖} converges to zero and T is a nonexpansive
mapping, Proposition 2.5 produces a contradiction as follows:

lim inf
j→∞

∥∥∥xkij − u∥∥∥ < lim inf
j→∞

∥∥∥xkij − T (u)
∥∥∥

≤ lim inf
j→∞

(∥∥∥xkij − T (xkij)∥∥∥+
∥∥∥T (xkij )− T (u)

∥∥∥)
≤ lim inf

j→∞

∥∥∥xkij − u∥∥∥ .
Therefore, we can see that u is a fixed point of T . Proposition 2.6 means
that the objective functional f has weakly lower semicontinuity. The weak
convergence of the sequence {xkij } implies

f(u) ≤ lim inf
j→∞

f(xkij ) = lim
i→∞

f(xki) ≤ f?;
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that is, u is an optimum.
To deal with the positive case, let us consider the weak convergence of

{xk} and its subsequences. Take another subsequence {xkil} ⊂ {xki} that
converges weakly to a point v ∈ H. A similar discussion to the one for
obtaining u ∈ X? ensures that the point v is also an optimum. To show the
uniqueness of the weak accumulation points of the sequence {xki}, let us as-
sume that u 6= v. Since the sequence {‖xk−x?‖} converges, Proposition 2.5
leads us to a contradiction:

lim
k→∞

‖xk − u‖ = lim
j→∞

∥∥∥xkij − u∥∥∥ < lim
j→∞

∥∥∥xkij − v∥∥∥
= lim

j→∞
‖xk − v‖ = lim

l→∞

∥∥∥xkil − v∥∥∥ < lim
l→∞

∥∥∥xkil − u∥∥∥
= lim

k→∞
‖xk − u‖ .

Hence, we can see that u is the same point as v, and the uniqueness of all
weak accumulation points of the sequence {xki} is proven. This uniqueness
implies that the sequence {xki} converges weakly to u ∈ X?. Now take
another subsequence {xkm} ⊂ {xk} that converges weakly to a point w ∈ H,
and suppose that u is a different point from v. From the fact that the
sequence {‖xk − x?‖} converges and from Proposition 2.5, we can deduce
that

lim
k→∞

‖xk − u‖ = lim
i→∞
‖xki − u‖ < lim

i→∞
‖xki − w‖

= lim
j→∞

‖xk − w‖ = lim
m→∞

‖xkm − w‖ < lim
m→∞

‖xkm − u‖

= lim
k→∞

‖xk − u‖ .

However, this is a contradiction. Hence, the sequence {xk} converges weakly
to some optimum. This proves the positive case.

Next, let us consider the negative case, in other words, the case where a
subsequence {xki} ⊂ {xk} exists that satisfies ‖xki − x?‖ < ‖xki+1− x?‖ for
all i ∈ N. A similar discussion to the one for finding the number k1 in the
positive case guarantees the existence of i0 ∈ N satisfying αki < ᾱ+(1−ᾱ)/2
for all i ≥ i0. The distances from the point x? to each point xki+1 where
i ≥ i0 from Lemma 3.2 are as follows:

‖xki+1 − x‖ 2 ≤ ‖xki − x‖
2 − (1− αki) ‖xki − T (xki − vkigki)‖

2 + vkiM1

≤ ‖xki − x‖
2 − 1

2
(1− ᾱ) ‖xki − T (xki − vkigki)‖

2 + vkiM1.
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Here, we have assumed that ‖xki+1 − x?‖ is greater than ‖xki − x?‖ for
all i ∈ N and the real sequence {vk} converges to zero. Thus, the above
inequality implies that the real sequence {‖xki−T (xki−vkigki)‖} converges
to zero with respect to i. On the other hand, the distances ‖xki − T (xki)‖
for each i ∈ N can be estimated from the nonexpansivity of T as follows:

‖xki − T (xki)‖ ≤ ‖xki − T (xki − vkigki)‖+ ‖T (xki − vkigki)− T (xki)‖
≤ ‖xki − T (xki − vkigki)‖+ vki .

Since both terms of the right-hand side of the above inequality converge to
zero, the left-hand side also converges to zero.

We will proceed by way of contradiction; suppose that lim supi→∞ f(xki) >
f?. This implies the existence of δ > 0 and a subsequence {xkij } ⊂ {xki}
such that f? + δ < f(xkij ) for all j ∈ N. Since ‖xki − x?‖ < ‖xki+1 − x?‖
and f? < f(xkij ) hold for any j ∈ N, we can use Lemma 3.1 to get

vkij

(
1− αkij

)(
2

(
δ

L

) 1
β

− vkij

)
< 0

for all j ∈ N. The above inequality does not hold for sufficiently large
j ∈ N, since the real sequence {vk} converges to zero. Therefore, we arrive
at a contradiction, and thus, lim supi→∞ f(xki) ≤ f?.

The boundedness of the sequence {xki} guarantees the existence of a
subsequence {xkij } ⊂ {xki} that weakly converges to some point u ∈ H. To

show that u is a fixed point of the mapping T , let us assume that it is not.
Recall that the real sequence {‖xki−T (xki)‖} converges to zero. Hence, the
nonexpansivity of T together with Proposition 2.5 produces a contradiction,

lim inf
j→∞

∥∥∥xkij − u∥∥∥ < lim inf
j→∞

∥∥∥xkij − T (u)
∥∥∥

≤ lim inf
j→∞

(∥∥∥xkij − T (xkijl
)
∥∥∥+

∥∥∥T (xkij )− T (u)
∥∥∥)

≤ lim inf
j→∞

∥∥∥xkij − u∥∥∥ .
Therefore, we have u ∈ Fix(T ). In addition, Proposition 2.6 means that the
objective functional f has weakly lower semicontinuity. Hence,

f(u) ≤ lim inf
j→∞

f(xkij ) ≤ lim sup
i→∞

f(xki) ≤ f?

holds. This implies conclusively that there exists a subsequence of {xk}
which weakly converges to the optimum u ∈ X?.

We omit the proof of the additional part of this theorem. The complete
proof is in Appendix F.
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4. Numerical Experiments

To confirm that Algorithm 1 converges to the optimum and evaluate
its performance, we ran it and an existing algorithm [22, Algorithm (14)]
on a concrete constrained quasiconvex optimization problem, i.e., the Cobb-
Douglas production efficiency problem [3, Problem (3.13)], [11, Problem (6.1)],
[35, Section 1.7]. Let us redefine Example 3.3 with concrete constraints as
follows.

Problem 4.1 ([3, Problem (3.13)], [11, Problem (6.1)], [35, Section 1.7]).
Suppose that H := Rn. Let a0, c0 > 0 and let a, c ∈ (0,∞)n such that∑n

i=1 ai = 1. Furthermore, let bi ∈ [0,∞)n, p
i
∈ [0,∞)n, and pi ∈ (0,∞]n

for i = 1, 2, . . . ,m. Then, we would like to

minimize f(x) :=

−a0
∏n
j=1 x

aj
j

〈c,x〉+c0 (x ∈ [0,∞)n),

0 (otherwise),

subject to p
i
≤ 〈bi, x〉 ≤ pi (i = 1, 2, . . . ,m),

x ∈ D := [0,M ]n,

where M > 0.

This problem is an instance of Example 3.3. Indeed, metric projections
onto any closed half spaces, including boxes, can be computed explicitly [1,
Example 29.20], and the transformations (T1–2) enable us to build a firmly
nonexpansive mapping whose fixed point set coincides with their intersec-
tion. Our GitHub repository, https://github.com/iiduka-researches/
201811-kaz, provides the means to make a metric projection onto a given
half space and the transformations (T1–2). We used these implementation
in the following experiments.

Before discussing our experiments, let us examine the background of
this problem. The goal is to find the most efficient production factors under
funding-level restrictions [11, Section 6]. As mentioned in Section 3, the
objective function f represents the ratio between the total profit (what is
obtained) and the total cost (how much expenditure is required) as an effi-
ciency indicator. We also described how the total profit and the total cost
are modeled in Section 3. The total profit is the numerator of the objective
function and is modeled with the Cobb-Douglas production function on the
production factors x ∈ Rn. The total cost is the denominator of the ob-
jective function and is modeled with the affine function on the production
factors x ∈ Rn. There are a variety of constraints on the funding level [11,
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Section 6]. These constraints represent the duties and restrictions of each
production project i = 1, 2, . . . ,m. These indicators are modeled with affine
functions and we set two parameters p

i
, qi as lower and upper bounding

constraints to the indicator of each project i = 1, 2, . . . ,m.
We conducted numerical experiments in three cases. First, in the un-

bounded constraint case, which is treated in the existing literature [11], we
set M := 100 and did not guarantee the uniqueness of the optima, which is
required for letting the generated sequence converge. Second, in the bounded
constraint case, we set M := 100 and guaranteed the uniqueness of optima,
as shown in Section 3. In practice, we cannot manufacture products infinitely
because there are many restrictions on the amount of materials, capital, hu-
man resources, number and/or capacity of machines, environments, and so
on. Therefore, this case has realistic experimental assumptions for optimiz-
ing production efficiency. Furthermore, we conducted an optimization over
the generalized convex feasible sets.

We compared Algorithm 1 with the exact quasi-subgradient method
(QSM) [22, Algorithm (14)]. In order for it to run, this algorithm re-
quires a computation of the metric projection onto the feasible set X ∩
D. Here, we used a trust-region algorithm for constrained optimization,
trust-constr, implemented as the scipy.optimize.minimize solver pro-
vided by the SciPy fundamental library for scientific computing [21]. This
algorithm also requires the step-sizes {vk} for it to run. We set its error tol-
erance a tenth of vk for each k = 1, 2, . . .. That is, we solved the subproblem
to

find ‖xk+1 − (xk − vkgk)‖ 2 ≤ min
u∈X
‖u− (xk − vkgk)‖ 2 +

vk
10

subject to xk+1 ∈ X,

as the computation of the metric projection in step 4 with the existing
optimization solver.

In contrast to the existing algorithm which finds the metric projection
onto the constraint set in the above way, we constructed a firmly nonexpan-
sive mapping whose fixed point set coincides with the constraint set and gave
it to Algorithm 1. Here, the constraint set is the intersection of the half-
spaces {x : p

i
≤ 〈bi, x〉} and {x : 〈bi, x〉 ≤ pi} for i = 1, 2, . . . ,m. The metric

22



projection onto each half-space can be easily computed [1, Example 29.20]:

P{x:p
i
≤〈bi,x〉}(x) :=

{
x (p

i
≤ 〈bi, x〉),

x+
p
i
−〈bi,x〉
‖bi‖2 bi (otherwise)

,

P{x:〈bi,x〉≤pi}(x) :=

{
x (〈bi, x〉 ≤ pi),
x+ pi−〈bi,x〉

‖bi‖2 bi (otherwise)

for all i = 1, 2, . . . ,m and for any x ∈ H. To construct a nonexpansive
mapping whose fixed point set coincides with the intersection of the above
sets, we use the transformation (T1) and construct

T̃ (x) :=
1

m

m∑
i=1

P{x:p
i
≤〈bi,x〉}(x) + P{x:〈bi,x〉≤pi}(x)

2

for any x ∈ H. This mapping T̃ is nonexpansive, but not firmly non-
expansive. Therefore, we convert the nonexpansive mapping T̃ into the
corresponding firmly nonexpansive one T by using the transformation (T2):

T :=
Id +T̃

2
.

We gave T to Algorithm 1 in the experiment.
Our experimental environment was as follows: Python 3.6.6 with NumPy 1.15.0

[29] and SciPy 1.1.0 [21] libraries on macOS High Sierra version 10.13.6 on
Mac Pro (Late 2013) with a 3 GHz 8 Cores Intel Xeon E5 CPU and 32GB
1800MHz DDR3 memory. We used the time.process time method for the
evaluating computational time of each algorithm. The method was imple-
mented with the clock gettime(2) system call and had a 10−6 second reso-
lution. Our GitHub repository, https://github.com/iiduka-researches/
201811-kaz, provides the codes that were used in the experiments. It has
the implementations of Algorithm 1 and QSM and miscellaneous utilities
including higher-order functions to be used for composing a nonexpansive
mapping.

We ran Algorithm 1 and QSM with five different randomly chosen initial
points, limited their computational time to ten seconds, and evaluated the
average of the computed number of iterations k and the following values:

Vfunc :=
1

8

8∑
i=1

f(x?(i)), Vdist :=
1

8

8∑
i=1

∥∥∥x?(i) − T (x?(i))
∥∥∥ ,

where x?(i) is the solution obtained for each sampling i = 1, 2, . . . , 8.
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4.1. Unbounded constraint case

Here, we ran Algorithm 1 and QSM on Problem 4.1 with the following
settings: n := 100; m := 100; a0, c0 ∈ (0, 10], ã ∈ (0, 1]n, c ∈ (0, 10]n were
chosen randomly; a := ã/

∑n
i=1 ai; bi ∈ [0, 1)n, p

i
∈ [0, 25‖bi‖) were chosen

randomly for each i = 1, 2, . . . ,m; pi := ∞ for all i = 1, 2, . . . ,m; and
M := +∞.

The experimental results are shown in Table 1. The proposed algorithm

Table 1: Results of unbounded constraint case.

k Vfunc Vdist

Alg. 1 (vk := 10−1) 11495.5 -0.00092189 3.18571477× 10−13

Alg. 1 (vk := 10−2) 11539.5 -0.00061939 3.17169706× 10−13

Alg. 1 (vk := 10−3) 11459.2 -0.00049238 3.10991757× 10−13

Alg. 1 (vk := 10−1/k) 11474.5 -0.00046070 3.05626418× 10−13

Alg. 1 (vk := 10−2/k) 11264.5 -0.00045498 3.16790812× 10−13

Alg. 1 (vk := 10−3/k) 11318.4 -0.00045426 3.28061131× 10−13

QSM (vk := 10−1) 160.4 -0.00050596 4.04768150× 10−13

QSM (vk := 10−2) 39.6 -0.00045707 4.12640954× 10−13

QSM (vk := 10−3) 25.1 -0.00045306 4.00174170× 10−13

QSM (vk := 10−1/k) 36.1 -0.00045750 4.23263890× 10−13

QSM (vk := 10−2/k) 26.6 -0.00045353 3.99258739× 10−13

QSM (vk := 10−3/k) 20.5 -0.00045275 4.10328799× 10−13

(Algorithm 1) can iterate the computation more times than the existing
one within the same computational time. Algorithm 1 does not require any
subproblem to be solved, while QSM requires one to be solved in order to
find a metric projection onto the constraint set. Therefore, the required time
for computing an iteration of Algorithm 1 is much less than that of QSM.
According to the values of D, both Algorithm 1 and QSM for any step-
size (and no matter whether a constant or diminishing step-size rule was
used) can obtain the solution belonging to the constraint set. Indeed, our
experimental environment (NumPy) used the float64 data type (double
precision float: sign bit, 11-bit exponent, and 52-bit mantissa) to express
a real number, and its resolution is 10−15. By considering the number of
dimensions as well, we can regard all values of D to be almost zero. Let us
examine the functional values of the obtained solutions. When we applied
Algorithm 1 and QSM to the problem with the same step-size, we found that
the function value of the solution obtained by Algorithm 1 is better than
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that of QSM. In particular, the function value obtained by Algorithm 1 with
vk := 10−1 is nearly twice as good as QSM with the same step-size. Since
Algorithm 1 can iterate the main loop more times than QSM, it can reduce
the functional value sufficiently.

4.2. Bounded constraint case

Next, we evaluated Algorithm 1 and QSM when they were run with the
following settings: n := 100; m := 100; a0, c0 ∈ (0, 10], ã ∈ (0, 1]n, c ∈
(0, 10]n were chosen randomly; a := ã/

∑n
i=1 ai; bi ∈ [0, 1)n, p

i
∈ [0, 25‖bi‖),

pi ∈ (75‖bi‖, 100‖bi‖] were chosen randomly for each i = 1, 2, . . . ,m; and
M := 100. As shown in Example 3.3, this case satisfies Assumption 3.1.
Therefore, the sequence generated by Algorithm 1 is guaranteed to converge
to some optimum.

The experimental results are shown in Table 2. The existing algorithm

Table 2: Results of bounded constraint case.

k Vfunc Vdist

Alg. 1 (vk := 10−1) 6254.0 -0.00092536 1.21925957× 10−13

Alg. 1 (vk := 10−2) 6208.9 -0.00050503 5.22534774× 10−3

Alg. 1 (vk := 10−3) 6276.1 -0.00019717 6.42589842× 10−4

Alg. 1 (vk := 10−1/k) 6293.8 -0.00014214 1.28281187× 10−5

Alg. 1 (vk := 10−2/k) 6245.6 -0.00014163 8.56673942× 10−6

Alg. 1 (vk := 10−3/k) 6294.0 -0.00014162 8.33884360× 10−6

All Results of QSM 0.0 — —

(QSM) with all step-size rules could not compute even one iteration within
the time limit, 10 seconds. QSM required about 15 seconds to compute the
first iteration. In this case, QSM must compute the metric projection onto
the intersection of two hundred halfspaces and a box, but this intersection is
too complex in shape to compute quickly. Therefore, it could not deal with
this instance. In contrast, Algorithm 1 solved this instance. In particular,
Algorithm 1 with vk := 10−1 found the solution having the best function
value and belonging to the constraint set. Therefore, it can solve problems
even if their constraint sets have complex shapes.

4.3. Optimization over generalized convex feasible sets

Finally, let us consider the case in which conflicts of constraints exist,
i.e., the intersection of the constraint sets may be empty. Even in this
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case, the proposed algorithm can be used if the constraints are extended to
generalized convex feasible sets, such as described in Section 2.

In the two previous subsections, we computed the metric projection with
the constrained smooth optimization solver provided by the SciPy library.
However, it is difficult to find the metric projection onto the set of minimizers
of the functional (1) due to the discontinuity of its Hessian matrix and the
complexity of the problem. Therefore, in this subsection, we will examine
only the performance of Algorithm 1.

The settings of this experiment were as follows: n := 100; m := 100;
a0, c0 ∈ (0, 10], ã ∈ (0, 1]n, c ∈ (0, 10]n were chosen randomly; a := ã/

∑n
i=1 ai;

bi ∈ [0, 1)n, p
i
, pi ∈ [0, 100‖bi‖) were chosen randomly for each i = 1, 2, . . . ,m;

and M := +∞. The existence of a constraint i ∈ {1, 2, . . . ,m} which sat-
isfies pi < p

i
was guaranteed. This implies that the intersection of at least

one pair of constraints is empty. We used [19, Definition (9)] for construct-
ing a firmly nonexpansive mapping whose fixed point set coincides with
the constraint set. As in the previous subsection, this case also satisfies
Assumption 3.1.

The experimental results are shown in Table 3. Algorithm 1 solved the

Table 3: Results of bounded constraint case.

k Vfunc Vdist

Alg. 1 (vk := 10−1) 4988.9 -0.00015650 2.48927983× 10−1

Alg. 1 (vk := 10−2) 4914.4 -0.00012585 2.58656058× 10−1

Alg. 1 (vk := 10−3) 4833.6 -0.00012377 2.59531605× 10−1

Alg. 1 (vk := 10−1/k) 4823.4 -0.00012363 2.59665629× 10−1

Alg. 1 (vk := 10−2/k) 4818.4 -0.00012378 2.59656373× 10−1

Alg. 1 (vk := 10−3/k) 4773.6 -0.00012380 2.59626252× 10−1

problem similarly for each step-size rule; the results scarcely depended on
the step-size rule. With a constant step-size vk = 10−1 for all k ∈ N, it gave
the best score in terms of Vfunc and Vdist. Although the time required for
computing one iteration exceeded those of the two previous experiments, it
approximated the solution of this complicated problem in 10 seconds.

5. Conclusion

We proposed the novel algorithm for solving the constrained quasiconvex
optimization problem even if the metric projection onto its constraint set
cannot be computed easily. We showed its convergence for constant and
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diminishing step-size rules. When the step-size is constant, the limit inferiors
of the functional value and the degree of approximation to the fixed point
are guaranteed to be optimal and tolerate errors proportioned to the step-
size. When the step-size is diminishing, the existence of a subsequence of
the generated sequence such that it converges to the solution of the problem
is ensured. Furthermore, when the problem satisfies certain conditions, the
whole generated sequence converges to the solution.

The numerical experiments showed that our algorithm runs stably and
lightly even if the constraint set is too complex for the existing method to run
quickly. Therefore, the proposed algorithm is useful for solving complicated
constrained quasiconvex optimization problems.
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Appendix A. Sufficient condition for ensuring Assumption (A5)

Here, we present a sufficient condition for ensuring the boundedness of
the sequence generated by Algorithm 1 without supposing the boundedness
of the set D. Firstly, we define coerciveness, which is used as a condition
for the objective functional to ensure the boundedness of the generated
sequence.

Definition Appendix A.1 ([1, Definition 11.11, Proposition 11.12]). Let
H be a real Hilbert space, and let f be a functional on H. We call f is
coercive if

lim
‖x‖→∞

f(x) =∞.

Furthermore, let lev≤α f denote the trench of f , i.e., lev≤α f := {x ∈ H :
f(x) ≤ α}, for any real number α ∈ R. Then, coerciveness is equivalent to
the boundedness of all trenches of f .

Let us define the diameter of a set C as diam(C) := sup{‖u − v‖ :
u, v ∈ C} for the proof described later. The following proposition shows the
necessary condition for ensuring the boundedness of the sequence generated
by Algorithm 1.

Proposition Appendix A.1. Let {xk} ⊂ H be a sequence generated by
Algorithm 1. Suppose that Assumption 2.1 holds and there exists a number
k0 ∈ N such that vk < 1 for all k ≥ k0. Assume that f is coercive. If one of
the following holds,

(i) Assumption (A4) holds,

(ii) the whole space H is an N -dimensional Euclidean space Rn,

then Assumption (A5) is satisfied.

Proof. Let us prove this proposition by dividing it into case (i) and (ii).
First, suppose that case (i) holds. We will proceed by way of contradiction
and suppose that the sequence {xk} is unbounded. Then, there exists a
subsequence {xki} of the sequence {xk} such that limi→∞‖xki‖ = ∞. The
coercivity of f implies that limi→∞ f(xki) = ∞. Fix x? ∈ X? arbitrarily.
Assumption (A4) guarantees that

|f(z)− f?| ≤ L ‖z − x?‖ β
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for all z ∈ cl(lev<f(xi) f and for any i ∈ N. Since limi→∞ f(xki) = ∞, we
have

|f(z)− f?| ≤ L ‖z − x?‖ β

for all z ∈ H. Considering the point z appearing in the above inequality to
be limited in the set x? + B, we obtain

f(z) ≤ f? + L ‖z − x?‖ β

≤ f? + L

for all z ∈ x? + B. Set δ to be the right side of the above inequality, i.e.,
δ := f? + L. Then, the set x? + B is obviously a subset of the bounded
trench lev≤δ f .

From the assumption of this proposition, there exists a number k0 ∈ N
such that vk < 1 for all k ≥ k0. For each k ≥ k0, let us consider the two
separate cases: the case where the point xk belongs to the trench lev≤δ f , and
its negation. First, let us consider the positive case; i.e., xk ∈ lev≤δ f for k ≥
k0. The nonexpansivity of PD and T and the fact that x? ∈ Fix(PD)∩Fix(T )
ensure that

‖xk+1 − x?‖ = ‖PD(αkxk + (1− αk)T (xk − vkgk))− x?‖
≤ ‖αkxk + (1− αk)T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖xk − vkgk − x?‖
≤ ‖xk − x?‖+ (1− αk)vk

for any k ≥ k0 such that xk ∈ lev≤δ f . Here, both xk and x? belong to the
bounded trench lev≤δ f , and both 1− α and vk are less than or equal to 1.
Hence,

‖xk+1 − x?‖ ≤ diam(lev≤δ f) + 1 <∞

holds for any k ≥ k0 such that xk ∈ lev≤δ f . Next, let us consider the
negative case; i.e., xk 6∈ lev≤δ f for k ≥ k0. The nonexpansivity of PD and
T and the fact that x? ∈ Fix(PD) ∩ Fix(T ) ensure that

‖xk+1 − x?‖ = ‖PD(αkxk + (1− αk)T (xk − vkgk))− x?‖
≤ ‖αkxk + (1− αk)T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖xk − vkgk − x?‖
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for any k ≥ k0 such that xk 6∈ lev≤δ f . Let us consider the right term of the
right side of the above inequality. Its squared value is bounded from above
as follows:

‖xk − vkgk − x?‖ 2 = ‖xk − x?‖ 2 − 2vk 〈gk, xk − x?〉+ vk 〈gk, vkgk〉
= ‖xk − x?‖ 2 − vk 〈gk, xk − x?〉 − vk 〈gk, xk − (x? + vkgk)〉

for any k ≥ k0 such that xk 6∈ lev≤δ f . Here, xk 6∈ lev≤δ f implies that
f? ≤ f?+L = δ < f(xk) for f ≥ k0. Therefore, we have x? ∈ lev≤f(xk) f and
x?+vkgk ∈ x?+B ⊂ lev≤f(xk) f for any k ≥ k0 such that xk 6∈ lev≤δ f . Since
the definition of gk ∈ ∂?f(xk) ∩ S together with the preceding discussion
implies that 〈gk, xk − x?〉 ≥ 0 and 〈gk, xk − (x? + vkgk)〉 ≥ 0, we have

‖xk − vkgk − x?‖ ≤ ‖xk − x?‖

for any k ≥ k0 such that xk 6∈ lev≤δ f . Hence, we have

‖xk+1 − x?‖ ≤ ‖xk − x?‖

for any k ≥ k0 such that xk 6∈ lev≤δ f . From the results for the both cases
where xk ∈ lev≤δ f or not, we have

‖xk − x?‖ ≤ max{‖x1 − x?‖ , ‖x2 − x?‖ , . . . , ‖xk0 − x?‖ ,diam(lev≤δ f) + 1}
<∞

for all k ∈ N. However, this contradicts the assumption that the sequence
{xk} is unbounded. Therefore, we arrive at a contradiction and the bound-
edness of the sequence {xk} has been proved under this case.

Now let us suppose that case (ii) holds. In an N -dimensional Eu-
clidean space RN , every closed, bounded set is compact [36, Problem 3.1.6].
Therefore, the nonempty, compact set x? + B contains a point x̄ such that
f(x̄) = maxx∈x?+B f(x) [36, Theorem 2.5.7]. Set δ := f(x̄) ≥ f?. Then, the
set x? + B is a subset of the bounded trench lev≤δ f = lev≤f(x̄) f .

From the assumption of this proposition, there exists a number k0 ∈ N
such that vk < 1 for all k ≥ k0. For each k ≥ k0, let us consider the two
separate cases: the case where the point xk belongs to the trench lev≤δ f , and
its negation. First, let us consider the positive case; i.e., xk ∈ lev≤δ f for k ≥
k0. The nonexpansivity of PD and T and the fact that x? ∈ Fix(PD)∩Fix(T )
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ensure that

‖xk+1 − x?‖ = ‖PD(αkxk + (1− αk)T (xk − vkgk))− x?‖
≤ ‖αkxk + (1− αk)T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖xk − vkgk − x?‖
≤ ‖xk − x?‖+ (1− αk)vk

for any k ≥ k0 such that xk ∈ lev≤δ f . Here, both xk and x? belong to the
bounded trench lev≤δ f , and both 1− α and vk are less than or equal to 1.
Hence,

‖xk+1 − x?‖ ≤ diam(lev≤δ f) + 1 <∞

holds for any k ≥ k0 such that xk ∈ lev≤δ f . Next, let us consider the
negative case; i.e., xk 6∈ lev≤δ f for k ≥ k0. The nonexpansivity of PD and
T and the fact that x? ∈ Fix(PD) ∩ Fix(T ) ensure that

‖xk+1 − x?‖ = ‖PD(αkxk + (1− αk)T (xk − vkgk))− x?‖
≤ ‖αkxk + (1− αk)T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖T (xk − vkgk)− x?‖
≤ αk ‖xk − x?‖+ (1− αk) ‖xk − vkgk − x?‖

for any k ≥ k0 such that xk 6∈ lev≤δ f . Let us consider the right term of the
right side of the above inequality. Its squared value is bounded from above
as follows:

‖xk − vkgk − x?‖ 2 = ‖xk − x?‖ 2 − 2vk 〈gk, xk − x?〉+ vk 〈gk, vkgk〉
= ‖xk − x?‖ 2 − vk 〈gk, xk − x?〉 − vk 〈gk, xk − (x? + vkgk)〉

for any k ≥ k0 such that xk 6∈ lev≤δ f . Here, xk 6∈ lev≤δ f implies that
f? ≤ f?+L = δ < f(xk) for f ≥ k0. Therefore, we have x? ∈ lev≤f(xk) f and
x?+vkgk ∈ x?+B ⊂ lev≤f(xk) f for any k ≥ k0 such that xk 6∈ lev≤δ f . Since
the definition of gk ∈ ∂?f(xk) ∩ S together with the preceding discussion
implies that 〈gk, xk − x?〉 ≥ 0 and 〈gk, xk − (x? + vkgk)〉 ≥ 0, we have

‖xk − vkgk − x?‖ ≤ ‖xk − x?‖

for any k ≥ k0 such that xk 6∈ lev≤δ f . Hence, we have

‖xk+1 − x?‖ ≤ ‖xk − x?‖
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for any k ≥ k0 such that xk 6∈ lev≤δ f . From the results for the both cases
where xk ∈ lev≤δ f or not, we have

‖xk − x?‖ ≤ max{‖x1 − x?‖ , ‖x2 − x?‖ , . . . , ‖xk0 − x?‖ ,diam(lev≤δ f) + 1}
<∞

for all k ∈ N. This implies that the sequence {xk} is bounded, and this
completes the proof.

The assumption on the step-size, i.e., the existence of a number k0 such
that vk < 1 for all k ≥ k0, is satisfied whenever we adopt a diminishing
step-size rule since the step-size sequence decreasingly converges to zero.
Furthermore, it is also satisfied when we adopt a constant step-size rule
with a small enough constant step-size v < 1. Overall, the coerciveness of
the objective functional f (and the smallness of the step-sizes) is a sufficient
condition for ensuring the boundedness of the generated sequence in the
convergence analyses of constant or diminishing step-size rules.

Appendix B. Proofs of Proposition 2.4 and some examples

Proof of Proposition 2.4. Fix g ∈ ∂?f(x) ∩ S arbitrarily. The continuity
and quasiconvexity of f imply its level set lev<f(x) f is open and convex.
This lev<f(x) f is not an empty set, since it has at least the point x?. The
continuity of f also ensures bd(lev<f(x) f) 6= ∅.

Set r := inf{‖x?−u‖ : u ∈ bd(lev<f(x) f)}. Then, there exists a sequence
{uk} ⊂ bd(lev<f(x) f) such that ‖x? − uk‖ ≤ r + 1/k for all k ∈ N. The
openness of lev<f(x) f implies that it is a distinct set from its boundary, i.e.,
f(x) ≤ f(u) for any u ∈ bd(lev<f(x) f). Hence,

f(x)− f? ≤ f(uk)− f?
≤ L ‖uk − x?‖ β

< L

(
r +

1

k

)β
(k ∈ N).

It follows that

f(x)− f? ≤ Lrβ. (B.1)

From the definition of r, the open ball with center x? and radius r is
contained inside lev<f(x) f . Therefore, x? + (1 − 1/k)rg ∈ lev<f(x) f holds
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for any k ∈ N, and we have(
1− 1

k

)
r − 〈g, x− x?〉 =

(
1− 1

k

)
r ‖g‖ 2 − 〈g, x− x?〉

=

〈
g, x? +

(
1− 1

k

)
rg − x

〉
≤ 0 (k ∈ N).

This implies that r ≤ 〈g, x−x?〉. Applying this inequality to inequality (B.1)
gives f(x)− f? ≤ L〈g, x− x?〉β. This completes the proof.

Proof of Example 3.2. The fixed point set Fix(T ) = Fix(Id) is obviously the
whole space H. Therefore, the minimum value of f is 0 and its minimizer
is only the origin. For any z ∈ H, we have

|f(z)− f(x?)| = min{‖z‖ , α}
≤ ‖z − x?‖ .

This implies that f satisfies the Hölder condition with degree 1 at its mini-
mizer x? on the whole space H. Expanding ‖xk+1‖2 = ‖xk− (vk/2)gk‖2 and
using Proposition 2.4 with the above result, we have

‖xk+1‖ 2 = ‖xk‖ 2 − vk 〈gk, xk − x?〉+
(vk

2

)2

≤ ‖xk‖ 2 − vk min{‖xk‖ , α}+
(vk

2

)2
(k ∈ N).

When the index k ∈ N satisfies ‖xk‖ ≤ α,

‖xk+1‖ 2 ≤ ‖xk‖ 2 − vk ‖xk‖+
(vk

2

)2

≤ 5

4
α2

holds. The nonnegativeness of both sides of the above inequality ensures
that ‖xk+1‖ is bounded from above by

√
5α/2 for any k ∈ N satisfying

‖xk‖ ≤ α. In the opposite case, i.e. if the index k ∈ N satisfies α < ‖xk‖,

‖xk+1‖ 2 ≤ ‖xk‖ 2 − vkα+
(vk

2

)2

= ‖xk‖ 2 − vk
(
α− vk

4

)
holds. Therefore, we have ‖xk+1‖ ≤ ‖xk‖ for any k ∈ N satisfying α <
‖xk‖. Combining the conclusions of both cases, we can see that the sequence
{‖xk‖} is bounded from above by max{‖x1‖,

√
5α/2}. This completes the

proof.
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Proof of Example 3.3. The generated sequence {xk} is obviously bounded,
since it is contained inside [0,M ]n. Fix x? ∈ X? arbitrarily. The assump-
tions of this example imply that the feasible set Fix(T ) ∩ D has a point
u ∈ (0,∞)n. Hence, the functional value of this point f(u) is strictly less
than f(v) = 0 for any v ∈ bd([0,∞)n). This means that X? ⊂ (0,∞)n

holds; that is, any optimum x? ∈ X? belongs to the interior of [0,∞)n.
Therefore, there exists some δ > 0 such that the closed ball with center x?

and radius 2δ is contained inside [0,∞)n. Let us discuss the satisfiability of
the Hölder condition on the set [δ,∞)n and on its complement [δ,∞)n sep-
arately (see Figure B.2 for the relation between the point x? and these two
disjoint sets). First, fix z ∈ [δ,∞)n arbitrarily. Denoting the element-wise

Figure B.2: Relation between the point x?, the set [δ,∞)n, and its complement

(Hadamard) division of x and y by x � y, the gradient of the functional f
can be written as

∇f(x) =
−a0

∏n
j=1 x

aj
j

(〈c, x〉+ c0)2
c+
−a0

∏n
j=1 x

aj
j

〈c, x〉+ c0
(a� x) (x ∈ [δ,∞)n).

Letting c̃ be a vector whose elements are each the minimum of c, an upper
bound of the norms of the gradients can be evaluated by using the theorem
of arithmetic and geometric means [10, Inequality (2.5.2)], as follows:

‖∇f(x)‖ ≤
a0
∏n
j=1 x

aj
j

(〈c, x〉+ c0)2
‖c‖+

a0
∏n
j=1 x

aj
j

〈c, x〉+ c0
‖a� x‖

≤ a0

‖c̃‖

(
1

〈c, x〉+ c0
‖c‖+ ‖a� x‖

)
≤ a0

‖c̃‖

(
1

δ‖c̃‖+ c0
‖c‖+

‖a‖
δ

)
<∞ (x ∈ [δ,∞)n).

This implies that the image (‖∇f(·)‖)([δ,∞)n) is bounded. The mean value
theorem [28, Inequality (A.55)] ensures the existence of some α ∈ (0, 1) such
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that

f(z) = f(x?) + 〈∇f((1− α)x? + αz), z − x〉 .

The convexity of [δ,∞) and the boundedness of ‖∇f(·)‖ on [δ,∞)n imply
that ‖∇f((1−α)x? +αz)‖ ≤ (a0/‖c̃‖)(‖c‖/(δ‖c̃‖+ c0) + ‖a‖/δ). Therefore,
the Cauchy-Schwarz inequality gives us the desired inequality as follows:

|f(z)− f(x?)| = |〈∇f((1− α)x? + αz), z − x〉|
≤ ‖∇f((1− α)x? + αz)‖ ‖z − x‖

≤ a0

‖c̃‖

(
1

δ‖c̃‖+ c0
‖c‖+

‖a‖
δ

)
‖z − x‖ .

This implies that the functional f satisfies the Hölder condition with degree
1 at the point x? on the set [δ,∞)n.

Next, fix z̄ ∈ [δ,∞)n arbitrarily. The closed ball with center x? and
radius δ is contained inside [δ,∞)n. Hence, ‖x? − z‖ ≥ δ holds. From the
definition of f , the maximum value of f is 0 and its range is less than or
equal to 0. Therefore,

|f(z)− f(x?)| ≤ f(x?)

δ
‖x? − z‖

holds. Hence, letting L := max{(a0/‖c̃‖)(‖c‖/(δ‖c̃‖+c0)+‖a‖/δ), f(x?/δ)},
it is clear that f satisfies the Hölder condition with degree 1 at the point x?

on the set Rn. This completes the proof.

Appendix C. Proofs of Lemmas 3.1 and 3.2

Proof of Lemma 3.1. Fix x? ∈ X? and k ∈ N arbitrarily. The convexity of
‖·‖2 and the nonexpansivity of PD and T ensure that

‖xk+1 − x?‖ 2 = ‖PD(αkxk + (1− αk)T (xk − vkgk))− PD(x?)‖ 2

≤ ‖αkxk + (1− αk)T (xk − vkgk)− x?‖ 2

≤ αk ‖xk − x?‖ 2 + (1− αk) ‖T (xk − vkgk)− T (x?)‖ 2

≤ αk ‖xk − x?‖ 2 + (1− αk) ‖xk − x? − vkgk‖ 2

= ‖xk − x?‖ 2 − 2vk(1− αk) 〈gk, xk − x?〉+ (1− αk)v2
k.
(C.1)

On the other hand, Assumption (A4) and Proposition 2.4 ensure that(
f(xk)− f?

L

) 1
β

≤ 〈gk, xk − x?〉 .
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Applying this inequality to inequality (C.1), we obtain

‖xk+1 − x?‖ 2 ≤ ‖xk − x?‖ 2 − 2vk(1− αk)
(
f(xk)− f?

L

) 1
β

+ (1− αk)v2
k.

This completes the proof.

Proof of Lemma 3.2. Fix x ∈ Fix(T ) ∩ D and k ∈ N arbitrarily, and set
M1 := supk∈N(2|〈g, x− T (xk − vkgk)〉|). The boundedness of {xk} and {vk}
ensures that there exist M2,M3 ∈ R such that

‖xj‖ ≤M2, vj ≤M3 (j ∈ N).

Therefore,

‖x− T (xj − vjgj)‖ ≤ ‖x‖+ ‖xj‖+ vj

≤ ‖x‖+M2 +M3 <∞ (j ∈ N).

The Cauchy-Schwarz inequality, together with this boundedness of the real
sequence {‖x− T (xk − vkgk)‖}, indicates that M1 ≤ ‖x‖+M2 +M3 <∞.

From the convexity of ‖·‖2, we have

‖xk+1 − x‖ 2 = ‖PD(αkxk + (1− αk)T (xk − vkgk))− PD(x)‖ 2

≤ ‖αk(xk − x) + (1− αk)(T (xk − vkgk)− x)‖ 2

≤ αk ‖xk − x‖ 2 + (1− αk) ‖T (xk − vkgk)− x‖ 2. (C.2)

Let us consider the term ‖T (xk−vkgk)−x‖2. Using the firm nonexpansivity
of T , we expand this term into

‖T (xk − vkgk)− x‖ 2

≤ ‖xk − vkgk − x‖ 2 − ‖(Id−T )(xk − vkgk)− (Id−T )(x)‖ 2

= ‖xk − x‖ 2 − 2vk 〈gk, xk − x〉+ v2
k

− ‖xk − T (xk − vkgk)‖ 2 + 2vk 〈gk, xk − T (xk − vkgk)〉 − v2
k

= ‖xk − x‖ 2 − ‖xk − T (xk − vkgk)‖ 2 + 2vk 〈gk, x− T (xk − vkgk)〉 .

In view of the definition of M1, the set {2vk〈gk, x− T (xk − vkgk)〉 : k ∈ N}
is bounded from above by it. Therefore, we obtain

‖T (xk − vkgk)− x‖ 2 ≤ ‖xk − x‖ 2 − ‖xk − T (xk − vkgk)‖ 2 + vkM1.
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Applying this inequality to inequality (C.2) yields the desired inequality:

‖xk+1 − x‖ 2

≤ αk ‖xk − x‖ 2 + (1− αk)
(
‖xk − x‖ 2 − ‖xk − T (xk − vkgk)‖ 2 + vkM1

)
≤ ‖xk − x‖ 2 − (1− αk) ‖xk − T (xk − vkgk)‖ 2 + vkM1

This completes the proof.

Appendix D. Proof of Theorem 3.1

Proof. We prove each inequality in order. First, we consider whether the
inequality

lim inf
k→∞

f(xk) ≤ f? + L
(v

2

)β
(D.1)

holds. We will proceed by way of contradiction. Suppose that the inequality
does not hold; i.e.,

f? + L
(v

2

)β
< lim inf

k→∞
f(xk).

The left-hand side of this inequality is strictly less than the right-hand side.
Hence, with the positivity of L, we can choose a positive δ1 such that

f? + L
(v

2
+ δ1

)β
< lim inf

k→∞
f(xk)

holds. The property of the limit inferior guarantees that there exists k0 ∈ N
such that

f? + L
(v

2
+ δ1

)β
< f(xk) (k ≥ k0). (D.2)

Obviously, this implies that f? < f(xk) for any k ≥ k0. Therefore, all
assumptions of Lemma 3.1 are satisfied when k ≥ k0, and the following
inequality holds for some x? ∈ X? 6= ∅.

‖xk+1 − x?‖ 2

≤ ‖xk − x?‖ 2 − 2v(1− αk)
(
f(xk)− f?

L

) 1
β

+ (1− αk)v2 (k ≥ k0).
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Applying inequality (D.2) to the above inequality, we have

‖xk+1 − x?‖ 2 ≤ ‖xk − x?‖ 2 − 2vδ1(1− αk)

≤ ‖xk0 − x?‖ 2 − 2vδ1

k∑
j=k0

(1− αk) (k ≥ k0). (D.3)

From Assumption (A6), lim supk→∞ αk < 1 holds. Hence, a starting index
k1 ∈ N greater than k0 exists such that the subsequence {αk}k≥k1 is bounded
above by some positive real that is strictly less than 1. This means that
inequality (D.3) does not hold for large enough k ≥ k1, and we have arrived
at a contradiction. Therefore, inequality (D.1) holds.

Next, let us prove the remaining part of this theorem, in other words,
show that the inequality

lim inf
k→∞

‖xk − T (xk)‖ 2 ≤Mv

holds for some positive real M > 0. Fix x ∈ Fix(T ) arbitrarily. Lemma 3.2
guarantees the existence of a nonnegative real M1 ≥ 0 such that

‖xk+1 − x‖ 2 ≤ ‖xk − x‖ 2 − (1− αk) ‖xk − T (xk − vgk)‖ 2 + vM1 (k ∈ N).
(D.4)

In view of Assumption (A6), lim infk→∞(1 − αk) is positive; i.e., it is not
equal to zero. We will again proceed by way of contradiction and suppose
that

lim inf
k→∞

‖xk − T (xk − vgk)‖ 2 ≤ 2vM1

lim infk→∞(1− αk)
(D.5)

does not hold and

2vM1

lim infk→∞(1− αk)
< lim inf

k→∞
‖xk − T (xk − vgk)‖ 2

holds. In the same ways choosing δ1 in the first part of this proof, we can
find a positive δ2 > 0 that satisfies

2vM1

lim infk→∞(1− αk)
+ δ2 < lim inf

k→∞
‖xk − T (xk − vgk)‖ 2.

The property of the limit inferior guarantees that a positive number k2 ∈ N
exists such that

2vM1

lim infk→∞(1− αk)
+ δ2 < ‖xk − T (xk − vgk)‖ 2 (k ≥ k2).
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Applying the above inequality to inequality (D.4), we obtain

‖xk+1 − x‖ 2

≤ ‖xk − x‖ 2 − (1− αk)
(

2vM1

lim infk→∞(1− αk)
+ δ2

)
+ vM1 (k ≥ k2).

The fundamental property of the limit inferior also ensures the existence of
a number k3 ∈ N larger than k2 such that lim infk→∞(1− αk)/2 < (1− αk)
for any k ≥ k3. Therefore, we have

‖xk+1 − x‖ 2 ≤ ‖xk − x‖ 2 − δ2

2
lim inf
k→∞

(1− αk)

≤ ‖xk3 − x‖ 2 − δ2

2
(k − k3 + 1) lim inf

k→∞
(1− αk) (k ≥ k3).

Since the above inequality does not hold for large enough k ≥ k3, we have
arrived at a contradiction. Therefore, inequality (D.5) holds.

With this inequality, let us evaluate the squared distance between an
element of the generated sequence and its transformed point by the nonex-
pansive mapping T . Using the triangle inequality and the nonexpansivity
of T , we have

‖xk − T (xk)‖ 2 ≤ (‖xk − T (xk − vgk)‖+ ‖T (xk − vgk)− T (xk)‖)2

≤ (‖xk − T (xk − vgk)‖+ v)2

= ‖xk − T (xk − vgk)‖ 2 + 2v ‖xk − T (xk − vgk)‖+ v2 (k ∈ N).

Now, since x is a fixed point of the mapping T , we expand the second term
of the above expression as ‖xk − T (xk − vgk)‖ ≤ 2‖xk − x‖ + v for any
k ∈ N. Furthermore, Assumption (A5) ensures the existence of a positive
real M2 > 0 bounding the set {‖xk − x‖ : k ∈ N} from above. Hence, we
finally obtain

‖xk − T (xk)‖ 2 ≤ ‖xk − T (xk − vgk)‖ 2 + 4v(M2 + v) (k ∈ N).

Taking the limit inferior of both sides of the above inequality yields

lim inf
k→∞

‖xk − T (xk)‖ 2 ≤ lim inf
k→∞

‖xk − T (xk − vgk)‖ 2 + 4v(M2 + v).

Set M := 2(M1/ lim infk→∞(1 − αk) + 2(M2 + v)) ∈ R. Applying inequal-
ity (D.5) to the above, we obtain the desired inequality as follows:

lim inf
k→∞

‖xk − T (xk)‖ 2 ≤ 2

(
M1

lim infk→∞(1− αk)
+ 2(M2 + v)

)
v

≤Mv.

This completes the proof.
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Appendix E. Proof of Lemma 3.3

Proof. We will proceed by way of contradiction and suppose that the con-
clusion lim infk→∞ f(xk) ≤ f? does not hold, that is, lim infk→∞ f(xk) > f?.
There exists a positive number δ > 0 and an index k0 ∈ N such that
f? + δ < f(xk) for all k ≥ k0. Furthermore, the assumption that the real
sequence {vk} converges to zero guarantees the existence of an index k1 ≥ k0

such that vk < (δ/L)1/β for all k ≥ k1. Applying these two inequalities to
Lemma 3.1, we have

‖xk+1 − x?‖ 2 ≤ ‖xk − x?‖ 2 − 2vk(1− αk)
(
f(xk)− f?

L

) 1
β

+ (1− αk)v2
k

< ‖xk − x?‖ 2 − vk(1− αk)
(
δ

L

) 1
β

< ‖xk1 − x?‖ 2 −
(
δ

L

) 1
β

k∑
n=k1

vk(1− αk) (k ≥ k1).

Assumption (A6) guarantees the existence of a positive number α and an
index k2 ≥ k1 such that α < 1 − αk for any k ≥ k2. This implies that
the above inequality does not hold for a sufficiently large k ≥ k2; hence, we
arrive at a contradiction. This completes the proof.

Appendix F. Proof of the Additional Statement of Theorem 3.2

Proof. Let us prove the additional statement of this theorem. The following
proof is played under the assumption that the solution x? ∈ X? is unique
and the whole space is an N -dimensional Euclidean space, i.e., H = RN .

The existence of a subsequence {xki} that weakly converges to a unique
solution x? is obtained from Theorem 3.2. In Euclidean space, weak conver-
gence coincides with strong convergence. Therefore, the sequence {xki} con-
verges to a unique x?. If some number k0 ∈ N exists such that ‖xk+1−x?‖ ≤
‖xk − x?‖ for all k ≥ k0, the whole sequence {xk} converges to a point in
X?. Let us consider the opposite case. Let {ki} ⊂ N be the sequence of all
indexes satisfying ‖xki − x?‖ < ‖xki+1 − x?‖ (and ki < ki+1 for any i ∈ N).
According to the assumption, this sequence is infinite. The sequence {xki}
is now bounded, and this implies that it has a subsequence converging to a
unique optimum x? ∈ X?. The above discussion ensures that any converging
subsequence of {xki} converges to a unique optimum x? ∈ X?. This further
implies that {xki} also converges to this optimum x? ∈ X?. From the as-
sumed settings, ‖xj+1−x?‖ ≤ ‖xj−x?‖ holds for any index j ∈ N that does
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not belong to the set {ki}. The convergence of the sequence {xki} means
that, for any ε > 0, there exists an index î ∈ N such that ‖xkî − x

?‖ < ε.
Furthermore, for any index k ≥ kî that does not belong to the set {ki},
‖xkî − x?‖ ≤ ‖xki − x?‖ < ε also holds for i := max{ki : ki ≤ k} ≥ kî.
This implies that the whole sequence {xk} converges to a unique optimum
x? ∈ X?. This completes the proof.

Appendix G. Efficiency

Here, we discuss the rate of convergence of Algorithm 1 in terms of the
value of the objective functional and the distance to the fixed point set.
Furthermore, we discuss a sufficient condition to obtain finite convergence
to some solution.

Let us start with the convergence rate analysis in terms of the objective
function. Here, we will use the following concepts originally introduced in
[11, 22].

Definition Appendix G.1 ([11, Section 5], [22, Section 6]). Define the
following notations:

(i) x?k :∈ argminx∈{x1,x2,...,xk} f(x),

(ii) rk := sup{r > 0 : x?k + rB ⊂ lev<f(x?k) f}.

x?k expresses the best solution acquired until the k-th iteration, and rk
expresses the distance between the level set of x?k and the optimal solution.
The difference between the above definitions and the original ones is in
considering the possibility that the generated sequence may be out of the
fixed point set, in other words, the constraint set.

We will use the following propositions.

Proposition Appendix G.1. Let C ⊂ H be a nonempty, convex set,
and suppose that x ∈ C, y 6∈ C. Then, there exists α ∈ [0, 1] such that
x+ α(y − x) ∈ bd(C).

Proof. Define α := sup{α̂ ∈ [0, 1] : x+α̂(y−x) ∈ C} and fix ε > 0 arbitrarily.
From the properties of the supremum, there exists β > α − ε/‖y − x‖ such
that x+ β(y − x) ∈ C. Thus, we have

‖(x+ α(y − x))− (x+ β(y − x))‖ = (α− β) ‖y − x‖ < ε.

Since ε > 0 was chosen arbitrarily, the above inequality implies that the
point (x + α(y − x)) is an adherent point of C. Furthermore, there exists
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γ > α + ε/‖y − x‖ such that x+ γ(y − x) 6∈ C due to the properties of the
supremum. Hence, we also have

‖(x+ α(y − x))− (x+ γ(y − x))‖ = (γ − α) ‖y − x‖ < ε.

Since ε > 0 was chosen arbitrarily, the above inequality implies that the
point (x+α(y−x)) is an adherent point of the complement of C. Therefore,
x+ α(y − x) belongs to the boundary of C. This completes the proof.

Proposition Appendix G.2 ([1, Corollary 2.15]). Let x, y ∈ H, and let
α ∈ R. Then,

‖αx+ (1− α)y‖ 2 = α ‖x‖ 2 + (1− α) ‖y‖ 2 − α(1− α) ‖x− y‖ 2

holds.

We start by proving the following lemma which leads us to the conver-
gence rate of Algorithm 1.

Lemma Appendix G.1. Let {xk} ⊂ H be a sequence generated by Algo-
rithm 1, and suppose that Assumptions 2.1 and 3.1 hold. Assume that the
sequence {vk} is bounded. Then,

rk ≤
‖xi − x?‖2 +

∑k
j=i(1− αj)v2

j

2
∑k

j=i vj(1− αj)

for any x? ∈ X?, k ∈ N, and i ∈ {1, 2, . . . , k}.

Proof. Fix x? ∈ X?, k ∈ N, and i ∈ {1, 2, . . . , k} arbitrarily. If rk is non-
positive, the statement obviously holds. Therefore, let us consider the case
where rk is positive in the following. Fix δ ∈ (0, rk) arbitrarily. The defini-
tion of rk and monotonicity of the sequence {rk} imply that x?−δgj belongs
to the level set lev<f(x?j ) f ⊂ lev<f(xj) f for any j = 1, 2, . . . , k. Therefore,

〈gj , (x? − δgj) − xj〉 ≤ 0 holds for all j = 1, 2, . . . , k. Rearranging this
inequality with the property ‖gj‖ = 1, we have

〈gj , x? − xj〉 ≤ δ

for all j = 1, 2, . . . , k. Here, the assumption rk > 0 implies that f? < f(xj)
for all j = 1, 2, . . . , k. Hence, all assumptions of Lemma 3.1 are satisfied and

‖xj+1 − j?‖ 2 ≤ ‖xj − x?‖ 2 − 2vj(1− αj) 〈gj , xj − x?〉+ (1− αj)v2
j

≤ ‖xj − x?‖ 2 − 2δvj(1− αj) + (1− αj)v2
j
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is guaranteed by inequality (C.1) for all j = 1, 2, . . . , k. Summing the above
inequalities from j = i to j = k yields

0 ≤ ‖xi − x?‖ 2 − 2δ
k∑
j=i

vj(1− αj) +
k∑
j=i

(1− αj)v2
j .

Transposing the term of δ, we get

δ ≤
‖xi − x?‖2 +

∑k
j=i(1− αj)v2

j

2
∑k

j=i vj(1− αj)
.

The arbitrariness of δ ∈ (0, rk) implies that

rk ≤
‖xi − x?‖2 +

∑k
j=i(1− αj)v2

j

2
∑k

j=i vj(1− αj)
.

This completes the proof.

In general settings, we can use this lemma to analyze the convergence
rate in terms of rk. The following two propositions present such an analysis
for constant and diminishing step-size rules.

Proposition Appendix G.3 (Convergence rate analysis for constant step–
size rule). Let {xk} ⊂ H be a sequence generated by Algorithm 1, and sup-
pose that the assumptions in Theorem 3.1 hold. Then, there exists a number
k0 ∈ N such that

rk ≤
1

1− lim supj→∞ αj

(
‖xk0 − x?‖2

(k − k0 + 1)v
+

(
1− 1

2
lim inf
j→∞

αj

)
v

)
holds for all k ≥ k0, in other words,

rk = O(1/k + v).

Furthermore,

rk ≤
‖x1 − x?‖2

2(1− α)kv
+

1

2
v

holds for all k ∈ N when the sequence {αk} satisfies αk = α ∈ (0, 1) for all
k ∈ N.
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Proof. Assumption (A6) implies that there exists a number k0 ∈ N such
that

0 <
1

2

(
1− lim sup

k→∞
αk

)
≤ 1− αk ≤ 1− 1

2
lim inf
k→∞

αk < 1

for all k ≥ k0. Therefore, Lemma Appendix G.1 with i := k0 leads to the
finding that

rk ≤
‖xk0 − x?‖2 +

∑k
j=k0

(1− αj)v2
j

2
∑k

j=k0
vj(1− αj)

≤ ‖xk0 − x
?‖2 + (1− lim infj→∞ αj/2)(k − k0 + 1)v2

(1− lim supj→∞ αj)(k − k0 + 1)v

=
1

1− lim supj→∞ αj

(
‖xk0 − x?‖2

(k − k0 + 1)v
+

(
1− 1

2
lim inf
j→∞

αj

)
v

)
for all k ≥ k0.

Furthermore, if {αk} satisfies αk = α ∈ (0, 1) for all k ∈ N, Lemma Ap-
pendix G.1 with i := 1 leads to

rk ≤
‖x1 − x?‖2 +

∑k
j=i(1− αj)v2

j

2
∑k

j=i vj(1− αj)

=
‖x1 − x?‖2 + (1− α)kv2

2(1− α)kv

=
‖x1 − x?‖2

2(1− α)kv
+

1

2
v

for all k ∈ N. This completes the proof.

Proposition Appendix G.4 (Convergence rate analysis for diminishing
step-size rule). Let {xk} ⊂ H be a sequence generated by Algorithm 1, and
suppose that the assumptions in Theorem 3.2 hold. Let c be a positive real
number and assume that vk = c/k for all k ∈ N. Then, there exists a number
k0 ∈ N such that

rk ≤
‖xk0 − x?‖2 + 2c2(1− lim infj→∞ αj/2)

2c(1− lim supj→∞ αj)(log(k + 1)− log(k0))

holds for all k ≥ k0, in other words,

rk = O(1/ log(k + 1)).
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In addition,

rk ≤
‖x1 − x?‖2 + 2c2(1− α)

2c(1− α) log(k + 1)

holds for all k ∈ N when the sequence {αk} satisfies αk = α ∈ (0, 1) for all
k ∈ N.

Proof. Assumption (A6) implies that there exists a number k0 ∈ N such
that

0 <
1

2

(
1− lim sup

k→∞
αk

)
≤ 1− αk ≤ 1− 1

2
lim inf
k→∞

αk < 1

holds for all k ≥ k0. Therefore, Lemma Appendix G.1 with i := k0 leads to
the finding that

rk ≤
‖xk0 − x?‖2 +

∑k
j=k0

(1− αj)v2
j

2
∑k

j=k0
vj(1− αj)

≤
‖xk0 − x?‖2 + c2(1− lim infj→∞ αj/2)

∑k
j=k0

1/j2

2c(1− lim supj→∞ αj)
∑k

j=k0
1/j

holds for all k ≥ k0. Using inequalities
∑∞

j=1 1/j2 ≤ 2, log(k+1)− log(k0) ≤∑k
j=k0

1/j, we have

rk ≤
‖xk0 − x?‖2 + 2c2(1− lim infj→∞ αj/2)

2c(1− lim supj→∞ αj)(log(k + 1)− log(k0))

for all k ≥ k0.
In addition, if {αk} satisfies αk = α ∈ (0, 1) for all k ∈ N, Lemma Ap-

pendix G.1 with i := 1 leads to

rk ≤
‖x1 − x?‖2 +

∑k
j=i(1− αj)v2

j

2
∑k

j=i vj(1− αj)

=
‖x1 − x?‖2 + c2(1− α)

∑k
j=i 1/j2

2(1− α)
∑k

j=i 1/j

≤ ‖x1 − x?‖2 + 2c2(1− α)

2(1− α) log(k + 1)

for all k ∈ N. This completes the proof.
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The following theorem guarantees that the convergence rate with respect
to the functional value can be bounded from above by one with respect to
rk under certain assumptions. This implies that, under the assumptions, we
can deduce the convergence rate with respect to the functional value from
the result of analyzing rk. We give this result after proving the following
theorem.

Theorem Appendix G.1. Suppose that the whole space H is an N -
dimensional Euclidean space RN . Let {xk} ⊂ H be a sequence generated by
Algorithm 1 and suppose that Assumptions 2.1 and 3.1 hold. Assume that
f? < f(x?k) holds. Then,

f(x?k)− f? ≤ Lr
β
k

holds for all k ∈ N.

Proof. Fix k ∈ N and x? ∈ X? arbitrarily. Furthermore, fix j ∈ N arbitrarily.
The complement of the slice lev<f(x?k) f , i.e., the set {x ∈ RN : f(x?k) ≤
f(x)}, is nonempty because x?k obviously belongs to it. Therefore, from the
definition of rk, there exists a point vj ∈ RN such that

vj 6∈ lev<f(x?k) f and ‖x? − vj‖ ≤ rk + 1/j

hold. The assumption f? < f(x?k) implies that x? ∈ lev<f(x?k) f , and the
above discussion obtained the property vj 6∈ lev<f(x?k) f . Therefore, by
proposition Appendix G.1, a number αj ∈ [0, 1] exists such that wj :=
x? + αj(vj − x?) ∈ bd(lev<f(x?k) f). Let us consider the lower and upper
bounds of the norm ‖x? − wj‖. Here, the fact wj 6∈ lev<f(x?k) f from the
continuity of the objective functional f implies that rk ≤ ‖x? − wj‖ holds.
The upper bound of the norm ‖x? − wj‖ is thus

‖x? − wj‖ = ‖x? − (x? + αj(vj − x?))‖
= αj ‖x? − vj‖
≤ ‖x? − vj‖
≤ rk + 1/j.

The sequence {wj} is bounded, since ‖wj‖ ≤ ‖x?‖+‖x?−wj‖ ≤ ‖x?‖+rk+1
for all j ∈ N. Therefore, together with the closedness of the boundary
bd(lev<f(x?k) f), there exists a subsequence {wjt} ⊂ {wj} and a point uk ∈
bd(lev<f(x?k) f) such that wjt converges to uk. The continuity of ‖·‖ leads
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us to the finding that

‖x? − uk‖ = lim
l→∞
‖x? − wjl‖

= rk

due to the previous confirmation of the boundedness of the norm ‖x?−wjt‖;
i.e., rk ≤ ‖x? − wjt‖ ≤ rk + 1/jt holds for any t ∈ N. Furthermore, the
continuity of the objective functional f ensures the coincidence f(uk) =
f(x?k). Now, Assumption (A4) guarantees that the functional f satisfies the
Hölder condition with degree β > 0 at the point x? on the set cl(lev<f(xk) f).
Therefore, we have

f(x?k)− f? = f(uk)− f?
≤ L ‖x? − uk‖ β

= Lrβk .

This completes the proof.

This theorem directly induces the following corollary giving the conver-
gence rate in terms of the objective functional when the diminishing step-size
rule is adopted.

Corollary Appendix G.1. Suppose that the whole space H is an N -
dimensional Euclidean space RN and the assumptions in Theorem 3.2 hold.
Let c be a positive real number and assume that vk = c/k for all k ∈ N.
Then, a number k0 ∈ N exists such that

f(x?k)− f? ≤ L
(
‖xk0 − x?‖2 + 2c2(1− lim infj→∞ αj/2)

2c(1− lim supj→∞ αj)(log(k + 1)− log(k0))

)β
holds for all k ≥ k0, in other words,

f(x?k)− f? = O

(
1

(log(k + 1))β

)
.

In addition,

f(x?k)− f? ≤ L
(
‖x1 − x?‖2 + 2c2(1− α)

2c(1− α) log(k + 1)

)β
holds for all k ∈ N when the sequence {αk} satisfies αk = α ∈ (0, 1) for all
k ∈ N.
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Proof. This is an immediate consequence of Proposition Appendix G.4 and
Theorem Appendix G.1.

We thus far have discussed the convergence rate of Algorithm 1 in terms
of the value of the objective functional. The remaining part of this section
shows another convergence rate analysis of Algorithm 1, namely in terms
of the distance to the fixed point set. The following theorem gives the
convergence rate in terms of the distance to the fixed point set with respect
to the averaged norm.

Theorem Appendix G.2. Suppose that the assumptions in Theorem 3.2
hold. If f? < f(xk) for all k ∈ N, then

1

k

k∑
j=1

‖xj − T (xj)‖ = O(1/k).

Proof. Fix k ∈ N arbitrarily. Using Proposition Appendix G.2 and the fact
that PD is a nonexpansive mapping and x? is its fixed point, we have

‖xk+1 − x?‖ 2 = ‖PD(αkxk + (1− αk)T (xk − vkgk))− PD(x?)‖ 2

≤ ‖αk(xk − x?) + (1− αk)(T (xk − vkgk)− x?)‖ 2

= αk ‖xk − x?‖ 2 + (1− αk) ‖T (xk − vkgk)− x?‖ 2

− αk(1− αk) ‖xk − T (xk − vkgk)‖ 2.

Here, x? is also a fixed point of the nonexpansive mapping T . Therefore, we
can expand the second term of the above expression as follows:

‖T (xk − vkgk)− x?‖ 2 = ‖T (xk − vkgk)− T (x?)‖ 2

≤ ‖xk − x? − vkgk‖ 2

= ‖xk − x?‖ 2 − 2vk 〈xk − x?, gk〉+ v2
k.

Now, the assumption f? < f(xk) ensures that −〈xk − x?, gk〉 ≤ 0 holds
because gk is a normal vector of the slice lev<f(xk) f at xk. Hence, we have

‖T (xk − vkgk)− x?‖ 2 = ‖xk − x?‖ 2 + v2
k.

Overall, we have

‖xk+1 − x?‖ 2 ≤ αk ‖xk − x?‖ 2 + (1− αk)(‖xk − x?‖ 2 + v2
k)

− αk(1− αk) ‖xk − T (xk − vkgk)‖ 2

= ‖xk − x?‖ 2 − αk(1− αk) ‖xk − T (xk − vkgk)‖ 2 + (1− αk)v2
k.
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Assumption (A6) guarantees that a number k0 ∈ N exists such that lim infj→∞ αj/2 <
αk < (1+lim supj→∞ αj)/2 holds for all k ≥ k0. Note that Assumption (A6)
also ensures that 0 < lim infj→∞ αk/2 and (1 + lim supj→∞ αj)/2 < 1.
Therefore, together with the above inequality, we have

‖xk+1 − x?‖ 2 ≤ ‖xk − x?‖ 2 +

(
1− 1

2
lim inf
j→∞

αj

)
v2
k

− 1

4

(
lim inf
j→∞

αj

)(
1− lim sup

j→∞
αj

)
‖xk − T (xk − vkgk)‖ 2

≤ ‖xk0 − x?‖ 2 +

(
1− 1

2
lim inf
j→∞

αj

) k∑
j=k0

v2
j

− 1

4

(
lim inf
j→∞

αj

)(
1− lim sup

j→∞
αj

)
k∑

j=k0

‖xj − T (xj − vjgj)‖ 2

if k ≥ k0. This inequality implies that

k∑
j=1

‖xj − T (xj − vjgj)‖ 2

≤
k0−1∑
j=1

‖xj − T (xj − vjgj)‖ 2

+ 4

(
lim inf
j→∞

αj

)−1
(

1− lim sup
j→∞

αj

)−1
‖xk0 − x?‖ 2 +

(
1− 1

2
lim inf
j→∞

αj

) k∑
j=k0

v2
j


holds3. Here, we assume that

∑∞
j=1 v

2
j converges. Therefore, the right side of

the above inequality is bounded from above with respect to k. This implies
that the sequence {

∑k
j=1‖xj − T (xj − vjgj)‖2} is also bounded from above.

Let M ∈ R denote an upper bound of this sequence.
Let us estimate the distance before and after applying the nonexpansive

mapping to each approximation xk. Using the parallelogram law and the
nonexpansivity of T , we obtain

‖xk − T (xk)‖ 2 = ‖xk − T (xk − vkgk) + T (xk − vkgk)− T (xk)‖ 2

≤ 2 ‖xk − T (xk − vkgk)‖ 2 + 2 ‖T (xk − vkgk)− T (xk)‖ 2

≤ 2 ‖xk − T (xk − vkgk)‖ 2 + 2v2
k.

3If k is less than k0, we consider
∑k
j=k0

v2j = 0 here.
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Summing the above inequalities with respect to k and dividing both sides
by k, we get

1

k

k∑
j=1

‖xj − T (xj)‖ 2 ≤ 1

k

2

k∑
j=1

‖xj − T (xj − vjgj)‖ 2 + 2

k∑
j=1

v2
j


≤ 1

k

2M + 2

∞∑
j=1

v2
j

 .

This completes the proof.

We discussed two convergence analyses for Algorithm 1 with the dimin-
ishing step-size rule. By placing assumptions on the problem to be solved,
we can also prove finite convergence. The following proposition describes the
requirements to obtain an optimal solution in a finite number of iterations.

Proposition Appendix G.5. Let {xk} ⊂ H be a sequence generated
by Algorithm 1, and suppose that the assumptions in Theorem 3.2 hold.
Furthermore, assume that X? has a nonempty interior and the sequence
{xk} is contained inside Fix(T ). Then, xk ∈ X? for some k ∈ N.

Proof. We will proceed by way of contradiction and suppose that the conclu-
sion does not hold, that is, f? < f(xk) for all k ∈ N. Fix x? ∈ X? arbitrarily.
We deduce the following from inequality (C.1):

‖xk+1 − x?‖ 2 ≤ ‖xk − x?‖ 2 − 2vk(1− αk) 〈gk, xk − x?〉+ (1− αk)v2
k

≤ ‖x1 − x?‖ 2 − 2
k∑
j=1

vj(1− αj) 〈gj , xj − x?〉+
k∑
j=1

(1− αj)v2
j

≤ ‖x1 − x?‖ 2 − 2

(
min

j=1,2,...,k
〈gj , xj − x?〉

) k∑
j=1

(1− αj)vj +

k∑
j=1

v2
j

for all k ∈ N. The nonnegativity of the left side of the above inequality
ensures that

min
j=1,2,...,k

〈gj , xj − x?〉 ≤
‖x1 − x?‖2

2
∑k

j=1(1− αj)vj
+

∑k
j=1 v

2
j

2
∑k

j=1(1− αj)vj
(G.1)

for all k ∈ N. Now, there exists a positive real δ > 0 which satisfies δB+x? ⊂
X? because X? has a nonempty interior. Therefore, δ ≤ δ + 〈gk, xk − (x? +
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δgk)〉 = 〈gk, xk−x?〉 holds for any k ∈ N. This property with inequality (G.1)
implies

0 < δ ≤ min
j=1,2,...,k

〈gj , xj − x?〉

≤ ‖x1 − x?‖2

2
∑k

j=1(1− αj)vj
+

∑k
j=1 v

2
j

2
∑k

j=1(1− αj)vj

for all k ∈ N. However, both terms of the right side of the above inequality
converge to zero since lim supk→∞ αk < 1,

∑∞
j=1 vj =∞ and

∑∞
j=1 v

2
j <∞.

Therefore, we arrive at a contradiction. This completes the proof.

The nonemptiness of the interior of minima appears in many interesting
applications, such as surrogate relaxation of discrete programming problems
[7, 11]. When we construct a nonexpansive mapping that transforms a given
point into a fixed point of itself (an example of such a mapping is a metric
projection, but notice that the assumption of this sentence is not limited to
it) and give a fixed point of the mapping as the initial point to the algorithm,
the generated sequence is contained within the fixed point set of the mapping
due to its convexity. Therefore, Proposition Appendix G.5 can be applied
to these situations.
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