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Abstract The maritime industry is one of the greenest modes of transportation, taking care of almost 90 percent of
the global trade. The maritime container business revolves around liner shipping, which consists of container vessels
sailing on fixed itineraries. For the last 20 years, there has been an increasing number of publications regarding
how to design such fixed routes (services), to ensure a high level of service while minimizing operational costs
and environmental impact. The liner shipping network design problem can briefly be described as follows: Given
a set of demands (defined by origin, destination, time limit) and a set of vessels with variable capacity, the task
is to design a set of weekly services, assign vessels to the services, and flow the demand through the resulting
network such that it arrives within the stated time constraints. The objective is to maximize revenue of transported
demand subtracting the operational costs. We present an in-depth literature overview of existing models and solution
methods for liner shipping network design, and discuss the four main families of solution methods: integrated mixed
integer programming models; two-stage algorithms designing services in the first step and flowing containers in
the second step; two-stage algorithms first flowing containers and then designing services; and finally algorithms
for selecting a subset of proposed candidate services. We end the presentation by comparing the performance of
leading algorithms using the public LINER-LIB instances. The paper is concluded by discussing future trends in
liner shipping, indicating directions for future research.

Keywords OR in Maritime Industry; Network Design; Mixed-Integer-Programming; Heuristics; Multi-
commodity Flow Problem

1 Introduction

Maritime transportation is fundamental to the world trade and globalisation, since it enables carrying
large volumes at relatively low costs. It is estimated that around 90 percent of the world trade is carried
by the international shipping industry. Maritime transportation is, furthermore, generally considered safe.
Losses caused by incidents during transport by sea have dropped steadily, and are at the lowest values in
decades. Additionally, efficient port structures make it possible to combine sea transportation with other
land-based modes of transportation.

Roughly speaking, liner shipping can be split into ships designed for Lift-on/Lift-off (LoLo) opera-
tions, and Roll-on/Roll-off (RoRo) operations. In LoLo operations, quay cranes located on the docks are
used to load and unload the ship’s containers, while RoRo operations are designed to carry cargo that
can be rolled on and off the ship.

In this paper, we mainly focus on containerised liner shipping network design, i.e. networks using
LoLo operations, though we also briefly describe RoRo liner shipping. Although we have tried to cover
most of the relevant papers dealing with containerised liner shipping network design, we have chosen to
focus on models and algorithms that seem to be applicable in practice. This means that the selected papers
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either have reported results on designing real-life networks, or later papers have used the framework to
reach the same goal.

This paper is organized as follows: The rest of this section gives a brief introduction to container-
ised liner shipping, RoRo liner shipping, and network design. We also introduce the LINER-LIB test
instances for network design in containerised liner shipping. The following sections are focused on con-
tainerised liner shipping. In Section 2 we discuss the challenges in designing a liner shipping network,
and show that algorithms can roughly be split into four different families, which will be presented in the
following sections. In Section 3 we give an overview of integrated Mixed Integer Programming (MIP)
models, while Section 4 studies two-stage algorithms where the services are constructed in a first step,
and containers are flowed through the resulting network in the second step. Section 5 considers algo-
rithms for selecting a subset of proposed candidate services. In Section 6, we consider algorithms based
on first flowing containers, and then designing services. Section 7 reports computational results for the
LINER-LIB instances. The paper is concluded in Section 8 with a short discussion of future trends and
challenges. Finally, an overview of the notation used throughout the paper is found in Appendix A. Parts
of this paper are based on the survey by Hellsten et al. (2018) and the book chapter Christiansen et al.
(2019).

1.1 Containerised Liner Shipping

The liner shipping industry is a vital part of the global economy, constituting one of the cheapest modes of
cargo transport. During the last three decades, the volume of containerised cargo has grown by more than
8% per year, and more than 5,150 container vessels were in operation worldwide in 2017. Standard con-
tainers come in two different sizes, twenty and forty feet, which have given rise to the standard measures
of containerised cargo, twenty foot equivalent units (TEU) and forty foot equivalent units (FFE). The
largest vessels carry more than 20,000 TEU and during 2016, a container volume of around 140,000,000
TEU was estimated to pass through the vast liner shipping network (Unctad, 2017a,b). Clearly, any im-
provement in the network design in the liner shipping industry will correspond to enormous savings.
This section will briefly introduce the liner shipping business and then the corresponding network de-
sign problem, along with its variants and various solution and modelling approaches presented in the
literature.

The liner shipping industry is built up by so called services. A service is a fixed cyclic itinerary, sailed
by a number of similar vessels. Services usually have weekly or biweekly departures to add consistency
and regularity for the customers. The vessels are operated by shipping companies called carriers, where
the largest carriers operate over 600 vessels. As larger vessels are more energy efficient, see Figure 1,
the trend is to build ever larger vessels. To efficiently utilise those very large liner vessels, each region
typically has a few larger ports, called hubs, where the liner vessels pick up and deliver containers. From
the hubs, the containers are then transported to other ports by smaller, more flexible, so called feeder
vessels. The act of transferring containers from one vessel to another in a port is called transshipping.
Transshipments occur both between larger vessels and smaller vessels, but also between larger vessels
when no suitable service connects the origin and destination hub. While transshipments add flexibility,
they tend to be costly, as the cargo needs to be unloaded, stored until the arrival of the new vessel and
then reloaded again. Finally, cabotage rules need to be taken into account. To protect the national trade
business, many countries forbid foreign carriers to ship cargo between two ports within the country as
well as other restrictions. See Brouer et al. (2014a) and Zheng et al. (2014) for examples of such rules.

The major costs for the carriers are vessel acquirement and bunker fuel. However, other costs, like
canal fees, port costs and transshipment costs, are also highly significant. The fuel consumption is fre-
quently estimated as a cubic function of the speed, as seen in Figure 2. As the speed has such an impact
on the fuel consumption, slow steaming is often used to reduce the consumption. Especially after the fi-
nancial crisis in 2008, maritime shipping companies implemented slow steaming policies for cost-cutting
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Fig. 1. Estimated cost per 1,000 container miles for different vessel sizes. The vessels are assumed to sail at 19
knots and the bunker fuel price is estimated as 750 $/tonne. We see that bunker represents the largest cost and that
transporting containers on larger vessels requires significantly less fuel. Source: Germanische Lloyd (2017).
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Fig. 2. Estimated fuel consumption as a function of steaming speed and vessel size. Source: Notteboom and Vern-
immen (2009).

purposes. The obvious drawback of slow steaming is that more vessels are required to transport the same
amount of cargo and also, that transit times become longer, yielding a lower level of service for the
customers. In general, services have two directions, head- and back-haul, where most of the cargo is
transported in the head haul direction. A good example of this is the trade between Asia and Europe,
where most of the goods are delivered from Asia to Europe. In this case, vessels are slow steaming in the
back-haul direction where less customers are affected by the transit time.

1.2 Containerised Liner Shipping Network Design Problem

The Liner Shipping Network Design Problem (LSNDP) can be defined as follows: Given a collection
of ports, a fleet of container vessels and a group of origin-destination demands, a set of services is
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constructed for the container vessels such that the overall operational expenses are minimised, while en-
suring that all demands can be routed through the resulting network from their origin to their destination,
respecting the capacity of the vessels.

In the following we present some notation of the LSNDP that will be used throughout the paper,
introducing the necessary notation when required. A complete table of notation can be found in Table 5
in Appendix A. For a complete model, where the LSNDP is described in detail as well as a presentation
of the liner-shipping business along with a description of its main assets and infrastructure, see Brouer
et al. (2014a).

The set of ports is denoted by N and represents the set of physical ports in the problem. The set
of arcs A represents all possible sailings between ports. The set of demands or commodities is denoted
by K and for each commodity k ∈ K, there is an origin port ok, a destination port dk, as well as a
quantity qk measured in twenty-foot equivalent units (TEU). Furthermore, the corresponding unit-cost
for transporting a unit of commodity k through arc (i, j)∈A is defined as ck

i j. Finally, the set V denotes the
set of vessel classes. For each vessel class v ∈ V there is a corresponding cargo capacity, uv, measured
in number of TEUs, an available fleet quantity, mv, as well as additional speed limitations and fuel
consumption parameters. Furthermore, for convenience, the demand of the commodities in each port
i ∈ N is defined as:

ξ
k
i =


qk if port i is the origin port of commodity k
−qk if port i is the destination port of commodity k

0 otherwise.
(1)

There is a limited fleet of container vessels, but not all vessels need to be used. The deployment
of a vessel v ∈ V has an associated charter cost cv. Additionally, there are other costs related to the
resulting network, such as the sailing cost cv

i j associated with each vessel and each arc, which is given as
a combination of the port call cost and the fuel consumption for the corresponding leg. When containers
of commodity k ∈ K are transferred from one vessel to another in port i ∈ N, there is a transshipment
cost cT

ik for each container. Furthermore, there is an associated sailing time tv
i j for each container vessel v

sailing between ports i and j, which is calculated from the vessel’s design speed and the distance between
the ports. Moreover, each port i ∈ N has an associated berthing time bi.

One of the main traits of the liner shipping industry is the regular operation of services under a
pre-established schedule. Sometimes it is possible to define the set of candidate services in advance. In
these cases, let S be the set of feasible services in the model. Notice that S can be exponentially large.
Each service s ∈ S has an associated operational cost cs. As the set of services is defined beforehand,
the operational cost is given as a combination of the sailing cost of the arcs on the service route and the
corresponding port-call costs. Moreover, it is demanded that all services should have weekly operations,
meaning that if a round trip takes eight weeks to complete, then eight similar vessels need to be deployed
to the service in order to ensure that each port is visited once a week. Therefore, the required number
of vessels from vessel class v, to maintain the weekly frequency, is defined as ms

v. In addition, services
must be cyclic, visiting a sequence of ports while respecting the weekly departures, but the structure
of the services can be divided into several types according to the number of times a port is visited
during the service. A simple service or a circular service visits each port in the service exactly once.
However, a service is often allowed to be non-simple, meaning that a port can be visited several times,
as this may improve transit times. Nodes (or ports in the sequence) that are visited several times in the
service are denoted butterfly nodes. We can distinguish between different types of services; a service
containing a single butterfly node defines a butterfly service, whereas a service visiting all ports twice in
both directions, but in reverse order, is defined as a pendulum service. Furthermore, a service in which
any node can be visited multiple times is defined as a complex service. Examples of the different type of
services for some European ports are illustrated in Figures 3, 4, 5 and 6.
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Fig. 3. Example of a simple service, where each port is visited exactly once.

Fig. 4. Example of a butterfly service, where Aarhus is the butterfly node.

The variants of the LSNDP, which have been studied in the literature, vary mainly in the following
four respects:

• Transit time constraints. As described above, the transit time of each demand has an associated time
limit that must be respected. If the transit time is not respected, perishable goods may become spoiled.

• Transshipment costs. The costs of transshipments are a significant part of the operational costs
(Karsten (2015)), so it is generally important to represent these costs properly in the model.

• Rejected demands. Although the standard formulation of LSNDP states that all demands must be
flowed through the network, many models allow rejection of demands by imposing a penalty.

• Speed optimisation. There are three main approaches to model regarding speed optimisation: Models
which have constant speed for all services, models which choose a speed for each service, and models
which choose a speed on each individual leg in each service. As the fuel consumption depends non-
linearly on the speed, it is common to choose between a number of discrete speed alternatives, each
with a corresponding cost.
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Fig. 5. Example of a pendulum service, where each port can be visited both on the head-haul and back-haul trip.

Fig. 6. Example of a complex service, where Aarhus is a butterfly node that is visited three times.

Most models for LSNDP design the network without a specific schedule. Hence the service for each
vessel is defined, but not the exact day of arrival/departure. This is typically done in a later step, where
port availabilities are negotiated and transshipment times at ports are adjusted.

For a detailed review of the research on liner shipping optimisation problems, see the survey papers
Ronen (1983, 1993), Christiansen et al. (2004, 2013), Kjeldsen (2011), Meng et al. (2014), Tran and
Haasis (2015), Brouer et al. (2016, 2017), and Lee and Song (2017).

1.3 RoRo Network Design Problem

Roll-on Roll-off (RoRo) shipping is an important segment within liner shipping. The RoRo ships are
vessels designed to carry wheeled cargo, such as cars, trucks, semi-trailer trucks, and railroad cars, that
can be driven on and off the ship on their own wheels. In addition, RoRo ships may carry complex
cargo that is placed on trolleys and rolled on and off the ships, such as boats, helicopters, and heavy
plant equipment. RoRo shipping is often the only viable method of ocean freight transportation for these
oversized vehicles, as they may not fit in standard containers. There exist various types of RoRo ships,
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such as ferries, cruise ferries, cargo ships, and barges. In this subsection, we consider the RoRo ships
used for transporting cars, trucks and complex general cargo across oceans known as Pure Car Carriers
(PCC), Pure Truck & Car Carriers (PCTC) and general RoRo ships, respectively. A typical PCTC has a
carrying capacity in the range of 5,500 to 8,000 RT43. Here, RT43 is a capacity measure in the RoRo
business and corresponds to the size of a 1966 Toyota Corona. The world fleet of RoRo ships consists of
around 5,000 ships with a total capacity of more than 24 million deadweight tons (ISL, 2016).

The trades to be serviced in RoRo shipping are usually designed based on a large number of contracts
for transportation of cargo between the different port pairs along a trade. Hence, trade routes are defined
as transportation arrangements from one geographical region to another, where the world is divided into
a number of geographical regions. Each trade route has a number of loading ports in one region and
a number of discharging ports in the other. In Figure 7, two trade routes are illustrated by solid lines
and the ports are shown as filled circles. After a ship has sailed one voyage on a trade route it often
needs to reposition to start on the next one due to trade imbalances. This repositioning means ballast
sailing, i.e. sailing without cargo, which of course should be reduced as much as possible. The ballast
sailing between the two trade routes in Figure 7 is illustrated by a dashed line. Differences in contractual
requirements and a variety in the types of cargo transported on the various trade routes may restrict which
vessels that can be assigned to a particular trade route, regarding both capacity and vessel type.

Fig. 7. Illustration of two trade routes sailed in sequence, Oceania to Europe via South Africa, and South America
to North America, with associated ballast sailing from Europe to South America. Source: (Andersson et al., 2015).

Each trade route is sailed regularly, for example weekly, fortnightly, 3 times per months, depending
on demand and contractual obligations. Each sailing on a trade route is called a voyage, and normally
there is a time window for start sailing a voyage. Due to contractual obligations, these voyages are
mandatory and must be covered either by a ship in the RoRo shipping companys own fleet or by a
chartered ship. A RoRo shipping company owns and operates a heterogeneous fleet of ships having
different cargo capacities, sailing speed ranges, and bunker consumption profiles, and serve a given set
of trade routes.

Planning problems within RoRo shipping are far less studied in the OR literature compared to con-
tainer shipping. However, this segment has received increased attention the last decade. Pantuso et al.
(2015) consider strategic planning issues involving decisions regarding fleet size and mix. On the tactical
planning level, the fleet deployment problem consists of assigning ships in the fleet to voyages that must
be performed repeatedly on given trade routes. In addition to the ship-voyage assignment, the results
from fleet deployment are sailing routes for the ships in the fleet, i.e. each ship is assigned a sequence
of voyages to perform, possibly with ballast (empty) sailing between the last port call of one voyage and
the first on the next. Fagerholt et al. (2009) present a mixed integer programming model for the fleet
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deployment problem in RoRo shipping, and Andersson et al. (2015) extend this model for a real fleet
deployment problem by including speed as a decision variable.

Large RoRo shipping companies are well placed to offer end-to-end integrated logistics services
to car manufacturers engaged in international trade of vehicles. The fleet deployment planning in RoRo
shipping can achieve better results by integrating inventory management of cargs at ports where the cargo
is produced and/or demanded. A few studies including fleet deployment and inventory management in
RoRo shipping exist to show the potential of combining these planning tasks even though most RoRo
shipping companies perform separate planning today; Chandra et al. (2015, 2016), Dong et al. (2017).

The operations within RoRo shipping deviates from container shipping in several ways as well as
the cargo and ships. In container shipping each ship is normally assigned to a single route, while in
RoRo shipping a ship may sail several trade routes during a planning horizon. Ship types instead of
individual ships are often considered in container shipping, while in RoRo shipping a route for each
ship is determined. This also means that in RoRo shipping each trade route may be serviced by different
ship types. Furthermore, there is a great variation in when to start each voyage, as well as when and
how often to visit each port along the trade. Therefore, existing studies within fleet deployment in RoRo
shipping have used time windows for when each voyage along each trade should start. This flexibility
is in contrast to container shipping, as each service is usually served on a strict weekly basis, and each
voyage along the trade visits all ports in the same order. Finally, transshipment rarely exist in RoRo
shipping in contrast to container shipping, and none of the relevant RoRo studies includes this aspect.

1.4 The LINER-LIB test instances

In order to make it easier to compare algorithms for liner shipping network design, Brouer et al. (2014a)
introduced the LINER-LIB benchmark suite. The test instances in LINER-LIB are based on real-life
data from leading shipping companies along with several other industry and public stakeholders. The
benchmark suite contains data on ports including port call cost, cargo handling cost and draft restrictions,
distances between ports considering draft and canal traversal, vessel related data for capacity, cost, speed
interval and bunker consumption, and finally a commodity set with quantities, revenue, and maximal
transit time. The commodity data is intended to reflect the differentiated revenue associated with the
current imbalance of world trade.

The LINER-LIB benchmark suite consists of seven instances described in Brouer et al. (2014a) and is
available at http://www.linerlib.org. The instances range from smaller networks suitable for being solved
by exact solution methods to large scale instances spanning the globe. Table 1 gives an overview of these
instances.

Instance Category |N| |K| |V | min v max v
Baltic Single-hub 12 22 2 5 7
WestAfrica Single-hub 19 38 2 33 51
Mediterranean Multi-hub 39 369 3 15 25
Pacific Trade-Lane 45 722 4 81 119
AsiaEurope Trade-Lane 111 4,000 6 140 212
WorldSmall Multi-hub 47 1,764 6 209 317
WorldLarge Multi-hub 197 9,630 6 401 601

Table 1. The seven test instances included in LINER-LIB with indication of the number of ports (|N|), the number
of origin-destination pairs (|K|), the number of vessel classes (|V |), the minimum (min v) and maximum number of
vessels (max v) in each class.
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Each of the instances can be used in a low, base, and high capacity case depending on the fleet of the
instance. For the low capacity case the fleet quantity and the weekly vessel costs are adjusted to fewer
vessels with a higher vessel cost, while for the high capacity case the adjustments are reversed.

Currently, most papers only report results for the base capacity case. Furthermore, most often only
the six first instances are considered, with Krogsgaard et al. (2018) being the only to report results for
the WorldLarge instance.

2 Overview of models and algorithms

Designing a liner shipping network is a difficult task, embracing several decisions: Not only do we need
to construct the individual services, but we should also deploy vessels of the right size to each service
and ensure that there is sufficient capacity in the network to transport all containers from their origin to
their destinations. Designing the individual services is an NP-hard problem, as proved in Brouer et al.
(2014a). Furthermore, routing the containers through a given network subject to time constraints for
each container, can be recognised as a time-constrained multi-commodity flow problem, which is also
NP-hard (Karsten et al., 2015).

The problem is further complicated by the fact that ports are often visited several times in the same
service. This is obviously the case for pendulum services where a vessel is sailing back and forth along
the same service, but multiple visits to a port (typically a hub) often takes place to ensure that containers
quickly can be transshipped to other services. However, formulating the problem with multiple visits to
a port as a MIP model becomes more difficult.

Finally, one should notice that transshipment costs represent the majority of the cost of routing the
containers through the network according to Psaraftis and Kontovas (2015). It is therefore important to
carefully model which containers might be transshipped and at which costs. This adds further complexity
to the problem, and makes a graph or MIP formulation huge and difficult to solve.

Algorithms for liner shipping network design can roughly be divided into the following four groups:

• MIP-based algorithms. These algorithms are based on a unified MIP model that designs services and
flows containers through the resulting network. In order to handle this task, two sets of variables are
needed: Variables to select arcs in a service, and variables to denote the flow on each arc. If multiple
visits to a node are allowed (butterfly nodes) then an additional index is needed to indicate the visit
number at each node. Several MIP-based models have been presented in the literature, including
Álvarez (2009), Reinhardt and Pisinger (2012), Plum et al. (2014a,b), and Wang and Meng (2014).

• Two-stage algorithms. As the name suggests, these algorithms solve the problem in two steps: De-
signing the services, and flowing containers through the resulting network. Frequently, these algo-
rithms contain a feed-back mechanism, where output from the second-stage flow model is used as
input to improve the services in the first stage. Successful applications of this approach include Agar-
wal and Ergun (2008), Álvarez (2009), Brouer et al. (2014a,b), Mulder and Dekker (2014), Karsten
et al. (2017b), Thun et al. (2017), and Neamatian Monemi and Gelareh (2017).

• Subset of routes. Both Meng and Wang (2011b) and Balakrishnan and Karsten (2017) suggest a
heuristic method for generating a network by having a list of candidate services as input. The idea
behind these algorithms is to use the experience from existing planners to design a large number
of promising candidate services. The algorithm then selects a subset of the candidate services to
form a network. Many shipping companies and customers do not want the network to be completely
restructured, in which case proposing small variations to each service may be a sensible method.

• Backbone flow. It can be difficult to design the individual services without knowing how the contain-
ers will flow through the network. Hence, another approach is to reverse the order of the subproblems
in the two-stage algorithms, and start by finding an initial flow (a so-called backbone network) where
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cargo is flowed through a complete network with all connections between ports available. The con-
nections are priced such that they are expensive at low loads and cheap at high loads, in order to
make the cargo gather at few connections. The initial flow can be seen as an accomplishment of
the physical internet (Montreuil, 2011) where point-to-point transport has been replaced by multi-
segment intermodal transport. A successful application of the backbone network idea was presented
in Krogsgaard et al. (2018).

Many of the MIP-based algorithms can in principle solve the LSNDP to optimality. However, due to the
intrinsic complexity, only small instances can be solved to proven optimality within a reasonable time
frame. The subset-of-services based algorithms also solve the problem to optimality given that only the
proposed candidate services are valid. In practice, however, there may be an exponential number of valid
services, and we cannot expect to get all services as input. The two-stage algorithms and backbone-
network algorithms are both heuristics, since they first solve one stage, and then optimise the second
stage with the first-stage decisions fixed.

Table 2 gives an overview of the most important papers that have presented algorithms for the
LSNDP. The papers are ordered according to year of publication. For each paper we indicate which
variant of LSNDP is considered (transit time constraints, transshipment costs, rejected demand, and
speed optimisation). Moreover it is indicated which solution method is used, and whether services are
simple, butterfly, or general.

It is generally seen that there is a large variation in which variant of the problem authors consider,
and a large spectrum of solution methods are being developed. This somehow indicates that the LSNDP
is still a quite young research area under development. Moreover, most work on the LSNDP is tightly
linked to industrial applications, meaning that constraints and assumptions need to be adjusted according
to the setup of the the industrial collaboration partners.
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Paper Transit time Transship- Reject Speed Type of Solution method
constraints ment costs demand optimisation service

Agarwal and Ergun (2008) No Yes Yes Legs General Two-phase, Column Generation and Benders
Álvarez (2009) No Yes Yes Services Butterfly Two-phase, Column generation heuristic
Gelareh et al. (2010) Yes Yes Yes 1 Design Circular MILP, Lagrangian decomposition method
Meng and Wang (2011a) Yes 2 Yes 3 No Legs General MILP (Non-Linear), Branch-and-bound based ε-

optimal algorithm
Meng and Wang (2011b) No 4 Yes No Design General MILP, exact solution
Reinhardt and Pisinger (2012) No Yes No Design Butterfly MILP, exact solution, branch-and-cut
Plum et al. (2014a) Yes No Yes Design Circular MILP, branch-and-cut-and-price
Plum et al. (2014b) No Yes Yes Design General MILP, exact solution
Brouer et al. (2014a) No Yes Yes Services Butterfly Two-phase, heuristic column generation, tabu search
Brouer et al. (2014b) No Yes Yes Services Butterfly Two-phase, Matheuristic
Wang and Meng (2014) Yes No Yes Design General MILP, Column Generation heuristic method
Mulder and Dekker (2014) No Yes Yes Services General Two-phase, Genetic Algorithm, Dissagragation tech-

niques
Brouer et al. (2015) Yes Yes Yes Services Butterfly Two-phase, Matheuristic
Neamatian Monemi and Gelareh (2017) No Yes Yes Legs General Two-phase, Benders
Balakrishnan and Karsten (2017) No 4 Yes Yes Design General Subset of services, heuristic solution
Karsten et al. (2017a) Yes Yes Yes Legs Butterfly Two-phase, Matheuristic
Karsten et al. (2017b) Yes Yes Yes Services Butterfly Two-phase, Matheuristic
Thun et al. (2017) No Yes No Design General MILP, Branch-and-Price
Krogsgaard et al. (2018) No Yes Yes Services General Backbone Flow, Variable Neighborhood Search, La-

grange heuristic
Koza et al. (2019) Yes Yes Yes Legs General Integrated LSNDP and scheduling, column generation,

matheuristic
Table 2. Overview of selected papers, presenting algorithms for LSNDP, sorted according to year of publication. Transit time constraints indicate whether
each commodity has an upper limit on the transit time. Transshipment costs states whether these costs are taken into account. Reject demand indicates
whether demands may be rejected by paying a penalty. Speed optimisation is either: Design (all vessels are sailing at design speed), services (variable
speed on services but all legs in a service have the same speed), legs (different speed can be used on any leg). Type of services can be: Circular (every port
is visited once in a rotation), butterfly (only one butterfly node in each service), general (several butterfly nodes are allowed). Solution Method first states
which of the four main categories the algorithm belongs to (MILP model, two-phase, subset of services, backbone flow), and then briefly elaborates the
methods used.

Additional comments:
1 Attraction function defined in the objective function aiming to maximise the customer attractiveness of the services.
2 Maximum tolerable average transit time between port-calls.
3 Container handling cost at the port-calls.
4 Limited number of transshipments.



3 Mixed Integer Programming Models

Numerous decisions must be taken when designing a service network, among which the routing of con-
tainers, the fleet deployment and the service design stand out. Defining a problem that correctly accounts
for all these details in real life is beyond the limited capacity of human planners. Therefore, the use of
complex decision support tools to design liner networks can be of great use. In this section we present
MIP and graph-based models to define the LSNDP. Different formulations are briefly introduced to
model the network design problem in liner shipping and a summary of the main mathematical formula-
tions proposed in the literature are presented under different assumptions.

3.1 Service formulation for LSNDP

In this section, a service flow formulation for the LSNDP is introduced, where the set of all feasible
services is defined in advance for the model. This reduces the network design problem to the selection
of feasible services.

Let us begin with introducing a basic service formulation. We use the terminology presented in
Section 1.2 with the addition of the following definitions: Let G = (N,A) be a directed graph. Define for
each service s and for each arc (i, j), the associated capacity us

i j. Finally, let xks
i j be a continuous variable

denoting the amount of commodity k transported by service s on arc (i, j), and ys a binary variable for
the selection of service s in the network. Now, the service formulation of the LSNDP can be expressed
as:

min ∑
s∈S

csys + ∑
k∈K

∑
(i, j)∈A

ck
i j ∑

s∈S
xks

i j (2a)

s.t. ∑
s∈S

∑
j:(i, j)∈A

xks
i j −∑

s∈S
∑

j:( j,i)∈A
xks

ji = ξ
k
i i ∈ N,k ∈ K (2b)

∑
k∈K

xks
i j ≤ us

i jys s ∈ S,(i, j) ∈ A (2c)

∑
s∈S

ms
vys ≤ mv v ∈V (2d)

xks
i j ≥ 0 (i, j) ∈ A,k ∈ K,s ∈ S (2e)

ys ∈ {0,1} s ∈ S. (2f)

The objective function (2a) minimises the total operational cost of the network. The first term ac-
counts for the fixed cost of the selected services, whereas the second term constitutes the sailing cost of
shipping the demand. Constraints (2b) are the flow conservation constraints, and the flow of commodities
on the legs has to respect the capacity of the vessel deployed in the selected service s as formulated in
constraints (2c). For each vessel class v ∈V , constraints (2d) ensure that the number of deployed vessels
on the selected services using vessel class v does not exceed the maximum availability mv. Finally, the
domain of the variables is defined in constraints (2e) and (2f).

The formulation allows to design networks considering only a subset of promising candidate ser-
vices. Examples of papers using this formulation are Álvarez (2009), Meng and Wang (2011b) and
Balakrishnan and Karsten (2017).

For a better utilisation of the capacity of the vessels, the model can handle the cargo rejection by
defining extra continuous variables that account for the demand that is rejected by the liner company,
and incurring a large penalty in the objective function. Moreover, if we only consider simple services,
additional continuous variables f ks

i could be added to account for transshipments, denoting the amount
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of commodity k that is transshipped at port i from service s. The following constraints (3) could be added
to model transshipments.

f ks
i ≥ ∑

j∈N
j 6=i

xks
ji − xks

i j i ∈ P\{ok,dk},k ∈ K,s ∈ S. (3)

Some of these approaches have been considered by Álvarez (2009), who studies an LSNDP at the tac-
tical level, considering the joint routing and deployment of container vessels. The model includes many
relevant parameters in the objective function to correctly represent the operational cost of the selected
services over a tactical planning horizon, and it is one of the first formulation to consider transshipment
when designing the shipping network.

The formulation presented in this paper is based on the set of all feasible services, which are given
as a combination of a vessel class, an operating speed and a route structure. Therefore, it is possible
to accommodate services that are proposed externally by the planners as well as services generated
internally by a solution algorithm, meaning that any type of non-simple services, i.e. services that visit
one or more ports several times during a service round, can be considered in the service set S. However,
the model is unable to accurately calculate the transshipment cost of non-simple services. Finally, the
model considers the fleet deployment of the available fleet, defining integer variables that control the
amount of vessels deployed for a chosen service.

As the size of the problem increases, the number of feasible services in the problem grows exponen-
tially, making the model intractable to solve. Álvarez (2009) proposes a tabu search algorithm combined
with a column generation procedure to solve a case study with up to 120 ports.

3.2 Arc formulation for LSNDP

The main problem with a service-based formulation is that generating all services S is non-trivial, due
to the high number of combinatorial possibilities. Therefore, an alternative compact formulation is in-
troduced in this section, which is based on an arc formulation. We are no longer considering a set S of
predefined services, but instead let Sv be an index set for the services of vessel class v, indexed by s.

We first present a basic mathematical model based on arc formulation. We again use the notation
presented in Section 1.2, with small extensions. Let G = (N,A) be a directed graph. Let xks

i j be a contin-
uous variable denoting the flow of commodity k on arc (i, j) by service s, which is operated by vessel
class v, and ys

i j a binary variable for the selection of arc (i, j) in service s. The binary variable γs
i is equal

to 1 if port i is the hub port in service s. Moreover, we define τs
i as a continuous variable representing

the time of departure of service s, for vessel class v, from port i, and ws as an integer variable indicating
the number of vessels from class v needed to maintain the weekly frequency of service s. Then, the arc
formulation of the LSNDP can be expressed as follows:

min ∑
v∈V

∑
s∈Sv

cvws + ∑
v∈V

∑
s∈Sv

∑
(i, j)∈A

cv
i jy

s
i j + ∑

k∈K
∑

(i, j)∈A
ck

i j ∑
v∈V

∑
s∈Sv

xks
i j (4a)

s.t. ∑
v∈V

∑
s∈Sv

∑
j:(i, j)∈A

xks
i j −∑

v∈V
∑

s∈Sv
∑

j:( j,i)∈A
xks

ji = ξ
k
i i ∈ N,k ∈ K (4b)

∑
j:(i, j)∈A

ys
i j− ∑

j:( j,i)∈A
ys

ji = 0 i ∈ N,v ∈V,s ∈ Sv (4c)

∑
i∈N

γ
s
i = 1 v ∈V,s ∈ Sv (4d)

∑
k∈K

xks
i j ≤ uvys

i j (i, j) ∈ A,v ∈V,s ∈ Sv (4e)
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τ
s
j ≥ (τs

i + tv
i j +b j)(1− γ

s
j)y

s
i j i, j ∈ N,v ∈V,s ∈ Sv (4f)

∑
(i, j)∈A

(ts
i j +b j)ys

i j ≤ 24 ·7 ·ws v ∈V,s ∈ Sv (4g)

∑
s∈Sv

ws ≤ mv v ∈V (4h)

xks
i j ≥ 0 (i, j) ∈ A,k ∈ K,v ∈V,s ∈ Sv (4i)

ys
i j ∈ {0,1} (i, j) ∈ A,v ∈V,s ∈ Sv (4j)

ws ∈ Z+ v ∈V,s ∈ Sv (4k)
τ

s
i ≥ 0 i ∈ N,v ∈V,s ∈ Sv (4l)

The objective function (4a) minimises the cost of deploying the vessels and designing the services
and the cost of transporting the containers through the network. The flow conservation constraints for the
cargo variables are given in constraints (4b), whereas the flow conservation constraints for the routing
variables are given in constraints (4c). Constraints (4d) ensure that there is only a single hub port for each
service. The flow of cargo on an edge (i, j) cannot exceed the capacity uv of a vessel class, as expressed
in (4e). If the service does not use a given edge in the graph, i.e. ys

i j = 0, then the capacity is zero. The
time schedule constraints for the routing variables are given by the time variables in constraints (4f).
Note that it is necessary to linearise these constraints, as they are non-linear. Moreover, these constraints
also ensure the elimination of sub-tours when designing the liner network. The weekly frequency of the
services and the deployment of the fleet are expressed by constraints (4g). The availability of the fleet is
limited by constraints (4h). Finally, the domain of the variables is defined by constraints (4i)-(4l).

This model is a simple representation of the arc formulation for the LSNDP, and it is a fairly easy
adaptation of a variant of the Vehicle Routing Problem (VRP) (Toth and Vigo, 2015). However, this
model can be extended to incorporate the various constraints and considerations encountered in liner
shipping.

An arc formulation with butterfly services

As argued by Agarwal and Ergun (2008), transshipment is the core of liner shipping. Hence, these opera-
tions should not be ignored when designing the shipping network. Reinhardt and Pisinger (2012) extend
the literature by proposing a MIP model based on an arc-flow formulation, where the network design
and fleet assignment are combined. The model can handle butterfly services as well as account for the
transshipment cost in the butterfly nodes.

Next follows a description of this model, adapted to the notation presented in the Section 1.2, with
small extensions. Let G = (N,A) be a directed graph. Due to the heterogeneous fleet considered by the
authors, the set V defines the set of vessels, instead of the set of vessel classes. Therefore, we consider
each vessel v to belong to its own vessel class.

The design of the network is modelled with the binary variables yv
i j for the utilisation of an arc (i, j)

in the service for vessel v. Similarly, as proposed by Miller et al. (1960), positive integer variables ev
i j

are defined for enumerating the arcs used in the vessel service and avoid subtours in services. The binary
variables γv

i and zv
i j identify, respectively, the unique center-point, i.e. the butterfly node in the vessel

service, and allow the possibility of identifying the first and last arc visiting the butterfly node. These
variables are used for modelling the transshipment of cargo in butterfly nodes.

The routing of containers through the network is modelled with continuous variables xkv
i j , and extra

continuous variables are defined to count the amount of the transshipped containers in intermediate ports
within the same service. Let the continuous variables f kv

j define the amount of commodity k transshipped
by vessel v at port j, while the continuous variables f kv

jih denote the amount of commodity k, arriving at
port i through arc ( j, i), in vessel v, not leaving in arc (i,h).
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Let tmax be the length of the time horizon. The deployment of a vessel is controlled by the binary
variable λ v, whereas the continuous variables τv limit the service length of the vessels. Then, the arc-
flow model can be defined as:

min ∑
k∈K

∑
(i, j)∈A

ck
i j ∑

v∈V
xkv

i j +∑
k∈k

∑
i∈N

cT
ik ∑

v∈V
f kv
i + ∑

v∈V
cv

λ
v (5a)

s.t. ∑
v∈V

∑
j:(i, j)∈A

xkv
i j −∑

v∈V
∑

j:( j,i)∈A
xkv

ji = ξ
k
i i ∈ N,k ∈ K (5b)

f kv
i ≥ ∑

j:(i, j)∈A
xk

i j− ∑
j:( j,i)∈A

xk
ji k ∈ K, i ∈ N,v ∈V (5c)

f kv
i ≥ ∑

j∈N
∑

h∈N
∑
v∈V

f kv
jih−M1(1− γ

v
i ) k ∈ K, i ∈ N,v ∈V (5d)

f jih ≥ xkv
ji − xkv

ih −M2(2− yv
ji− yv

ih + zv
ji + zv

ih) k ∈ K, j, i,h ∈ N,v ∈V (5e)

f jih ≥ xkv
ji − xkv

ih −M3(4− zv
ji− zv

ih− yv
ji− yv

ih) k ∈ K, j, i,h ∈ N,v ∈V (5f)

∑
i∈N

γ
v
i = 1 v ∈V (5g)

∑
(i, j)∈A

zv
i j = 2 v ∈V (5h)

γ
v
i − ∑

j:(i, j)∈A
zv

i j ≤ 0 i ∈ N,v ∈V (5i)

γ
v
i − ∑

j:( j,i)∈A
zv

ji ≤ 0 i ∈ N,v ∈V (5j)

∑
j:(i, j)∈A

yv
i j− ∑

j:( j,i)∈A
yv

ji = 0 i ∈ N,v ∈V (5k)

∑
j:(i, j)∈A

yv
i j− γ

v
i ≤ 1 i ∈ N,v ∈V (5l)

ev
ji− ev

ih +M4(yv
ih + yv

ji−2− zv
ji− zv

ih)≤−1 i, j,h ∈ N,v ∈V (5m)

yv
i j−λ

v ≤ 0 (i, j) ∈ A,v ∈V (5n)

τv ≤ tmax v ∈V (5o)

τv = ∑
(i, j)∈A

yv
i j(t

v
i j +b j) v ∈V (5p)

tmax

τv
uvyv

i j ≥ ∑
k∈K

xkv
i j (i, j) ∈ A,v ∈V (5q)

zv
i j,y

v
i j ∈ {0,1} (i, j) ∈ A,v ∈V (5r)

f kv
jih ≥ 0 k ∈ K, j, i,h ∈ N,v ∈V (5s)

f kv
j ≥ 0 k ∈ K, j ∈ N,v ∈V (5t)

ev
i j ∈ Z+ i, j ∈ N,v ∈V (5u)

xkv
i j ≥ 0 (i, j) ∈ A,k ∈ K,v ∈V (5v)

γ
v
i ∈ {0,1} i ∈ N,v ∈V (5w)

λ
v ∈ {0,1} v ∈V (5x)

τv ≥ 0 v ∈V (5y)
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The objective function (5a) minimises the total cost of transporting the cargo through the network, the
transshipment costs of the demand in butterfly nodes, and the associated cost for deploying the vessels.
Furthermore, the flow conservation constraints (5b) ensure that all demand is satisfied. Constraints (5c)
account for the amount of containers transshipped in intermediate ports; however, if the corresponding
service is non-simple, the model requires constraints (5d)-(5f) for updating the commodities transshipped
by the same vessel in butterfly services. Constraints (5g)-(5j) are used to handle butterfly services. Con-
straints (5g) identify the unique butterfly node for the vessel service and constraints (5h)-(5j) find the
adjacent arcs corresponding to the first or last visit to the butterfly node of the vessel service. Moreover,
constraints (5k) are the flow conservation constraints for the network design of the vessel service, and
constraints (5l) control the number of times a vessel visits the butterfly node in a service. In addition,
constraints (5m) use the previous information for correctly enumerating the order in which the vessel
traverses the arcs in the vessel service. Additionally, the fleet deployment is controlled by constraints
(5n), and the corresponding service length is computed in constraints (5o) and (5p). As first introduced
in Agarwal and Ergun (2008), the service length is included in the capacity constraints (5q). However,
the model does not require weekly departures for all ports. The inclusion of time for the service in
the calculation of the capacity, results in a non-linear model. Therefore, it is necessary to linearise the
corresponding constraints (5q) together with (5o)-(5p) in order to obtain a MIP formulation. Finally,
constraints (5r)-(5y) define the domains of the decision variables.

The high number of details in the previous model allows the representation of a fairly realistic prob-
lem, making it possible to design efficient services, to reduce the overall operational costs. Nonetheless,
it can easily be seen that the compact model is computationally hard to solve. The model presents several
“big-M” constraints, which produce a very weak relaxation. Techniques such as Branch-and-Bound pro-
vide large integrality gaps and poor bounds. The authors propose a Branch-and-Cut algorithm to solve
this problem, as the method has presented good results for the VRP and other transportation network de-
sign problems. The idea is to solve the previous relaxed problem without the transshipment constraints,
(5d)-(5f), and the connectivity constraints (5h)-(5j) and (5m) in butterfly nodes and then, gradually add
cuts to the formulation when those constraints are violated. Hence, the authors distinguish between two
types of cuts; the connectivity cuts and the transshipment cuts.

The connectivity cuts are inspired by Fischetti et al. (1997) and have been modified to handle butterfly
services. Let S be a subset of ports. Then, the connectivity cuts are defined for each vessel v, for any
non-empty subset S of ports, and for any pair of ports such as k ∈S and l 6∈S as follows:

∑
i, j∈S

yv
i j ≤ ∑

h∈N
∑

g∈S \{k}
yv

hg + γ
v
k −∑

e∈N
yv

el + γ
v
l +1 v ∈V, /0⊂S ⊂ N,k ∈S , l ∈ N \S (6)

These cuts prevent the service of a given vessel v to be disconnected. Otherwise, if the service is
connected, the previous constraints (6) must hold. The cuts ensure that the number of arcs contained
in the subset S has to be smaller or equal to the difference between the sum of the arcs for the vessel
service with an end-point in the subset S \{k} and the sum of the arcs in the vessel service with an end-
point in the port l, and plus one. Moreover, for butterfly services, the right-hand side of the constraints
need to be extended to identify if either port k or l is the butterfly node for the service of vessel v. If a
subset S is identified such as the previous constraint is violated, it means that the service operated by
vessel v is not connected and the corresponding cuts are added to the model.

Next, we present the transshipment cuts. As transshipments of containers can only occur in the port
identified as the butterfly node of the service, the transshipment cuts are only defined for butterfly ser-
vices. Given a vessel v, we first identify if the corresponding service is a butterfly service or not. Then, we
define B(A) as the set of butterfly services on the set of arcs A, A as a subset of arcs for a butterfly service
in B(A), and yv(A ) as the number of arcs sailed by the corresponding vessel v in the set A . Moreover,
let T (( j, i),A ) be the simple tour of A in which the arc ( j, i) is located. Hence, the transshipment cut
can be constructed as:
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zv
ji + zv

ih +2(|A |− yv(A ))≥ 2 v ∈V,( j, i),(i,h) ∈A ∈ B(A),T (( j, i),A ) 6= T ((i,h),A ) (7)

The transshipment cuts (7) are defined for each vessel v and pair of arcs in the subset A not belonging
to the same simple tour of A , as represented by T (( j, i),A ) 6= T ((i,h),A ). The previous cuts make sure
that if all arcs in the set A are sailed in the service operated by vessel v, then the arcs ( j, i) and (i,h)
belong to different loops. When a set of arcs A representing a butterfly service is identified violating the
previous constraints, the previous transshipment cut is added to the model together with the following
constraints:

f kv
i ≥ ∑

j,h∈N
∑
v∈V

f kv
jih−M1(1− γ

v
i ) k ∈ K, i ∈ N,v ∈V (8)

f jih ≥ xkv
ji − xkv

ih −M2(2− yv
ji− yv

ih + zv
ji + zv

ih) k ∈ K, j, i,h ∈ N,v ∈V (9)

f jih ≥ xkv
ji − xkv

ih −M3(4− zv
ji− zv

ih− yv
ji− yv

ih) k ∈ K, j, i,h ∈ N,v ∈V (10)

The cuts are found through a separation algorithm based on depth-first search, and the first found
violated cut is added to the formulation. The paper presented by Reinhardt and Pisinger (2012) is the
first paper studying exact methods for liner shipping with transshipment operations and butterfly services.
However, it cannot solve real-life problems from LINER-LIB. Despite this, it gives promising results for
small liner shipping network design problems such as feeder services, and computational results are
provided for randomly generated instances of up to 15 ports.

3.3 Modelling complex-structures for services

The majority of models for LSNDP are defined using an arc formulation. However, this formulation can
be problematic when formulating non-simple services, as it requires the inclusion of many extra variables
in the model as seen in Reinhardt and Pisinger (2012). In this section, we briefly present some modelling
approaches for modelling non-simple structures for the services.

Port-call formulation for LSNDP

The general idea of this formulation is to define services as a sequence of port-calls. This is done in
order to handle non-simple services, because it better reflects how services are designed in practice. By
defining these sequences, it is possible to distinguish between multiple calls to the same port during the
same service.

Plum et al. (2014b) propose a new mathematical formulation based on a service formulation, where
the set of all services S is defined a-priori. This formulation defines service flow variables to model how
containers are transported within and between services. The model makes use of a number of continuous
flow variables that represent the amount of cargo that is transported on a given leg of a service. Similarly,
extra continuous flow variables are defined for accounting for the amount of cargo from and to a port in a
given leg of a service. In this way, the service flow can be used to model the transshipment of cargo, and
correctly accounting for the transshipment costs. Furthermore, this formulation allows cargo rejection by
imposing a penalty in the objective function. The model moreover imposes the services to have weekly
frequency, while limiting the fleet deployment according to the available fleet. Finally, the authors define
the objective function to maximize the profit of the transported cargo, while minimising the operational
cost of the services and handling costs of cargo.

The problem is proved to be NP-hard by reduction from the TSP, and the authors report promising
solutions for the two smallest LINER-LIB instances using CPLEX. However, due to the large number of
constraints and decision variables, the optimal solutions are not achieved.
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3.4 Outbound-inbound principle

The geographical distribution of the ports and the coastal lands may limit the structure of the services. In
the case where the ports follow a natural sequence, it may be convenient to define services following a
so-called “outbound-inbound principle”, i.e. each service goes back and forth along this natural sequence
of the ports. These services are similar to pendulum services; however, they may be asymmetric, as some
ports can be omitted in each direction, as illustrated in Figure 8.

Fig. 8. Example of a asymmetric service with five ports with the outbound-inbound principle.

Wang and Meng (2014) study the LSNDP with services following this structure and incorporate
transit time constraints. However, transshipments between services are excluded in this approach, as
they are less significant when working with this kind of services. The proposed model is mixed-integer,
non-linear and non-convex and it both designs the service network, as well as determines the cargo flow
through the network, while considering a limited fleet.

The demand is allowed to be split between different services, and the model uses continuous vari-
ables, representing the amount of containers flowing through the arcs. Moreover, the model enforces
maximum transit times, between each pair of nodes, and containers cannot be served by a service which
uses more than this maximum time, to get from the containers origin to their destination. Finally, the
model defines the port times as a functions of the number of containers handled at the ports and the
services ire enforced to have weekly frequencies.

The problem is proved to be strongly NP-hard by reduction from the Bin Packing Problem, and to
handle the non-linearities as well as making the problem more tractable, Wang and Meng (2014) describe
a column generation based algorithmic scheme to solve it. The approach efficiently finds high-quality
solutions that can help planners to design better liner shipping networks. The algorithm is tested on
instances consisting of 12 ports and 3 vessels classes. However, the comparison with exact solutions is
studied with instances having 7 ports, as CPLEX is able to find the optimal solution in these cases.

3.5 Layer-network for complex services structures

Thun et al. (2017) propose a new mathematical formulation for the LSNDP where all kinds of service-
structures are allowed, i.e. each port in the service can be visited several times. The authors present an
approach where the generation of services is separated from the fleet deployment and the coordination
of services, which is carried out following a Column Generation approach. The innovative feature about
this modeling is given by the way in which the network is defined for creating the services.

The master problem is responsible for coordinating the services, which are known, and a service is
given as a sequence of ports, a vessel type and a number of assigned vessels. Additionally, the set of pos-
sible delivery patterns for each service is defined, where information about the amount of cargo loaded
and unloaded in the ports is provided. However, this set can be very large, and the model allows any con-
vex combination of generated delivery patterns, as long as they add up to an integer number of delivery
patterns for each service. The master problem is defined with decision variables for the selection of a
service with a demand pattern, subject to the constraints that all demand must be transported, respecting
the availability of the fleet, while minimising the cost associated to the selected services.

As mentioned above, the generation of the entire set of services can be quite time-consuming. There-
fore, Thun et al. (2017) propose a sub-problem for each vessel type for finding new services and delivery
patterns.
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To allow complex route structures, the services are modelled using a multi-layer graph, where each
layer is a complete sub-graph containing exactly one copy of each port. The layers are then connected
with edges between the nodes representing the same port. This way, a port can be visited multiple times,
but in different layers, while keeping the benefits from working with simple routes in the extended
network. A similar approach, to use a multi-layered graph to model complex services, was also earlier
used by Guericke and Tierney (2015). A graphical representation of the network can be seen in Figure 9.
Using this network, the sub-problem is then to create the services with minimum reduced cost, satisfying
constraints on speed and sailing time. An arc formulation is used to model these sub-problems, where the
flow of the cargo is controlled with continuous variables, taking into account the amount of transshipped
cargo from other services.

Fig. 9. Visual representation of the layer-network with four ports and L layers.

It can easily be observed that the complexity of the sub-problem increases with the number of layers.
Thun et al. (2017) impose a limitation of two layers in the defined graph. This is a realistic limitation, as
a service seldom visit a port more than twice. Hence, the sub-problem allows the creation of both simple,
butterfly and pendulum services. The problem is solved to integer optimality using Branch-and-Price.

In each node of the tree, the feasibility of the solution is verified with respect to the integrality
restriction of the convex combination of the delivery patterns. If integrality does not hold, the tree is
branched by stages. In the first stage of the branching, an integer number of assigned vessels is searched
for. Once it is obtained, the second stage similarly branches in the number of visits to each port for each
of the vessel classes. Finally, in the third stage, the branching is applied on the total number of time the
vessels of a certain type sails between two ports. Although this branching is usually sufficient, fractional
solutions can still be obtained with respect to the number of vessels deployed on a service. Consequently,
a second stage arc-branching can be applied, branching on the total number of times vessels of a certain
class sails between ports on two consecutive voyages.

The algorithm is tested in small instances of between 5 and 7 ports, presenting between 7 and 14 de-
mands, and is compared with cases where the structure of the services is limited. The authors present re-
sults showing that when considering more complex service structures, solutions with better cost-effective
networks can be obtained.
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4 Two-stage algorithms

The LSNDP consists of two tightly interrelated problems — the vessel service network design and the
container flow problem. One of the most successful approaches so far for finding good solutions to the
LSNDP, has been to use heuristics exploiting this two-tier structure.

The idea, in general, is to first generate a set of services for the vessels and then to solve the con-
tainer flow problem, given the set of services. It is then common to use information from the container
flow to update the services. This way a feedback loop is created, iteratively improving the services and
solving the container flow. The different frameworks, in which this has been used, range from column
generation and Bender’s decomposition (Agarwal and Ergun (2008)) to various matheuristics (Álvarez
(2009), Brouer et al. (2014b)). This section will discuss some of those methods. Various versions of the
LSNDP will be featured, both with and without transshipment costs, transit time constraints and rejection
of demand.

4.1 The container flow problem

Before going into the full two-stage algorithms, let us briefly discuss the container flow problem, which
is the lower tier problem in the LSNDP two-tier structure. In general, for a given set of services, the con-
tainer flow problem reduces to a multi-commodity flow problem (MCFP) with fractional flows allowed.

In addition to the notation defined in Section 1.2, we need an additional parameter: to each arc
(i, j) ∈ A define its corresponding flow capacity, ui j. The arc set A and its corresponding costs ck

i j and
capacities ui j are defined by the vessel services, designed in the upper-tier problem. Also, let xk

i j be
a continuous variable denoting the flow of commodity k through arc (i, j). The MCFP can then be
expressed as:

min ∑
(i, j)∈A

∑
k∈K

ck
i jx

k
i j (11a)

s.t. ∑
j∈N:(i, j)∈A

xk
i j− ∑

j∈N:( j,i)∈A
xk

ji = ξ
k
i i ∈ N,k ∈ K (11b)

∑
k∈K

xk
i j ≤ ui j (i, j) ∈ A (11c)

xk
i j ≥ 0 (i, j) ∈ A,k ∈ K. (11d)

Here, the objective, (11a), is to minimise the total cost. Constraints (11b) are the flow conservation
constraints, constraints (11c) are the capacity constraints, and constraints (11d) define the domain of the
variables xk

i j.
When fractional flows are allowed, the MCFP is solvable in polynomial time. For larger instances,

it is, however, still computationally demanding. As the model generally has to be solved a multitude
of times in the presented two-tier solutions to the LSNDP, efficient solution methods to the MCFP are
essential.

One of the most common solution approaches is to exploit its block-angular constraints matrix and
apply Dantzig-Wolfe Decomposition (Ahuja et al. (1993); Karsten et al. (2015)). The problem should
first be reformulated as a path-flow formulation, where the goal is to allocate the commodities to a
number of flow paths from the commodities’ origins to their destinations, while respecting the capacity
constraints on the arcs. Let Pk be the set of all paths for commodity k ∈ K, from ok to dk, and let Pk

a be
the set of paths for commodity k, which uses arc a. Then we define

Pa =
⋃
k∈K

Pk
a ,
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to be the set of all paths going through arc a ∈ A. For each path, p, for commodity k ∈ K, define its
cost ck

p = ∑a∈A:p∈Pk
a

ck
a, and a corresponding decision variable f k

p , deciding the flow through path p. The
path-flow formulation can then be expressed as:

min ∑
k∈K

∑
p∈Pk

ck
p f k

p (12a)

s.t. ∑
p∈Pk

f k
p = ξ

k
ok

k ∈ K (12b)

∑
p∈Pa

f k
p ≤ ua a ∈ A (12c)

f k
p ≥ 0 k ∈ K, p ∈ Pk. (12d)

The objective function, (12a), minimises the cost. Constraints (12b) ensure that all commodities are
delivered and constraints (12c) assert that the arc capacity cannot be exceeded. Lastly, constraints (12d)
define the domain for the variables.

The path formulation has a very large number of variables, but generally, only a few of them are
needed for the optimal solution. Using column generation, the problem can be restricted to only consider
a limited amount of paths for each commodity and new paths can then be generated dynamically. In this
way, the path formulation can generally be solved faster than the arc formulation, described earlier. The
path formulation makes it relatively easy to implement transit time constraints as they can be handled in
the pricing problem.

4.2 Matheuristics methods for the LSNDP

While the lower-tier container flow problem is solvable in polynomial time (when no transit time con-
straints are imposed), the upper-tier service selection problem is NP-hard, and just calculating the ob-
jective value of a given solution, demands solving the container flow problem. This makes the service
selection problem difficult to solve to optimality and instead several matheuristics have been developed
to find good solutions to larger instances. A matheuristic is a method that employs heuristics together
with methods from linear and integer programming. In the case of the LSNDP, the most common pro-
cedure is to use linear programming tools to solve the MCFP and then various heuristics to update the
vessel services.

The first two-stage algorithms for liner shipping network design were presented by Agarwal and
Ergun (2008), that solved the simultaneous ship scheduling and cargo routing problem (SSSCRP) with a
column generation and a Bender’s decomposition heuristic. As the name implies, they also took the ship
scheduling into account which has been more or less neglected since. They did not, however, account
for transshipment costs. The column generation heuristic was designed such that the cargo routing was
solved in the master problem, and the dual variables were then utilised to generate and choose new
services for the vessels. Once no more services with negative reduced cost could be found, they used the
generated columns to find an integer solution using branch-and-bound. In the Bender’s decomposition
heuristic, the container flow problem was solved in the subproblem to add optimality cuts for the service
generation in the master problem. In both cases they found it most efficient to generate new services
using a labelling algorithm. They reported good results for instances of up to 20 ports and 100 vessels.

Another prominent approach was presented by Álvarez (2009), that used a matheuristic which per-
turbed the services with a tabu-search scheme, solved the container flow problem using an interior point
method and generated new services from the dual variables from the container flow solutions. Álvarez’s
model included the cost of transshipments and also allowed for butterfly services. The moves considered
in the tabu-search for the services are deletion, change in vessel speed and change in number of ves-
sels assigned. To guide the search, from the solution of the commodity flow, he checked which services
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are under/over utilised and added/removed vessels and increased/decreased speed, where necessary. The
paper presents computational results for up to 100 available vessels and 120 ports.

Another tabu-search approach was presented by Brouer et al. (2015) and was later improved upon by
Karsten et al. (2017b), by adding time-constraints for the commodities. As it is computationally costly
to solve the full cargo flow problem, both papers instead developed a method to estimate the impact of
a change in the service structure. Their solution method is then based on an improvement heuristic, first
presented by Archetti and Speranza (2014), where an integer program is solved to update the current
services, in each iteration.

Here follows a brief description of the algorithm from Brouer et al. (2015). The algorithm is ini-
tialised by using a greedy knapsack heuristic to generate an initial set of services. The change in revenue
and time by including or excluding ports from the current services is estimated by solving a set of short-
est path problems. In addition to the notation from the Section 1.2, let τs be the time length of a service s,
let ∆

R+
is (∆ R−

is ) be the estimated revenue change and ∆
T+
is (∆ T−

is ) be the estimated duration change from
including (excluding) port i ∈ N in (from) service s ∈ S. Also, let η+

s (η−s ) be the maximum number of
inclusions (removals) allowed and let N̄s denote the set of ports which can be included. Let m̂v denote
the number of free vessels of class v, such that

m̂v = mv−∑
s∈S

ms
v.

Lastly, let us define the binary variables x+is and x−is , which control the inclusion and removal, respectively,
of port i from service s, and the integer variables ζs, which denote the number of vessels to add to/subtract
from service s. For each service s∈ S, with corresponding vessel class v, we can then define the following
integer program:

max ∑
i∈Ns

∆
R+
is x+is + ∑

i∈N̄s

∆
R−
is x−is − cvζs (13a)

s.t. τs + ∑
i∈Ns

∆
T+
is x+is + ∑

i∈N̄s

∆
T−
is x−is ≤ 24 ·7 · (ms

v +ζs) (13b)

ζs ≤ m̂v (13c)

∑
i∈N̄s

x+is ≤ η
+
s (13d)

∑
i∈Ns

x−is ≤ η
−
s (13e)

∑
j∈Li

x−js ≤ |Li|(1− x+is ) i ∈ N̄s (13f)

∑
j∈Li

x−js ≤ |Li|(1− x−is ) i ∈ Ns (13g)

x+is ∈ {0,1}, i ∈ N̄s x−is ∈ {0,1}, i ∈ Ns ζs ∈ Z, (13h)

Here, the objective (13a) is to maximise the increase in revenue. Constraint (13b) ensures that there
is enough vessels assigned to keep the weekly frequency, and constraint (13c) says that no more than
the number of free vessels can be added to the service. Constraints (13d) and (13e) set a limit on the
number of insertions and removals, while (13f) and (13g) prevent certain combinations of insertions and
removals. The sets L+

i are defined such that if a port i is to be inserted, then no port in L+
i is allowed to be

removed. If instead a port i is removed, then every port in L−i must remain. If a new port call is inserted
in between two ports, then neither of those are allowed to be removed, and if inserting a new port means
that a new commodity is transported, then the origin and destination nodes, of this commodity, are not
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allowed to be removed. Constraints (13d)–(13g) are defined to limit the amount of changes which can
be applied, as the revenue and time change estimates are made for one or a few changes and deteriorates
rapidly when multiple changes are applied. Li are defined such that if a port i is to be inserted in between
two ports, then neither of those are allowed to be removed, and if inserting a new port means that a new
commodity is transported, then the origin and destination nodes, of this commodity, are not allowed to
be removed. Lastly, (13h) define the domain of the variables.

The algorithm works such that each service, one by one, is updated according to the solution of the
above defined mixed integer problem. Then the MCFP is solved to update the total revenue, and the effect
of new changes is once again estimated with the shortest path procedure. To diversify the solutions, in
every tenth iteration the services with lowest utilisation are removed and new services are created using
the greedy creation heuristic.

Brouer et al. (2015) report satisfactory solutions for 6 out of 7 instances from the LINER-LIB bench-
mark set where the largest solved instance, the world small, contains 47 ports and 317 available vessels.

5 Subset of Routes

Balakrishnan and Karsten (2017) suggest a method for generating a network by selecting a subset of sail-
ing services from an initial pool of candidate services given by expert planners in advance. The problem
is therefore reduced from service design to service selection. Limits on the number of transshipments
for each container are included in the model and rejection of demand is allowed. This profit maximising
problem is denoted the Liner Service Planning (LSP) problem.

We extend the basic notation from Section 1.2 to include As as the set of sailing arcs associated
with each candidate service s ∈ S. Each arc a ∈ As represents the part of a ship’s itinerary between two
successive ports on the service route. Associated with each service s ∈ S is also a cost cs and for each arc
a ∈ As a capacity ua. It is allowed to split the flow of each commodity and a penalty cost ck

R per container
is used to penalise rejected demand of commodity k.

Given a commodity’s route, a sub-path is defined as the part of the route in which the containers
travel on a single service. If this part is from port i to port j on service s, the sub-path is denoted 〈i, j,s〉.
The set Hs denotes the full set of sub-paths for service s, i.e. the set contains one sub-path 〈i, j,s〉 for
each combination of ports i and j included in service s. These sub-paths are used to introduce an aug-
mented multi-commodity flow network in order to incorporate the limits on the number of transshipments
and their associated costs. This modelling approach falls somewhere between the two more traditional
modelling approaches of either using arc-flow, i.e. flow over sailing edges, or path-flows, i.e. flow over
origin-to-destination paths.

The augmented network contains one node for each port and one link for each sub-path of each
service. The sub-path structure also extends to more complex routes, e.g., butterfly routes. As

i j denote
the set of sailing arcs of service s included in sub-path 〈i, j,s〉. The cost of routing one container of
commodity k on sub-path 〈i, j,s〉 is denoted ck

i js. Finally, rk denote the maximum allowed number of
sub-paths on which commodity k can travel. Note that rk must be one larger than the maximum permitted
number of transshipments to enforce this constraint.

Balakrishnan and Karsten (2017) present a multi-commodity model based on flows along sub-paths
in the augmented network. The binary variable ys is equal to 1 if service s∈ S is selected, and 0 otherwise.
The flow of commodity k using sub-path 〈i, j,s〉 as the hth stage is defined by the variable xhk

i js for s ∈ S,
〈i, j,s〉 ∈ As, and h = 1,2, . . . ,rk. Finally, zk is equal to the unmet demand (number of containers) for
commodity k ∈ K.

The LSP problem can then be described by the following mixed-integer program:

min ∑
s∈S

csys + ∑
k∈K

∑
s∈S

∑
〈i, j,s〉∈As

rk

∑
h=1

ck
i jsx

hk
i js + ∑

k∈K
cR

k zk (14a)
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s.t. ∑
s∈S

∑
〈ok, j,s〉∈Hs

x1k
ok js + zk = qk ∀k ∈ K, (14b)

rk

∑
h=1

∑
s∈S

∑
〈 j,dk,s〉∈Hs

xhk
jdks + zk = qk ∀k ∈ K, (14c)

∑
s∈S

∑
i:〈i, j,s〉∈Hs

xhk
i js − ∑

s∈S
∑

l:〈 j,l,s〉∈Hs

xh+1,k
jls = 0 ∀k ∈ K, j ∈ N \{ok,dk}, h = 1, . . . ,rk−1, (14d)

∑
k∈K

rk

∑
h=1

∑
〈i, j,s〉∈Hs:a∈As

i j

xhk
i js ≤ uays ∀s ∈ S,a ∈ As (14e)

∑
s∈S

ms
vys ≤ mv ∀v ∈V, (14f)

xhk
i js ≥ 0 ∀k ∈ K,s ∈ S,〈i, j,s〉 ∈ Hs,h = 1, . . . ,rk, (14g)

zk ≥ 0 ∀k ∈ K, (14h)
ys ∈ {0,1} ∀s ∈ S. (14i)

The objective function (14a) minimises total cost comprised of fixed costs for the selected services, the
cost of transporting commodities along each sub-path, and finally the penalties incurred for rejected
demand. By including penalties the problem is formulated as a cost minimisation problem as opposed to
a profit maximisation problem where ck

R would instead represent the revenue for transporting one unit of
commodity k.

Constraints (14b) and (14c) ensure that the flow of each commodity k is assigned to sub-paths inci-
dent to the corresponding origin port ok and the destination port dk. They also ensure that the flow out
of the origin port in combination with the unmet demand for commodity k adds up to the total demand
for commodity k. Constraints (14d) are flow-balancing constraints for intermediate ports. Together with
constraints (14b) and (14c), these constraints ensure that for each commodity k, the demand, minus any
unmet demand, will arrive at the destination port using at most rk sub-paths, i.e. fulfilling the constraint
on a maximum number of transshipments.

Constraints (14e) impose capacity constraints on the sailing arcs and ensure that only sub-paths from
the selected services are used. Constraints (14f) ensure that no more than the available vessels are used.
Finally, constraints (14g)-(14i) impose non-negativity and binary restrictions on the respective decision
variables.

The LSP model formulation is flexible enough to allow incorporation of several practical container
routing issues such as cabotage rules, regional policies and embargoes. The incorporation of many of
these constraints can be handled during preprocessing simply by removing sub-paths that are no longer
permitted.

Balakrishnan and Karsten (2017) show that the LSP problem is NP-hard. A problem reduction proce-
dure to eliminate or combine variables is outlined and valid inequalities for increasing the lower bounds
of its linear programming (LP) relaxation are described.

5.1 Optimisation-based Heuristic Procedure

Balakrishnan and Karsten (2017) propose an optimisation-based heuristic algorithm to generate good
initial solutions. The heuristic iteratively solves the LP-relaxation of the problem and fixes service selec-
tion variables, ys, that are integer in the corresponding solution, and rounds service selection variables,
ys, that are fractional. The highest or lowest fractional variable is selected in each iteration and rounded
up or down correspondingly. The heuristic procedure first rounds down low y-values before rounding up
high y-values. Thereby, unattractive services are eliminated early in the process. If rounding a variable up
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causes a violation of the fleet availability constraints, the variable is instead set to zero. The LP-relaxation
is then re-solved. When all ys variables assume binary values the procedure stops.

Balakrishnan and Karsten (2017) test their solution method on four data sets from the LINER-LIB
benchmark suite with at most two transshipments per container. The initial pool of candidate services is
generated using the matheuristic from Brouer et al. (2014b). The LP-based heuristic yields solutions that
are close to optimality in relatively short time. This method can therefore be used as a stand-alone tool
or to warm-start an exact solution procedure.

6 Backbone flow

The main idea in the backbone flow algorithm, as presented by Krogsgaard et al. (2018), is to reverse the
order of two-phase algorithms by first flowing the containers, and then constructing services that cover
the flow.

The backbone flow algorithm uses a complete and directed graph G = (N,A). There are no capacities
associated with the edges, but the cost of using an edge (i, j) depends on how many containers in total
are flowing on that edge. This can be expressed as a concave function c(x) of the flow x reflecting the
economy of scale for flowing more containers: There is a large cost associated with opening an arc
(i.e. deploying a vessel), while the cost per container decreases as the flow (and hence vessel size) is
increased. See Figure 1 for an illustration of the costs. The cost function implicitly aims at aggregating
the flow on fewer arcs. Sun and Zheng (2016) also use a concave function to optimise the container flow.

Let xk
i j denote the flow of commodity k on edge (i, j). Then the backbone flow problem becomes a

non-linear MCFP as given by

min ∑
(i, j)∈A

c(∑
k∈K

xk
i j) (15a)

s.t. ∑
(i, j)∈A

xk
i j− ∑

( j,i)∈A
xk

ji = ξ
k
i i ∈ N,k ∈ K (15b)

xk
i j ≥ 0 (i, j) ∈ A,k ∈ K. (15c)

As before, the objective, (15a), is to minimise the total cost, and constraints (15b) are the flow conserva-
tion constraints. Constraints (15c) define the domain of the variables.

Since the model is non-linear, Krogsgaard et al. (2018) solve the problem heuristically through a
randomised greedy algorithm. As the arc costs depend on previously flowed containers, the result of the
flow will be very dependent on the order in which containers are flowed. Generally, the first containers
are more decisive for the arcs used heavily in the final solution than the last containers flowed. It is thus
necessary to run several iterations of the problem, with a random order of the containers, to achieve a
reasonable average picture of the backbone flow. Running ten iterations for the demand matrix of the
WorldSmall instance gives the average arc loads shown in Figure 10. The figure clearly shows that only
a fraction of the possible arcs is used in the solution.

6.1 From backbone flow to network design

Having found a backbone flow, Krogsgaard et al. (2018) present a greedy heuristic for generating ser-
vices. The idea is to add one arc at a time to a service until all services have reached their maximum
duration.

To generate a service, the unserved arc with the largest flow is selected as the first arc in the service,
and a return arc is added to close the service. While the service is at or below the desired duration, a new
arc is added to the service to expand it, and this arc replaces the return arc. The new arc is the unserved
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Fig. 10. Typical backbone flow for the WorldSmall instance. Source: Krogsgaard et al. (2018).

arc with the largest demand that either starts at the same port as the return arc, which is to be replaced,
or ends at the same port as the return arc. A new return arc is added to close the service. The selection
process continues until it is not possible to add a new arc without exceeding the maximum duration of
the service. After this, the creation of the next service starts.

To obtain a number of different start solutions to select from, the algorithm is repeated a number
of times with random settings on the maximum service length for every service. The length is selected
in a predefined interval depending on the size of the vessel, such that larger vessels, typically travelling
between continents, get longer services than smaller vessels doing feeder service. For every service
generated, a duration is selected in the interval at random, and the service is constructed. This is repeated
until all available resources have been exhausted.

In the computational study by Krogsgaard et al. (2018) it is shown that usable solutions can be found
in relatively short time. Using the WorldSmall instance, the authors generate 20 different sets of services
by running the above algorithm where the containers are flown in random order. This can be done in
about 80 seconds, and results in profitable network, although the resulting network is far from optimal.

In order to improve the initial services found by the greedy heuristic, Krogsgaard et al. (2018) use
a Variable Neighbourhood Search (VNS) algorithm to reach a high quality network. The general idea
in VNS, as presented by Hansen and Mladenovic (2014), is to apply different neighbourhood structures
throughout the search to exploit the benefits from neighbourhood changes. Promising computational
results using the LINER-LIB instances are reported as will be described in Section 7. Perhaps the most
important result is that the number of transshipments in general is very low, being around 1.14 on average
per commodity. For the smaller instances, the number of transshipments is around 0.5 per commodity.
Fewer transshipments means shorter port stays, and hence vessels can sail at slower speed between the
ports.

7 Computational results for LINER-LIB instances

In this section we compare computational results for most of the presented models, using the LINER-
LIB instances introduced in Section 1.4. Table 3 reports solution values and computational times for
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LINER-LIB instances without transit time limits, while Table 4 reports the same values for instances
with transit time limits. Objective values are reported in k$, while CPU-time is reported in seconds.

The objective function minimises the operational costs, hence negative values indicate a profitable
network. Also, we indicate whether the authors operate with weekly or bi-weekly frequency, and whether
constant speed or variable speed is used. For the instances without time constraints, constant speed is
always used.

Balakrishnan and Karsten (2017) only report relative improvements in their paper, hence the objec-
tive values have been obtained from the authors. Krogsgaard et al. (2018) maximize profit instead of
minimising operational costs, hence the objective values have been converted to the minimisation form.
Krogsgaard et al. (2018) report two different objective values. The first value, obj.h, is the objective value
obtained by solving the container flow problem from Section 4.1 heuristically. The second value, obj.c,
is the objective value obtained by solving the flow problem to optimality with CPLEX, using the same
network. The flow problem of WorldLarge could not be solved by CPLEX. Koza et al. (2019) consider
an integrated LSND and scheduling problem, hence transshipment times depend on the exact schedule.
In order to compare the results to other algorithms, we report the results from Koza et al. (2019) where
the same (48 hours) transshipment times are used as in all the other algorithms in this section.

Looking at the results in Table 3 for instances without transit time limits, it is seen that Brouer et al.
(2014a) generally obtains good results for the small and medium-sized instances, but the algorithm is
using bi-weekly frequency at some services, making it possible to utilise the vessels in a better way
than the other algorithms. If weekly operation is requested, then Brouer et al. (2014b) and Krogsgaard
et al. (2018) generally have the best performance. Brouer et al. (2014b) reports the best results for Baltic
and AsiaEurope while Krogsgaard et al. (2018) reports the best results for WestAfrica, Pacific, WorldS-
mall and WorldLarge. The CPU times are also very fast, with only 1 hour for solving even the biggest
instances.

For instances with transit time limits, reported in Table 4, it is seen that Koza et al. (2019) obtain some
very impressive results for the small instances, but solution times are very large. For larger instances
Karsten et al. (2017a) show good results with reasonable CPU times.

Looking at the flow values, generally all algorithms are able to service 85–98% of the containers.
It is generally more difficult to flow all containers for the large-sized instances, in particular if time
constraints are imposed. Since the demands in LINER-LIB have been constructed by merging networks
and demands from several companies it is not necessarily possible to fulfill all demands, nor to make a
profitable network.

Brouer et al. (2014a) Brouer et al. (2014b)
Balakrishnan and
Karsten (2017)

Krogsgaard et al. (2018)

weekly/bi-weekly freq. weekly freq. weekly freq. weekly freq.
obj. flow time obj. flow time obj. flow time obj.h flow time obj.c

Baltic -8,365 95.0 300 -6,160 92.1 105 98 87.9 0 -2,314 92 30 -2,314
WestAfrica -143,110 95.3 900 -140,000 97.0 93 -5,039 96.9 2 -144,514 91 90 -144,514
Mediterranean 12,209 98.8 1 200 32,200 93.8 319 1,837 90.5 237 51,943 83 120 50,140
Pacific -54,087 96.9 3,600 69,800 95.7 3,603 3,031 98.1 22,633 -47,057 88 360 -55,030
AsiaEurope -657,972 89.6 14,400 -817,000 93.8 14,517 – – – -668,314 85 1,440 -729,260
WorldSmall -1,152,761 88.2 10,800 -1,400,000 94.2 10,885 – – – -1,304,229 83 1,080 -1,495,030
WorldLarge – – – – – – – – – -653,400 82 3,600 –

(best of 10) (best of 10) (best of 10, 20, 5)

Table 3. Results for LINER-LIB instances without transit time limits. Krogsgaard et al. report their best result out
of 10 for Baltic, WestAfrica and AsiaEurope, out of 20 for Mediterranean, Pacific, WorldSmall and out of 5 for
WorldLarge.
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Brouer et al. (2015) Karsten et al. (2017b) Karsten et al. (2017a) Koza et al. (2019)
Constant speed Constant speed Variable speed Variable speed
obj. flow time obj. flow time obj. flow time obj. flow time

Baltic -14 87.4 101 -14 87.4 101 -5 87.9 144 -284 92.1 900
WestAfrica -5,590 97.0 255 -5,590 97.0 255 -5,480 97.6 362 -6,000 96.7 3,600
Mediterranean 2,420 86.9 710 2,420 86.9 710 2,190 83.8 1,200 2,080 81.8 14,400
Pacific 3,050 93.3 3,600 3,810 94.7 3,600 1,130 90.3 3,600 -940 91.1 28,800
AsiaEurope -16,700 88.8 14,400 -17,600 90.7 14,400 -18,800 85.6 14,400 -20,700 81.4 129,600
WorldSmall -35,400 91.1 10,800 -31,800 90.7 10,800 -40,500 89.1 10,800 -53,200 88.5 43,200
WorldLarge – – – – – – – – – – – –

(best of 10) (best of 10) (best of 10) (best of 12)

Table 4. Results for LINER-LIB instances with transit time limits. No results have been reported for the WorldLarge
instances.

8 Concluding remarks and future challenges

Liner shipping is the backbone of international trade, and hence it is important to develop decision sup-
port tools that can help design more cost-efficient services, and balance several objectives. This includes
finding the right trade-off between speed, transportation times, number of transshipments, and opera-
tional costs.

Although liner shipping generally is one of the most energy-efficient modes of transportation per
kilometer, the shipping industry emits large quantities of SOx and NOx. The International Maritime Or-
ganization (IMO) has stated the goal that the CO2 emission from maritime operations should be reduced
by 50% until 2050. The stricter limits on the amount of emitted pollutants by container vessels mean that
speed optimisation will play a more important role while designing the shipping network, as reducing
the vessel speed goes hand in hand with reducing CO2 emissions. However, this restriction does not only
affect the operational speed of the services, but also the overall liner shipping network design. Some port
connections may be unreachable by some vessel classes when imposing emission control regulations in
certain areas, forcing the vessels to take alternative routes. This also affects the cargo routes, as the transit
time constraints for the cargo must still be respected. Hence, better liner shipping network design and
optimisation of the affiliated activities may be an important tool in reaching the goal, though this will
involve both industrial developments and algorithmic newthinking.

8.1 Industrial development and future research areas

Slow steaming together with larger vessels has proven to be an efficient tool for reducing the energy con-
sumption. However, slow steaming decreases the capacity of vessels, since they cannot transport as much
cargo per time unit as before. Hence, more vessels are needed in order to maintain the same capacity,
straining the environment. Furthermore, for perishable goods or high-value cargo, longer transportation
times might not be an option. We may therefore see in the future that we will have a high-speed network
for perishable and high-value cargo, and a low-speed network for the remaining cargo. The two networks
need to collaborate since they share the feeder network, and perishable goods may use the low-speed net-
work for shorter distances while the non-perishable goods may use the high-speed network if the price
is competitive. So network design of the high- and low-speed network should be addressed together to
ensure a good utilization.

Larger vessels tend to be more energy efficient per container, but the increased capacity results in
longer port stays, making it necessary to speed up between ports. It is therefore necessary to design
services such that fewer port calls are needed, while still ensuring a good utilisation of the mega vessels.
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By having fewer port calls, we save the pilot and mooring time in the ports, and hence can sail slower
at the long distances. This corresponds to the development in the airline industry, where the biggest
airplanes only operate direct flights between the biggest hubs.

Moreover, in the future, we will see container vessels operating with new, greener, propulsion meth-
ods. Electric vessels may operate shorter services, while liquid natural gas (LNG) may be used for oper-
ating longer services. The new propulsion types will most likely radically change how service networks
should be designed, since refueling/recharging will be more complicated, and vessels will have a more
limited range of operations.

The introduction of autonomous vessels in the container shipping industry may also significantly
change the way a network is designed and operated. In particular for feeder-lines we may see more
smaller vessels sailing on-demand, depending on the cargo. This would turn the network design process
into a dynamic routing problem. It would also be interesting to investigate whether fuel savings are
achievable if autonomous vessels are sailing in convoys close to each other. If this is the case, the network
design should take these convoys into account.

Nearly every vessel will be delayed in one or more ports during a round trip. Instead of just speeding
up (and hence using more energy) advanced disruption management tools need to be developed that can
ensure timely arrival to the end customer with the lowest possible energy consumption. Some studies
along this path include Brouer et al. (2013), who proposed a MIP model for handling disruptions in
liner shipping; and Wang and Meng (2012), who included uncertain wait and handling times at ports for
designing a more robust shipping network. However, much more work needs to be done in this area.

Vessel sharing agreements are an important tool for making it possible to operate larger and more
energy-efficient vessels. In a vessel sharing agreement, two or more companies share the capacity of a
vessel throughout the full rotation or on certain legs. Vessel sharing agreements, however, substantially
increase the complexity of designing a network, since some legs and capacities are locked according to
the agreement.

8.2 Industrial and academic synergy

Shipping companies currently use the experience of decision makers and planners to carry out most of
the logistic and planning decisions. To aid this decision process with high-level analytical support-tools
would have a massive impact, both from an economical, as well as an environmental, point-of-view.
However, optimisation in liner shipping is still in early research stages, and the implementation of the
current designed models and for algorithms to be used in real-life applications is one of the main future
challenges.

During recent years, there has been an increase in the literature on optimisation in liner shipping.
Nonetheless, the majority of the assumptions may be unrealistic and most approaches so far are rather
abstract and do not capture all of the practical constraints and restrictions faced by the liner shipping
industry. Therefore, a strong collaboration between industry and academia is necessary, in order to de-
velop more realistic decision-support tools which can be used by liner shipping companies in real-life
applications. However, this is a challenging task, as it requires the detailed implementation of many com-
plex business rules and considerations, some of which are most likely not yet completely understood or
considered in the literature.

Finally, there is also a significant challenge from the perspective of change management – to reach out
to the industry and earn their trust, so that they will adopt those new methodologies, once they are ready.
It is key that the developed tools should be made understandable for planners, in order to encourage and
foster their use by the shipping companies.
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8.3 Algorithmic challenges and directions

It should be clear from the survey that current exact methods cannot solve network design problems
involving more than a dozen ports, and we do not expect any major break-through on exact methods
in the near future. Hence, large-scale liner shipping network design will have to rely on heuristics. The
current approach of splitting heuristics into a service design step, and a flow step seems promising and
more research should be put into exploiting such algorithms. Whether it should be route-first-flow-next
or flow-first-route-next algorithms may depend on how well the two problems interact.

Since liner shipping network design problems are highly complex, due to the large number of real-
life constraints, it can be difficult to achieve useful theoretical results. It is therefore a good idea to study
simplified problems that are easier to analyse. Once we understand how to solve these problems, we can
add more real-life constraints. It is also the case, that many of the real-life constraints can be considered
without significantly changing the problem structure, by modifying the underlying graph. Some of the
basic problems could be various network flow models with setup costs on edges, and/or time constraints
for the demands.

The time-space models studied in e.g. Koza et al. (2019) are showing promising results for small-
/medium-scale problems, and should be investigated further in future research. In particular, the models
allow various time-dependant constraints to be handled.

Finally, in the airline industry, we see a tendency that carriers operating complex networks are slowly
being replaced by carriers operating only point-to-point flights. It could be interesting to study network
design where services are restricted to simple routes involving only a few ports. Having fewer interme-
diate port calls on a service also means that the vessels can sail at lower speed, and hence reduce fuel
costs and emission.
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A Appendix: Notation used in this chapter

We have tried to use an uniform mathematical notation throughout the chapter, although each section
needs some additional symbols. The notation has been gathered and presented in the following tables.
First, the general notation presented in the introduction that will be commonly used in the mathematical
models of the chapter will be compiled. Next, the extra notation needed to define the models of each
specific section is presented.

Table 5. General Notation from the Introduction

Sets
N := Set of Ports
A := Set of Sailing Arcs
K := Set of Commodities
V := Set of Vessel Classes
S := Set of Services

Parameters

ok := Origin port for commodity k ∈ K
dk := Destination port for commodity k ∈ K
qk := Quantity of commodity k ∈ K
uv := Cargo capacity for vessel class v ∈V
mv := Available fleet quantity of vessel class v ∈V

ξ k
i :=


qk if port i ∈ N is the origin port of demand k ∈ K
−qk if port i ∈ N is the destination port of demand k ∈ K

0 otherwise.
ck

i j := Unit-cost for transporting a unit of commodity k ∈ K through arc (i, j) ∈ A
cv := Cost for deployment of a vessel from vessel class v ∈V
cv

i j := Sailing cost for vessel class v ∈V traversing arc (i, j) ∈ A
cT

ik := Cost per unit of commodity k ∈ K transshipped in port i ∈ N
tv
i j := Sailing time for vessel class v ∈V traversing arc (i, j) ∈ A
bi := Berthing time for the port call i ∈ N
cs := Cost for operation service s ∈ S.

ms
v := Required number of vessels from vessel class v ∈ V to maintain the weekly

frequency in service s ∈ S

Table 6. Additional notation for Section 3.1

Parameters
us

i j := Capacity for service s ∈ S along arc (i, j) ∈ A

Decision variables

xks
i j ∈ R+ := Amount of commodity k ∈ K transported in service s ∈ S along arc (i, j) ∈ A

ys ∈ {0,1} := Equal to 1 if service s ∈ S is selected in the network, and 0 otherwise
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Table 7. Additional notation for Section 3.2

Sets
Sv := Set of maximum number of services for vessel class v ∈V

Decision variables

xks
i j ∈ R+ := Amount of commodity k ∈ K transported in service s ∈ Sv along arc (i, j) ∈ A
τs

i ∈ R+ := Departure time from port i ∈ N of the vessel operating service s ∈ Sv

ws ∈ Z+ := Number of deployed vessels to maintain a weekly frequency in service s ∈ Sv

ys
i j ∈ {0,1} := Equal to 1 if arc (i, j) ∈ A is selected on the service s ∈ Sv, and 0 otherwise

Table 8. Additional notation for Section 3.2 (Reinhardt and Pisinger (2012))

Parameters
tmax := Length of the time horizon

Decision variables

xkv
i j ∈ R+ := Amount of commodity k ∈ K transported by vessel v ∈V along arc (i, j) ∈ A

f kv
j ∈ R+ := Amount of commodity k ∈ K transshipped at port j ∈ N by vessel v ∈V

f kv
jih ∈ R+ := Amount of commodity k ∈ K arriving at port i ∈ N through arc ( j, i) ∈ A and

not leaving in arc (i,h) ∈ A by vessel v ∈V
ev

i j ∈ Z+ := Position of arc (i, j) ∈ A in the service of vessel v ∈V
τv ∈ R+ := Route length of the service operated by vessel v ∈V

yv
i j ∈ {0,1} := Equal to 1 if arc (i, j) ∈ A is selected in the service for vessel v ∈ V , and 0

otherwise
zv

i j ∈ {0,1} := Equal to 1 if arc (i, j)∈ A is either the first or the last arc in the service for vessel
v ∈V , and 0 otherwise

γv
i ∈ {0,1} := Equal to 1 if port i ∈ N is the hub-port in the service for vessel v ∈ V , and 0

otherwise
λ v ∈ {0,1} := Equal to 1 if vessel v ∈V is deployed for operating a service, and 0 otherwise

Table 9. Additional notation for Section 4.1

Sets
Pk := Set of paths for commodity k ∈ K
Pa := Set of paths using arc a ∈ A

Parameters
ui j/ua := Flow capacity through arch a = (i, j) ∈ A

ck
p := Unit flow cost of commodity k ∈ K through path p ∈ Pk

Decision variables
xk

i j ∈ R+ := Flow of commodity k ∈ K through arc (i, j) ∈ A
f k
p ∈ R+ := Flow of commodity k ∈ K through path p ∈ Pk
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Table 10. Additional notation for Section 4

Sets
Ns := Set of ports in service s ∈ S
N̄s := Set of ports available for inclusion into service s ∈ S
Li := Lockset containing the ports which are forbidden to remove, if port i ∈ Ns∪ N̄s

is included (removed)

Parameters
∆

R+
is := Estimated revenue change from including port i ∈ N̄s into service s ∈ S

∆
R−
is := Estimated revenue change from removing port i ∈ Ns from service s ∈ S

∆
T+
is := Estimated duration change from including port i ∈ N̄s into service s ∈ S

∆
T−
is := Estimated duration change from removing port i ∈ Ns from service s ∈ S
m̂v := Number of free vessels of vessel class v ∈V
τs := Round trip time for service s ∈ S

η+
s := Maximum number of inclusions into service s ∈ S

η−s := Maximum number of removals into service s ∈ S

Decision variables
x+is ∈ {0,1} := Equal to 1 if port i ∈ N̄s is included into service s ∈ S, and 0 otherwise
x−is ∈ {0,1} := Equal to 1 if port i ∈ Ns is removed from service s ∈ S, and 0 otherwise

ζs ∈ Z := Change in number of vessels in service s ∈ S

Table 11. Additional notation for Section 5

Sets
As := Set of sailing arcs for service s ∈ S
Hs := Full set of sub-paths for service s ∈ S (a sub-path is a part of a route in which

the container travels on a single service and is denoted 〈i, j,s〉)
As

i j := Set of sailing arcs of service s ∈ S included in sub-path 〈i, j,s〉

Parameters
ua := Capacity for arc a ∈ As
cR

k := Penalty cost per container for rejected demand of commodity k ∈ K
ck

i js := Cost of routing one container of commodity k ∈ K on sub-path 〈i, j,s〉
hk := Maximum allowed number of sub-paths on which commodity k ∈ K can travel

Decision variables
ys ∈ {0,1} := Equal to 1 if service s ∈ S is selected, and 0 otherwise
xhk

i js ∈ R+ := Flow of commodity k ∈ K using sub-path 〈i, j,s〉 as the hth stage for s ∈ S,
〈i, j,s〉 ∈ As, and h = 1,2, . . . ,hk

zk ∈ R+ := Unmet demand (number of containers) for commodity k ∈ K

Table 12. Additional notation for Section 6

Parameters
c(x) := Concave cost function of using an edge (i, j) ∈ A for the flow x

Decision variables
xk

i j ∈ R+ := Flow of commodity k ∈ K on edge (i, j) ∈ A
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