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Abstract

We present an algorithm for finding the complete Pareto frontier of biobjective integer
programming problems. The method is based on the solution of a finite number of
integer programs. The feasible sets of the integer programs are built from the original
feasible set, by adding cuts that separate efficient solutions. Providing the existence of
an oracle to solve suitably defined single objective integer subproblems, the algorithm
can handle biobjective nonlinear integer problems, in particular biobjective convex
quadratic integer optimization problems. Our numerical experience on a benchmark of
biobjective integer linear programming instances shows the efficiency of the approach in
comparison with existing state-of-the-art methods. Further experiments on biobjective
integer quadratic programming instances are reported.

Keywords: Multiobjective Optimization; Integer Programming; Criterion Space
Search

1. Introduction

Most real-world optimization problems in the areas of applied sciences, engineering and
economics involve multiple, often conflicting, goals. In the mathematical modelling of
these problems, under the necessity of reflecting discrete quantities, logical relationships
or decisions, integer and 0-1 variables need to be considered. We are in the context
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of multiobjective integer programming (MOIP) and the generic MOIP problem can be
stated as follows:

min
x∈X∩Zn

y(x) = min
x∈X∩Zn

(y1(x), . . . , yp(x)) (MOIP)

where yi : Rn → R for i = 1, . . . , p, X ⊆ Rn and X ∩Zn represents the feasible set in the
decision space. The image of X ∩ Zn under the vector-valued function y : Rn → Rp is
called the image space and is denoted by Y = {z ∈ Rp : z = y(x) for some x ∈ X∩Zn}.
The challenging nature of MOIPs and the need for methods with guaranteed perfor-
mance, motivated the development of exact approaches for multiobjective integer pro-
gramming problems. Algorithms for multiobjective optimization can be divided into
decision space search algorithms, i.e., approaches that search in the space of feasible
solutions, and criterion space search algorithms, i.e., methods that search in the space
of objective function values.
Among the decision space search algorithms, the first branch-and-bound algorithm
for solving multiobjective mixed 0-1 integer programs was proposed by Mavrotas and
Diakoulaki [24], who improved and extended their work in [23, 25]. The method pro-
posed is a depth-first branch and bound algorithm where nodes are pruned on the base
of ideal vectors. Later in [32], the authors propose a branch-and-bound algorithm for
multiobjective integer linear programming problems extending the bounding procedure
introduced in [16]: the aim in [32] is to find separating hypersurfaces in the objective
space between the upper and lower bound sets in order to prune the current node in
the enumeration tree. More recently, Belotti and coauthors proposed advanced branch-
and-bound algorithms for biobjective mixed-integer problems [2, 3]. They focus on the
idea of finding the complete Pareto frontier for a relaxed subproblem, using this infor-
mation to derive practical fathoming rules. We further mention [30, 33] as algorithms
for biobjective mixed integer linear programming problems. For the special case of
linear BOIPs, the criterion space search algorithm defined in [30] requires the solution
of 2|YN | − 1 integer programs.
Criterion space search algorithms find non-dominated points by addressing a sequence
of single-objective optimization problems. Once a non-dominated point is computed,
the dominated parts of the criterion space are removed and the algorithms go on look-
ing for new non-dominated points. One of the first criterion space search algorithms
for solving biobjective integer programming problems was proposed by Chalmet et al.
[11], and it is strongly related to the basic scheme of our algorithm as we explain later.
Another important criterion space search algorithm is the one proposed in [34] and
improved in [20, 22]. Several contributions in the context of criterion space search al-
gorithms have been given by Boland and coauthors [4, 5, 6, 7] and indeed the balanced
box method proposed in [4] is considered one of the state-of-the-art method for biob-
jective integer linear programming problems. In our numerical experience, we compare
our algorithm with the balanced box method proposed in [4], one of the state-of-the-
art method for biobjective integer linear programming problems. The balanced box
method maintains a priority queue with rectangles that are explored in order to detect
non-dominated points. In [13, 21] new theoretical insights on how to efficiently update
the search region in branch-and-bound algorithms are given. In particular, in [13],
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assuming that a set of solutions is already known, an efficient algorithm to identify a
minimal set of search zones that decompose the search region is proposed.
In the application context, we mention works on biobjective minimum cost flow prob-
lems [26, 28, 31], on network routing problems [29], on the stable robotic flow shop
scheduling problem [12] as well as the assignment problem with three objectives [27].
In this paper, we focus on biobjective integer programming, i.e. Problem (MOIP)
with p = 2. We propose a branch-and-cut algorithm, called the Frontier Partitioner
Algorithm (FPA), that belongs to the class of criterion space search algorithms.

Our contribution. We provide an Algorithm for biobjective integer problems able to
detect the complete Pareto frontier by solving |YN |+2 single objective integer programs,
where |YN | is the number of non-dominated points. To the best of our knowledge, this
is one of the best bounds for this class of algorithms. Our approach can be used for
handling nonlinear convex integer biobjective problems since the type of cuts introduced
to partition the criterion space is linear in the criterion space and convex in the decision
space as long as the objective functions of the problem are convex. This property
allows us to tackle nonlinear convex integer biobjective problems, under the assumption
that an oracle to solve the integer convex subproblems arising in the branching tree is
available. The definition of our cuts relies on a positive scalar value, easily computable
for several classes of problems. In particular, we are able to address quadratic convex
integer biobjective problems as well as second order cone integer biobjective problems.
As far as we know, the first general purpose method to tackle convex multiobjective
integer programs is the heuristic algorithm proposed by Cacchiani and D’Ambrosio
in [10]. In this respect, the Frontier Partitioner Algorithm gives a contribution in
the context of exact methods for multiobjective nonlinear integer programs, defining a
criterion space algorithm for nonlinear biobjective integer programs.

The paper is organized as follows. In Section 2, we give some basic definitions and
concepts of multiobjective optimization, specifically adapted to biobjective integer op-
timization. We further report some assumptions we will need to define the algorithm as
well as some solution techniques. In Section 3, we define the so called custom weighted-
sum scalarization that will be used to improve the basic version of our algorithm. In
Section 4, we introduce and analyze our algorithm, providing convergence analysis, ex-
amples and a discussion on the assumptions. In Section 5 we introduce suitable linear
approximations of the nonlinear inequalities and we discuss how to deal with some nu-
merical issues. Our numerical experience is presented in Section 6, where we compare
our algorithm with the balanced box method proposed in [4] on a set of biobjective
linear integer problems. We further report results on quadratic instances. In Section 7
we give some conclusions.
Notation Given a vector x ∈ Rn, xi is the i−th component and we use the sets
Rn>0 = {x ∈ Rn : xi > 0, i = 1, ..., n}, Rn≥0 = {x ∈ Rn : xi ≥ 0, i = 1, ..., n} and Zn≥0 =
{x ∈ Zn : xi ≥ 0, i = 1, ..., n}.
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2. Preliminaries

We consider the biobjective integer programming BOIP, i.e. Problem (MOIP) with
p = 2

min
x∈X∩Zn

(y1(x), y2(x)), (BOIP)

where X ⊆ Rn and the functions y1, y2 : Rn → R are continuous.

Definition 2.1. A feasible solution x ∈ X ∩Zn is weakly efficient for Problem (BOIP),
if there is no feasible point z ∈ X ∩Zn, such that yi(z) < yi(x) for i = 1, 2. If x ∈ X ∩Zn
is weakly efficient then y(x) is called a weakly non-dominated point.

Definition 2.2. A feasible solution x ∈ X ∩ Zn is efficient (or Pareto optimal) for
Problem (BOIP), if there is no feasible point z ∈ X ∩ Zn, such that yi(z) ≤ yi(x) for
i = 1, 2 and y(x) 6= y(z). If x ∈ X ∩Zn is efficient then y(x) is called a non-dominated
point. The set of all non-dominated points YN ⊆ Y is called efficient frontier (or Pareto
frontier).

Definition 2.3. The ideal objective vector of Problem (BOIP) is the vector yid ∈ R2

defined component-wise as

yidi = min
X∩Zn

yi(x), i = 1, 2. (1)

2.1. Assumptions

Our goal is to design an algorithm able to produce the entire Pareto frontier YN of
Problem (BOIP). In order to achieve our aim, we introduce a basic assumption on
problem BOIP.

Assumption 2.4 (Existence of the ideal vector). We assume that the ideal objective
values yidi , i = 1, 2 exist.

In the definition of our algorithm we need to assume that a positive value exists that
underestimates the distance between the image of two integer feasible points of (BOIP).
We then consider the following class of functions.

Definition 2.5 (Positive γ-function). A function f : Rn → R is a positive γ-function
over X ∩ Zn if there exists a positive γ ∈ R such that |f(x) − f(z)| ≥ γ, for all
x, z ∈ X ∩ Zn with f(x) 6= f(z).

We will use the following assumption.

Assumption 2.6 (Positive gap value). The functions yi : Rn → R, i = 1, 2 in Prob-
lem (BOIP) are positive γ-function as in definition 2.5.
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Note that, if γi were zero for some i ∈ {1, 2} we would have that yi(x) is constant for
all x ∈ X ∩ Zn. In Section 4.3 we will show that Assumption 2.6 is not restrictive and
the algorithm can be applied to several classes of biobjective problems.
Under Assumption 2.6 and Assumption 2.4, we can prove that the Pareto frontier is
finite which is a commonly used assumption when defining exact algorithms for MOIP
(see, e.g., [30, 4, 3]). We need this result to prove the convergence of our Frontier
Partitioner Algorithm in Section 4.1.

Proposition 2.7. Let Assumptions 2.4 and 2.6 hold. Then, the Pareto frontier YN is
a finite set.

Proof. Under Assumption 2.4, there exist x̂i ∈ arg min
X∩Zn

yi(x), i = 1, 2.

Hence there exist the values M1 = y1(x̂
2) and M2 = y2(x̂

1) such that the Pareto frontier
YN ⊆ Y is contained in the box [yid1 ,M1] × [yid2 ,M2] and hence it is bounded. Each

objective function yi can attain at most
Mi−yidi +1

γi
distinct values, so that the cardinality

of the Pareto frontier, obtained as the combination of the two, is finite and at most

(M1 − yid1 + 1)(M2 − yid2 + 1)

γ1γ2
.

2.2. Solution techniques

To properly introduce our branching method we need to be able to get a Pareto point
of a given (BOIP). To this aim, we can use any standard technique proposed in the
literature. We refer the interested reader to [15] for a complete overview of solution
techniques. In this section, we report only the two methods that we will use to define
the new scalarization technique adopted in our algorithm, which are the weighted-sum
method and the lexicographic optimization. Both these techniques lead to the solution
of a single objective integer problem that we named as Inner Integer Program (IIP).
To prove convergence of our FPA algorithm we will need an assumption on the IIPs
generated during the partitioning of the region (Assumption 4.1) which essentially
implies that the IIPs cannot be unbounded below, so that either an optimal solution
exists or infeasibility occurs. Hence in the following we show that this property holds
for both the techniques.

Definition 2.8 (Weighted-sum IIP). Given (BOIP), the weighted-sum scalarization
problem (IIPW ) is defined as

min
x∈X∩Zn

λ1y1(x) + λ2y2(x), (IIPW )

with finite λi ≥ 0, for i = 1, 2.

For sake of simplicity it is not explicitly required that λ1 + λ2 = 1, since this property
can be gained by simple normalization.
It is well known that under a proper choice of the weights the optimal solution of the
scalarized problem (IIPW ) leads to an efficient solution as reported in the following
proposition.
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Proposition 2.9 (Proposition 3.9 [15]). Let λ1, λ2 > 0, then each optimal solution of
Problem (IIPW ) is an efficient solution for Problem (BOIP).

We observe that the converse is true only under proper convexity assumptions. Since
integer multiobjective optimization problems are non-convex we cannot expect to find
all efficient solutions by weighted sum scalarization as pointed out in Chapter 8 of [15].
Nevertheless as we mentioned above, we only need to ensure that (IIPW ) is bounded
and this easily follows from Assumption 2.4 as reported in Remark 2.10 below.

Remark 2.10. Under Assumption 2.4 problem (IIPW ) is bounded. Indeed, assume by
contradiction that (IIPW ) is unbounded. Then, for all M > 0 there exists x ∈ X ∩ Zn
such that λ1y1(x) + λ2y2(x) < −M. We get a contradiction from Assumption 2.4, as
y1(x) ≥ yid1 , y2(x) ≥ yid2 and λ1, λ2 ≥ 0 are finite.

In the following we define two further problems that will be used in order to define
an improved version of our algorithm. The first definition is based on the concept of
lexicographic optimality introduced in e.g. [15].

Definition 2.11 (Lexicographic IIP). Given (BOIP) and a permutation (i1, i2) of the
set {1, 2}, the lexicographic problem is defined as

min
x∈X∩Zn

{
yi1(x) : yi2(x) = yidi2

}
,

where yidi2 = min
x∈X∩Zn

yi2(x).

In the following we denote the lexicographic problem as:

lex min
x∈X∩Zn

(yi1(x), yi2(x)) (IIPL)

We note that tackling Problem (IIPL) requires the solution of two single-objective
mixed integer programming problems.
A well known result is the following.

Proposition 2.12 (Lemma 5.2 [15]). Each optimal solution of Problem (IIPL) is an
efficient solution for Problem (BOIP).

Also for the (IIPL) we can prove boundedness under Assumption 2.4 as explained below
in Remark 2.13.

Remark 2.13. Under Assumption 2.4 problem (IIPL) is bounded. In fact, by Assump-
tion 2.4 we know that there exists finite yidi = min

x∈X∩Zn
yi(x), for each i ∈ {1, 2}. This

implies that yidi1 ≤ min
x∈X∩Zn

{
yi1(x) : yi2(x) = yidi2

}
.
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3. Custom weighted-sum scalarization

In this section, we define a new scalarized problem which smartly combines the weighted-
sum and the lexicographic techniques.

Definition 3.1 (Custom weighted-sum IIP). Let x̂ ∈ X ∩ Zn be any optimal solution
of Problem (IIPL) with respect to the permutation (i1, i2) of the set {1, 2}.
The custom weighted-sum scalarization problem is defined as

min
x∈X∩Zn

λ∗1y1(x) + λ∗2y2(x), (IIP∗)

where Λ∗ = (λ∗1, λ
∗
2) belongs to the set {(λ1, λ2) ∈ R2

>0 : x̂ ∈ arg min
x∈X∩Zn

λ1y1(x) +

λ2y2(x)}.

For sake of simplicity it is not explicitly required that λ1 + λ2 = 1, since this property
can be gained by simple normalization.
The underlying idea of the custom weighted-sum scalarization (IIP∗) is to reduce the
computational complexity of the lexicographic optimization when dealing with a se-
quence of nested IIPs. Indeed if λ∗ are known, an optimal solution of (IIP∗) can be
obtained by solving only one ILP instead of two as needed by (IIPL). As it will be
clarified later, the key tool in algorithm FPA∗ is to find suitable weights λ∗ only once,
since it will be shown that they remain valid also for the subproblems.
Refer now to (IIP) as any problem chosen among (IIPW ), (IIPL) and (IIP∗). Under
Assumptions 2.4 and 2.6 by Proposition 2.7 the Pareto frontier is finite. Using Remarks
2.10 and 2.13, we have that any of the (IIP) problems either has an optimal solution
which is an efficient solution for problem (BOIP), or it is infeasible and hence (BOIP) is
too. This property turns out to be crucial when proving well-posedness and convergence
of FPA (see the proof of Theorem 4.7).
In the definition of our algorithm, we can use also other solution techniques which guar-
antee that the inner integer problem either has an optimal solution or is infeasible. In
particular compromise programming with a norm `p with 1 ≤ p <∞ (see e.g. Chapter
4 of [15]) can also fit in this setting. However, the techniques proposed above present
the advantage that the corresponding inner integer problem belongs to the same class
of the original (BOIP). In other words, if BOIP has linear objective functions the inner
integer problem is an ILP, if BOIP has quadratic objectives the inner integer prob-
lem is an IQP and more generally the objective function of the inner integer problem
maintains the structure of the original ones in (BOIP).

In the following, we prove that when both Assumption 2.4 and Assumption 2.6 are
satisfied, the custom weighted-sum problem (IIP∗) can always be defined, and the
values of the weights are easily computable. From an algorithmic point of view, we will
see that the existence of such weights allows us to take advantage of the properties of
both weighted-sum and lexicographic method, improving significantly the complexity
of our algorithmic scheme.
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Let us now describe a way to derive suitable weights for (IIP∗). Given a permutation
(i1, i2) of the set {1, 2} let

P = arg lex min
x∈X∩Zn

(yi1(x), yi2(x))

Let x̂ ∈ P and yi(x̂) = ŷi. For each x ∈ P we have that yi(x) = ŷi. Further consider
the reverse lexicographic optimization and let

x̄ = arg lex min
x∈X∩Zn

(yi2(x), yi1(x))

and ȳ = y(x̄). By Proposition 2.9 both ȳ and ŷ are non-dominated points of (BOIP)
and we can assume that ŷ 6= ȳ as otherwise the ideal vector would represent the only
optimal solution to the problem.
Let γ = mini=1,2 {γi} > 0. For any ζ ∈ (0, γ) we define λ(ζ) ∈ R2

>0 as

λ(ζ)i =


γ − ζ
ŷi1 − ȳi1

, if i = i1

1, if i = i2

(2)

We now show that λ(ζ) ∈ Λ∗ for any ζ ∈ (0, γ), hence that this choice of weights for
(IIP∗) allows to prove correspondence with the lexicographic optimization.

Theorem 3.2. Given (BOIP), let Assumption 2.4 and Assumption 2.6 hold. Given a
permutation (i1, i2) of the set {1, 2} there exist weights λ∗ ∈ R2

>0 such that λ∗i1 ≤ λ∗i2
and

arg lex min
x∈X∩Zn

(yi1(x), yi2(x)) = arg min
x∈X∩Zn

λ∗ᵀy(x)

Proof. Without loss of generality we fix i1 = 1 and i2 = 2. Define ŷ, ȳ and for a
specific value of ζ ∈ (0, γ) define λ∗ = λ(ζ) ∈ R2

>0 as in (2) so that λ∗i1 ≤ λ∗i2 . Let
x∗ ∈ arg min

x∈X∩Zn
λ∗ᵀy(x). Since λ∗ ∈ R2

>0 by Proposition 2.9 y(x∗) = y∗ is a non-

dominated point. Further we have that λ∗ᵀy(x∗) ≤ λ∗ᵀy(x) ∀ x ∈ X ∩ Zn, and, in
particular, λ∗ᵀ (ŷ − y∗) ≥ 0 and from the definition of λ∗ we get

γ − ζ
ŷ1 − ȳ1

(ŷ1 − y∗1) + ŷ2 − y∗2 ≥ 0. (3)

Taken into account that both ŷ and y∗ are non-dominated points for (BOIP) and that
ŷ is in P only one of the following situations may occur

(i) y∗1 < ŷ1 and y∗2 > ŷ2

(ii) y∗1 = ŷ1 and y∗2 = ŷ2

We show that only case (ii) holds and this implies the theorem. Assume by contradiction
that (i) holds. Then, we would have ȳ1 ≤ y∗1 < ŷ1 implying

ŷ1 − ȳ1 ≥ ŷ1 − y∗1. (4)
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Using (4) within (3) we get γ − ζ + ŷ2 − y∗2 ≥ 0. Since y∗2 − ŷ2 ≥ γ we have γ − ζ ≥ γ
and hence ζ ≤ 0 which leads to a contradiction.

In the proof of the theorem above we consider the special choice of weights given by
(2). We observe that given λ ∈ Λ∗ the vector αλ trivially belongs to Λ∗ for any α > 0.
In the next theorem, we show that we can scale only one of the two components of the
vector λ remaining within the set Λ∗.

Proposition 3.3. Given (BOIP), let Assumption 2.4 and Assumption 2.6 hold. Given
a permutation (i1, i2) of the set {1, 2} and given weights λ∗ ∈ Λ∗ and

arg lex min
x∈X∩Zn

(yi1(x), yi2(x)) = arg min
x∈X∩Zn

λ∗ᵀy(x) (5)

Then the vector weights λ̃ = (αλ∗1, λ
∗
2) satisfy (5) for every α ∈ (0, 1].

Proof. Without loss of generality we set i1 = 1 and i2 = 2. Since we know from
Theorem 3.2 that λ∗1 ≤ λ∗2 we define λS = 1

λ∗2
λ∗ =

(
λS1 , 1

)ᵀ ∈ Λ∗ and λS1 ≤ 1. Let

x∗ ∈ arg min
x∈X∩Zn

λ∗ᵀy(x)

and λ̃ =
(
λ̃1, 1

)ᵀ
. We show that any vector λ̃ with λ̃1 ∈ (0, λS1 ] belongs to Λ∗ so that

arg min
x∈X∩Zn

λS
ᵀ
y(x) = arg min

x∈X∩Zn
λ̃ᵀy(x)

By contradiction suppose that there exists a point x̃ ∈ arg minx∈X∩Zn λ̃ᵀy(x) and x̃ 6∈
arg minx∈X∩Zn λS

ᵀ
y(x). We have that λ̃ᵀy(x̃) ≤ λ̃ᵀy(x∗) which implies

y2(x
∗)− y2(x̃) ≥ λ̃1 (y1(x̃)− y1(x∗)) (6)

By the definition of x∗ we know that λS
ᵀ
y(x∗) < λS

ᵀ
y(x̃) and therefore

y2(x
∗)− y2(x̃) < λS1 (y1(x̃)− y1(x∗)) (7)

Combining (6) and (7) we get y1(x̃) > y1(x
∗). Since x̃ is an efficient point by Proposition

2.9 and x∗ is a lexicographic efficient point by Proposition 2.12, we have that it should
hold that y2(x̃) < y2(x

∗) = yid2 . We then get a contradiction.

We now show that given a subset H of X ∩ Zn the vector of weights λ∗ can be used
to define the custom weighted-sum associated with the set H. This is needed in our
branching scheme to properly define the (IIP) at each node.

Proposition 3.4 (λ-Inheritance). Let Assumption 2.4 and Assumption 2.6 hold. Given
a permutation (i1, i2) of the set {1, 2} and a value ζ ∈ (0, γ), let λ∗ = λ(ζ) as in (2).
Then for any subset H of X ∩Zn such that the Pareto frontier of min

x∈H
(yi1(x), yi2(x)) ⊆

YN , we have that the weight vector λ∗ satisfies

arg lex min
x∈H

(yi1(x), yi2(x)) = arg min
x∈H

λ∗ᵀy(x)

9



Proof. Let λH be the weights obtained from (2) where ŷH and ȳH are the vectors ŷ and
ȳ obtained subject to the constraint x ∈ H. Since Assumption 2.4 and Assumption 2.6
hold these weights are such that

arg lex min
x∈H

(yi1(x), yi2(x)) = arg min
x∈H

λH
ᵀ
y(x)

By assumption, we have that min
x∈H

(yi1(x), yi2(x)) ⊆ YN . This implies that ŷHi1 ≤ ŷi1

and ȳHi1 ≥ ȳi1 , so that λHi1 ≥ λ∗i1 . Since λHi2 = λ∗i2 = 1, the assumptions of Proposition
3.3 are satisfied. Therefore

arg lex min
x∈H

(yi1(x), yi2(x)) = arg min
x∈H

λ∗ᵀy(x)

4. The Frontier Partitioner Algorithm

In this section, we introduce the Frontier Partitioner Algorithm FPA. Convergence and
finiteness of the algorithm are analyzed in Section 4.1.
The FPA uses a divide and conquer approach to explore the Pareto frontier of (BOIP).
Starting from a non-dominated solution the method builds two subproblems in such
a way that the chosen non-dominated solution and all the points dominated by it are
infeasible for both the subproblems. Hence the key ingredients of FPA are

• the construction of subproblems using properly defined inequalities,

• the computation of non-dominated solutions at each node of the branching tree.

At a generic node k in the branching tree the subproblem (BOIP)k

min
x∈Xk∩Zn

y(x) (BOIPk)

is constructed, where X k ⊆ X is the set obtained intersecting X with properly defined
inequalities. For k = 0, i.e. at the root node, we define (BOIP0)=(BOIP) and X 0 = X .
For k > 0 the definition X k is clarified below.
In order to compute a non-dominated solution of (BOIP)k we can use any techniques
proposed in Sections 2.2 and 3 to get (IIP)k. We need the following assumption on the
inner integer problem (IIP)k.

Assumption 4.1 (Solvability of the inner integer problem). There exists an oracle
that either returns an optimal solution of (IIP) or certifies the infeasibility of problem
(IIP)k.

From the point of view of implementation using an oracle means calling a solver suitable
for problem (IIP)k. Depending on the choice of the solution techniques used, either
(IIPW ), (IIP∗) or (IIPL), the call of an oracle may require the solution of either one or
two integer problems.
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In case (IIP)k has an optimal solution, two children nodes in the branching tree are
produced. Let x̂k ∈ X k ∩ Zn be an optimal solution of (IIP )k and ŷk = y(x̂k).

Let εi ∈ (0, γi], i = 1, 2 where γi satisfies 2.6. We consider the inequalities

yi(x) ≤ ŷki − εi, i = 1, 2. (8)

Remark 4.2. The inequalities yi(x) ≤ ŷki − εi, i = 1, 2 are violated by the non-
dominated solution ŷk. Furthermore, they are linear in the criterion space and they are
convex (linear) in the decision space as long as the functions yi(x), i = 1, 2 are convex
(linear).

From (BOIP )k, using inequalities (8), we define the two children nodes of node k as
follows:

min
x∈Xk

1 ∩Zn
y(x) X k1 = X k ∩ {x ∈ Rn : y1(x) ≤ ŷk1 − ε1},

min
x∈Xk

2 ∩Zn
y(x) X k2 = X k ∩ {x ∈ Rn : y2(x) ≤ ŷk2 − ε2}.

The Frontier Partitioner Algorithm produces iteratively a finite list of BOIPs.

Remark 4.3. At a generic node k > 0 of the branching tree, the feasible region X k is
obtained from the original X by adding at most two inequalities. Each inequality takes
the form yi(x) ≤ consti with i = 1, 2, where consti = min

0≤j≤k
ŷji − εi. Hence, letting m

be the number of constraints defining X , the number of constraints of X k is at most
m + 2 for all k, as among the k new constraints introduced there will be at most two
non-redundant ones.

The scheme of the Basic Frontier Partitioner Algorithm FPA is reported in Algorithm 1.
The algorithm generates a list L of BOIPs by starting from the original (BOIP )0.
For each selected (BOIP )k from the list, the corresponding (IIP )k is constructed and
solved by an oracle call. Using the optimal solution, if any, two new BOIPs are produced
and added to the list. The algorithm stops when the list is empty.
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Algorithm 1: FPA scheme

Input: L = {(BOIP )0}, X 0 = X , YN = ∅, γi > 0, εi ∈ (0, γi], i = 1, 2
Output: the Pareto frontier YN of (BOIP )
while L 6= ∅ do

Select a node (BOIP )k ∈ L and delete it from L
Derive (IIP )k from (BOIP )k

Call an oracle on (IIP )k.

if (IIP )k has an optimal solution x̂k then
Set YN = YN ∪

{
ŷk
}

, where ŷk = y(x̂k)

Build (BOIP )ki , i = 1, 2 from (BOIP )k

(BOIP )ki := min
{
y(x) : x ∈ X ki ∩ Zn

}
Where X ki := X k ∩ {x ∈ Rn : yi(x) ≤ ŷki − εi}, i = 1, 2,

Add the new nodes (BOIP )k1 and (BOIP )k2 to L;
end

end
Return YN

We prove in Section 4.1 that under suitable assumptions FPA is well posed and termi-
nates finitely, returning the entire Pareto frontier YN .
The BOIPs generated are related to those that would be built applying the approach
proposed in [11, 21, 13].
In particular in [11] the BOIPs are generated by using the weighted-sum scalarization
method and the existence of an oracle for solving BOIP is assumed. In [21] the authors
present a method which identifies a region where it is possible to find further non-
dominated points. The region is updated iteratively each time a new non-dominated
point is found. To this aim they construct a list U of local upper bounds and keep it
updated according to the new non-dominated points found. It is mentioned how to
use this list of local upper bounds in order to define an algorithm for multiobjective
combinatorial optimization. At each iteration k, a local upper bound uk ∈ U is selected
and the subproblem P (uk) is built by adding to the feasible regionX∩Zn the constraints
y(x) < uk. Problem P (uk) is solved, the list U is updated and a new efficient point is
eventually found. In case p = 2, the inequalities y(x) < uk are strongly related to the
inequalities introduced in (8), as uk ∈ U is built by using components of non-dominated
points found so far, so that they read as yi(x) < ŷji for some j = 1, . . . , k and for all
i = 1, 2. The number of integer problems needed to be solved by this approach is
2|YN |+ 1.
We underline that FPA does not need to construct the list U and hence it does not need
any algorithmic procedure to keep U updated and filter dominated local upper bounds
as needed in [21, 13]. Furthermore, in [21] minor details on how to solve the integer
subproblem P (uk) are given. Indeed, handling strict inequalities is not allowed when
using standard software such as e.g. CPLEX [19], Gurobi [18], SCIP [17], Couenne [1]
or Bonmin [8].
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In this respect, the definition of γi and of εi ∈ (0, γi], i = 1, 2 in (8) is crucial to
obtain inner integer problems which satisfy Assumption 4.1, namely for which an oracle
exists using standard available softwares. The main contribution of our paper stays in
embedding the new custom weighted-sum scalarization procedure within the divide-
and-conquer procedure. The use of the new scalarization allows to prove that exactly
|YN |+ 1 nodes are generated as reported in the next Section.

4.1. Convergence Analysis

As a first step in the convergence analysis of the Frontier Partitioner Algorithm, we
prove that the cuts used in Algorithm 1 induce a partition of the decision space.

Proposition 4.4. Let Assumption 2.6 holds. Then X k1 ∩ X k2 ∩ Zn = ∅ for all k in
Algorithm 1.

Proof. Let x̂k ∈ X k ∩ Zn be an efficient point for (BOIP )k corresponding to the
non-dominated value ŷk. Assume by contradiction that X k1 ∩ X k2 ∩ Zn 6= ∅. Then
x ∈ X k1 ∩X k2 ∩Zn exists and satisfies yi(x) < yi(x̂k), for i = 1, 2 as εi > 0 by assumption.
This contradicts the fact that x̂k is an efficient solution for (BOIP )k.

Remark 4.5. Under Assumption 2.6, we have that y(x) 6= ŷk for any x ∈ X k1 ∩ Zn
and any x ∈ X k2 ∩ Zn. Therefore, the inequalities used to define X ki , i = 1, 2 exclude
all the efficient solutions x̂ such that ŷk = y(x̂).
Since |yi(x)− ŷki | ≥ γi for i = 1, 2, we have that

YkN = {ŷk} ∪ Yk,1N ∪ Yk,2N

where Yk,iN , i = 1, 2 denote the Pareto frontier of the children nodes of (BOIP )k.

Therefore, the Pareto frontier is recursively obtained as YN = {ŷ0} ∪ Y0,1
N ∪ Y0,2

N .

In the following proposition, we prove that each node tackled in the Algorithm 1 can
be pruned or produces a not yet known Pareto point .

Proposition 4.6. Let ŷ ∈ YkN be a non-dominated point of (BOIP )k. Then, the child
problem (BOIP )ki

min y(x)
s.t. x ∈ X k ∩ {yi(x) ≤ ŷi − εi}

x ∈ Zn
(9)

with i = 1, 2 is either infeasible or any of its optimal solutions is efficient for (BOIP )k,
leading to a new non-dominated point ȳ 6= ŷ.

Proof. If problem (9) is infeasible there is nothing to prove. W.l.o.g. let i = 1 and let
x̄ be a solution of (9) (case i = 2 can be proven identically). By contradiction, assume
that x̄ is not efficient for (BOIP)k. Then, x̃ ∈ X k ∩ Zn exists such that yi(x̃) ≤ yi(x̄),
for i = 1, 2 and y(x̃) 6= y(x̄). In particular, we have that

y1(x̃) ≤ y1(x̄) ≤ ŷ1 − ε1
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so that x̃ is feasible for (9). Since y(x̃) 6= y(x̄), we necessarily have that either y1(x̃) <
y1(x̄) or y2(x̃) < y2(x̄), contradicting the fact that x̄ is efficient for (9). Furthermore,
we have that y(x) 6= ŷ for any point x feasible for (9) as stated in Remark 4.5, so that
x̄ leads to a non-dominated point y(x̄) = ȳ 6= ŷ.

Now we are ready to prove the finite convergence of Algorithm 1.

Theorem 4.7. Let Assumptions 2.4, 2.6 and 4.1 hold. Algorithm 1 returns the com-
plete Pareto frontier YN of (BOIP) after generating exactly 2|YN |+ 1 (BOIP)k.

Proof. At each iteration k of the FPA a node (BOIP )k is chosen and the corresponding
(IIP )k is built.
Assumption 4.1 allows us to solve Problem (IIP )k. Using Remark 2.10, we have
that either (IIP )k has an optimal solution or is infeasible. If (IIP )k is infeasible,
we conclude that X k ∩ Zn does not contain any efficient point and the node (BOIP )k

is pruned. Otherwise, we have that the returned optimal solution of (IIP )k is efficient
for (BOIP )k, giving us a non-dominated point ŷk. Using Proposition 4.6, we have that
ŷk belongs to the Pareto frontier of (BOIP). By Proposition 4.4 and Remark 4.5, the
non-dominated point ŷk ∈ YN cannot be detected again by addressing any subsequent
node in the branching tree and the inequalities induced by ŷk do not cut any yet
unknown Pareto point. Summarizing, whenever a node is addressed, either we get a
new non-dominated point or we detect infeasibility and the node is pruned. Therefore
since FPA produces exactly two children for each non-dominated point of (BOIP), we
have that the branching tree has exactly 2|YN |+ 1 nodes (including the root node) so
that exactly 2|YN |+ 1 (BOIP)k are generated.

We now show that the use of different solution techniques may lead to a different
number of solutions of inner integer programs (IIP), namely to a different number of
oracle calls, which represent the main computational burden. In particular, we will
show that the use of the custom weighted-sum allows us to define an improved version
of FPA, called FPA∗, able to detect the complete Pareto frontier after having solved only
|YN |+ 2 integer programs.
Before describing the special case of the FPA with the custom weighted-sum scalariza-
tion, we report the results that follows directly from Theorem 4.7. In particular, for
the FPA with (IIP) obtained by the weighted-sum scalarization technique, we have the
following results that have already been proved in [11].

Corollary 4.8. If (IIPW )k as defined in (2.9) with strictly positive weights λi > 0 is
used to define the scalarization program then Algorithm 1 returns the complete Pareto
after having solved 2|YN | + 1 IIPs of which |YN | + 1 must have an empty feasible set
and after having called the oracle 2|YN |+ 1 times.

Proof. The proof is a straightforward consequence of the construction of the (IIPW ) in
the branching tree.

When using (IIPL) or (IIP∗) as inner integer problems we obtain a drastic reduction
of the number of (BOIP)k tackled by the algorithm.
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Corollary 4.9. If either (IIPL) or (IIP∗) is used to define the solution technique, then
at least one of the two subproblems (BOIPki ), i = 1, 2 has empty feasible set, so that
the number of generated BOIPs is |YN |+ 1, where only one problem is empty.

Proof. Every time a subproblem (IIP)k is solved and a new Pareto point is found, the
algorithm creates two subproblems (BOIP )ki , i = 1, 2, from (BOIP )k according the

formulas (BOIP )ki := min
{
y(x) : x ∈ X ki ∩ Zn

}
and X ki := X k ∩ {x ∈ Rn : yi(x) ≤

ŷki −εi} i = 1, 2. By the definition of lexicographic problem we have that X ki2 = ∅, where

(i1, i2) is the permutation of set {1, 2} adopted by (IIP)k. As a consequence we can
fathom one subproblem at every branching, so that the algorithm produces |YN | + 1
problems (BOIP)k. Note that the last subproblem has empty feasible set but it cannot
a priori fathomed.

Remark 4.10. If the lexicographic problem (IIPL) is used in FPA, then Algorithm 1
returns the complete Pareto frontier after |YN |+1 oracle calls but it requires the solution
of 2|YN |+ 1 single objective problems, with only one of them being infeasible.
On the other hand when (IIP∗) is used in FPA, exactly |YN |+1 single objective problems
must be solved.

In the following, we present the FPA∗, which is a particular version of FPA where (IIP∗) is
used as scalarization technique, which allows reducing the number of integer programs
that need to be solved.
The scheme of the FPA∗ is reported in Algorithm 2. As a first step the computation
of the custom weights is considered. Thanks to Proposition 3.3 we can use any value
αλ1(ζ) where λ(ζ) is defined as in (2) and α ∈ (0, 1). We propose the choice of λ∗ in
the FPA∗ satisfying λ∗1 < λ1(ζ) for fixed values of ζ. Further Proposition 3.4 allows to
use the same weights λ∗ in all the nodes (BOIP)k and we exploit this property. In the
main loop, there is no need in constructing a list of open problems because the BOIPs
are generated one at the time by using the solution of the preceding program (IIP∗)k.
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Algorithm 2: FPA∗

Input: (BOIP 0) = (BOIP ), X 0 = X , YN = ∅,
γi > 0, εi ∈ (0, γi], ζi ∈ (0, γi), i = 1, 2
{i1, i2} permutation of {1, 2}, k = 0

Output: the Pareto frontier YN of (BOIP )

Compute x̂j = arg min
X∩Zn

yj(x), j = i1, i2,

Evaluate the custom weights as

λ∗i =


γi1 − ζi1

yi1(x̂i2)− yi1(x̂i1)
, if i = i1

1, if i = i2

while
(
yi1(xk) > yidi1

)
do

Derive (IIP ∗)k from (BOIP )k

Solve (IIP ∗)k and let x̂k be an optimal solution

Set YN = YN ∪
{
ŷk
}

, where ŷk = y(x̂k)

Build (BOIP )k+1 from (BOIP )k

(BOIP )k+1 := min
{
y(x) : x ∈ X k+1 ∩ Zn

}
Where X k+1 := X k ∩ {x ∈ Rn : yi1(x) ≤ ŷki1 − εi},

Set k = k + 1;
end
Return YN

The choice of unique value for λ∗ outside the main loop allows us to improve the bound
on the number single-objective integer problems solved as proved in the next theorem.

Theorem 4.11. Let Assumptions 2.4, 2.6 and 4.1 hold. Algorithm 2 returns the
complete Pareto frontier YN of (BOIP) after having solved |YN | + 2 single-objective
integer programs.

Proof. Algorithm 2 is exactly FPA customized over (IIP∗). By Corollary 4.9 if we use
FPA we will solve |YN |+ 1 (IIP∗)s, where exactly one has empty feasible set. By using
FPA∗ we solve the problems sequentially by changing the level of the i1-th function.
Since in the first step of the algorithm we derive the ideal vector, we know that the
i1-th function will end up at that value, in other words the last point found by the
algorithm will be the extreme point with the lowest value of the i1-th function. Since
in the while-loop a stopping criterion on the i1-th function is introduced, the algorithm
will stop before tackling an empty subproblem. Under these considerations FPA∗ will
stop after having solved |YN | (IIP∗)s.

As λ∗ is computed outside the while loop, every time we solve the program (IIP∗)k in
FPA∗ we have to deal with only one integer problem. According to Propositions 3.3
and 3.4, if we use λ∗ as defined in FPA∗, we need only to solve two integer problems to
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find the custom weights valid for all the subproblems. In the end, the algorithm will
need to solve exactly |YN |+ 2 single-objective integer programs.

4.2. Toy example

In this section we show the behavior of algorithm FPA∗ on the following simple example
proposed in [15] (example 8.6)

min
x∈X∩Z2

(x1, x2), (10)

where X is the polyhedral set defined as

X = {x ∈ R2
≥0 : 2x1 + 3x2 ≥ 11, x1 ≤ 4, x2 ≤ 4}.

The criterion space Y of Problem (10) (which is the same as the decision space) is
represented in Figure 1a. The Pareto frontier is YN = {(0, 4); (1, 3); (3, 2); (4, 1)}. As
pointed out in [15] there is no setting of the weights λ ∈ R2 such that the point (3, 2)
can be obtained as an optimal solution of a weighted-sum problem. We show that our
algorithm FPA∗ is able to detect the full Pareto frontier YN .
For this instance we have γi = 1 for i = 1, 2 and we set εi = 1. At every iteration, in
order to produce new non-dominated points of Problem (10), we use as scalarization
the custom weighted sum method with weights λ∗ = (1−ζ4 , 1)ᵀ, so that at every node
we solve the single-objective integer problem (IIP∗)k:

min
x∈Xk∩Z2

1− ζ
4

x1 + x2

In Figure 1, we report the iterations of FPA∗ on Problem (10) fixing ζ = 0.3. The
non-dominated points found by the algorithm are circled.
In particular Figure 1b reports the optimal solution of (IIP∗)0 where we plot the level
lines of the objective function of (IIP∗)0. The non-dominated point found is (4, 1).
When using a basic FPA we would have two children nodes having as feasible regions
respectively X 0

1 = X ∩
{
x ∈ R2

≥0 : x1 ≤ 3
}

and X 0
2 = X ∩

{
x ∈ R2

≥0 : x2 ≤ 0
}

.

As expressed in Theorem 4.11 X 0
2 is by construction empty and then not at all consid-

ered in FPA∗. In Figure 1c the feasible region X 0
1 is plotted and the optimal solution

of the corresponding integer problem (IIP∗)1 is reported in Figure 1d. The new non-
dominated point found is (3, 2).
Reapplying the procedure we produce again only one integer problem which gives the
Pareto point (1, 3) as shown in Figure 1e. Finally in Figure 1f we find the last Pareto
point and the algorithm terminates returning the full Pareto front.

4.3. Discussion on the assumptions

In this section we present some classes of functions that easily satisfy Assumption 2.6
and Assumption 4.1.
As a first step we look for sufficient conditions to have γ > 0 and ε ∈ (0, γ] computable
whenever f(x) 6= f(z) for all x, z ∈ X ∩ Zn (Assumption 2.6).

Proposition 4.12. Assume that f : Zn → Z. Then γ ≥ 1.
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Figure 1: The Frontier Partitioner Algorithm applied to Problem (10)
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Proof. Since the image of X∩Zn under f is a subset of Z, we have that |f(x)−f(z)| ≥ 1,
for all x, z ∈ X ∩ Zn such that f(x) 6= f(z).

Remark 4.13. As a matter of example of functions satisfying the condition in Propo-
sition 4.12 we have all the polynomials with integer coefficients and in particular f(x) =
cᵀx with c ∈ Zn and f(x) = xᵀQx+ cᵀx with Q ∈ Zn×n and c ∈ Zn.

We now look for larger classes of functions for which γ > 0. We focus on functions
defined on rational domains.

Proposition 4.14. Let f(x) : Zn → R be a polynomial with rational coefficients,

f(x) 6= 0. Then r ∈ N, r 6= 0 exists so that γ ≥ 1

r
.

Proof. Let f(x) =
s∑

k=0

αkqk(x), where qk(x) =
n∏
i=1

xmik
i and mik ∈ N, for k = 0, . . . , s,

i = 1, . . . , n. We have qk(x) ∈ Z, for k = 0, . . . , s and for all x ∈ Zn. Since r ∈ N,
r 6= 0 exists such that rαk ∈ Z, k = 0, . . . , s, we have that g(x) = rf(x) satisfies the
assumption of Proposition 4.12 and

|f(x)− f(z)| ≥ 1

r
, ∀ x, z ∈ X ∩ Zn : f(x) 6= f(z).

Remark 4.15. Proposition 4.14 holds when f(x) = xᵀQx+ cᵀx, where Q ∈ Qn×n and
c ∈ Qn.

Remark 4.16. Of course Proposition 4.14 holds when f(x) is a linear function with
rational coefficients: f(x) = cᵀx, c ∈ Qn.

Note that the value r ∈ N used in Proposition 4.14 is easily calculable as the least
common multiple of the denominators of the rational coefficients.

Proposition 4.17. Let f(x) = ‖Ax+ b‖2 and assume that A ∈ Zm×n and b ∈ Zn and
that

v̄ = max
x∈X∩Zn

‖Ax+ b‖22 ∈ R+ <∞.

Then γ ≥
√
v̄ + 1−

√
v̄.

Proof. Since A ∈ Zm×n and b ∈ Zn we have that (Ax + b) ∈ Zm for all x ∈ X ∩ Zn.
Therefore for all x, z ∈ X ∩ Zn such that f(x) 6= f(z) we get

|f(x)− f(z)| = |‖Ax+ b‖2 − ‖Az + b‖2| ≥ |‖v‖2 − ‖w‖2|

with v, w ∈ Zm such that v 6= w and they differ exactly for one component, which is
the least difference possible. We can assume w.l.o.g. that vi = wi for all i 6= j and
wj = vj + 1 and we finally get
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|f(x)− f(z)| ≥

∣∣∣∣∣∣
√√√√ m∑

i=1

v2i −

√√√√ m∑
i=1

v2i + 2vj + 1

∣∣∣∣∣∣ ≥√‖v‖2 + 1−
√
‖v‖2.

Let g(x) = ‖Ax + b‖22, the function
√
g + 1 −√g is monotonically decreasing hence it

attains its minimum value at its upper bound v̄ and

|f(x)− f(z)| ≥
√
v̄ + 1−

√
v̄, ∀ x, z ∈ X ∩ Zn : f(x) 6= f(z).

In Table 1, we report some classes of objective functions that can be considered
when using integer programming solvers such as CPLEX [19], Gurobi [18], SCIP [17],
Couenne [1] or Bonmin [8], in order to deal with problem (IIP )k. In particular,

• if both yi(x) i = 1, 2 are linear, then (IIP )k is an Integer Linear Program (ILP)

• if one yi(x) is written as ‖Ax+ b‖2, then (IIP )k is an Integer Second Order Cone
Program (ISOCP)

• if one yi(x) is convex quadratic, then (IIP )k is a Quadratically Constrained
Quadratic Integer Program (QCQIP)

• if one yi(x) is general convex, then (IIP )k is a Convex Integer Program (CIP).

yi(x) = γ ≥ oracle

cᵀx with c ∈ Zn 1 ILP

cᵀx with c ∈ Qn 1
r ILP

‖Ax+ b‖2 with A ∈ Zn×m, b ∈ Zm
√
v̄ + 1−

√
v̄ ISOCP

xᵀQx+ cᵀx with Q � 0, Q ∈ Zn×n, c ∈ Zn 1 QCQIP

xᵀQx+ cᵀx with Q � 0, Q ∈ Qn×n, c ∈ Qn 1
r QCQIP

: Zn → Z, convex 1 CIP

Table 1: Classes of functions that satisfy Assumptions 2.6 and 4.1. In the table we denote with r the
least common multiple of the denominators of the rational coefficients used in Proposition 4.14. We
denote with v̄ the value defined in Proposition 4.17.

Remark 4.18. For the classes of functions mentioned above, we can set εi ∈ (0, γi]
to the values reported in Table 1, as they represent valid lower bounds on γi.
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5. Computational aspects

From a computational point of view, several issues may arise when tackling biobjective
nonlinear integer problems. A first issue is related to the fact that the cuts introduced
in our FPA are nonlinear inequalities in the decision space and this may increase the
difficulty of the IIPs to be solved. In Subsection 5.1 we discuss linear approximations
of the nonlinear inequalities that provide simpler cuts.
A second issue is related to the numerical instabilities that we experienced when dealing
with weighted sum IIPs where one of the two weights is near to zero. In Subsection 5.2
we describe a possible procedure to avoid numerical instabilities, devising an algorithm
that combines the two weighted sum scalarized problems (IIPW ) and (IIP)∗.

5.1. Circumventing nonlinear inequalities

In the Frontier Partitioner Algorithm, new nodes are built adding inequalities to the
feasible set in the decision space. More specifically, at a generic node k, the set X k∩Zn
is intersected with the following set:

C = {x ∈ Rn : yi(x) ≤ ŷki − εi}, (11)

where i = 1 or i = 2 and ŷk the non-dominated point found at node k. When yi(x) is
nonlinear we are introducing a nonlinear cut, as the set in (11) is defined according to
a nonlinear inequality. However, we do not necessarily need to add nonlinear inequal-
ities: for our purposes, it would suffice to define a valid formulation for the integer
set {x ∈ Zn : yi(x) ≤ ŷi − εi}, or, in other words, it would suffice to find a matrix
A ∈ Rm×n and a vector b ∈ Rm such that

{x ∈ Zn : Ax ≤ b} = {x ∈ Zn : yi(x) ≤ ŷi − εi}.

However, from a practical point of view, it is not yet clear how to easily generate a
valid formulation. In this section, we investigate how to define linear approximations
that lead to a relaxation of the feasible region that can be fruitfully exploited in the
FPA.

Under the assumption that yi : Rn → R is convex and continuously differentiable, we
have that

∇yi(x̂k)ᵀ(x̂k − x) ≥ yi(x̂k)− yi(x) ≥ εi.

Therefore, we can think of defining X ki intersecting X k with the halfspace

{x ∈ Rn : ∇yi(x̂k)ᵀ(x̂k − x) ≥ εi}.

The resulting FPA, may eventually not terminate with the entire Pareto frontier, as
we are not guaranteed to cut all the efficient solutions associated to the current non-
dominated point. On one hand, we lose the exactness of the method, on the other we
have the advantage of dealing only with linear constraints as long as X is a polyhedron.
For the specific class of problems where the objectives are strictly convex quadratic
forms, we can prove the following result:
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Proposition 5.1. Let yi(x) = xᵀQx, with Q � 0. Let C ⊆ Rn be defined as in (11).
Then

C ∩ Zn ⊆ C1 ∩ C∞

where

C1 =
{
x ∈ Zn : ‖Q1/2x‖1 ≤

1√
n

√
ŷi − εi

}
and

C∞ =
{
x ∈ Zn : ‖Q1/2x‖∞ ≤

√
ŷi − εi

}
Proof. We have that

{x ∈ Zn : yi(x) ≤ ŷi − εi} = {x ∈ Zn : xᵀQx ≤ ŷi − εi}

= {x ∈ Zn : ‖Q1/2x‖22 ≤ ŷi − εi}

= {x ∈ Zn : ‖Q1/2x‖2 ≤
√
ŷi − εi} = C ∩ Zn

Using the relations between norms
√
n‖x‖2 ≤ ‖x‖1 and ‖x‖2 ≥ ‖x‖∞ we have that

C ∩ Zn ⊆ C1 = {x ∈ Zn : ‖Q1/2x‖1 ≤ 1√
n

√
ŷi − εi}

C ∩ Zn ⊆ C∞ = {x ∈ Zn : ‖Q1/2x‖∞ ≤
√
ŷi − εi}

hence we get the result.
Note that both C1, C∞ are defined by 2n linear inequalities. Hence, in the specific
case of problems where the objective functions are strictly convex quadratic forms,
(BOIP )k can be generated using these 4n linear inequalities. Again, the resulting
FPA will be a heuristic approach, as we are not guaranteed of cutting all the efficient
solutions associated with the non-dominated points found so far. However, we have the
advantage of dealing, at every node, with a quadratic integer programming problem,
that can be handled more efficiently than a quadratically constrained quadratic integer
programming problem (see, e.g., [9]).

5.2. Managing numerical instabilities

FPA∗ offers a tight bound with respect to the number of integer problems to be solved in
order to get the Pareto frontier. From our computational experience, FPA∗ works very
well when dealing with biobjective linear integer problems, but it suffers when nonlin-
earities occur. This is mostly due to the fact that available software have difficulties in
solving the nonlinear IIPs when one of the entries of the weight vector is near to zero.
We can deal with numerical instabilities following two different strategies:

• iterative weights updating,

• combining the two weighted sum scalarized problems (IIPW ) and (IIP∗) into an
hybrid scheme SFPA.

22



The first strategy can be implemented at almost no additional computational cost.
We can update the entries of the weight vector of the single (IIP∗)k, using the value
ŷki1 = yi1(xk−1), where xk−1 is an optimal solution of (IIP∗)k−1. This is an upper bound

of the nadir vector of the subproblem (BOIP)k. From the proof of Proposition 3.4 it
follows that this choice leads to a weight vector with larger entries.

The second strategy adopted attempts to combine (IIPW ) with (IIP∗). We call this
procedure Stable-FPA (SFPA) and it is detailed in Algorithm 3. We associate at each
(BOIP)k the points ȳk and ŷk, which are respectively lower and upper bounds of the
ideal and the nadir point of (BOIP)k. When tackling a subproblem (BOIP)k we calcu-
late the weights w needed to obtain the custom weighted sum problem (IIP∗)k using
these bounds. If wmin = min {w1, w2} is too small we apply the basic FPA with the
weighted sum problem (IIPW ), using weights w = (0.5, 0.5)ᵀ. Otherwise, SFPA considers
the custom weighted sum problem (IIP∗).
The number of single objective integer problems solved by SFPA lies between |YN |+ 2
and 2|YN |+ 1.
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Algorithm 3: FPA (SFPA)

Input: (BOIP), γi > 0, εi ∈ (0, γi], i = 1, 2, δ ∈ (0, 1)
Output: the Pareto frontier YN of (BOIP )

Initialization: (BOIP)0 =(BOIP), L = {(BOIP)0}, X 0 = X , YN = ∅
Compute x̂j ∈ arg min

X∩Zn
yj(x), j = 1, 2

Fix the ideal vector yid =
(
y1(x̂

1), y2(x̂
2)
)ᵀ

Fix the upper approximation of the nadir point yu =
(
y1(x̂

2), y2(x̂
1)
)ᵀ

Put ȳ0 = yid and ŷ0 = yu; k = 0
while L 6= ∅ do

Select a node (BOIP)k ∈ L and delete it from L
Choose i1 ∈ {1, 2}
Using ȳk and ŷk, calculate

w =


γi1 − εi1
ŷki1 − ȳ

k
i1

, if i = i1

1, if i = i2

if wi1 ≤ δ then
Derive (IIPW )k from (BOIP)k with λ = (0.5, 0.5)ᵀ

Call an oracle on (IIPW )k

if (IIPW )k has an optimal solution xk then
Set YN = YN ∪

{
y(xk)

}
Build (BOIP)ki , i = 1, 2 from (BOIP )k as in FPA

Compute ȳk,i and ŷk,i according to

ȳk,ij =

{
ȳkj , if i = j

yj(x
k), if i 6= j

and ŷk,ij =

{
yj(x

k), if i = j

ŷk,ij , if i 6= j
(12)

Associate ȳk,i and ŷk,i with (BOIP)ki , i = 1, 2

Add the new nodes (BOIP)ki , i = 1, 2, to L
end

else
Derive (IIP ∗)k from (BOIP )k with weights λ∗ = (w1, 1)ᵀ

Solve (IIP ∗)k and let xk be an optimal solution

Set YN = YN ∪
{
y(xk)

}
Build (BOIP)ki1 ,from (BOIP )k as in FPA∗

Compute ȳk,i1 and ŷk,i1 according to (12)

Associate ȳk,i1 and ŷk,i1 with (BOIP)ki1
Add the new node (BOIP)ki1 to L

end

end
Return YN
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6. Numerical results

Algorithm FPA, FPA∗ and SFPA are implemented in Java. We addressed only the case
of linear and quadratic biobjective integer problems so that the oracles used for solving
the corresponding inner integer problem (IIP)k at each node are respectively the MILP
and MIQP solvers of CPLEX 12.7.1 [19].
All our experiments were carried out on an Intel Core i7 processor running at 2.40 GHz.
All running times were measured in CPU seconds.

6.1. Linear biobjective integer instances

The generic biobjective integer linear programming problem is modeled as

max (cᵀ1x, c
ᵀ
2x)

s.t. Ax ≤ b

x ∈ Zn≥0

We consider two classes of instances. The first class is obtained from instances available
at http://home.ku.edu.tr/~moolibrary/, where problems have three, four and five
objectives. In our experiments, we construct biobjective instances by taking only the
first two functions. Parameters are ci ∈ Zn, i = 1, 2, A ∈ Zm×n and b ∈ Zm. In
particular, cij is generated in the ranges [−100,−1] with probability 0.2 and [0, 100]
with probability 0.8, j = 1, . . . , n and i = 1, 2. The coefficients akl are generated in the
ranges [−100,−1] with probability 0.1, [1, 100] with probability 0.8 and akl = 0 with

probability 0.1. The right-hand side bk is generated randomly in the range [100,

n∑
l=1

akl].

These instances are characterized by a Pareto frontier with at most 65 points, which
is relatively small to highlight the performance of our algorithms. Hence we randomly
generated a second class of instances with a larger Pareto Frontier with a number
of non-dominated points between 75 and a thousand which is publicly available at
https://github.com/GiorgioGrani/Biobjective_Instances.
The second class of instances has been randomly generated with ci ∈ Zn, i = 1, 2,
A ∈ Zm×n and b ∈ Zm. We produced 97 instances: 58 of them have a number of
constraints which is 83% of the number of variables and their coefficients are chosen
such that cij ∈ [−100,−1] with probability 0.2 and cij ∈ [0, 100] with probability 0.8,
j = 1, . . . , n; i = 1, 2. The coefficients akl are generated in the ranges [−100,−1] with
probability 0.05, [1, 100] with probability 0.9 and akl = 0 with probability 0.05. The

right-hand side bk is generated randomly in the range [0,
n∑
l=1

akl]. The remaining 39

instances have exactly 10 constraints each and their coefficients are chosen such that
cij is generated in the range [−100,−1] with probability 0.02, in the range [0, 100] with
probability 0.08 and they are set to zero with probability 0.9, j = 1, . . . , n; i = 1, 2. The
coefficients akl are generated in the ranges [−100,−1] with probability 0.2, [1, 100] with
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probability 0.6 and akl = 0 with probability 0.2. The right-hand side bk is generated

randomly in the range [0,
n∑
l=1

akl].

Note that, for both classes of instances, the condition in Proposition 4.12 is satisfied,
so that γi ≥ 1 and we can set εi = 1 for i = 1, 2.
In order to assess the performance of the algorithms considered, we make use of perfor-
mance profiles, as proposed in [14]. Given our set of solvers S and a set of problems P,
we compare the performance of a solver s ∈ S on problem p ∈ P against the best per-
formance obtained by any solver in S on the same problem. To this end, we define the
performance ratio rp,s = tp,s/min{tp,s′ : s′ ∈ S}, where tp,s is the computational time,
and we consider a cumulative distribution function ρs(τ) = |{p ∈ P : rp,s ≤ τ}|/|P|.
The performance profile for s ∈ S is the plot of the function ρs.

We compared four algorithms: FPA∗, FPA with weighted sum (FPA-W), SFPA and the
Balanced Box Method (BBM) proposed in [4]. BBM is one of the state-of-the-art al-
gorithms for biobjective integer linear problems; it uses lexicographic method and it
divides the criterion space into rectangles.
In order to study the effect of changing the weight vector in the definition of (IIPW )k,
we consider three different settings for λ ∈ R2 within FPA-W, namely

λ ∈
{(

0.5
0.5

)
,

(
0.25
0.75

)
,

(
0.1
0.9

)}
.

In Table 2, we report the results obtained on the two classes of instances by apply-
ing FPA-W, where (IIPW )k is defined using one of the weight vectors above for every
k.
The results of BBM, FPA∗ and SFPA on the same linear instances are reported in Table 3.
In the tables 2 and 3, the instances are grouped according to the cardinality of the
Pareto frontier |YN |. We report the number of instances (# inst.) belonging to a
specific range of |YN |, the average (avg), the minimum (min) and the maximum (max)
CPU time in seconds needed to detect the entire Pareto frontier.
We note from the results in Table 2 that the performances of FPA-W using different
weight vectors are all very similar and there is no clear winner. However, the choice of
the weight vector λ = (0.25, 0.75)ᵀ seems to be slightly better on average.

As expected from the theoretical bound obtained, FPA∗ outperforms FPA-W, BBM and
SFPA on all instances.
We further report in Figures 2 and 3 the performance profiles for the first and the second
group of instances, respectively. Performance profiles confirm the analysis made above.
Another important aspect to be taken into account in the comparisons is the number
of single objective integer programs solved by each algorithm. We report these results
in a compact form in Figures 4 and 5 using box plots. On each box, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers are plotted
individually. It is evident that FPA∗ saves solver calls. It is also evident that SFPA

oscillates between the performances of FPA∗ and FPA-W.
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λ = (0.1, 0.9)ᵀ λ = (0.25, 0.75)ᵀ λ = (0.5, 0.5)ᵀ

|YN | # inst. avg min max avg min max avg min max

≤ 10 66 0.7 0.1 11.6 0.7 0.1 8.2 0.7 0.1 9.2
> 10,≤ 20 71 8.4 0.2 105.7 8.1 0.2 103.2 8.4 0.2 102.3
> 20,≤ 30 37 47.6 0.4 395.9 46.5 0.4 392.3 50.3 0.3 414.8
> 30,≤ 40 19 29.0 0.5 130.5 29.3 0.5 132.1 31.1 0.5 155.3
> 40,≤ 50 16 221.0 0.6 894.8 220.1 0.6 906.6 222.1 0.7 872.8
> 50,≤ 65 10 600.5 7.2 2313.3 582.6 7.3 2252.4 612.8 7.0 2508.3

≤ 70 13 13.9 0.9 80.0 13.4 0.9 76.4 27.7 0.8 253.0
> 70,≤ 150 16 54.9 5.1 172.1 51.7 5.1 180.8 57.3 5.2 176.4
> 150,≤ 300 19 213.2 10.3 2092.8 207.2 10.1 2058.1 211.7 10.0 2021.8
> 300,≤ 500 26 297.4 34.5 963.8 285.9 29.6 949.5 329.9 29.9 1574.3
> 500,≤ 1000 21 1122.8 58.8 3669.2 1073.2 59.0 3657.9 1185.8 55.2 3607.7

Table 2: Results (CPU time) of FPA-W with different weight vectors on biobjective integer linear
programming instances.
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Figure 2: Performance profiles with respect to CPU time on the first group of instances.
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Figure 3: Performance profiles with respect to CPU time on the second group of instances.
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Figure 4: Box plot with respect to the number of oracle calls in the first group of instances.
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Figure 5: Box plot with respect to the number of oracle calls in the second group of instances.

BBM FPA∗ SFPA

|YN | # inst. avg min max avg min max avg min max

≤ 10 66 1.0 0.1 15.9 0.3 0.1 2.7 0.3 0.1 3.3
> 10,≤ 20 71 13.6 0.2 134.7 3.2 0.1 35.2 4.0 0.1 50.2
> 20,≤ 30 37 76.2 0.3 544.0 16.6 0.2 146.2 24.2 0.2 263.5
> 30,≤ 40 19 49.0 0.4 255.1 9.7 0.3 46.3 11.0 0.3 41.2
> 40,≤ 50 16 299.3 0.5 1167.2 76.1 0.4 325.4 149.3 0.4 710.7
> 50,≤ 65 10 830.4 9.6 3298.1 237.6 3.1 996.7 278.0 5.5 1142.1

≤ 70 13 13.1 0.6 55.3 6.2 0.4 31.9 11.3 0.8 33.7
> 70,≤ 150 16 57.5 5.7 175.1 19.4 3.3 64.3 34.4 5.0 116.9
> 150,≤ 300 19 198.2 8.9 1885.9 62.0 5.7 589.0 190.5 8.3 1,683.1
> 300,≤ 500 26 333.3 32.8 1153.0 95.4 15.2 393.4 254.8 31.2 1,073.3
> 500,≤ 1000 21 1076.6 65.3 3752.4 350.7 30.9 1216.1 978.1 44.4 2751.3

Table 3: Comparison of BBM, FPA∗, SFPA on biobjective integer linear programming instances (CPU
time).
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Figure 6: Performance profile on quadratic instances.

6.2. Numerical experiments on quadratic instances

The generic biobjective integer quadratic programming problem is modeled as

min (xᵀQ1x+ cᵀ1x, x
ᵀQ2x+ cᵀ2x)

s.t. Ax ≤ b

x ∈ Zn≥0.

We considered a subgroup of the first class of instances used in Section 6.1 (http:
//home.ku.edu.tr/~moolibrary/), where we selected only the instances with no
more than 60 variables. In the objective functions we added the quadratic term xᵀQix,
with Qi � 0, Qi ∈ Zn×n, i = 1, 2 are randomly generated. We generated the matrix
Qi as LiL

ᵀ
i where Li ∈ {0, 1}n×h, where h integer and randomly chosen in [1, n]. The

generic element l of the matrix Li is chosen to be 0 with probability 0.8 and to be 1
with probability 0.2.
Note that the condition in Proposition 4.12 is satisfied, so that γi ≥ 1 and we can set
εi = 1 for i = 1, 2. The test problems are publicly available at https://github.com/

GiorgioGrani/Biobjective_Instances.
For the quadratic instances, we experienced that the choice of the weights in FPA∗ can
affect numerical stability as explained in Section 5. Indeed CPLEX fails in detecting
positive semidefiniteness of the matrices Qi on several instances so that we are not
reporting the results of FPA∗. We used for comparison only SFPA and FPA-W with the
different weights.
In Table 4, we group the instances according to the cardinality of the Pareto frontier
|YN |. We consider seven different ranges and for each range of |YN |, we report the
number of instances (# inst.) belonging to that range and the average (avg), the
minimum (min) and the maximum (max) CPU time in seconds needed to detect the
entire Pareto frontier by SFPA or by the different FPA-Ws.
In Figure 6 we report the performance profile with respect to the CPU time. SFPA

clearly outperforms FPA-W.
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λ = (0.1, 0.9)ᵀ λ = (0.25, 0.75)ᵀ

|YN | # inst. avg min max avg min max

≤ 10 36 3.4 0.0 18.9 3.4 0.0 19.0
> 10,≤ 20 39 25.0 0.4 70.4 27.5 0.4 74.1
> 20,≤ 30 30 448.3 8.8 5772.8 587.8 4.5 8203.3
> 30,≤ 40 31 271.4 0.7 1729.3 303.3 0.8 1618.8
> 40,≤ 50 4 2122.2 454.5 3767.0 2219.6 407.4 6387.8
> 50,≤ 65 12 803.6 106.6 3680.5 953.6 105.1 3632.4
> 65,≤ 100 7 1076.8 26.0 2681.3 1794.0 32.1 5814

λ = (0.5, 0.5)ᵀ SFPA

|YN | # inst. avg min max avg min max

≤ 10 36 3.8 0.0 18.9 1.5 0.0 9.9
> 10,≤ 20 39 30.3 0.4 75.3 13.4 0.3 49.9
> 20,≤ 30 30 712.0 4.3 8851.7 96.6 2.0 992.3
> 30,≤ 40 31 401.2 0.9 2402.3 111.8 0.4 558.3
> 40,≤ 50 4 2806.5 501.6 7371.5 895.2 130.3 1705.6
> 50,≤ 65 12 1557.6 113.9 7714.2 439.0 66.2 2133.1
> 65,≤ 100 7 652.6 16.9 1427.1 454.2 16.2 1389.0

Table 4: Comparison on biobjective integer quadratic programming instances - FPA applied with dif-
ferent weight vectors and SFPA (CPU time).
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7. Conclusions

We presented a criterion space search algorithm able to detect the entire Pareto frontier
of biobjective integer programming problems. Using a suitable solution technique, a
single-objective integer programming problem needs to be tackled at every node of the
branching tree. In our algorithm, we use suitable weighted sum scalarized problems. We
can prove that, under a particular choice of the weights which encompass the property
of the lexicographic optimization, the number of integer problems to be solved in order
to get the full Pareto frontier YN is |YN | + 2. This represents a very good bound in
the context of criterion space search algorithms for biobjective integer programming
problems.
The approach is based on a partition of the criterion space based on linear inequali-
ties that are violated by already detected Pareto points. These inequalities rely on a
problem-dependent parameter easily calculable for some classes of problems, including
integer convex quadratic instances. Therefore, our approach can handle biobjective
nonlinear integer problems, as long as the objective functions satisfy specific properties
and an oracle able to solve the inner integer problem is available. In order to overcome
numerical issues when solving the scalarized problems, we devised a hybrid version
of our algorithm. Numerical results on both linear and convex quadratic biobjective
integer instances confirm the efficiency of our approach.
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