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ABSTRACT

Solving optimization problems with parallel algorithms has a long tradition in OR. Its future relevance
for solving hard optimization problems in many fields, including finance, logistics, production
and design, is leveraged through the increasing availability of powerful computing capabilities.
Acknowledging the existence of several literature reviews on parallel optimization, we did not find
reviews that cover the most recent literature on the parallelization of both exact and (meta)heuristic
methods. However, in the past decade substantial advancements in parallel computing capabilities
have been achieved and used by OR scholars so that an overview of modern parallel optimization
in OR that accounts for these advancements is beneficial. Another issue from previous reviews
results from their adoption of different foci so that concepts used to describe and structure prior
literature differ. This heterogeneity is accompanied by a lack of unifying frameworks for parallel
optimization across methodologies, application fields and problems, and it has finally led to an overall
fragmented picture of what has been achieved and still needs to be done in parallel optimization in
OR. This review addresses the aforementioned issues with three contributions: First, we suggest
a new integrative framework of parallel computational optimization across optimization problems,
algorithms and application domains. The framework integrates the perspectives of algorithmic design
and computational implementation of parallel optimization. Second, we apply the framework to
synthesize prior research on parallel optimization in OR, focusing on computational studies published
in the period 2008-2017. Finally, we suggest research directions for parallel optimization in OR.

Keywords computing science - parallel optimization - computational optimization - literature review

1 Introduction

Parallel optimization has received attention in the operations research (OR) field already for decades. Drawing on
algorithmic and computational parallelism in OR is appealing as real-life optimization problems in a broad range of
application domains are usually NP-hard and even the implementation of (meta)heuristic optimization procedures may
require substantial computing resources. It has been argued that parallelism is crucial to make at least some problem
instances tractable in practice and to keep computation times at reasonable levels [Talbi, 2009, (Crainic et al.} 2006]E]
However, unsurprisingly, the application of parallel optimization has been hesitant because 1) parallelizing algorithms
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is challenging in general from both the algorithmic and the computational perspective, and ii) a viable alternative
to parallelizing algorithms has been the exploitation of ongoing increases of clock speed of single CPUs of modern
microprocessors. But this growth process reached a limit already several years ago due to heat dissipation and energy
consumption issues [Diaz et al.| 2012]. This development makes parallelization efforts (not only in optimization) much
more important than it was in earlier times.

Fortunately, the need for parallelization has been acknowledged and accompanied by an increased availability of parallel
computing resources. This availability is rooted in two phenomena: a) the rapid development of parallel hardware
architectures and infrastructures, including multi-core CPUs and GPUs, local high-speed networks and massive data
storage, and of libraries and software frameworks for parallel programming [Talbi, |[2009, Crainic et al., 2006, Brodtkorb
et al.,[2013]; b) the increased availability of parallel computing resources as commodity good to researchers, who have
(free or low-priced) access to multi-core laptops and workstations, and even to high-performance clusters offered by
universities and public cloud providers.

The benefits of exploiting parallel processing for optimization algorithms are multi-faceted. Searching the solution
space can be speeded up for both exact and (meta)heuristic algorithms so that the optimal solution or a given aspiration
level of solution quality, respectively, can be achieved quicker. Implementations can also benefit from improved quality
of the obtained solutions, improved robustness, and solvability of large-scale problems [Talbi, 2009, p. 460f].

We found many published reviews on parallel optimization for particular problems, methodologies, applications,
research disciplines, and technologies. Reviews of parallelization for particular optimization problems were provided
for one-dimensional integer knapsack problems [Gerasch and Wang] [1994], vehicle routing problems (VRPs) [Crainic,
2008], non-linear optimization [Lootsma and Ragsdelll (1988, mixed integer programming [Nwana and Mitra, [2000]
and multiobjective optimization [Nebro et al., 2005]]. Most of the reviews that we found focus on parallel optimization
regarding particular methodologies. While branch-and-bound algorithms have been reviewed by |Gendron and Crainic
[1994]], the majority of methodological literature reviews have focused on metaheuristics: reviews have addressed tabu
search (TS) [Crainic et al.l 2005, simulated annealing (SA)[Aydin and Yigitl, [2005]], variable neighborhood search
(VNS) [Pérez et al.l 2005]], Greedy Randomized Adaptive Search Procedures (GRASPs) [Resende and Ribeiro} 2005],
swarm intelligence algorithms [Tan and Ding| 2016]], particle swarm optimization algorithms [Zhang et al., [2015]],
and different types of evolutionary algorithms, including genetic algorithms (GAs) [Adamidis), 1994, |Luque et al.,
2003! (Canta-Paz}, 1998 |Alba and Troyal (1999, |Adamidis}, |1994] [Knysh and Kureichik, [2010]], ant colony optimization
algorithms [Pedemonte et al., 2011} Janson et al., [2005]], scatter search [Lépez et al.,[2005] and evolutionary strategies
[Rudolph} |2005]]. Several reviews have covered sets of metaheuristics [[Cung et al., 2002} |Alba et al., 2005} |Crainic and
Hail, |2005| [Pardalos et al.| [1995| |Crainic and Toulousel 2003}, 12010, |Crainic et al.l 2014} |Crainicl 2018},12019, |Alba et al.,
2013]] and hybrid metaheuristics [Cotta et al.,| 2005, |[Luna et al.,|2005]]. Application- and discipline-oriented reviews
of parallel optimization have been provided for routing problems in logistics [Schulz et al.l [2013]] and for parallel
metaheuristics in the fields of telecommunications and bioinformatics [Nesmachnow et al.; 2005} [Trelles and Rodriguez,
2005), Martins and Ribeiro| [2006]. Reviews that focus on particular parallelization technologies (in particular, General
Purpose Computation on Graphics Processing Unit (GPGPU)) have been proposed by |Boyer and El Baz|[2013]], Tan
and Ding| [2016]] and Schulz et al.|[2013]].

We acknowledge the excellent work provided in these reviews, from which our review has benefited substantially. At
the same time, we see several arguments that call for a new literature review. First, we did not find reviews that cover the
most recent literature on the parallelization of both exact and (meta)heuristic methods published in the decade 2008-2017.
During this time, substantial advancements in parallel computing capabilities and infrastructures have been achieved
and used by many OR scholars so that an overview of modern parallel optimization in OR that accounts for these
advancements when synthesizing and classifying the literature is beneficial. Second, based on different foci adopted
in previous literature reviews, the concepts used to describe and structure prior literature differ. This heterogeneity is
accompanied by a lack of unifying frameworks for describing parallel optimization across methodologies, application
fields, and problems. This has led finally to an overall fragmented picture of what has been achieved and what still
needs to be done in parallel optimization in OR. As a side effect, the heterogeneity with which parallelization studies
in OR have been described in terms of algorithmic parallelization, computational parallelization and performance of
parallelization is high, which is beneficial from a diversity perspective but also raises problems: First, it remains unclear
for authors what should be reported in an OR study that draws on parallel optimization; second, our own experience
based on screening and reading several hundreds of articles is that the heterogeneity makes it often time-consuming and
in some case even impossible for readers to identify the aforementioned parallelization characteristics of a study, to
classify the study accordingly and to compare studies with each other.

Accounting for the aforementioned challenges, we provide three contributions in this literature review. First and to
our best knowledge, we suggest the first universally applicable framework for parallel optimization in OR, which can
be used by researchers to systematically describe their parallelization studies and position these in the landscape of
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parallel optimization without requirements on the application domain touched, the problem addressed, the methodology
parallelized or the technology applied. In particular, the suggested framework integrates both algorithmic design and
computational implementation issues of parallel optimization, which are usually being addressed separately in the
literature. Second, we apply the integrative framework to synthesize prior research on parallel optimization in the field
of OR published in the decade 2008-2017, focusing on those studies which include computational experiments. Finally,
we suggest research directions, including recommendations, for prospective studies on parallel optimization in OR.

We structure our review as follows: In Section [2] we develop a framework for computational studies on parallel
optimization. In Section 3] we define the scope and literature selection process of our review, before we review the
literature in Section[d]based on the suggested framework. We provide research directions for future research in Section
before we conclude our review in Section

2 Parallelization Framework

Computational studies on parallel optimization usually report on four perspectives of parallelization [[Gendron and
Crainic} |1994; |Alba and Luquel [2005} |Crainic and Hail, 2005/ |Talbi, [2009} Pedemonte et al.| [201 1} (Crainic| |2018} |2019]:
object of parallelization, algorithmic parallelization, computational parallelization and performance of parallelization.
While our review of the literature revealed that most studies make either implicitly or explicitly use of the aforementioned
perspectives, we also observed a high level of heterogeneity in terms of terminology, taxonomies of parallel algorithmic
design, granularity of information on parallel implementation, and performance metrics used to report computational
results. As a consequence, with an increasing body of computational studies, it has become challenging to gain an
overview of computational achievements, to compare studies in terms of their achievements, to develop consistent
taxonomies for computational studies, and to identify white spots that need further research.

In order to mitigate the aforementioned problems in the field of parallel optimization, we suggest a new descriptive
framework of computational parallel optimization studies (see Figure[T). The scope of the applicability of the proposed
framework in the area of parallel optimization is wide with regard to two dimensions: First, it does not make any
assumptions about the addressed application domain, the optimization problem to solve, the parallelized methodology
or the applied technology. We denote this broad applicability as horizontal integration, referring to the horizontal layers
in Figure[I] Second, it integrates the aforementioned perspectives (layers) and is based on well-established principles
in the literature on algorithmic and computational parallelization. Similarly, we refer to this broad applicability as
vertical integration, which brings together the — usually separately applied — perspectives on parallel optimization found
in the disciplines of OR and computer science. In this context, our framework adopts an integrated view on parallel
optimization.
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2.1 Object of parallelization

The object of parallelization comprises the OR problem to be solved (e.g., TSP, VRP, JSSP) and the algorithm to be
applied (e.g., b&b, GA, SA, TS), which effect each other. Problem types and algorithm types are both described in
detail in Section 4.2

2.2 Algorithmic parallelization

The algorithmic parallelization refers to the methodological perspective on how parallelism is applied to solve an
optimization problem by decomposition. As suggested for metaheuristics [[Crainicl 2019]] , we detail this perspective
by distinguishing various types of parallelization strategy, process and search control, and communication topology
(see Figure[T). Parallelization strategies have been defined according to the source of parallelism [Cung et al.,[2002]
Crainic and Toulouse, [2003}, |Crainic and Haill, 2005, |Crainic and Toulousel [2010, |Crainicl 2019]. Four types are
distinguished: (1) Functional parallelism applies when decomposition occurs at the algorithm level by, for example,
evaluating neighbor solutions or computing the fitness of a solution in parallel. This parallelization strategy does not
alter the algorithmic logic, the search space or the behavior of the sequential version, and it is thus also referred to as
low-level. As parallelism occurs at a low level inside a single algorithm, we coin the term fine-grained intra-algorithm
parallelism. Since the overall search follows only a single search path, this type of parallelism has also been denoted as
single-walk parallelization, in contrast to the following strategies, where the overall search follows multiple trajectories
and are referred to as multiple-walk parallelization strategies [Cung et al., [2002]. (2) Domain decomposition refers
to the approach of separating and exploring the search space explicitly yielding a number of smaller and easier to
solve subproblems to be addressed simultaneously by applying the same sequential algorithm. The partial solutions
are finally used to reconstruct an entire solution of the original problem. The separation of the search space may be
obtained, for example, by discarding or fixing variables and constraints. This separation may result in a partition
(disjoint subsets) or a coverage (subsets may overlap) of the overall search space. In contrast to the low-level strategy,
where parallelism occurs at a local and predefined part of the algorithm, domain decomposition involves concurrent
explorations of subspaces using the same algorithm. Thus, we introduce the term coarse-grained intra-algorithm
parallelism. (3) Separating the search space can also be performed implicitly through concurrent explorations of
the search space by different or differently parameterized methods. When the concurrent execution of methods does
not involve any exchange of information prior to identifying the best overall solution at the final synchronization
step, the parallelization strategy is referred to as independent multi-search, which can be perceived as coarse-grained
inter-algorithm parallelism. (4) When the concurrent execution of methods and their explorations of subspaces involves
the exchange of information through cooperation mechanisms while the search process is in progress, cooperative
multi-search occurs. The sharing of information may even be accompanied with the creation of new information out
of exchanged data. As the interactions of the cooperative search algorithms specify the global search behavior, a
new metaheuristic in its own right emerges [Crainic and Toulouse, |2008]]. While cooperation yields in many cases a
collective output with better solutions than a parallel independent search [Crainic, |2019], exchanges should not be too
frequent to avoid communication overheads and premature “convergence" to local optima [Toulouse et al., 2000, 2004].
As in the case of independent multi-search, also cooperative multi-search can be seen as coarse-grained inter-algorithm
parallelism. Finally, it should be noticed that parallelization strategies are not mutually incompatible and may be
combined into comprehensive algorithmic designs [Crainic et al.,2006| |Crainic| 2019]. For example, low-level and
decomposition parallelism have been jointly applied to branch-and-bound [Adel et al.,2016] and dynamic programming
[Vu and Derbel, 2016]], [Maleki et al.,|2016]], and low-level parallelism and cooperative multi-search have been applied
to a hybrid metaheuristic [Munawar et al.;,2009] which uses a genetic algorithm and hill climbing.

While the aforementioned parallelization strategies have been formulated for the class of metaheuristics, the strategy-
defining principles are of general nature of parallelizing optimization algorithms so that the scope of applicability of
the parallelization strategies can be straightforward extended to other algorithm classes, including exact methods and
(problem-specific) heuristics. For example, Gendron and Crainic| [[1994] have defined three types of parallelism for
branch-and-bound: their type 1 parallelism refers to parallelism when performing operations on generated subproblems,
such as executing the bounding operation in parallel for each subproblem. This type can be perceived as low-level
parallelism. Parallelism of type 2 consists of building the branch-and-bound tree in parallel by performing operations
on several subproblems concurrently. This type of parallelism involves an explicit separation of the search space
and can, thus, be perceived as domain decomposition. Finally, the case of type 3 parallelism implies that several
branch-and-bound trees are built in parallel, with the trees being characterized by different operations (branching,
bounding, testing for elimination, or selection). This parallelism includes the option to use the information generated
during the construction of a tree for the construction of another one. When such information is exchanged, type 3
parallelism can be perceived as cooperative multi-search, otherwise it corresponds to independent multi-search. The
straightforward matching of parallelization strategies for metaheuristics with types of parallelism defined for an exact
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method supports our previous argument that the four parallelization strategies can be applied to the general “universe"
of optimization algorithms.

Process and search control refers to how the global problems-solving process is controlled, how concurrent processes
communicate with each other, and how diverse the overall search process is. We adopt the three dimensions suggested
by (Crainic and Hail| [2005[]: Search control cardinality determines whether the global search is controlled by a single
process (1-control, 1C)) or by several processes (p-control, pC) which may collaborate or not. Search control and
communications refers to how information is exchanged between processes and distinguishes between synchronous and
asynchronous communication. In the former case, all concerned processes have to stop and engage in some form of
communication and information exchange at specified moments (e.g., number of iterations) exogenously determined.
In the latter case, processes are in charge of their own search as well as of establishing communications with other
processes, and the global search terminates once each individual search stops. Both synchronous and asynchronous
communication can be further qualified with regard to whether additional knowledge is derived from communication,
leading to four categories of control and communication: rigid (RS) and knowledge synchronization (KS) in the
synchronous case, and collegial (C) and knowledge collegial (KC) in the asynchronous case. Finally, the diversity
of search may vary according to whether concurrently executed methods start from the same or different solutions,
and to whether their search follows the same or different logicsﬂ the diversity of search is also referred to as search
differentiation. From these two dimensions the following four classes can be derived: 1. same initial point/population,
same search strategy (SPSS); 2.same initial point/population, different search strategies (SPDS); 3. multiple initial
points/populations, same search strategies (MPSS); 4. multiple initial points/populations, different search strategies
(MPDS). While the term “point" relates to single-solution methods, the notion “population” is used for population-based
ones, such as genetic algorithms or ant colony optimizations. As in the case of parallelization strategies described above,
the three dimensions of process and search control have been suggested for the classification of metaheuristics [|Crainic
and Hail, [2005, |Crainicl 2018} 2019]] but can be extended straightforward to other classes of optimization algorithms.

When concurrent processes exchange information, they may communicate with each other in a direct or indirect way.
Direct communication involves message-based communication along some communication topology, such as a tree,
ring, or fully connected mesh [Talbi, 2009, |Crainic, |2019]]. This communication topology needs to be projected on a
physical interconnection topology as part of the implementation design. In contrast, indirect communication involves
the use of a centralized or distributed memory, which are used as shared data resources of concurrent processes [[Crainic|
2019].

The three perspectives of parallel algorithm design, namely parallelization strategy, process and search control, and
communication topology, are linked together [Crainic, 2018} 2019]]. Low-level parallelization is generally targeted in
1C/RS/SPSS designs, with the 1C (control cardinality) being implemented with a master-slave approach. Examples
are the neighborhood evaluation of a local search heuristic, and the application of operators and the determination
of fitness values in a GA. Domain decomposition is often implemented using a master-slave 1C/RS scheme with
MPSS or MPDS search differentiation but can also be performed in a pC, collegial decision making framework with
MPSS or MPDS search differentiation. Independent multi-search is inherently a pC parallelization strategy, which
follows from the same or different starting point(s)/population(s) with or without different search strategies (i.e., SPDS,
MPSS or MPDS search differentiation). As the concurrently executed search processes do not exchange information
prior to the final step, they follow the RS control and communication paradigm. Finally, cooperative multi-search is
also a pC parallelization strategy, which may start from possibly different starting points/populations and may follow
different search strategies (i.e., SPDS, MPSS or MPDS search differentiation). In contrast to independent multi-search,
information is exchanged between processes during the search. This exchange of information can vary in different ways,
which results in a large diversity of cooperation mechanisms. First, different types of information may be exchanged,
including “good" solutions and context information. Second, cooperating processes may exchange information directly
by sending messages to each other based on a given communication topology, or indirectly using memories which act
as data pools shared by processes. A third option distinguishes between synchronous and asynchronous cooperation,
where processes either need to stop its activities’ until all others are ready or not, respectively.

2.3 Computational parallelization

When parallel algorithms are implemented and executed in modern computational environments, different parallel
programming models may be applied in a variety of programming environments. Albeit being intertwined (see, for
example, [Talbi,|2009]), they represent different facets of parallel implementation from a conceptual perspective. Four
(pure) parallel programming models can be distinguished: threads, shared memory, message passing [Diaz et al., 2012}
Talbi, [2009]] and single-instruction-multiple-data (SIMD). In the thread programming model, lightweight processes

3Two logics are characterized as “different” even when based on the same methodology (e.g., two tabu searches or genetic
algorithms) if they vary in terms of components (e.g., neighborhoods or selection mechanism) or parameter values [Crainic} [2019].
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(threads) are executed, where the communication between threads is based on shared addresses. The shared memory
programming model, where, too, tasks share a common address space, operates at a higher abstraction level than
threads. Today, both the thread and the shared memory model are executed on a multi-core CPU architecture on a single
computer node. In contrast, in the message passing programming model the communication between processes is done
by sending and receiving messages. Each process has its own address space that is not shared with other processes.
This model is designed for execution in computer clusters, where different nodes are connected through high-speed
networks. Note that, depending on the particular parallel programming model, parallel executed software parts are
labeled differently usually as threads, tasks or processes. Finally, SIMD exploits data parallelism by operating a single
instruction on multiple data on a vector processor or array processor. Beyond the pure parallel programming models
sketched above, the heterogeneous model General Purpose Computation on Graphics Processing Unit (GPGPU) has
received increasing attention (e.g., [Brodtkorb et al., 2013[]). GPGPU harnesses the capabilities of multi-core CPUs
and many-core GPUs, where threads are executed in parallel on GPU cores and where GPUs can have different levels
of shared memorys; in this sense, we can speak of heterogeneous systems [Diaz et al., 2012]. Other heterogeneous
models are distributed shared memory models and field programmable gate arrays (FPGAs). In modern computing
environments, (pure or heterogeneous) parallel programming models are sometimes combined with each other by, e.g.,
jointly using threads and GPGPU, shared memory and message passing, or threads and message passing [Diaz et al.,
2012]. Such approaches are referred to as hybrid models.

Parallel programming environments are related to parallel programming models and comprise languages, libraries,
APIs (application programming interfaces) and frameworks.

2.4 Parallel performance metrics

The general purpose of parallel computation is to take advantage of increased processing power to solve problems
faster or to achieve better solutions. The former goal is a matter of scalability, which is defined as the degree to
which it is capable of efficiently utilizing increased computing resources. Performance measures of scalability fall
into two main groups: speedup and efficiency. Speedup S, := % is defined as the ratio of sequential computation
time S to parallel computation time 7, when the parallel algorithm is executed on p processing units (e.g., cores in a
multicore processor architecture). The serial time S can be measured differently, leading to different interpretations
of speedup [Barr and Hickman| [1993]]: When S refers to the fastest serial time on any serial computer, speedup is
denoted as absolute. Alternatively, S may also refer to the time required to solve a problem with the parallel code on
one processor. This type of speedup is qualified as relative. When real-time reduction is considered as the primary
objective of parallel processing, absolute speedup is the relevant type. While speedup relates serial to parallel times,

efficiency E,, := % relates speedup to the number of processing units used. With the definition of efficiency, we can

qualify speedup as sublinear speedup (I, < 1), linear speedup (E,, = 1), or superlinear speedup (I, > 1). Sublinear
speedup is often due to serial parts of a parallel algorithm and several reasons for a nonvanishing serial part can be
distinguished. Superlinear speedup can occur, for example, when during the parallel execution of a branch-and-bound
algorithm one processor finds a good bound early in the solution process and communicates it to other processors for
truncation of their search domains [Barr and Hickman| |1993]]. Finally, it should be noticed that while the application of
speedup and related efficiency concepts to algorithms which have a “natural” serial version is straightforward, their
unmodified application to multi-search algorithms, which are parallel in nature, does not make much sense as no basis
of comparison is available.

A second important performance measure in parallel optimization is the solution quality achieved through parallelization.
Solution quality can be measured in various ways. When the optimal solution value or a bound of it is known, the
relative gap to (the bound of) the optimal value can be determined. A second option is to relate the achieved solution
quality with that obtained from sequential versions of the parallelized algorithm (relative improvement). However,
this option requires that a sequential version of the parallel algorithm exists in terms of unchanged algorithmic logic
and the trajectory through the search space. This is not the case, for example, when cooperative multi-search occurs,
which defines a new algorithm due to cooperation. Finally, the solution quality obtained through parallelization may be
compared with the quality of the best known solution obtained from any serial implementation (absolute improvement).
Overall, the goal of achieving better solutions can be perceived as an issue of effectiveness.

3 Scope and literature selection process

The focus of our literature review lies on computational studies of parallel optimization, where physical or virtual
parallel computing architectures have been applied to OR problems, such as TSPs, VRPs and FSSPs (flow shop
scheduling problems). Due to the interdisciplinary nature of the OR field, such studies are not only found in OR outlets
but also in those of many other disciplines, including management science, mathematics, engineering, natural sciences,
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combinations of engineering and natural sciences (such as chemical engineering), computer science, bioinformatics,
material science, geology and medicine. While we include outlets of these disciplines in our search (see the succeeding
subsection), we would like to stress that the focus of our review lies on studies on OR problems and that it is beyond
the scope of this review to identify and classify all articles of parallel optimization addressing problems in related
fields or even across all fields (optimization in general). Adopting this view, we exclude from our review, for example,
mathematical studies on parallelizing matrix computations or on conjugate gradient methods, computer science studies
on load balancing issues in parallel computing environments or on solving hard problems in theoretical computer
science (e.g., the subset sum problem), and parallel optimization studies across fields, such as those addressing the
effects of migration in parallel evolutionary algorithms. We also exclude works on parallel optimization when their
purpose lies in designing or implementing other methodologies, such as simulation, data analysis, data mining, machine
learning and artificial intelligence. We further exclude meta optimization (calibrating parameters of optimization models
or methodologies). We explicitly acknowledge the importance of these areas but they deserve and need dedicated
literature reviews. Finally, from a technological perspective, we also do not consider distributed optimization that makes
use of geographically dispersed computers and allows using grids, which comprise networks of many, often thousands
or even millions of single computers. This field applies programming models and parallel programming environments
that differ from those used in our framework, and it would need a dedicated literature review, too.

Accounting for the previously described scope of our review, we implemented different streams of literature search. A
detailed description of the literature search process is provided in the online [A]l Although having implemented different
streams of search, we admit that the application of our search procedure does not guarantee to identify all computational
studies of parallel optimization in OR and that we may have overlooked studies. However, we are confident to have
acquired a body of literature that is sufficiently comprehensive to draw a firm picture of computational parallelization in
OR during the decade 2008-2017.

4 Literature survey

In this section, we provide a synthesis of the literature published in the decade 2008-2017. We first offer a brief meta
analysis, then we analyze the body of literature with regard to which optimization problems have been solved by
which (parallelized) algorithms before we present the findings of our literature analysis, structured along optimization
algorithms and based upon the framework suggested above. Findings on (i) effectiveness and (ii) parallel programming
environments are not presented here because (i) effectiveness results have been reported only rarely and in partially
inconsistent ways in the studies of our sample, making comparisons of results difficult, and (ii) parallel programming
environments should be considered across algorithms. We discuss both topics in Section [5] With regard to speedup, we
qualify it by efficiency when reported in a study. When GPGPU is used as programming model, we only report speedup
values without providing the number of parallel processing units or information on efficiency. The reason is that the
number of parallel working units (usually GPGPU threads) needs to be interpreted different from that counting other
parallel working units (CPU threads, processes) so that efficiency usually being defined as the ratio of speedup and the
number of parallel processing units is not applied here. Details on this issue as well as the coding of all studies in our
sample are provided in the online [B]

4.1 Meta analysis

Overall, our sample consists of 206 studies, with 164 studies published in 77 different journals, 38 studies published at
36 different workshops, symposiums, conferences or congresses, and four studies published as book chapters. The
joint distribution of articles over scientific outlets and years is summarized in Table[T] which shows that (1) there is no
clear temporal development of the numbers of papers published per year, (2) while the number of scholarly outlets
(journals, proceedings, etc.) which have published computational studies on parallel optimization in OR is high, only
nine outlets have published at least five articles during the decade 2008-2017 and only three outlets (namely, Computers
& Operations Research, European Journal of Operational Research, Journal of Parallel and Distributed Computing)
have published more than ten articles in the same period. Overall, this publication landscape does not reveal clear
clusters in terms of time or outlet, it rather shows that computational and parallel optimization in OR has been covered
permanently (and) distributed over many outlets rooted in different yet related academic disciplines, including OR,
Computer Science and Engineering. Apparently, this research area is of multidisciplinary relevance.

4.2 Problem types and parallelized algorithms

We now describe the identified body of literature from the perspective of problem types and types of parallelized
algorithms. Table[2] shows the joint distribution of articles over these two dimensions. We identified problem types
by, firstly, coding for each article of our sample the covered problem(s) and, secondly, consolidating problems to
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Outlet Year Sum
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
ASC 2 1 1 1 1 2 8
CIE 1 1 1 1 1 5
COR 1 1 3 2 2 2 11
CCPE 1 1 3 5
EJOR 3 1 1 1 1 3 2 2 13
JocC 1 1 2 1 1 6
JPDC 1 1 1 2 4 1 1 1 12
JSC 1 1 1 2 5
PC 1 1 1 2 2 1 8
Other journals 7 5 5 12 12 11 7 10 12 13 91
Proceedings 3 5 7 11 4 4 3 1 37
Book chapters 2 1 1 1 5
Sum 15 15 16 32 22 24 16 18 21 27 206

ASC: Applied Soft Computing
CIE: Computers & Industrial Engineering
COR: Computers & Operations Research
CCPE: Concurrency and Computation-Practice & Experience
EJOR: European Journal of Operational Research
1JOC: INFORMS Journal on Computing
JPDC: Journal of Parallel and Distributed Computing
JSC: Journal of Supercomputing
PC: Parallel Computing
Table 1: Joint distribution of selected articles over scientific outlets and years

problem types widely used in the OR literatureﬂ Overall, we identified nine “application-oriented" problem types (AP,
FLP, FSSP, GTP, JSSP, KP, MSP, TSP, VRP) and three “mathematically-oriented" problem types (BFP, MILP, SOP)E]
Adopting this distinction leads to assigning a study that, for example, formulates a TSP as a mixed-integer linear
program to the problem class “TSP" rather than to the class “MILP" as it is TSP instances that are focused and not MILP
instances in general. Conversely, studies assigned to one of the classes BFP, MILP or SOP explicitly address the related
mathematically-oriented problem type and are not necessarily linked to any specific application . We consolidated
all probﬁllem types for which only very few computational parallelization studies have been published to the category
“Other’

With regard to types of algorithms, we draw on a taxonomy suggested by [Talbi| [2009], who distinguishes between
exact algorithms (e.g., branch-and-bound), problem-specific heuristics (e.g., Lin-Kernighan heuristic for the TSP),
single-solution based metaheuristics (e.g., tabu search), and population-based metaheuristics (e.g., genetic algorithmsﬁ]
We extend the taxonomy by adding some algorithm types: hybrid metaheuristics refer to an metaheuristic where parts
of a (meta)heuristic A are embedded into a step of a (meta)heuristic B; matheuristics refer to the interoperation of
metaheuristics and (exact) mathematical programming techniques; multi-search algorithms refers to the combination of
several independent search algorithms, which may collaborate or not. Finally, we provide other heuristics as a residual
type for those (meta)heuristics which do not fit to any of the aforementioned algorithm types.

It should be noticed that the sums of addressed problem types and parallelized algorithm types shown in Table 2] do not
equal the sample size for different reasons: (i) some articles in our sample apply more than one algorithm type to a
single problem type and/or investigate more than one optimization problem type; (ii) a few articles do not clearly reveal
(from our perspective) the targeted problem or the applied algorithm, or they do not parallelize any algorithm but only
the evaluation of the objective function; due to these reasons, we excluded five articles from the presentation in Table
Overall, it should be kept in mind that each combination of addressed problem type and parallelized algorithm type is a

4 An example of consolidation is grouping the “multi-depot VRP" and the “VRPs with time windows" to the problem type “VRP".

SWhile application-oriented problem types (e.g., TSP) usually lead to mathematical formulations which have an overall and
coherent logic across the components (objective function, constraints, variables, etc.) of a model, “mathematically-oriented" problem
types (e.g., MILP) have mathematical formulations where single components have to meet mathematical assumptions (e.g., binary
variables, linear terms) without requiring the overall model to refer to a specific application concept.

SWhen an article studies several “other" problem types, we did not count the number of other problem types but coded it as a
single appearance of an “other problem type".

"The authors also suggest the type approximation algorithms, which we do not use in this review.
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Alg. Problem type Sum
type | AP FLP FSSP GTP IJSSP KP BFP MILP MSP SOP TSP VRP Other
B-a-X 1 7 3 2 3 2 4 2 3 13 40
DpP 2 3 1 4 10
IPM 2 2 4
PSEA 2 1 1 4
PSH 1 1 1 1 2 6 12
TS 4 5 2 1 1 2 5 3 23
SA 2 2 1 1 1 3 1 11
VNS 1 2 1 1 4 2 11
GRAS 2 2
OSSH 1 1
GA 2 2 3 1 1 3 3 3 10 28
OEA 1 1 2 1 1 1 6 13
SSPR 1 1 2
ACO 2 12 2 16
PSO 1 2 1 3 5 12
BCO 2 1 3
FA 1 1
HM 1 1 2 1 1 1 2 3 4 2 7 25
OH 1 1 2 4
MH 1 1 2
MS 1 1 1 3
Sum 11 7 22 13 11 11 17 6 11 5 28 20 65 227
Optimization Problem Type Algorithm type

AP: Assignment Problem

FLP: Facility Location Problem

FSSP: Flow Shop Scheduling Problem
GTP: Graph Theory Problem

JSSP: Job Shop Scheduling Problem
KP: Knapsack Problem

BFP: Benchmark function optimization problem(s)
MILP: (Mixed) Integer Linear Program
MSP: Machine Scheduling Problem
SOP: Stochastic Optimization Problem
TSP: Traveling Salesman Problem
VRP: Vehicle Routing Problem

Exact algorithms:
B-a-X: Branch & X
DP: Dynamic programming
IPM: Interior point method
PSEA: Problem-specific exact algorithms

PSH: Problem-specific heuristics

Single-solution based metaheuristics:
TS: Tabu search
SA: Simulated annealing
VNS: Variable neigborhood search
GRAS: (Greedy randomized) adaptive search
OSSH: Other single solution heuristics

Population-based metaheuristics:
GA: Genetic algorithm
OEA: Other evolutionary algorithms
SSPR: Scatter search & path relinking
ACO: Ant colony optimization
PSO: Particle swarm optimization
BCO: Bee colony optimization
FA: Fireworks algorithm

HM: Hybrid metaheuristics

OH: Other heuristics

MH: Matheuristics

MS: Multi-search algorithms

Table 2: Joint distribution of selected articles over problems and (parallelized) algorithms
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“case" of a study, where a single study may have several cases. The perspective on optimization problems addressed
in computational parallelization studies shows that a broad range of problem types have been covered. Beyond the
12 problem types highlighted, the residual class of other problem types includes 63 cases, in which computational
parallelization has been applied to mostly different problem types. However, we also notice that a set of 12 problem
types account for more than 70% of all cases, with a focus on the TSP, the FSSP and the VRP, which jointly account
for more than 30% of all cases. Similar results are obtained from adopting the algorithmic perspective. While a broad
range of exact algorithms and single-solution, population-based and hybrid metaheuristics have been parallelized, only
a few algorithm types (branch-and-X (X=bound, cut, price, etc.), GAs, hybrid metaheuristics, TS) account for more
than 50% of all cases, with branch-and-X accounting for about 18%. Jointly adopting the problem and algorithmic
perspective, again, shows a large diversity but in this case no large clusters occur. Only four combinations (ant colony
optimization applied to the TSP, branch-and-X applied to the FSSP, TS applied to the FSSP, TS applied to the VRP)
have been covered in at least five cases, but these four combinations account for only about 13% of all cases.

In the remainder of this section, we present parallel computational optimization studies in OR grouped by algorithm
types. An overview over the studies of our sample is given is Table[3]

Exact algorithms: The majority of studies that apply exact algorithms parallelize branch-and-X algorithms. These
studies analyze a broad range of optimization problems. Almost all adopt domain decomposition as parallelization
strategy using a 1C/C or pC/C scheme with MPSS search differentiation, and most studies which report on the used
communication topology apply a (one- or multiple-tier) master-slave approach. These efforts are not surprising as they
reflect a straightforward (and traditional) way to parallelize branch-and-X algorithms. In contrast, the landscape of
applied parallel programming models is more diverse and includes approaches based on threads, message passing,
shared memory and GPGPUs. With regard to the former three models, mostly sublinear or linear speedup has been
reported but there are also a few studies [Ponz-Tienda et al., 2017, [Borisenko et al.| 2011} |Galea and Le Cun| 2011] that
report superlinear speedup. This speedup can be achieved, for example, when a parallel executed algorithm provides
“good" bounds that allow pruning large parts of the search tree at early stages. The use of GPGPUs has shown mixed
results in terms of speedup; however, in some cases the reported speedup is substantial (between 76.96 and 170.69)
[Chakroun et al.,|2013a], which makes GPGPUs highly appealing for parallelizing branch-and-X algorithms. However,
it should also be acknowledged that several of these GPGPU studies have reported a high variance of speedup with
regard to problem instances solved. Dynamic programminﬁ is the second most often parallelized exact algorithm.
Its parallelization in terms of addressed problems is quite diverse. In most cases, low-level is used as parallelization
strategy with a 1C/RS scheme and SPSS search differentiation. The landscape of applied communication topologies
is quite homogeneous, with almost all studies that report on the applied communication topology drawing on a (one-
or multiple-tier) master-slave approach. In contrast, the set of implemented programming models is heterogeneous.
Interestingly and in contrast to branch-and-X parallelization, the reported speedups are all sublinear. Studies that use
GPGPUs report different ranges of speedup, with one study [Tran, | 2010]] reporting an exceptionally high speedup in
the range of 900-2,500. In addition, we found only a few studies which parallelize the interior point method. All of
these studies address stochastic optimization problems, using low-level parallelism in a 1C/RS scheme with SPSS
search differentiation, and they achieve sublinear or linear speedup. While all studies apply message passing as parallel
programming model, the topologies used differ. Finally, a few exact methods designed for specific optimization
problems (the knapsack problem [Li et al.,|2015], mixed integer linear programming [Rossbory and Reisner} 2013|] and
graph theory problems [Kollias et al.,|2014} |Bozdag et al., [2008]) have been parallelized. While all four studies show
sublinear or linear speedup, the characteristics of algorithmic and computational parallelization are different.

Single-solution based metaheuristics: Single-solution based metaheuristics manipulate and transform a single solution
during the search. They can occur in many different forms and their parallelization has been discussed in [Melab
et al., |2006/ Talbi, 2009]. Parallelization can occur at the solution level, iteration level and algorithmic level. While
parallelizing at the solution and iteration level generally corresponds to low-level parallelization with a 1C/RS scheme
and SPSS search differentiation, parallelization at the algorithmic level is open to the broad range of parallelization
strategies, and process and search control options. Our literature review revealed that mainly three single-solution based
metaheuristics have been parallelized: TS, SA and VNS. TS has been applied to a variety of optimization problems.
Most studies apply parallelization at the solution or iteration level, thereby adopting low-level parallelization with a
1C/RS scheme and SPSS search differentiation and a master-slave communication topology. We found a few exceptions
from this algorithmic parallelization pattern; for example, Jin et al.| [2012], James et al.| [2009]], Jin et al.| [2014}
2011]] adopt cooperative multi-search parallelization of TS, and |Dai et al.|[2009]] implement domain decomposition
parallelization of TS. The landscape of applied parallel programming models is quite diverse and includes approaches
based on threads, message passing, shared memory, SIMD, and GPGPUs. Speedup results are mixed, including
superlinear speedup [Bozejko et al., 2013} [Shylo et al., 201 1]]. The implementation on GPGPUs has shown substantial
differences with regard to speedup, reaching values up to 420 [Czapinski, 2013|]. The landscape of parallel SA studies,

8 An introduction into parallel dynamic programming is provided by Almeida et al.|[2006].
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Algorithm type Computational studies
Exact algorithms:
Branch & X Mezmaz et al.,[2014} |Chakroun et al.,|2013b} [Herrera et al., [2017, [Taoka et al., |2008] [Ponz-Tienda

Prosser} |

et al.,[2017] [smail et al.| 2014} [Paulavicius et al., 2011

2015, [Eckstein et al.l 2015] [Carvajal et al., 2014} [Borisenko et al., 2017, [Gmys et al.l 2017 [Liu

Christou and Vassilaras, 2013} [McCreesh and

and Kaol 2013, Bak et al.| 2

1,|Gmys et al., 2016 |Silva et al., 2015| Barreto and Bauer, |2010} |Vu and

Derbel, [2016, Chakroun and Melab, 2015, Paulavicius and Zilinskas} 2009, [Posypkin and Sigal, 2008

Chakroun et al., [2013al [Aitzai and Boudhar, 2013} |Ozden et al.} 2017, |Cauley et al., 2011} Xu et al.

2009, /Aldasoro et al.l 2017, [Pages-Bernaus et al., 2015} [Lubin et al.| Adel et al.,[2016, [Borisenko
et al., 2011} Boukedjar et al., 2012} (Carneiro et al.,[2011} |Galea and Le Cun| |[2011}, [Herrera et al., 2013}

Sanju

an-Estrada et al., 2011

Dynamic program-

Dias et al.,|[2013||Aldasoro et al.,|2015} [Maleki et al., 2016, [Tan et al., 2009} |Stivala et al., 2010} |Boyer|

ming et al.,[2012} [Boschetti et al., [2016| |[Kumar et al., 2011]Rashid et al. [ran, 2010]
Interior point Huebner et al., 2017, |[Hong et al.}[2010, |Lubin et al.} 2012} |[Lucka et al., 2008]]
method

Problem-specific ex-
act algorithms

[Li et al.[2015}[Rossbory and Reisner|[2013] |Kollias et al.| 2014} Bozdag et al.|[2008])

Problem-specific heuristics

[Dobrian et al.[[2011

Ozden et al.,[2017, [Ismail et al.}[2011}|Bozejkol 2009} [Lancinskas et al.,[2015} |Koc

and Mehrotra), 2017,

Redondo et al., 2016, [Hemmelmayr, [2015} Benedicic et al., 2014}, (Gomes et al.,

2008;

[Baumelt et al., 2016} Luo et al., 2015

Single-solution based metaheuristics:

Tabu search

[Rudek} 2014} Jin et al.| [2012} Bozejko et al.} 2017, [Hou

et al.,[2017, [Bozejko et al.,[2013| |Czapinski and

Barnes, [2011} James et al.,|2009, |Czapinski, [2013} |Bukata et al., |2015} |Cordeau and Maischberger, [2012

[Wei et al., 2017, Janiak et al., [2008] |Shylo et al., 2011,

Jin et al., 2014, [Bozejko et al., 2016, Jin et al.

2011} Maischberger and Cord

leau, 2011}, [Van Luong et al.,[2013] [Dai et al., 2009} [Melab et al.|, 2011]]

Simulated anneal-
ing

[Thiruvady et al., 2016, Rudek!

|2014, |Defersha, [2015, [Mu et al., 2016} Wang et al.,|2015, |Ferreiro et al.

2013

|[Lou and Reinitz, 2016,

anos et al., 2016}, Bozejko et al.} 2009} [2016, [Lazarova and Borovska

2008

Variable neigbor-
hood search

2008,

Yazdani et al., 2010, |Lei and Guo, [2015||Davidovi¢ and Crainic} [2012}|Quan and Wu, 2017, Menendez|
et al., 2017, [Eskandarpour et al.} [2013| [Coelho et al., [2016] [Polat| 2017} [Tu et al.| 2017} [Aydin and Sevklil

|Polacek et al., | 2008]]

(Greedy random-
ized) adaptive
search

aniou et al.} 2012} [Santos

etal.}2010]

Other single solu-
tion heuristics

Hifi ct al.[[2014

Population-based metaheuristics:

Genetic algorithm

[Massobrio et al.,[2017, |Liu et al.

et al.
et al.

2012} [Liu and Wang, 2015} |Defersha and Chenl, |2

2016, Dorronsoro et al., 2013} |Defersha and Chen, [2008} [2010, Huang

012, Homberger, 2008, |Gao et al., 2009} |Tosun

[2013},[Zhang et al.,[2016, |Lu et al., 2014}, |Abu-Ie!

bdeh et al.,[2016| Kang et al., 2016} |He et al., 2010,

Limmer and Feyl 2017, |Abbasian and Mouhmﬂ [2013| [Roberge et al.,[2013] m&nskas and Zilinskas|

2013} |Lancinskas and Zilinskas| 2012} |Lazarova and Borovska, [2008| |Sanc1 and Isler, 2011, [Umbarkar|

et al., 2014} [Wang et al.,[2012} [Zhao et al.,[2011} |Vallada and Ruiz| |Arellano-Verdejo et al., [2017]]

Other evolutionary

abris and Krohling, |2012!

|Pedroso et al.,[2017}|Cao et al.,[2017}|Dorronsoro et al.,[2013}|Aldinucci|

algorithms et al., 2016, [Figueira et al.| 2010} |Derbel et al., 2014} [Bafios et al., [2014} [Nebro and Durillo} 2010
owotniak and Kucharskil 2011} [Redondo et al., 2008} [Weber et al.| 2011} Zhao et al.l 2011} [Izzo et al.

Scatter search & [Kerkhove and Vanhoucke} [2017,|Bozejko, [2009]

path relinking

Ant colony opti- [Ling et al.; 2012} Cecilia et al.}[2013] |Delevacq et al.;[2013][Zhou et al.}[2017,[Hadian et al.[[2012][Yang]

mization et al.,[2016} |Cecilia et al., 2011} |[Skinderowicz, 2016} |Abouelfarag et al. |Lazarova and Borovska,
2008| | You, 2009, Zhao et al., 2011} Yu et al., 201 1b, Diego et al., 2012} Tsutsui, 2008} |Dongdong et al.,
2010

Particle swarm opti-
mization

Aitzai and Boudhar, [2013}|Yu et al.,|2017}Roberge et al., 2013} |Scheerlinck et al.}[2012|[Ze-Shu et al.,

Qu et al.,[2017, |[Hung and Wang] [2012] |Laguna-Sanchez et al., 2009, Mussi et al., 2011} Deep!

7
et al.[ |2010, [Ding et al., 2013} /Wang et al.| 2008]

Bee colony opti-

uo et al.} 2014} |Davidovic et al.}[2011}|Subotic et al.,[2011]

mization
Fireworks algo- !2ing et al.l, 2013
rithm

Hybrid metaheuristics

et al.,

Thiruvady et al.,|2016| |Delevacq et al.,|2013} |Arrondo et al.;[2014; |Patvardhan et al., 2016| [Nesmachnow

2011}, [Mezmaz et al., 2011} [Ku et al., 2011} [Li et al.| Yu et al.
2011a, 12009] Ravetti et al. 2012} [Ben Mabrouk et al'} 2009, 2010
cheerlinck et al.| 2012} [Czapinskil 2010} [Banos et al., 2013 [Olensek et al} 2011} JFujimoto and Tsutsui

2011}

lTbri et al., 2010, [Lancinskas and Zilinskas, 2013

[Van Luong et al.| [2012| [Xhafa and Duran| 2008

Zhao

et al., 2011} [Zhu and Curryl 2009]

Other heuristics

[Benedicic et al.| 2014} |Sathg et al.

—|

[2012, Juan et al.|[2013| |Sanc1 and Isler, [2011]

Matheuristics

[Stanojevic et al.;[2015]

Groer et al.} 201

Multi-search algorithms

[Chaves-Gonzalez et al.

2011} [Vidal et al.[[2017} [Lahrichi et al]2015]

Table 3: Parallel computational optimization studies in OR
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which have also been applied to a variety of optimization problems, is more diverse than that of GA studies. It has
been addressed by all four parallelization strategies with varying types of process and search control and with different
programming models. In contrast to this heterogeneity, most studies apply a master-slave communication topology.
Only a few studies report the achieved speedup, which is mostly sublinear. We found one study [Ferreiro et al., 2013|]
that parallelizes SA using GPGPU and achieves speedups in the range of about 73.44-269.46. VNS has also been
applied to many different problems with all four parallelization strategies and a variety of process and search control
variations, communication topologies, and programming models. As in the case of SA, about half of the studies do
not report on speedup and those which do report sublinear speedup, with the exception of [Polacek et al.|[2008]], who
achieve linear speedup. One study uses GPGPU [Coelho et al., 2016] and achieves a speedup in the range of 0.93-14.49.
Additionally, we found two studies [Caniou et al., 2012} Santos et al.| [2010] that parallelize (greedy randomized)
adaptive search and one study [Hifi et al.,|2014] that parallelizes large neighborhood search (subsumed under “other
single solution heuristic (OSSH)" in Table [2).

Population-based metaheuristics: In contrast to single-solution based metaheuristics, in population-based algorithms
a whole population of solutions is evolved. Most prominent classes of population-based metaheuristics include
evolutionary algorithms, scatter search and path relinking, swarm intelligence algorithms, and bee colony optimization
[Talbi, |2009]. When population-based algorithms are parallelized, we distinguish three models which, albeit having
been suggested originally for evolutionary algorithms in general and GAs in particular [[Alba and Tomassini, 2002,
Talbil 2009, |Agrawal and Mathew), 2004} Melab et al.| 2006} (Canti-Paz, 2005, Luque et al., | 2005]], can be applied to
other classes of population-based algorithms as well: global, island (with or without migration), and cellular model.
In the global model, parallel techniques are used to speed up the operation of the algorithm without changing the
basic operation of the sequential version. When the evaluation of the whole population is done in parallel, parallelism
occurs at the iteration level; when the algorithm evaluates a single individuum in parallel, parallelism occurs at the
solution level. In both cases, low-level parallelization applies. Island models typically run (identical or different)
serial population-based algorithm on subpopulations to avoid getting stuck in local optima of the search space. If
individuals can be transmitted between subpopulations, the island model is also referred to as migration model; however,
island models can also occur without migration. While in the former case, migration usually leads to a cooperative
multi-search, the latter case generally corresponds to independent multi-search parallelization. The cellular model may
be seen as a special case of the island model where an island is composed of a single individual. It should be noted that
the models may be applied jointly (Canti-Paz [2005]], for example, describes such model combinations for GAs).

Evolutionary algorithms belong to the types of algorithms that have attracted substantial parallelization efforts. A good
overview of the diversity with which combinations of different parallelization strategies and programming models
can be applied to evolutionary algorithms is provided by Limmer and Fey|[2017]]. In our sample, we found a focus
on GAs as a particular subclass of evolutionary algorithm; we subsume all evolutionary algorithms other than GAs
under the residual subclass*“other evolutionary algorithms". GAs have been parallelized for a variety of optimization
problems. Most of the studies adopt the island model with migration (cooperative multi-search) with a pC/RS scheme
and MPSS or MPDS search differentiation. Only a few studies use the island model without migration (independent
multi-search) with a pC/RS scheme and MPSS search differentiation, or the global model (low-level) with a 1C/RS
scheme and SPSS search differentiation. Interestingly, all but one study [[Vallada and Ruiz, 2009] apply synchronous
communication. In the presence of the island model, a diversity of communication topologies has been applied with
mostly message passing being used as programming model. In contrast, when the global model is applied, threads or
GPGPU are drawn upon and mostly the master-slave topology is implemented. The described correlation between the
parallelization strategy and the parallel programming model is not surprising as the communication between (a usually
moderate number of) islands through exchanging messages is appealing while the processing of (a usually large number
of) individuals in a global population through (an often large number of) threads executed on a CPU or GPGPU seems
appropriate. Only about half of the 27 GA studies that we found report speedup values. Speedup results are overall
mixed, including superlinear speedup [Homberger, 2008, |Abu-lebdeh et al.l 2016]. The application of GPGPUs has
led to homogeneous results, with a maximum speedup of about 33 [Wang et al.,|2012]]. Evolutionary algorithms other
than GAs, such as differential evolution or immune algorithm, have been applied to a variety of optimization problems.
Almost all of these studies adopt the island model with migration (cooperative multi-search) with a pC/RS scheme
and MPSS or MPDS search differentiation. We found only two studies [Bafios et al., 2014, [Izzo et al., 2009] which
report an asynchronous communication. We identified no pattern regarding the applied communication topology and
programming model.

Swarm intelligence algorithms are inspired from the collective behavior of species such as ants, fish and birds. Subclasses
of swarm intelligence algorithms for which we found parallelization studies are ant colony optimization (including ant
colony systems and “MAX-MIN Ant Systems" [Dorigo and Stiitzlel, 2004])), particle swarm optimization, and fireworks
algorithms. Parallelization strategies of ant colony optimization can be classified according to the above mentioned three
strategies of parallelizing population-based metaheuristics; i.e., global, island or cellular model. Here, we follow the
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suggestion of Randall and Lewis|[2002] to distinguish the parallel evaluation of solution elements, parallel ant colonies
(independent or interacting) and parallel ants. These strategies are specializations of the global model, island model
(without or with migration), and cellular model, respectively, of population-based metaheuristics. Interestingly, most of
the parallelization studies using ant colony optimization have addressed the TSP. VRPs [[Yu et al.,[2011b| |Diego et al.,
2012 and assignment problems [Tsutsuil, 2008, [Dongdong et al.,[2010] have been solved by two studies each. Almost all
studies use parallel ants or multiple ant colonies but, overall, the studies vary regarding parallelization strategies, process
and search control, communication topologies and programming models. Those studies which qualify the achieved
speedups, report sublinear speedups. The speedup achieved through GPGPU parallelization goes up to 25. Particle
swarm optimization has been applied to solve a diverse set of optimization problems. Most of the parallelization studies
make use of the global or island model, realized as low-level or cooperative multi-search parallelization, respectively,
with a master-slave communication topology. The process and search control implementations differ, with only one
study [Wang et al., 2008] reporting asynchronous communication. Mostly message passing and GPGPU are used as
parallel programming model. Speedups achieved on GPGPU go up to about 190; studies not using the GPGPU model
either do not report speedup values or show an overall diverse picture. In addition, we identified one study [Ding et al.,
2013|| that applies a fireworks algorithm.

Other population-based metaheuristics: We identified five studies that parallelize population-based metaheuristics
other than evolutionary algorithms and swarm intelligence algorithms, namely scatter search and path relinking
[Kerkhove and Vanhouckel 2017} Bozejko, [2009], and bee colony optimization [Luo et al.,[2014, [Davidovic et al., {2011}
Subotic et al., |2011]]. Addressed problems, algorithmic and computational parallelization characteristics as well as
efficiency results (where reported) are quite diverse.

Hybrid metaheuristics: Hybrid metaheuristics are joint applications of several (meta)heuristics [Talbi, 2009, |Crainic,
2019]. They are “appropriate candidates” for the application of a(n) (independent or cooperative) multi-search strategy.
A diverse set of optimization problems has been investigated with parallel hybrid metaheuristics. The combinations of
(meta)heuristics include ant colony optimization and local search, GAs and local search, GAs and SA, and GAs and TS,
among others. Due to the diverse set of combined (meta)heuristics, unsurprisingly, the studies differ substantially with
regard to addressed problems, parallelization strategies, process and search and control, communication topologies
and parallel programming models. Although none of these studies report a superlinear speedup, Zhu and Curry|[2009]
reports an achieved speedup of 403.91 when parallelizing a combination of ant colony optimization and pattern search
with a GPGPU-based implementation.

Problem-specific heuristics, other heuristics, matheuristics, and multi-search algorithms: Problem-specific
heuristics have been parallelized for a variety of optimization problems, including a graph theory problem [Do-
brian et al., [ 2011[], TSPs [Ozden et al.,[2017} |Ismail et al., 2011]], a FSSP [Bozejko, [2009], a facility location problem
[Lancinskas et al., [2015]], a mixed integer linear program [Koc and Mehrotra, 2017]], and several other problems
[Redondo et al., [2016, Hemmelmayr, |2015} Benedicic et al.,|2014} |Gomes et al., 2008} Baumelt et al., 2016, |Luo et al.,
2015]]. We found four studies which parallelize heuristics that differ from all types described above: an agent-based
heuristic [Benedicic et al., |2014]], an auction-based heuristic [Sathe et al., [2012]], a Monte Carlo simulation inside
a heuristic-randomization process [Juan et al.,[2013]], and a random search algorithm [Sanc1 and Isler, 2011]. We
found two studies which parallelize matheuristics [Stanojevic et al., 2015} |Groer et al.|[2011]] and three studies which
suggest multi-search algorithms [[Chaves-Gonzalez et al.,[2011} |Vidal et al.,[2017, |Lahrichi et al., 2015]]. Due to the
diverse nature of the aforementioned studies, we do not look for patterns in algorithmic parallelization, computational
parallelization and scalability results.

5 Research directions

Based on the analysis of the identified literature published in the covered period (2008-2017), we subsequently suggest
some research directions which may help (re)focusing on those areas that did not get much attention or were even
neglected during the focused period. We would like to note that the observation of the absence or rareness of certain
types of studies primarily refers to the aforementioned period. Work published prior to this period and surveys
published earlier than this review (see Section [I)) have addressed some of the “white spots” in research identified for the
aforementioned period, which calls for re-focusing on related research paths.

5.1 Publication landscape and overall prospective research

The analysis of publication data reveals that computational and parallel optimization in OR has been steadily attractive
for many journals and conferences not only in the OR field but also in various neighbor disciplines. This broad interest
is also reflected in the diverse landscape of which optimization problems have been solved by which (parallelized)
algorithms. While this diversity shows the large relevance and broad applicability of computational parallelization in
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optimization, a closer look also reveals that the landscape is still fragmented despite the algorithmic accumulation of
branch-and-X, GAs and TS studies and the problem accumulation of FSSPs, TSPs and VRPs. This makes it difficult to
analyze which combinations of problems and algorithms are promising for parallelization and how the algorithmic and
computational parallelization should be designed. It should be noted that in the presence of a broad scope of problems
and algorithms in parallel optimization, the number of approximately 200 studies published in ten years is relatively
low. Future research and education can benefit from fostering (knowledge on how to conduct) computational studies in
parallel optimization to overcome the limitations imposed by fragmentation (recommendations 1a and 1b in Table [).

5.2 Object of parallelization

From the algorithmic perspective, branch-and-X algorithms represent the largest cluster of computational parallelization
studies. In a few studies, this parallelization has even led to superlinear speedup but in most cases “only" (sub)linear
speedups have been achieved. Future research should shed more light on how to achieve superlinear speedups
(recommendation 2a). With regard to dynamic programming, which is the second most often analyzed type of exact
algorithms, the (sublinear) speedup achievements are less promising (see recommendation 2b). Again, our subsample of
dynamic programming studies and their coding can serve as a basis for future investigations on more efficient dynamic
programming parallelization, in particular on how to achieve superlinear speedup. We extend this recommendation
to future research on parallelization of Lagrangean decomposition, which is — as dynamic programming — another
methodology often used in the important field of stochastic optimization but which has hardly been parallelized.
Parallelization efforts with regard to interior point methods are hardly existent, which asks for more research in this
regard (recommendation 2c).

Among single-solution based metaheuristics, three metaheuristics have received particular attention regarding paral-
lelization: TS, SA and VNS. For TS, speedup results are mixed, including two studies that report superlinear speedups,
and the implementation on GPGPUs has shown substantial differences with regard to speedup. Future research should
analyze this heterogeneous picture (recommendation 2d). With regard to SA and VNS, not much can be said on
efficiency as, unfortunately, many studies do not report achieved speedups (see recommendation 2e). Beyond the
aforementioned metaheuristics, other single-solution based metaheuristics, including greedy randomized adaptive
search, guided local search, fast local search, and iterated local search [Gendreau et al.,|2010} 2019]], have not received
much attention with regard to parallelization, which points to further research opportunities (recommendation 2f).

With regard to population-based metaheuristics, GAs are the most often parallelized type of algorithm. However, only
a few studies provide speedup values, some of them reporting superlinear speedups. While these achievements are
promising, not much knowledge about the factors that lead to superlinear speedup (see recommendation 2g) has been
developed. Furthermore, parallelization results for GAs as well as other evolutionary algorithms are mainly based on
synchronous communication so that not much is known about the potential of applying asynchronous communication
(recommendation 2h) . The second and third most often parallelized type of population-based metaheuristics are ant
colony optimization and particle swarm optimization, respectively. With regard to ant colony optimization, achieved
speedups are not very promising and mostly limited to applications to the TSP. Regarding particle swarm optimization,
speedup results are quite mixed, with a promising speedup value of about 190 reported when using the GPGPU model.
These results show that further research on parallelizing ant colony optimization and particle swarm optimization
is recommendable (recommendation 2i). Analogously to single-solution based metaheuristics, some algorithms of
population-based methaheuristics, including SSPR, BCO and FA, have not received much attention, which shows
avenues for further research (recommendation 2j).

Interestingly, we found only very few research on the parallelization of mat-heuristics. We believe that the parallelization
of both of its’ elements, metaheuristic components and exact mathematical programming techniques, are promising
areas of future research (recommendation 2Kk).

Similarly few attention has been attracted by multi-search algorithms, which offer a straightforward parallelization
approach through parallelizing the execution of independent search algorithms involved in multi-search. We consider
this research stream, in particular cooperative multi-search algorithms, to be highly relevant for future research on
parallelization (recommendation 21).

Beyond the previously identified algorithmic research directions, future research should also adopt problem-specific
perspectives (recommendation 2m).

5.3 Algorithmic parallelization and computational parallelization

The algorithmic parallelization in the studies of our sample has drawn on all four (pure) parallelization strategies and on
combinations of pure strategies. Low-level parallelization is the most often implemented strategy, with 83 out of 206
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studies having used this type of parallelism. The process and search control is usually a 1C/RS scheme with SPSS search
differentiation. Most studies which use low-level parallelism apply a master-slave communication topology, which is
a straightforward approach. However, there are several exceptions, including fully-connected meshs (e.g., [Huebner
et al.,|2017])) and trees (e.g., [Tan et al., 2009]). It would be useful to know under which conditions communication
topologies other than the master-slave topology are advantageous for low-level parallelization (recommendation 3a).
Interestingly, even for low-level parallelism a diverse set of parallel programming models and environments have been
used, including message passing. This is a bit surprising as message passing is generally applied for the communication
between "‘heavy weight processes" executed on different computing nodes.

Domain decomposition as parallelization strategy occurs in 56 studies, with most of them parallelizing branch-and-X
algorithms, which can be parallelized straightforward by decomposition. Regarding control cardinality, we found 1C
and pC control modes applied similarly often. However, control and communication mostly follows an asynchronous,
collegial scheme with no knowledge being exchanged between parallel processes; the used search differentiation is
largely MPSS. Future research may explore opportunities that knowledge-based communication offer (recommendation
3b).

Independent multi-search as a parallelization strategy has been applied in only 18 studies, in contrast to cooperative
multi-search, which has been implemented in 72 studies. This trend is encouraging as the potential of exchanging
information between parallel processes in order to jointly achieve better solutions in less time has thereby been
acknowledged by researchers. The vast majority of all studies which apply (independent or cooperative) multi-search
uses a (synchronous) rigid synchronization (type “RS"); we identified only four studies [Groer et al., 2011} [Bukata
et al.,2015| Jin et al.| 2014} [Lahrichi et al.l 2015]] which make use of knowledge-based communication. Future research
should foster the exploration of knowledge-based communication when multi-search is applied (recommendation 3c). -
Parallelization strategies can be combined to exploit complementary ways of parallelizations. For example, low-level
and domain decomposition parallelism have been jointly applied to branch-and-X algorithms [Vu and Derbel, 2016, Adel
et al., 2016] and to dynamic programming [Maleki et al., 2016]], and low-level and multi-search parallelism to genetic
algorithms [Abbasian and Mouhoub} 2013} Munawar et al., |2009]. In total, we found eight studies which apply such
combinations. Future research should more intensively tap the potential that joint applications of different parallelization
strategies offer (recommendation 3d). Finally, different parallelization strategies can be applied (separately) to the same
algorithm and problem in order to compare their effectiveness and scalability and to determine most appropriate and
inappropriate parallelizations. Although we identified as many as 21 studies which follow this path, we encourage
scholars to intensify research in this regard (recommendation 3e).

A broad range of different communication topologies has been applied, with master-slave being the most often used
topology. The appropriateness of a communication topology needs to be linked to the particular algorithm and the
applied parallelization strategy so that no general recommendations are appropriate. However, in the sample of
computational studies we found only a few studies (e.g., [Mezmaz et al., 2014} |Herrera et al., 2013 |Rashid et al., 2010,
Aydin and Sevkli, |2008]) that have implemented more than one topology for one parallelization strategy of a particular
algorithm. This low number calls for more studies that investigate multiple topologies for particular combinations of
algorithms and parallelization strategies (recommendation 3f).

The parallel implementation of optimization algorithms has exploited overall a rich set of programming models and
modern programming environments, including low-level threads (Java threads and POSIX threads), shared memory
(mainly OpenMP), message passing (mainly MPI), and GPGPUs (mainly CUDA-based). In addition, also hybrid
programming models, including message passing and shared memory, shared memory and GPGPU, threads and
GPGPU, and message passing and threads, have been used in a few studies. Other programming models, such as SIMD,
have only rarely been used. We found several studies which provide either no or incomplete information on the used
parallel programming model(s). We recommend that studies report on the programming model and programming
environment used for their parallelization (recommendation 3g).

Only a few studies report on their (re-)use of software frameworks for parallelization, such as ParadisEO [[INRIA|
n.d.] for parallel and distributed metaheuristics or Bob++ [Djerrah et al.,|2006]] for branch and bound parallelization.
Reasons for not drawing on such frameworks can be manifold. Scholars may deliberately decide to not make use of
them due to the inappropriateness of frameworks for their implementation case or due to too time-consuming efforts to
get acquainted with the frameworks. Or, scholars are not aware of the existence of such frameworks. Either way, the
development, propagation and use of re-usable software frameworks can substantially reduce the tedious and error-prone
implementation of parallel optimization code (see recommendation 3h).

16



Parallel computational optimization in operations research

5.4 Performance of parallelization

Scalability is essential regarding the appropriateness of a parallel implementation of an optimization algorithm.
Interestingly, in 70 out of 206 studies speedup values are not (completely) reported or speedup is interpreted different
from how it is usually done (see Section[2.4); for example, some studies determine the speedup by executing the serial
and the parallel code on different hardware, resulting in speedup values that are challenging to interpret. Other studies
determine the speedup only of parts of an algorithm or use another parallel implementation as base (see [B|for more
details). In such cases, speedup values are hardly comparable with those of other studies and, thus, limit the usefulness
of scalability analysis (see recommendation 4a).

But even in case speedup is provided, comparisons with other studies need to be done carefully for several reasons:
First, scalability results are difficult to compare with those of other studies when technological characteristics of
parallel working units (or even of hardware environments) differ. For example, threads at the software level need to be
distinguished from threads at the hardware level (hyperthreading), and MPI processes executed on different physical
nodes may perform different from those executed on different cores on the same physical node. Second, values of weak
speedup need to be distinguished from those of relative speedup (see Section[2.4). A list of issues related to speedup
comparison is provided in [B] We condense our suggestions in recommendation 4b.

We analyzed the studies in our sample with regard to how many parallel working units (threads or processes) have
been used, which we refer to as range of parallelization. The number of parallel threads executed on a CPU has been
mostly not above 32 and it reaches its maximum at 128. When message passing is used on one or several nodes, the
number of parallel processes units has in most cases not exceeded 256 and it has reached its maximum at 8,192. Hybrid
approaches mostly use up to 1,024 parallel units, with the maximum number having been 2,048. Overall, the range of
parallelization is quite limited compared to the number of parallel units that are available in modern parallel computing
environments (see recommendation 4c).

Our analysis of how studies in the literature have considered the effectiveness of parallelization (to obtain better
solutions) showed that many studies do not analyze this category of performance and that those studies which provide
effectiveness results use many different ways to report these. They apply different stop criteria (numbers of iterations,
wall time, number of function evaluations, combinations of these criteria, etc.) and different evaluation criteria (objective
value, relative gap to the best (known) solution value, numbers of instances solved to optimality, relative improvements,
etc.), and often do not make the applied stop criteria explicit, which makes it difficult to assess parallel implementations
and to compare studies with regard to effectiveness (see recommendation 4d).

5.5 Presentation of studies

Finally, having reviewed more than two hundreds of parallelization studies, we found that studies differ substantially
in the way how information on parallelization is provided, to what extent information is made explicit, and in which
section(s) of the paper which information on parallelization is provided. This heterogeneity may reflect different
practices in various subfields and journals, and it not advisable to recommend any standardization in this regard.
However, in several studies we found information on parallelization being reported incomplete, intransparent or
distributed, which can make it tedious to fully understand the applied parallelization. The framework suggested in
this paper may help to mitigate these issues when researchers adopt it and describe how it applies to their studies
(recommendation 5).

6 Conclusion

This invited review suggests a new integrative framework for parallel computational optimization. It integrates the
perspectives on parallel optimization found in the disciplines of OR and computer science, and it distinguishes four
levels: 1) object of parallelization, ii) algorithmic parallelization, iii) computational parallization, and iv) performance
of parallelization. We apply this framework to synthesize the body of literature (206 studies published between 2008
and 2017) of parallel computational optimization in OR. It should be noticed that the applicability of the suggested
framework is not limited to the OR field. Finally, we suggest several bundles of research recommendations for parallel
computational optimization in OR, with the recommendations grouped along the layers of the suggested framework.
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Publication landscape and overall prospective research

Ta [ Implementation of dedicated (tracks at) workshops and conferences and publication of edited books, such as [Albal, 2005] [Talbil[2006], |
and of special issues in journals

1b | Integration of parallel optimization and its application in modern parallel computing environments in curricula of OR education

Object of parallelization

2a | Identification of those (algorithmic and computational) factors that drive superlinear speedup when parallelizing branch-and-X algorithms.
The sample of 41 cases and their coding provided in this review offer a basis for this research.

2b | Identification of ways to make parallelization of dynamic programming and of Lagrangean decomposition more efficient and to achieve
superlinear speedup. Our subsample of dynamic programming studies and their coding can serve as a basis for future investigations.

2c¢ | Amplification of parallelization efforts with regard to interior point methods.

2d | Analysis of heterogeneous picture of efficiency of TS parallelization to identify those factors that are most promising.

2e | Amplification of scalability analysis with regard to parallelizations of SA and VNS.

2f | Extension of parallelization efforts to a more comprehensive set of single-solution based metaheuristics, including greedy randomized
adaptive search, guided local search, fast local search, and iterated local search.

2g | Identification of those factors that drive superlinear speedup when parallelizing GAs.

2h | Application of asynchronous communication to genetic algorithms and other evolutionary algorithms.

2i Amplification of parallelization efforts with regard to ant colony optimization and particle swarm optimization.

2j Extension of parallelization efforts to a more comprehensive set of population-based metaheuristics, including scatter search & path
relinking, bee colony optimization, and fireworks algorithms.

2k | Intensification of research on parallelizing matheuristics.

21 Intensification of research on the parallelization of multi-search algorithms, in particular those which include collaboration.

2m | Adoption of problem-specific perspectives by analyzing which parallelization efforts (algorithms, parallel algorithm designs, parallel
implementations) lead to which performance for a particular optimization problem. From Table [2]it can be seen that, in particular, FSSPs,
TSPs, and VRPs have attracted fairly high number of parallelization studies that can be used for further analysis.

Algorithmic parallelization and computational parallelization

3a | Identification of conditions under which communication topologies other than the master-slave topology are advantageous for low-level
parallelization.

3b | Exploration of opportunities that knowledge-based communication offers in the case of domain decomposition.

3c | Exploration of knowledge-based communication when multi-search parallelism is applied.

3d | Tapping the potential that joint applications of different parallelization strategies offer.

3e | Comparisons of effects that different parallelization strategies have when applied to a particular algorithm and problem in order to
determine (in)appropriate parallelization strategies in this case.

3f | Investigation of multiple strategies and/or multiple topologies for a particular algorithm in order to compare the performance of these
alternatives.

3g | Documentation of programming model and programming environment used for parallelization.

3h | Development and propagation of easy-to-use and flexible software frameworks for parallel optimization.

Performance of parallelization

4a | Provision of values of both speedup and efficiency with regard to serial implementations executed on the same hardware.

4b | Comparison of speedup and efficiency between algorithms of different studies needs to account for computational parallelization details
and the type of speedup (e.g., relative or weak speedup) considered.

4c | Extension of the range of parallelization (in terms of parallel computing units) to analyze scalability at larger levels.

4d | Amplification of research on effectiveness of computational parallelization and documentation of applied stop and evaluation criteria.

Presentation of studies
5 Application of frameworks for describing parallelization studies to avoid incompleteness, intransparency and distributed provision of

parallelization information. The framework suggested in this paper may be used.

Table 4: Recommendations for future research on parallel computational optimization in OR
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A Literature selection process

When invited by the editorial board of European Journal of Operational Research in 2018, we were recommended to
concentrate on the last decade of literature whenever possible. Following this recommendation is particularly reasonable
for the body of literature on parallel optimization in OR because it accounts for a massive growth in computing
performance in this period and resulting substantial advances of studies published regarding algorithmic parallelization,

parallel software implementation and achieved computational results.

We conducted a title search in the most renowned OR journals. More specifically, we considered those 49 OR journals
which are ranked “A+", “A", “B" or “C" in the German VHB-JOURQUAL 3 ranking of the German Academic
Association for Business Research [[German Academic Association for Business Research (VHB)||; a complete list
of these journals is included in Table[5] As we expected to find research related to parallel optimization in OR also
in journals that are dedicated to parallel computing, we included the following four journals in our search: Journal
of Parallel and Distributed Computing, International Journal of Parallel Programming, Parallel Programming and
Parallel Processing and Applied Mathematics. We used Web of Science to conduct a title search for both sets of journals,

using the following search string:
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SMP) AND NOT "parallel machine"
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Acknowledging that research on parallel optimization relevant to the OR discipline is likely to be published also in
journals of other disciplines and in conference proceedings and books, we also conducted a title search using Web of
Science Core Collection without any restrictions regarding the publication outlet. However, we needed to adjust the

search string in order keep the resulting list of articles manageable. The search strings that we used is as follows:

e ‘“parallel* optimization" OR “parallel* branch" OR “parallel* discrete" OR “parallel heuristic" OR “parallel
exact" OR “parallel meta" OR “parallel genetic" OR “parallel tabu" OR “parallel evolutionary" OR “parallel*
ant colony" OR “parallel* simulated annealing" OR “parallel* variable neighborhood search" OR “parallel*
Greedy Randomized Adaptive Search Procedures" OR “parallel* scatter search" OR “parallel* dynamic
programming”

e (MPI OR OpenMP OR CUDA OR GPU) AND (heuristic* OR exact OR meta OR genetic OR branch OR
optimization OR discrete OR tabu)

e (parallel* AND algorithm) AND (knapsack OR transport OR logistics OR evolutionary)

We also conducted a backward search of reference sections of literature reviews we identified (see the introduction of

this article).

Overall, our literature search returned more than 1,100 entries. With the support of a PhD and several student workers,
we used the title of an article to decide whether it should be excluded from further analysis due to a missing fit with the
scope of this review, resulting in a preliminary list of 238 entries . Finally, with the help of the student workers we
analyzed the content of each of these articles and excluded further 83 entries for a variety of reasons, including a missing
fit with scope and the use of languages other than English. Finally, we conducted a backward search of reference
sections of the remaining 155 articles to mitigate the risk of overlooking relevant studies: in a first step, we selected
potentially relevant articles based on their title; in a second step, we analyzed the selected articles by inspecting the full
text to decide whether they should be included in the final set of considered articles or not; this procedure yielded 50
additional articles. Overall, the ultimate set of articles, referred to as our sample, consists of 206 computational studies

on parallel optimization in OR published between 2008 and 2017.

B Coding of computational parallelization studies

This section contains the detailed coding results of our sample with the exception of three studies: (Ostermark| [2014,
2015] do not explicit the algorithm parallelized; Bozejko|[2012] parallelizes the problem-specific evaluation of objective
function but no overall algorithm is considered. To sum up, the tables in this section include 203 studies of the full

sample (206 studies).

The articles are grouped along types of algorithms, with Table [6] addressing exact methods, Table [7] addressing
single-solution based metaheuristics, Table [8]addressing population-based metaheuristics, Table [0 addressing hybrid
metaheuristics, and Table [T0]addressing problem-specific heuristics, other heuristics, and matheuristics. Unsurprisingly,
not all studies included in our sample provide sufficiently precise details that allow coding all attributes. In cases where
incomplete or ambiguous information is provided , we use the value “n/a". We need to point to two exceptions from
this rule: 1) in the column “Process and search control”, which show a triple classification, the usage of “n/a" for

one or more of the three classes may confuse the reader. Thus, we prefer to use the symbol “?" where information
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is not available or ambiguous, or where our classification is not applicable (e.g., in reference [Derbel et al.2014], a
semi-synchronous mode is used because MPI-synchronization occurs at a pairwise level but not at a global level (p.
15)). 2) The entry “n/a" in the “Scalability” column has a more sophisticated interpretation, which we unfold in the text

below.

The entries in the columns labeled “Problem" and “Algorithm" use the abbreviations as shown in Table[2|in the main
text of the article. Entries in columns labeled “Parallelization strategy", “Process & search control”, “Communication

topology" and “Programming model" are used as described in the main text.

The column “Scalability" covers both speedup and efficiency. It shows different types of entries: speedup that is
qualified by its type of efficiency is provided in the form “sublinear (n=2-16)", for example, where the range of n
indicating the numbers of parallel processing units used. Speedup that varies between (sub)linear and superlinear
depending on tested instances is described accordingly. Speedup achieved with GPGPUs is given as a single value or as
an interval. We do not qualify speedup in this case as the number of parallel working units (usually GPGPU threads)
needs to be interpreted different from that counting other parallel working units (CPU threads, processes) because
they differ substantially from a technological perspective. Also, for the same reason, the determination of efficiency
of parallelization should not be computed as the ratio of speedup and the number of parallel processing units. The
entry “n/a" in the “Scalability” column is an umbrella type and can have several different meanings described below.
When more than one experiment has been conducted (e.g, applying different (versions of) algorithms, different (sets of)

benchmark instances, and/or different programming models), speedup information is numbered.

Reasons for labeling scalability as “n/a" turned out to be appropriate for manifold reasons:

e Times are compared with theoretical serial times.

e Speedup is related to other parallel executed algorithms or to parallel execution of the same algorithm (for
example, because the execution on a single processing unit was practically infeasible due to time limitations);

i.e., we report only speedups (weak or relative) related to serial executions of algorithms.
o The type of reference execution is unknown.
e No speedup values are reported or tedious work is necessary to determine them from data reported.
e Speedup values are provided in in supplementary material which is inaccessible.
e Speedup values only refer to parts of algorithms.

e Running times must not be compared as 1) different (hardware) machines/computing environments are used,
or ii) different levels of objective functions are achieved by reference execution(s) and execution of parallel

algorithm.

e Parallelization is conducted in a virtual environment where no physical parallelization occurs. Then, execution
times are hardly comparable as parallel execution times will often be larger than sequential times due to

parallelization overhead.

We do not qualify speedup (as “linear”, for example) in the case of GPGPU as programming model as the number
of parallel working units (usually GPGPU threads) needs to be interpreted different from that counting other parallel

working units (CPU threads, processes) because they differ substantially from a technological perspective. Also, for the
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same reason, the determination of efficiency of parallelization should not be computed as the ratio of speedup and the

number of parallel processing units.
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