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Abstract

Understanding the physical mechanisms governing scientific and engineering sys-

tems requires performing experiments. Therefore, the construction of the Design

of Experiments (DoE) is paramount for the successful inference of the intrinsic

behaviour of such systems. There is a vast literature on one-shot designs such

as low discrepancy sequences and Latin Hypercube Sampling (LHS). However,

in a sensitivity analysis context, an important property is the stochasticity of

the DoE which is partially adressed by these methods. This work proposes a

new stochastic, iterative DoE — named KDOE — based on a modified Kernel

Density Estimation (KDE). It is a two-step process: (i) candidate samples are

generated using Markov Chain Monte Carlo (MCMC) based on KDE, and (ii)

one of them is selected based on some metric. The performance of the method is

assessed by means of the C2-discrepancy space-filling criterion. KDOE appears

to be as performant as classical one-shot methods in low dimensions, while it

presents increased performance for high-dimensional parameter spaces. It is

a versatile method which offers an alternative to classical methods and, at the

same time, is easy to implement and offers customization based on the objective

of the DoE.
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1. Introduction

One of the main objectives when performing numerical, or real experiments,

is to understand the variation of a Quantity of Interest (QoI) with respect to

the variation of some input parameters [31]. Each experiment, or sample, corre-

sponds to a particular set of input parameters xk with k ∈ [1, . . . , d], where d is

the number of dimensions. The group of Ns samples, or Design of Experiments

(DoE), is noted as XNs

d . From exploratory phases to more advanced analyses,

such as Uncertainty Quantification (UQ) and robust optimization, DoE aims at

helping better understanding the physical mechanisms governing the problem of

interest [33]. Therefore, the objective of efficient DoE is to maximize the cover-

age of input space, i.e., space filling, with the aspiration of capturing most of the

underlying physics. Such analyses typically require large number of experiments

to converge the statistical moments of the QoIs. In this regard, many studies

have focused on reducing the computational cost. However, depending on the

required quality of the analysis, the complexity of the experiment, or its return

time, the total number of experiments may be limited. Thus, the objective of

this work is to optimize the space-filling properties for a given computational

budget.

Different metrics are commonly used to assess the space filling of a DoE.

They can be categorized into (i) geometrical and (ii) uniformity criteria. Among

the most used geometrical criteria are the maximin and minimax [28]. They,

respectively, maximize the minimum distance between all points or minimize

the maximum distance between any location in space and all points of the

sample. A similar criterion is found by using a minimum spanning tree [11]

in which the best design corresponds to a maximization of the mean distance

between all connections among samples and the minimization of the variance

in these distances. The uniformity criterion, instead, measures how the spread

of the points deviates from a uniform distribution. The central discrepancy is

commonly used [10, 8] to measure the uniformity.
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There are three main methodologies for building a DoE: (i) Monte Carlo

(MC), (ii) Latin Hypercube Sampling (LHS) and (ii) Quasi-Monte Carlo (QMC)

methods [4, 13]. Kucherenko et al. [21] have recently compared MC and LHS

against the well-established low discrepancy sequence of Sobol’. They concluded

that LHS and QMC both offer superior integration performance over MC. LHS-

based sampling methods are one-shot design strategies [25, 10]. Their utilization

requires the practitioner to set a priori the total number of samples contained

in the DoE. Although, there have been some attempts to construct progressive

LHS, they still require an initial design to work properly [34]. On the other

hand, low discrepancy sequences are iterative designs which can be continued

without compromising the discrepancy. The practitioner is then able to increase

the number of samples afterwards for quality reasons, for instance, or if other

experiments can be afforded. Liu et al. [23] recently reviewed iterative DoE in a

metamodeling context. In their study, it is shown that most iterative methods

need an initial design as a starting point. By using an initial design, the physics

information from the system can be used to further guide the construction of

the DoE. In this case, such iterative methods are called adaptive methods.

Except for some work in [7], and to the best of the authors’ knowledge, the

number of iterative methods not requiring an initial design is limited. This

can be explained both by the quality of the initial designs (using LHS of Sobol’

sequence) and by the performance of the refinement algorithm. There are even

fewer options if the iterative design cannot take advantage of the output of the

experiments. Low discrepancy sequences are an example of such methods. But

in some context, stochastic methods may be required — to compute sensitivity

indices for instance [32]. Scrambling the sequences [27] can avoid this pitfall but

then the method is no longer iterative.

Our work proposes a new methodology to stochastically sample the input

parameter space iteratively allowing, at the same time, to take into account

any constraint, such as non-rectangular DoE [22], sensitivity indices or even

constraints on the quality of particular subprojections as in [20]. Starting from

an initial design, or with a single random sample, a Kernel Density Estimation
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(KDE) is used to infer possible new samples. A second step selects the new

sample to be added to the DoE. This two-step DoE is versatile and shows good

discrepancy properties compared to standard one-shot designs.

The paper is organized as follows. Section 2 describes first a representa-

tive example of a complex case requiring an efficient DoE. A solution utilizing

the iterative technique proposed in this paper is presented next in Section 3.

Section 4 demonstrates the performance of the method by considering an ex-

haustive set of numerical examples. Finally, conclusions and future work are

drawn in Section 6.

2. Motivation Example: Predictive Studies of Multiphysics Turbu-

lent Flows

The number of uncertainties involved in the study, design and optimiza-

tion of complex, multiphysics turbulent flows is typically large due to (i) the

modeling assumptions required to mathematically describe the different physics

and their couplings, i.e., epistemic uncertainty, and (ii) the aleatoric incertitude

resulting, for instance, from the lack of detailed evidence regarding the initial

and boundary conditions. Therefore, numerical analyses based on single deter-

ministic realizations for a particular set of input parameters cannot be deemed

predictive [30]. A solution to this problem is to consider the system under study

stochastic and analyze the relation between input and output probability dis-

tributions by means of efficient statistical methods. In this regard, the field

of uncertainty quantification (UQ) applied to computational sciences and en-

gineering has remarkably grown over the last decades, e.g., [26, 6, 3, 24], and

it is now extensively accepted that the potential of estimating and minimizing

uncertainties, in combination with numerical verification and physics validation

(V&V), is crucial for augmenting the confidence in the numerical predictions.

As an example, in the field of solar energy engineering [15], the physics-based

modelling of irradiated, particle-laden turbulent flow, and its numerical investi-

gation, are difficult tasks that intrinsically require several model assumptions,
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selection of coefficient and parameter values, and characterization of initial and

boundary conditions [19]. These steps, even if performed carefully, result in

sources of uncertainty that can impact the quantities of interest (QoI). Some

examples encompass the incomplete description of particle diameters [29] and

thermal radiative properties [12], variability of the incident radiation and its

complex interaction with boundaries, and model-form incertitude [17, 18]. As

a result, the number of uncertainties involved in such studies is typically in

the order of O(101 − 102). In addition, accurate representation of the under-

lying physical phenomena mandates the utilization of expensive high-fidelity

(HF) computations based on point particle direct numerical simulations [19, 9].

Hence, characterization of the stochastic output by means of naively running

hundreds, or thousands, of HF realizations with different input values easily

exceeds the resources of the largest computing facilities available.

In this regard, efficient DoE strategies that reduce the number of samples

required, like the one presented in this work, are paramount for accelerating the

calculation of these type of studies within a feasible computing budget.

3. Presentation of the Method

In its basis form, our sequential sampling strategy consists in adding a point

far from the existing points in the parameter space. The notion of distance

corresponds to a measure of discrepancy. However, instead of considering the

whole hypercube, the proposed technique only focuses on empty regions defined

using an Exclusion Field (EF). This exclusion field describes the probability

of selecting a new point depending on its position and allows to generate new

samples that are located preferentially in these empty regions. Then, out of the

ngen generated samples from the EF, the one that leads to the best value of

some criterion is selected. It is to be noted that there is no optimization process

in the sense that it is just a selection process based on probable samples of the

EF. The whole process ensures randomness in the generation of samples in the

parameter space.

5



Section 3.1 introduces the EF, and Section 3.2 describes the sampling pro-

cedure from the EF. Finally, Section 3.3 gives an overview of the method. In

the following, it is referred to as the Kernel-DoE (KDOE) method.

3.1. Determination of the Exclusion Field

Assumed that Ns samples have already been selected. The spatial probabil-

ity density function used to draw a new sample is given by

f(x) = 1−
Ns∑
i=1

K
(
x,x(i)

)
. (1)

The Ns samples that have already been chosen are denoted x(i), with i between

1 and Ns. The dimension is noted d and K is a kernel expressed by

K
(
x,x(i)

)
= exp

(
−
D
(
x,x(i)

)2
2h2

)
, (2)

D is a distance function that will be expressed later. The general idea is to lower

the probability of selecting a new point close to the samples already drawn.

Hence a zone of exclusion is created around each of the already selected points,

with a width parametrized by h, set here at h = σ/N
1/d
s with σ = 0.3. This

in particular allows to have a width of exclusion that decreases as the number

of samples increases. In addition, the probability is set to 0 outside of the unit

hypercube in order to prevent sampling outside of the region of interest. We

also ensure that the probability is always greater than or equal to 0. Note that

this probability is not normalized. It will be shown in the next section that

normalization is not required for the sampling procedure.

Various expressions of the distance function D allow to generate many dif-

ferent shapes. In the present case, alignment of samples on each axis should be

avoided as done with Latin Hypercube Sampling designs. This is achieved by

using a Minkowsky distance [5] for D

D
(
x,x(i)

)
=

 d∑
j=1

|xj − xij |p
1/p

, (3)
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where p is the order of the distance. Setting p < 1 leads to a star shape for the

PDF f , as shown in Fig. 1 starting from one already selected sample (Ns = 1),

and using p = 0.5. In Fig. 2, three samples were already selected in a 3-

dimensional parameter space. The star shape is visible in all dimensions, its

branches interact with each other as shown in Fig. 3 clearly illustrating the

cumulative property of the PDFs. In this last case σ = 0.8 to highlight this

property.
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Figure 1: Probability density function of presence in a 2-dimensional parameter space. Dot

represent a sample already drawn.
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Figure 2: Scatter plot representation of a 3-dimensional PDF with three points already set in

the parameter space. Points represents an iso value of probability.
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Figure 3: Cumulative effects on the probability density function in a 2-dimensional parameter

space. Dots represent 2 existing samples.

3.2. Sampling and Selection Procedures

The classical way to sample from a PDF is to use the inverse transform sam-

pling method. However, finding the inverse cumulative distribution function of a

complex PDF can be computationally intensive — the cost increases with dimen-

sionality. Here the Metropolis-Hasting [14] Markov Chain Monte Carlo (MCMC)

algorithm was selected. Contrary to methods such as HMC or NUTS [16], it

does not require the calculation of the gradient of the log-probability density

function, which is a costly operation. This algorithm provides a random walk

of the parameter space that converges toward the target PDF.

Figure 4 shows an example with two initial points already selected in the

hypercube [0, 1]2. Based on these two points (dots), f is built and new samples

are drawn (squares) using the MCMC method.

The next step consists in choosing a new sample from these candidates. Any

metric can be chosen here depending on the final objective. In the following,

focus is made on the uniformity of the DoE. Hence, the centred discrepancy C2
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Figure 4: Probability density in a 2-dimensional parameter space. Dots represent the samples

already drawn, squares are the result of the Metropolis-Hasting sampling and circled-diamond

is the sample selected based on the resulting centred discrepancy.

is used [10]. It writes

C2(XNs

d ) =

(
13

12

)d

− 2

Ns

Ns∑
i=1

d∏
k=1

(
1 +

1

2
| x(i)k − 0.5 | −1

2
| x(i)k − 0.5 |2

)
(4)

+
1

N2
s

Ns∑
i,j=1

d∏
k=1

(
1 +

1

2
| x(i)k − 0.5 | +1

2
| x(j)k − 0.5 | −1

2
| x(i)k − x

(j)
k |

)
.

Since the lowest values of C2 result in most uniform samples, the sample that

minimizes C2 is chosen (circled-diamond).

The whole procedure is then restarted with an added point to the initial

set. This results in an iterative procedure which acts like an optimizer on the

C2-discrepancy where the candidates are not drawn totally randomly but with

the knowledge of the existing samples.

Thanks to the MCMC method, the procedure is not deterministic which

is useful to generate a new independent set of experiments. Indeed, to com-

pute sensitivity indices of Sobol’, two independent samples are required [32].

As stated in [32], quasi-random sequences such as Sobol’ are classically used

but, as they are deterministic, they can not generate independent samples. In
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order to get two independent samples, a sample of shape XNs

2d is generated.

Splitting the matrix column wise-like ensures independence of the two resulting

samples. However, as the dimensionality increases, the quality of the sequence

deteriorates (d > 10). Hence, this technique is limited to a small number of

dimensions. The method proposed in this paper overcomes this limitation.

As stated, ngen candidate samples are generated through MCMC. Figure 5

presents a convergence analysis of the quality (via C2) of the final design X40
2

depending on the size of the MCMC sample at each iteration. Confidence in-

tervals are calculated using 100 realizations of the same parametrization. The

discrepancy converges to its final value above ngen = 100. This allows to control

the computational cost required to generate the DoE. Various configurations of

XNs

d have been tested and results are similar. In the rest of this paper, ngen is

fixed to 100.

25 50 75 100 125 150 175 200
ngen

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225

0.00250

0.00275

C
2

Figure 5: Convergence of the C2-discrepancy function of ngen, the size of sample using

Metropolis-Hasting MCMC for X40
2 .
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3.3. Algorithm

Thus, the sequential strategy is described in Algorithm 1 and in Figure 6

where two iterations are schematized. From a given DoE, an exclusion field is

constructed. Then points are sampled using a Metropolis-Hasting strategy, and

finally a new candidate is selected based on a metric. This process is repeated

until the desired size of the DoE is reached.

Algorithm 1 Sampling Strategy: Kernel-DoE

Require: XNs

d , Nmax, Ns, ngen . Start from a sample XNs

d composed of Ns

samples in dimension d

1: while Ns < Nmax do

2: f ← Construction of the Exclusions Field from XNs

d

3: Y
ngen

d ← pick ngen samples using Metropolis-Hasting

4: Yj
d ← point in Ngen which minimize the discrepancy

5: XNs+1
d ←

{
XNs

d ,Yj
d

}
6: end while

Iter n

Iter n+1

Figure 6: Schema representing two iterations of the algorithm with the construction of the

exclusion field, the sampling and selection of a new candidate. Dots represent the samples

already drawn, squares are the result of the Metropolis-Hasting sampling and diamonds are

the sample selected based on a metric.
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4. Results

4.1. Uniformity of the Design

As stated previously, the uniformity of the DoE is paramount to ensure

that the physics of interest are well captured. Figure 7 presents a convergence

study of the KDOE method versus Sobol’ sequences [35], classical LHS [25], and

optimized LHS as proposed in [2]. Each point corresponds to a given sample

size Ns for a given number of dimensions d. Due to the stochastic nature of

the LHS algorithms and of the KDOE, confidence intervals are computed based

on 100 realizations. To measure the improvement of a method with respect

to the other, the C2-discrepancy is used [10, 1] and values are normalized by

crude Monte Carlo (MC) results. This transformation shows that a uniform

improvement factor is obtained in comparison to MC. Looking for instance at

d = 20, LHS enables a 20% improvement in terms of C2-discrepancy over MC,

Sobol’ sequence gives 30% and both OLHS and KDOE roughly give 40%.

The obtained hierarchy between LHS, OLHS and Sobol’ is quite stable.

OLHS is the best method followed by Sobol’ sequence and finally LHS. For

KDOE, it performs closely to Sobol’ sequence up to d . 20. For d & 20, KDOE

performs better than all the other methods tested.

Moving on to two standard deviation (2σ) — see Fig. 8 —, the results of

KDOE always lies between LHS’s and OLHS’s.
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Figure 7: Normalized C2-discrepancy function of the number of dimensions d of the parameter

space and of the size Ns of the design for various DoE methods.
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Figure 8: Normalized deviation at 2σ on the C2-discrepancy function of the number of di-

mensions d of the parameter space and of the size Ns of the design for various DoE methods.

Figure 9 presents the convergence analysis of the C2-discrepancy as function

of the number of dimensions for Ns = 100. When the dimensionality increases,

the gain with both LHS and Sobol’ sequences is close to zero. On the contrary,

OLHS seems to stabilize around a 30% improvement. Regarding KDOE, it

performs equally with other methods up to d . 20, while for d & 20 it becomes

more performant. It can be seen that the method has not yet reached its

minimum at d = 40.

In terms of C2-discrepancy, KDOE appears to perform better with respect

to crude Monte Carlo, LHS, OLHS and Sobol’ sequence. Figure 10 shows an

example of a sample of size Ns = 50 in dimension ndim = 30. The subprojection

x20/x8 is represented. Figure 10(d) depicts the principal challenge with classical
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Figure 9: Normalized C2-discrepancy function of the number of dimensions ndim of the

parameter space with a design of size Ns = 100 for various DoE methods.

Sobol’ sequences. In high dimensional parameter space, clear patterns may

appear in some subprojections. This behaviour was not observed with KDOE.

In this case, the result of the KDOE may not appear optimized for 2-dimensional

subprojections. This is due to the fact that the objective is to optimize the total

discrepancy of the parameter space.

4.2. Integration Convergence

Even if this method is not designed for integral evaluation, its performance

is evaluated on small numbers of samples up to 512. The number of evaluations

has been restricted as the purpose of the method is to generate a small design in

high dimensions. Also, the use of an iterative method to generate such sample

can be questioned due to the resulting computational cost. Moreover, although

this method can be used to continue an existing design created using another

technique, such possibility was not evaluated in the following. In [21], conver-

gence plots are presented in order to assess the performance of Sobol’ sequence
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(a) KDOE—C2 = 2.18 (b) OLHS—C2 = 3.43

(c) LHS—C2 = 3.81 (d) Sobol’—C2 = 3.76

Figure 10: Example of a 2-dimensional subprojection of the sample of size Ns = 50 in dimen-

sion d = 30 with various DoE methods.

versus LHS and Monte-Carlo sampling. The functions used are categorized into

types A, B and C. These categories state how the variables are important with

respect to the function output:

Type A: Functions with a low number of important variables,

Type B: Functions with almost equally important variables but with low in-

teractions with each other,

Type C: Functions with almost equally important variables and with high in-

teractions with each other.

Type C functions represent the most challenging case. In this work, one function

per group is considered as detailed in Table 1. The theoretical integral for all

17



these functions in the unit hypercube is 1. Quality of the integration is computed

using the Root Mean Square Error (RMSE) defined as

ε =

(
1

K

K∑
k=1

(
I[y]− IkNs

[y]
)2)1/2

, (5)

with y the function to integrate and K = 50 the number of independent trials

and the estimate integral defined as

IkNs
[y] =

1

Ns

Ns∑
i=1

y(Xi
d), (6)

Table 1: Type A, B and C functions used in the convergence analysis.

Type Function y(x) Dim d

A

d∏
i=1

| 4xi − 2 | +ai
1 + ai

30

B

d∏
i=1

d− xi
d− 0.5

30

C 2d
d∏

i=1

xi 10

Figure 11 presents the convergence study. KDOE is not the best method

but seems to compare well to both LHS and Sobol’ sequence. The convergence

rates are correct for every function type.
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Figure 11: RMSE function of the sample size Ns for type A, B and C functions.
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5. Perspectives

Depending on the property sought, the combination of a Kernel and a metric

allows an infinite number of possible customizations of the method.

Using the Minkowsky distance as a metric, the LHS constraint is not strict

which can be useful when dealing with discrete parameters. Indeed, strict LHS

would prevent having more than one sample per discrete parameter. In Fig. 12(a),

an additional constraint is added to strongly limit the probability to 0 when the

L−∞-norm is inferior to a threshold. This limitation can be restricted to a do-

main of influence using an additional L2-norm constraint (Fig. 12(b)). Hence,

the presented method acts as an iterative LHS strategy.
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(a) Inverse Minkowsky distance with LHS

properties
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(b) Inverse Minkowsky distance with LHS

properties and constraint

Figure 12: Probability density in a 2-dimensional parameter space. Dot represents the sample

used to construct the KDE.

Using this method, it is also possible to consider non-rectangular domains [22].

This example presents a 2-dimensional domain with the constraint 0.5 < x1 +

x2 < 1. In this case, the selection of the point criterion has to be changed as

the C2-discrepancy assumes rectangular domains. Figure 13 shows a sampling

of the aforementioned constrained design using a maximin criterion [10]. This

criterion only considers the points of the sample resulting in an optimal sphere

packing problem. The criterion seeks to maximize the minimum distance be-

tween the new point and the existing samples. This adaptation is to ensure that
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the new point is not penalized by existing samples that would be ill positioned

in the parameter space.
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Figure 13: Probability density in a non-rectangular 2-dimensional parameter space. The 10

dots represent the samples used to fit the KDE.

The ability to change the selection criterion is even more useful. With a prior

knowledge on the sensitivity of the parameters to the quantity of interest [33],

it is possible to bias the design. Considering a 2-dimensional space — as the

example in Fig. 14 —, if the parameter x2 is known to have a small impact, it

might be more interesting to optimize the C2-discrepancy on the parameter x1.

More complicated things can be performed if one wants to optimize a particular

subprojection as in [20]. This is referred to as Maximum Projection Design.

Last but not least, this method can be used to generate designs by mixing

continuous and discrete variables. The star shape of the kernel does not forbid

the presence of a new sample along a given axis, it lower its probability of being

sampled up to a certain distance. In this case, a Gaussian kernel might be more

appropriate in order to relax some constraint on the axes. Another option would
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Figure 14: 2-dimensional parameter space with x0 the highest . Dots represent the sample.

Sample distributions for each parameter are plotted along the diagonal.

be to modify the kernel to limit the point influence along the discrete axis.

The ability to play both with the kernel and the selection criteria is really

powerful as it allows to manage most of the challenges in constrained optimiza-

tion problems, use sensitivity information, and sample by means of following

individual PDFs for each parameter.

6. Conclusion

This work proposes a new method to stochastically and iteratively sample a

parameter space, referred to as KDOE method. This is a two-step process: (i)

through a Kernel Density Estimation (KDE) some candidates are generated,

then (ii) the best candidate is selected based on a criterion. This method

does not take into account the physics of the problem of interest as adaptative

strategies, but is purely iterative and case independent.

Compared to LHS and low discrepancy sequences, KDOE is totally iterative
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and stochastic. The space-filling properties of the new designs based on the C2-

discrepancy are assessed and show good behaviour in high dimensions with small

sample sizes. Moreover, it shows similar capabilities for numerical integration

compared to classical methods.The KDOE method is versatile in the sense that

it can be easily adapted to take into account constraints in the parameter space,

both discrete and continuous parameters can be used and sensitivity indices

of the parameters can be incorporated. This ability comes from the two-step

process which can be independently tuned.

The quality of the design is of prime importance as it determines the quality

of the analysis of the experiments. The proposed method provides an alternative

to classical one-shot methods to generate initial designs and to continue existing

ones. Its versatility and performance allow the analysis of expensive and high-

dimensional cases to be within affordable budgets.
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