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a b s t r a c t 

Decision trees are popular Classification and Regression tools and, when small-sized, easy to interpret. 

Traditionally, a greedy approach has been used to build the trees, yielding a very fast training process; 

however, controlling sparsity (a proxy for interpretability) is challenging. In recent studies, optimal deci- 

sion trees, where all decisions are optimized simultaneously, have shown a better learning performance, 

especially when oblique cuts are implemented. In this paper, we propose a continuous optimization ap- 

proach to build sparse optimal classification trees, based on oblique cuts, with the aim of using fewer 

predictor variables in the cuts as well as along the whole tree. Both types of sparsity, namely local and 

global, are modeled by means of regularizations with polyhedral norms. The computational experience 

reported supports the usefulness of our methodology. In all our data sets, local and global sparsity can 

be improved without harming classification accuracy. Unlike greedy approaches, our ability to easily trade 

in some of our classification accuracy for a gain in global sparsity is shown. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Decision trees ( Yang, Liu, Tsoka, & Papageorgiou, 2017 ) are

 popular non-parametric tool for Classification and Regression

n Statistics and Machine Learning ( Hastie, Tibshirani, & Fried-

an, 2009 ). Since they are rule-based, when small-sized, they

re deemed to be leaders in terms of interpretability ( Athey,

018; Baesens, Setiono, Mues, & Vanthienen, 2003; Carrizosa,

artín-Barragán, & Romero Morales, 2011; Freitas, 2014; Good-

an & Flaxman, 2017; Jung, Concannon, Shroff, Goel, & Goldstein,

017; Martens, Baesens, Van Gestel, & Vanthienen, 2007; Martín-

arragán, Lillo, & Romo, 2014; Ridgeway, 2013; Ustun & Rudin,

016 ). 

It is well-known that the problem of building optimal decision

rees is NP-complete ( Hyafil & Rivest, 1976 ). For this reason, classic

ecision trees have been traditionally designed using greedy

rocedures in which at each branch node of the tree, some purity

riterion is (locally) optimized. For instance, CARTs ( Breiman,

riedman, Stone, & Olshen, 1984 ) employ a greedy and recursive

artitioning procedure which is computationally cheap, especially

ince orthogonal cuts are implemented, i.e., one single predictor

ariable is involved in each branching rule. These rules are of

aximal sparsity at each branching node (excellent local sparsity),

aking classic decision trees locally easy to interpret. However,
∗ Corresponding author. 
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hen deep, they become to be harder to interpret since many

redictor variables are, in general, involved across all branching

ules (not so good global sparsity). 

Addressing global sparsity is a challenge in decision trees and,

o the best of our knowledge, this has not been tackled appropri-

tely in the literature. Standard CARTs or Random Forests (RFs)

 Biau & Scornet, 2016; Breiman, 2001; Fernández-Delgado, Cer-

adas, Barro, & Amorim, 2014; Genuer, Poggi, Tuleau-Malot, &

illa-Vialaneix, 2017 ) cannot manage it due to the greedy construc-

ion of the trees. Nonetheless, some attempts have been made, see

eng and Runger (2012, 2013) . Classic decision trees usually se-

ect their orthogonal cuts at each branch node by optimizing an

nformation theory criterion among all possible predictor variables

nd thresholds. The regularization framework in Deng and Runger

2012) considers a penalty to this criterion for predictor variables 

hat have not appeared yet in the tree. This approach is refined in

eng and Runger (2013) , by also including the importance scores

f the predictor variables, obtained in a preprocessing step running

 preliminary RF. 

The mainstream trend of using a greedy strategy in the

onstruction of decision trees may lead to myopic decisions,

hich, in turn, may affect the overall learning performance.

he major advances in Mathematical Optimization ( Carrizosa &

omero Morales, 2013; Olafsson, Li, & Wu, 2008; Silva, 2017 ) have

ed to different approaches to build decision trees with some

verall optimality criterion, called hereafter optimal classification

rees. It is worth mentioning recent proposals which grow optimal

lassification trees of a pre-established depth, both deterministic
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( Bertsimas & Dunn, 2017; Firat, Crognier, Gabor, Hurkens, & Zhang,

2019; Günlük, Kalagnanam, Menickelly, & Scheinberg, 2019; Ver-

wer & Zhang, 2017; Verwer, Zhang, & Ye, 2017 ) and randomized

( Blanquero, Carrizosa, Molero-Río, & Romero Morales, 2018 ). The

deterministic approaches formulate the problem of building the

tree as a mixed-integer linear optimization problem. Such ap-

proach is the most natural, since many discrete decisions are to

be made when building a decision tree. Although the results of

such optimal classification trees are encouraging, the inclusion of

integer decision variables makes the computing times explode,

giving rise to models trained over a small subsample of the data

set ( Günlük et al., 2019 ) and, as customary, with a CPU time limit

being imposed to the optimization solver. On the other hand, a

continuous optimization-based approach to build optimal random-

ized classification trees is proposed in Blanquero et al. (2018) . This

is achieved by replacing the yes/no decisions in traditional trees

by probabilistic decisions, i.e., instead of deciding at each branch

node if an individual goes either to the left or to the right child

node in the tree, the probability of going to the left is sought.

The numerical results in Blanquero et al. (2018) illustrate the good

performance achieved in very short time. All these optimization-

based approaches are flexible enough to address critical issues that

the greedy nature of classic decision trees would find it difficult,

such as preferences on the classification performance in some

class where misclassifying is more damaging ( Blanquero et al.,

2018; Verwer & Zhang, 2017; Verwer et al., 2017 ), or controlling

the number of predictor variables used along the tree (local and

global sparsity). 

Optimal classification trees have been grown with both orthog-

onal ( Bertsimas & Dunn, 2017; Firat et al., 2019; Günlük et al.,

2019 ) and oblique cuts ( Bennett & Blue, 1996; Bertsimas & Dunn,

2017; Blanquero et al., 2018; Norouzi, Collins, Johnson, Fleet, &

Kohli, 2015; Verwer & Zhang, 2017; Verwer et al., 2017 ). Oblique

cuts are more flexible than orthogonal ones since a combination

of several predictor variables is allowed in the branching. Trees

based on oblique cuts lead to similar or even better learning

performance than those based on orthogonal cuts, and, at the

same time, they exhibit a shallow depth, since several orthogonal

cuts may be reduced to one single oblique cut. Apart from the

flexibility that we can borrow from them, many integer decision

variables associated with orthogonal cuts are not present in the

oblique ones, which eases the optimization. Therefore, optimal

classification trees based on oblique cuts require a lower training

computing time while showing much more promising results in

terms of accuracy. However, this comes at the expense of damag-

ing interpretability, since, in principle, all the predictor variables

could appear in each branching rule. In this paper, we tackle this

issue. 

We propose a novel optimized classification tree, based on

the methodology in Blanquero et al. (2018) and, therefore, in

oblique cuts, that yields rules/trees that are sparser, and thus en-

hance interpretability. We model this as a continuous optimiza-

tion problem. As in the classic LASSO model ( Tibshirani, Wain-

wright, & Hastie, 2015 ), sparsity is sought by means of regular-

ization terms. We model local sparsity with the � 1 -norm, and the

global sparsity with the � ∞ 

-norm. The � ∞ 

reguralization has been

applied to other classifiers, for instance, Support Vector Machines

( Maldonado, Bravo, Lopez, & Perez, 2017; Maldonado & Lopez,

2017; Zou & Yuan, 2008 ), but the � 1 is more popular. A novel

continuous-based approach for building this sparse optimal ran-

domized classification tree is provided. Theoretical results on the

range of the sparsity parameters are shown. Our numerical results,

where well-known real data sets are used, illustrate the efective-

ness of our methodology: sparsity in optimal classification trees

improves without harming learning performance. In addition, our

ability to trade in some of our classification accuracy, still being su-
erior to CART, to be comparable to CART in terms of global spar-

ity is shown. 

The remainder of the paper is organized as follows. In

ection 2 we detail the construction of the Sparse Optimal Ran-

omized Classification Tree. Some theoretical properties are given

n Section 3 . In Section 4 , our numerical experience is reported.

inally, conclusions and possible lines of future research are pro-

ided in Section 5 . 

. Sparsity in optimal randomized classification trees 

.1. Introduction 

We assume given a training sample {( x i , y i )} 1 ≤ i ≤ N , where x i 
epresents the p -dimensional vector of predictor variables of indi-

idual i , and y i ∈ { 1 , . . . , K } indicates the class membership. With-

ut loss of generality, we assume x i ∈ [ 0 , 1 ] 
p 
, i = 1 , . . . , N. 

Sparse Optimal Randomized Classification Trees, addressed in

his paper, extend the Optimal Randomized Classification Trees

ORCTs) in Blanquero et al. (2018) . An ORCT is an optimal bi-

ary classification tree of a given depth D , obtained by minimiz-

ng the expected misclassification cost over the training sample

ig. 1 . shows the structure of an ORCT of depth D = 2 . Unlike

lassic decision trees, oblique cuts, on which more than one pre-

ictor variable takes part, are performed. ORCTs are modeled by

eans of a Non-Linear Continuous Optimization formulation. The

sual deterministic yes/no rule at each branch node is replaced

y a smoother rule: a probabilistic decision rule at each branch

ode, induced by a cumulative density function (CDF) F , is ob-

ained. Therefore, the movements in ORCTs can be seen as ran-

omized: at a given branch node of an ORCT, a random variable

ill be generated to indicate by which branch an individual has

o continue. Since binary trees are built, the Bernoulli distribution

s appropriate, whose probability of success will be determined

y the value of this CDF, evaluated over the vector of predictor

ariables. More precisely, at a given branch node t of the tree,

n individual with predictor variables x will go either to the left

r to the right child nodes with probabilities F ( 1 p a 

T 
·t x − μt ) and

 − F ( 1 p a 

T 
·t x − μt ) , respectively, where a · t and μt are decision vari-

bles. For further details on the construction of ORCTs, the reader

s referred to Blanquero et al. (2018) . Sparse ORCT, S-ORCT, mini-

izes the expected misclassification cost over the training sample

egularized with two polyhedral norms. 

The following notation is needed: 

Parameters 

D depth of the binary tree, 

N number of individuals in the training sample, 

p number of predictor variables, 

K number of classes, 

{ ( x i , y i ) } 1 ≤i ≤N training sample, where x i ∈ [ 0 , 1 ] 
p and 

y i ∈ { 1 , . . . , K } , 
I k set of individuals in the training sample 

belonging to class k, k = 1 , . . . , K, 

W y i k 
misclassification cost incurred when 

classifying an individual i, whose class is y i , 

in class k, y i , i = 1 , . . . , N, k = 1 , . . . , K, 

F ( ·) univariate continuous CDF centered at 0, used 

to define the probabilities for an individual to 

go to the left or the right child node in the 

tree. We will assume that F is the CDF of a 

continuous random variable with density f, 

λL ≥ 0 local sparsity regularization parameter, 

λG ≥ 0 global sparsity regularization parameter, 
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Fig. 1. Optimal randomized classification tree of depth D = 2 . 
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Nodes 

τB set of branch nodes, 

τL set of leaf nodes, 

N L ( t ) set of ancestor nodes of leaf node t whose 

left branch takes part in the path from the 

root node to leaf node t, t ∈ τL , 

N R ( t ) set of ancestor nodes of leaf node t whose 

right branch takes part in the path from the 

root node to leaf node t, t ∈ τL , 

Decision 

variables 

a jt ∈ [ −1 , 1 ] coefficient of predictor variable j in the 

oblique cut at branch node t ∈ τB , with a 

being the p × | τB | matrix of these coefficients, 

a = 

(
a jt 

)
j=1 , ... ,p, t∈ τB 

. The expressions a j· and 

a ·t will denote the j-th row and the t-th 

column of a , respectively, 

μt ∈ [ −1 , 1 ] location parameter at branch node t ∈ τB , μ
being the vector that comprises every μt , i.e., 

μ = ( μt ) t∈ τB 
, 

C kt probability of being assigned to class label 

k ∈ { 1 , . . . , K } for an individual at leaf node 

t, t ∈ τL , being the K × | τL | matrix such that 

C = ( C kt ) k =1 , ... ,K, t∈ τL 
. 

Probabilities 

p it ( a ·t , μt ) probability of individual i going down the left 

branch at branch node t . Its expression is 

p it ( a ·t , μt ) = F 

(
1 

p 
a 

T 
·t x i − μt 

)
, i = 1 , . . . , N, t ∈ 

τB , 

P it ( a , μ) probability of individual i falling into leaf 

node t . Its expression is P it ( a , μ) = ∏ 

t l ∈ N L (t) 

p it l 

(
a ·t l , μt l 

) ∏ 

t r ∈ N R (t) 

(
1 − p it r ( a ·t r , μt r ) 

)
, i = 

1 , . . . , N, t ∈ τL , 

g ( a , μ, C ) expected misclassification cost over the 

training sample. Its expression is 

g ( a , μ, C ) = 

1 

N 

N ∑ 

i =1 

∑ 

t∈ τL 

P it ( a , μ) 
K ∑ 

k =1 

W y i k 
C kt . 

.2. The formulation 

With these parameters and decision variables, the S-ORCT is

ormulated as follows: 

in g ( a , μ, C ) + λL 

p ∑ 

j=1 

∥∥a j·
∥∥

1 
+ λG 

p ∑ 

j=1 

∥∥a j·
∥∥

∞ 

(1) 
.t. 

K ∑ 

k =1 

C kt = 1 , t ∈ τL , (2)

 

∈ τL 

C kt ≥ 1 , k = 1 , . . . , K, (3)

 jt ∈ [ −1 , 1 ] , j = 1 , . . . , p, t ∈ τB , (4)

t ∈ [ −1 , 1 ] , t ∈ τB , (5) 

 kt ∈ [ 0 , 1 ] , k = 1 , . . . , K, t ∈ τL . (6)

In the objective function we have three terms, the first being

he expected misclassification cost in the training sample, while

he second and the third are regularization terms. The second term

ddresses local sparsity, since it penalizes the coefficients of the

redictor variables used in the cuts along the tree. Instead, the

hird term controls whether a given predictor variable is ever used

cross the whole tree, thus addressing global sparsity. The � ∞ 

-

orm is used as a group penalty function, by forcing the coeffi-

ients linked to the same predictor variable to be shrunk simul-

aneously along all branch nodes. Note that both local and global

parsity are equivalent when dealing with depth D = 1 , as there is

 single cut across the whole tree. 

In terms of the feasible region, for each leaf node t ∈ τ L , C kt 

epresents the probability that an individual at node t is assigned

o class k ∈ { 1 , . . . , K } . Constraints (2) force that such probabilities

um to 1, while constraints (3) force the sum of the probabilities

long all leaf nodes t ∈ τ B assigned to class k to be at least one. 

Theorem 1 guarantees the existence of an optimal deterministic

olution, i.e., such probabilities C kt will all be in {0, 1}, and thus

6) can be replaced by 

 kt ∈ { 0 , 1 } , k = 1 , . . . , K, t ∈ τL . (7)

onstraints (6) and (7) will be used interchangeably when needed.

heorem 1. There exists an optimal solution to (1) –(6) such that

 kt ∈ { 0 , 1 } , k = 1 , . . . , K, t ∈ τL . 

roof. The continuity of the objective function (1) , defined over a

ompact set, ensures the existence of an optimal solution of the

ptimization problem (1) –(6) , by Weierstrass Theorem. Let a 

∗ =
a ∗

jt 

)
j=1 , ... ,p, t∈ τB 

, μ∗ = 

(
μ∗

t 

)
t∈ τB 

, C ∗ = 

(
C ∗

kt 

)
k =1 , ... ,K, t∈ τB 

be an opti- 

al solution. Fixed a 

∗, μ∗, then C ∗ is optimal to the following

roblem in the decision variables C kt , k = 1 , . . . , K, t ∈ τL : 

in 

1 

N 

N ∑ 

i =1 

∑ 

t∈ τL 

P it ( a 

∗, μ∗) 
K ∑ 

k =1 

W y i k 
C kt + λL 

p ∑ 

j=1 

∥∥a 

∗
j·
∥∥

1 
+ λG 

p ∑ 

j=1 

∥∥a 

∗
j·
∥∥

∞ 
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s.t. 

K ∑ 

k =1 

C kt = 1 , t ∈ τL , 

∑ 

t∈ τL 

C kt ≥ 1 , k = 1 , . . . , K, 

C kt ∈ [ 0 , 1 ] , k = 1 , . . . , K, t ∈ τL . 

This is a transportation problem, to which the integrality of an

optimal solution is well-known to hold, i.e., there exists C =(
C kt 

)
k =1 , ... ,K, t∈ τL 

∈ { 0 , 1 } for all k , t such that 
(
a 

∗, μ∗, C 
)

is also op-

timal for (1) –(6) . �

Theorem 1 gives a new interpretation of constraints (2) and (3) :

if (7) is used instead of (6) , when C kt takes the value 1, then all

the individuals at node t ∈ τ L are labelled as k ; and 0, otherwise.

Constraints (2) state that any leaf node t ∈ τ L must be labelled with

exactly one class label, and constraints (3) state that each class k

has at least one node t with such label. 

Once the optimization problem is solved, the S-ORCT predicts

the class of a new unlabeled observation with predictor vector x

with a probabilistic rule, namely, we estimate the probability of

being in class k as 
∑ 

t∈ τL 
C kt · P x t ( a , μ) . If a deterministic classifica-

tion rule is sought, we allocate to the most probable class. More-

over, if prior probabilities �k ( x ) are given, one can also use the

Bayes rule. 

ORCTs were also shown to deal effectively with controlling the

correct classification rate on different classes. This idea can also

be applied to S-ORCTs. Hence, given the classes k = 1 , . . . , K to be

controlled and their corresponding desired performances ρk , the

expectation of achieving each performance guarantee can be com-

puted with the ORCT parameters, provided that the following set

of constraints is added to the model: ∑ 

i ∈ I k 

∑ 

t∈ τL 

P it ( a , μ) C kt ≥ ρk | I k | , k = 1 , . . . , K. (8)

With these constraints we have a direct control on the classi-

fication performance in each class separately. This is useful when

dealing with imbalanced data sets. 

2.3. A smooth reformulation 

Problem (1) –(6) is non-smooth due to the norms ‖ · ‖ 1 and

‖ · ‖ ∞ 

appearing in the objective function. A smooth version is eas-

ily obtained by rewritting both regularization terms using new de-

cision variables. Since the first regularization term includes abso-

lute values, ∥∥a j·
∥∥

1 
= 

∑ 

t∈ τB 

∣∣a jt ∣∣, j = 1 , . . . , p, 

decision variables a jt ∈ [ −1 , 1 ] , j = 1 , . . . , p, t ∈ τB , are split into

their positive and negative counterparts a + 
jt 
, a −

jt 
∈ [ 0 , 1 ] , j =

1 , . . . , p, t ∈ τB , respectively, holding a jt = a + 
jt 

− a −
jt 

and 

∣∣a jt ∣∣ =
a + 

jt 
+ a −

jt 
. Similarly, we denote a 

+ = 

(
a + 

jt 

)
j=1 , ... ,p, t∈ τB 

and a 

− =(
a −

jt 

)
j=1 , ... ,p, t∈ τB 

. Regarding the second regularization term, new

decision variables β j ∈ [0, 1] are needed: ∥∥a j·
∥∥

∞ 

= max 
t∈ τB 

∣∣a jt ∣∣ = β j ∈ [ 0 , 1 ] , j = 1 , . . . , p, 

and have to force β j ≥
∣∣a jt ∣∣ = a + 

jt 
+ a −

jt 
, j = 1 , . . . , p, t ∈ τB . 

We can now formulate S-ORCT as a smooth problem, thus

solvable with standard continuous optimization solvers, as done

in our computational section. Indeed, we have that (1) –(6) is
quivalent to 

in g 
(
a 

+ − a 

−, μ, C 
)

+ λL 

p ∑ 

j=1 

∑ 

t∈ τB 

(
a + 

jt 
+ a −

jt 

)
+ λG 

p ∑ 

j=1 

β j (9)

.t. 

K ∑ 

k =1 

C kt = 1 , t ∈ τL , (10)

∑ 

t∈ τL 

C kt ≥ 1 , k = 1 , . . . , K, (11)

j ≥ a + 
jt 

+ a −
jt 
, j = 1 , . . . , p, (12)

 

+ 
jt 
, a −

jt 
∈ [ 0 , 1 ] , j = 1 , . . . , p, t ∈ τB , (13)

j ∈ [ 0 , 1 ] , j = 1 , . . . , p, (14)

t ∈ [ −1 , 1 ] , t ∈ τB , (15)

 kt ∈ [ 0 , 1 ] , k = 1 , . . . , K, t ∈ τL . (16)

Observe that, if we are only concerned about global sparsity,

nd thus we set λL = 0 , the rewriting of the decision variables

 jt , j = 1 , . . . , p, t ∈ τB is no longer necessary and (4) replaces

13) , and (12) turns into 

j ≥ a jt , j = 1 , . . . , p, t ∈ τB , (17)

j ≥ −a jt , j = 1 , . . . , p, t ∈ τB . (18)

. Theoretical properties 

This section discusses some theoretical properties enjoyed by

he S-ORCT. Let us consider the objective function of (1) –(6) . When

aking λL and λG large enough, the first term related to the per-

ormance of the classifier becomes negligible and therefore a will

hrink to 0 . The tree with a = 0 is the sparsest possible tree though

ot the best promising one from the accuracy point of view, since

one of the predictor variables is used to classify. In this case, the

robability of an individual with predictor variables x being as-

igned to class k is independent of x , and nothing more than the

istribution of classes is available. In this section, we derive upper

ounds for the sparsity parameters, λL and λG , in the sense that

bove these bounds the sparsest tree (with a 

∗ = 0 ) is a stationary

oint of the S-ORCT, that is, there exists ( a 

∗ = 0 , μ∗, C ∗) such that

he necessary optimality condition with respect to a is satisfied.

his is done in Theorems 2 and 3 . 

heorem 2. Let σ ∈ [0, 1] . For 

λL ≥( 1 − σ ) max 
μ∈ [ −1 , 1 ] | τB | 
C ∈ { 0 , 1 } K×| τL | 

max 
j=1 , ... ,p 

∥∥∇ a j· g ( 0 , μ, C ) 
∥∥

∞ 

and 

G ≥ σ max 
μ∈ [ −1 , 1 ] | τB | 
C ∈ { 0 , 1 } K×| τL | 

max 
j=1 , ... ,p 

∥∥∇ a j· g ( 0 , μ, C ) 
∥∥

1 
, 

 

∗ = 0 is a stationary point of the S-ORCT. 

roof. Let σ , λL , λG be such that they satisfy the assumptions. 

By Theorem 1 , there exists ( a 

∗, μ∗, C ∗) optimal solution to (1) –

6) satisfying C ∗
kt 

∈ { 0 , 1 } ∀ k = 1 , . . . , K, t ∈ τL . In the following we
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ill show that ( 0 , μ∗, C ∗) is a stationary point of the S-ORCT, i.e.,

∇ a g ( 0 , μ∗, C ∗) ∈ ∂ a 

( 

λL 

p ∑ 

j=1 

∥∥a j·
∥∥

1 
+ λG 

p ∑ 

j=1 

∥∥a j·
∥∥

∞ 

) 

( 0 ) (19) 

here ∂ a is the subdifferential operator. 

For every a j·, j = 1 , . . . , p, we have that 

 a j·

(∥∥a j·
∥∥

1 

)
( 0 ) = B ∞ 

= 

{
q ∈ R 

| τB | : ‖ 

q ‖ ∞ 

≤ 1 

}
∂ a j·

(∥∥a j·
∥∥

∞ 

)
( 0 ) = B 1 = 

{
q ∈ R 

| τB | : ‖ 

q ‖ 1 ≤ 1 

}
. 

ence, 

∇ a j· g ( 0 , μ∗, C ∗) ∈ λL ∂ a j·
(∥∥a j·

∥∥
1 

)
( 0 ) + λG ∂ a j·

(∥∥a j·
∥∥

∞ 

)
( 0 ) , 

f, and only if, 

∇ a j· g ( 0 , μ∗, C ∗) ∈ λL 
B ∞ 

+ λG 
B 1 , 

f, and only if, there exist q L 
j 
, q G 

j 
∈ R 

| τB | such that 

q 

L 
j 

∥∥
∞ 

≤ 1 , 

q 

G 
j 

∥∥
1 

≤ 1 , 

− ∇ a j· g ( 0 , μ∗, C ∗) = λL q 

L 
j + λG q 

G 
j , 

f, and only if, there exist ˜ q L j , ˜ q G j ∈ R 

| τB | such that 

˜ q 

L 
j 

∥∥
∞ 

≤ λL , 

˜ q 

G 
j 

∥∥
1 

≤ λG , 

− ∇ a j· g ( 0 , μ∗, C ∗) = 

˜ q 

L 
j + ̃

 q 

G 
j . 

et us consider 

˜ q 

L 
j = −( 1 − σ ) ∇ a j· g ( 0 , μ∗, C ∗) , 

˜ 
 

G 
j = − σ ∇ a j· g ( 0 , μ∗, C ∗) , 

nd check that the conditions are satisfied: ∥∥˜ q 

L 
j 

∥∥
∞ 

= ( 1 − σ ) 
∥∥∇ a j· g ( 0 , μ∗, C ∗) 

∥∥
∞ 

≤ ( 1 − σ ) 

max 
μ∈ [ −1 , 1 ] | τB | 
C ∈ { 0 , 1 } K×| τL | 

max 
j=1 , ... ,p 

∥∥∇ a j· g ( 0 , μ, C ) 
∥∥

∞ 

≤ λL , 

∥∥˜ q 

G 
j 

∥∥
1 

= σ
∥∥∇ a j· g ( 0 , μ∗, C ∗) 

∥∥
1 

≤ σ

max 
μ∈ [ −1 , 1 ] | τB | 
C ∈ { 0 , 1 } K×| τL | 

max 
j=1 , ... ,p 

∥∥∇ a j· g ( 0 , μ, C ) 
∥∥

1 
≤ λG , 

˜ 
 

L 
j + ̃

 q 

G 
j = −( 1 − σ ) ∇ a j· g ( 0 , μ∗, C ∗) − σ∇ a j· g ( 0 , μ∗, C ∗) 

= −∇ a j· g ( 0 , μ∗, C ∗) . 

herefore, the desired result follows. �

A stronger result is proven for the S-ORCT of depth D = 1 and

 = 2 . Since local and global sparsity are equivalent for the S-ORCT

f depth D = 1 , without loss of generality, we can assume that
G = 0 . Therefore, the objective function of the S-ORCT of depth

 = 1 can be written as: 

 1 ( a ·1 , μ1 , C ) = g ( a ·1 , μ1 , C ) + λL ‖ 

a ·1 ‖ 1 , 

here 

 ( a ·1 , μ1 , C ) = 

1 

N 

N ∑ 

i =1 

[ 

p i 1 ( a ·1 , μ1 ) 

2 ∑ 

k =1 

W y i k 
C k 2 

+ ( 1 − p i 1 ( a ·1 , μ1 ) ) 

2 ∑ 

k =1 

W y i k 
C k 3 

] 
= 

1 

N 

2 ∑ 

k =1 

∑ 

i ∈ I k 

[ 

p i 1 ( a ·1 , μ1 ) 
∑ 

k ′ � = k 
W kk ′ C k ′ 2 

+ ( 1 − p i 1 ( a ·1 , μ1 ) ) 
∑ 

k ′ � = k 
W kk ′ C k ′ 3 

] 

(20) 

nd 

p i 1 ( a ·1 , μ1 ) = F 

(
1 

p 
a 

T 
·1 x i − μ1 

)
, i = 1 , . . . , N. 

A technical lemma is needed to prove the desired result. 

emma 1. For any allocation rule C , the objective function of the S-

RCT of depth D = 1 , g 1 , is monotonic in μ1 when a ·1 = 0 . 

roof. Fixed a ·1 = 

(
a j1 

)
j=1 , ... ,p 

, and C = ( C kt ) k =1 , 2 , t=2 , 3 , 

∂g 1 
∂μ1 

∣∣∣∣
a ·1 = 0 

= 

1 

N 

K ∑ 

k =1 

∑ 

i ∈ I k 

( ∑ 

k ′ � = k 
W kk ′ C k ′ 2 

−
∑ 

k ′ � = k 
W kk ′ C k ′ 3 

) 

∂ p i 1 ( a ·1 , μ1 ) 

∂μ1 

∣∣∣∣
a ·1 = 0 

, 

here 

∂ p i 1 ( a ·1 , μ1 ) 

∂μ1 

= 

∂F 

(
1 

p 
a 

T 
·1 x i − μ1 

)
∂ 
(

1 

p 
a 

T 
·1 x i − μ1 

) ∂ 
(

1 

p 
a 

T 
·1 x i − μ1 

)
∂μ1 

= − f 

(
1 

p 
a 

T 
·1 x i − μ1 

)
, i = 1 , . . . , N, 

nd 

∂ p i 1 ( a ·1 , μ1 ) 

∂μ1 

∣∣∣∣
a ·1 = 0 

= − f ( −μ1 ) , i = 1 , . . . , N. 

hus, 

∂g 1 ( a ·1 , μ1 , C ) 

∂μ1 

∣∣∣∣
a ·1 = 0 

= 

1 

N 

f ( −μ1 ) 

( ∑ 

i ∈ I 1 
W 12 ( C 23 − C 22 ) 

+ 

∑ 

i ∈ I 2 
W 21 ( C 13 − C 12 ) 

) 

= 

1 

N 

f ( −μ1 ) ( W 12 ( C 23 − C 22 ) | I 1 | 
+ W 21 ( 1 − C 23 − 1 + C 22 ) | I 2 | ) 

= 

1 

N 

f ( −μ1 ) ( C 23 − C 22 ) ( W 12 | I 1 | − W 21 | I 2 | ) . 
ince f is a probability density function, the expression

∂g 1 ( a ·1 , μ1 , C ) 

∂μ1 

∣∣∣∣
a ·1 = 0 

will always have the same sign for any

alue of μ1 and the desired result follows. �

heorem 3. For 

L ≥ 1 

N 

max 
j=1 , ... ,p 

∣∣∣∣∣−W 21 

∑ 

i ∈ I 2 
x i j + W 12 

∑ 

i ∈ I 1 
x i j 

∣∣∣∣∣ max 
μ1 ∈ { −1 , 1 } 

f ( μ1 ) , (21) 

 

∗
·1 = 0 is a stationary point of the S-ORCT of depth D = 1 . 

roof. Using the monotonicity of μ1 proven in Lemma 1 and

heorem 2 with σ = 0 , we have that for 

L ≥ max 
μ1 ∈ { −1 , 1 } 
C ∈ { 0 , 1 } 2 ×2 

max 
j=1 , ... ,p 

∣∣∇ a j1 g ( 0 , μ1 , C ) 
∣∣
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s  

t  
= max 
μ1 ∈ { −1 , 1 } 
C ∈ { 0 , 1 } 2 ×2 

‖ 

∇ a ·1 g ( 0 , μ1 , C ) ‖ ∞ 

, (22)

where g is as in (20) , a 

∗
·1 = 0 is a stationary point of thr S-ORCT.

The remainder of the proof is devoted to rewriting (22) as in (21) . 

We proceed with the calculation of the gradient. 

For j = 1 , . . . , p: 

∂g ( 0 , μ1 , C ) 

∂a j1 
= 

∂g ( a ·1 , μ1 , C ) 

∂a j1 

∣∣∣∣
a ·1 = 0 

= 

1 

N 

2 ∑ 

k =1 

∑ 

i ∈ I k 

( ∑ 

k ′ � = k 
W kk ′ C k ′ 2 

−
∑ 

k ′ � = k 
W kk ′ C k ′ 3 

) 

∂ p i 1 ( a ·1 , μ1 ) 

∂a j1 

∣∣∣∣
a ·1 = 0 

, 

where 

∂ p i 1 ( a ·1 , μ1 ) 

∂a j1 
= 

∂F 

(
1 

p 
a 

T 
1 x i − μ1 

)
∂ 
(

1 

p 
a 

T 
1 

x i − μ1 

) ∂ 
(

1 

p 
a 

T 
1 x i − μ1 

)
∂a j1 

= 

x i j 

p 
f 

(
1 

p 
a 

T 
1 x i − μ1 

)
, i = 1 , . . . , N. 

and 

∂ p i 1 ( a ·1 , μ1 ) 

∂a j1 

∣∣∣∣
a ·1 = 0 

= 

x i j 

p 
f ( −μ1 ) , i = 1 , . . . , N. 

Thus, 

∂g ( 0 , μ1 , C ) 

∂a j1 
= 

1 

Np 
f ( −μ1 ) 

( 

W 12 

∑ 

i ∈ I 1 
x i j ( C 22 − C 23 ) 

+ W 21 

∑ 

i ∈ I 2 
x i j ( C 12 − C 13 ) 

) 

. 

Now, we look for the maximum λL among every possible allo-

cation of the decision variables C , i.e.: 

λL 
μ1 

= max 
C ∈ { 0 , 1 } 2 ×2 

‖ 

∇ a ·1 g ( 0 , μ1 , C ) ‖ ∞ 

= max 
C ∈ { 0 , 1 } 4 ×1 

‖ D C ‖ ∞ 

, 

where 

D = 

1 

Np 
f ( −μ1 ) 

×

⎛ 

⎝ 

−W 21 

∑ 

i ∈ I 2 x i 1 W 21 

∑ 

i ∈ I 2 x i 1 −W 12 

∑ 

i ∈ I 1 x i 1 W 12 

∑ 

i ∈ I 1 x i 1 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
−W 21 

∑ 

i ∈ I 2 x ip W 21 

∑ 

i ∈ I 2 x ip −W 12 

∑ 

i ∈ I 1 x ip W 12 

∑ 

i ∈ I 1 x ip 

⎞ 

⎠ 

and C = ( C 12 , C 13 , C 22 , C 23 ) 
T . 

max 
 ∈ { 0 , 1 } 4 ×1 

‖ D C ‖ ∞ 

= max 
C ∈ { 0 , 1 } 4 ×1 

max 
{| d T 1 C | , . . . , | d T p C | 

}
= max 

C ∈ { 0 , 1 } 4 ×1 
max 

{
d T 1 C , −d T 1 C , . . . , d 

T 
p C , −d T p C 

}
= max 

{
max 

C ∈ { 0 , 1 } 4 ×1 
d T 1 C , max 

C ∈ { 0 , 1 } 4 ×1 
−d T 1 C , . . . , 

max 
C ∈ { 0 , 1 } 4 ×1 

d T p C , max 
C ∈ { 0 , 1 } 4 ×1 

−d T p C 

}
. 

A finite number of transportation problems is to be solved, with

the form: 

z = max 
C ∈ { 0 , 1 } 4 ×1 

{
±d T j C 

}
s.t. C 12 + C 22 = 1 

C 13 + C 23 = 1 

C 12 + C 13 ≥ 1 
C 22 + C 23 ≥ 1 , 

or which the integrality property holds. Then, we only have as

ossible solutions: C = ( 1 , 0 , 0 , 1 ) T or C = ( 0 , 1 , 1 , 0 ) T . Thus, the

ptimal objective is obtained as follows: 

 opt = max 

{ 

±d T j C 
∣∣

C = ( 1 , 0 , 0 , 1 ) T , ±d T j C 
∣∣

C = ( 0 , 1 , 1 , 0 ) T 
} 

= max 

{ 

1 

Np 
f ( −μ1 ) 

( 

−W 21 

∑ 

i ∈ I 2 
x i j + W 12 

∑ 

i ∈ I 1 
x i j 

) 

, 

1 

Np 
f ( −μ1 ) 

( 

W 21 

∑ 

i ∈ I 2 
x i j − W 12 

∑ 

i ∈ I 1 
x i j 

) } 

= 

1 

Np 
f ( −μ1 ) 

∣∣∣∣∣−W 21 

∑ 

i ∈ I 2 
x i j + W 12 

∑ 

i ∈ I 1 
x i j 

∣∣∣∣∣. 
Let us define 

L 
μ1 

= 

1 

Np 
f ( −μ1 ) max 

j=1 , ... ,p 

∣∣∣∣∣−W 21 

∑ 

i ∈ I 2 
x i j + W 12 

∑ 

i ∈ I 1 
x i j 

∣∣∣∣∣, 
nd the result holds when 

L ≥ max 
{
λL 

μ1 = −1 , λ
L 
μ1 =1 

}
. �

. Computational experience 

.1. Introduction 

The aim of this section is to illustrate the performance of our

parse optimal randomized classification trees S-ORCT’s. We have

un our model for a grid of values of the sparsity regularization

arameters λL and λG . The message that can be drawn from our

xperimental experience is twofold. First, we show empirically that

ur S-ORCT can gain in both local and global sparsity, without

arming classification accuracy. Second, we benchmark our ap-

roach against CART, the classic approach to build decision trees,

hich considers orthogonal cuts and therefore has the best possi-

le local sparsity. We show that we are able to trade in some of

ur classification accuracy, still being superior to CART, to be com-

arable to CART in terms of global sparsity. 

The S-ORCT smooth formulation (9) –(16) has been imple-

ented using Pyomo optimization modeling language ( Hart et al.,

017; Hart, Watson, & Woodruff, 2011 ) in Python 3.5 ( Python Core

eam, 2015 ). As solver, we have used IPOPT 3.11.1 ( Wächter &

iegler, 2006 ), and have followed a multistart approach, where the

rocess is repeated 20 times starting from different random initial

olutions. For CART, the implementation in the rpart R package

 Therneau & Atkinson, 2019 ) is used. Our experiments have been

onducted on a PC, with an Intel R ©Core TM i7-2600 CPU 3.40 giga-

ertz processor and 16 gigabytes RAM. The operating system is 64

its. 

The remainder of the section is structured as follows.

ection 4.2 gives details on the procedure followed to test S-ORCT.

n Sections 4.3 and 4.4 , respectively, we discuss the results for local

nd global sparsities separately, while in Section 4.5 we present re-

ults when both sparsities are simultaneously taken into account.

inally, Section 4.6 statistically compares S-ORCT versus CART in

erms of classification accuracy and global sparsity. 

.2. Setup 

An assorted collection of well-known real data sets from the

CI Machine Learning Repository ( Lichman, 2013 ) has been cho-

en for the computational experiments. Table 1 lists their names

ogether with their number of observations, number of predictor
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Table 1 

Information about the data sets considered. 

Data set Abbrev. N p K Class distribution 

Monks-problems-3 Monks-3 122 11 2 51–49% 

Monks-problems-1 Monks-1 124 11 2 50–50% 

Monks-problems-2 Monks-2 169 11 2 62–38% 

Connectionist-bench- 

sonar 

Sonar 208 60 2 55–45% 

Ionosphere Ionosphere 351 34 2 64–36% 

Breast-cancer- 

Wisconsin 

Wisconsin 569 30 2 63–37% 

Credit-approval Creditapproval 653 37 2 55–45% 

Pima-indians-diabetes Pima 768 8 2 65–35% 

Statlog-project- 

German-credit 

Germancredit 1000 48 2 70–30% 

Banknote- 

authentification 

Banknote 1372 4 2 56–44% 

Ozone-level-detection- 

one 

Ozone 1848 72 2 97–3% 

Spambase Spam 4601 57 2 61–39% 

Iris Iris 150 4 3 33.3–33.3–33.3% 

Wine Wine 178 13 3 40–33–27% 

Seeds Seeds 210 7 3 33.3–33.3–33.3% 

Balance-scale Balance 625 16 3 46–46–8% 

Thyroid-disease-ann- 

thyroid 

Thyroid 3772 21 3 92.5–5–2.5% 

Car-evaluation Car 1728 15 4 70–22–4–4% 
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ariables and number of classes with the corresponding class dis-

ribution. In our pursuit of building small and, therefore, less com-

lex trees, the construction of S-ORCTs has been restricted to depth

 = 1 for two-class problems and depth D = 2 for three- and four-

lass problems. 

Each data set has been split into two subsets: the training sub-

et (75%) and the test subset (25%). The corresponding S-ORCT is

uilt on the training subset and, then, accuracy, local and global

parsities are measured. The out-of-sample accuracy over the test

ubset is denoted by acc . Local sparsity is denoted by δL and

eads as the average percentage of predictor variables not used per

ranch node: 

L = 

1 

| τB | 
∑ 

t∈ τB 

∣∣{a jt = 0 , j = 1 , . . . , p 
}∣∣

p 
× 100 . 

lobal sparsity, δG , is measured as the percentage of predictor vari-

bles not used at any of the branch nodes, i.e., across the whole

ree: 

G = 

∣∣{a j· = 0 , j = 1 , . . . , p 
}∣∣

p 
× 100 . 

ote that when D = 1 , local and global sparsity are measuring

he same since there is a single cut across the whole tree. The

raining/testing procedure has been repeated ten times in order to

void the effect of the initial split of the data. The results shown

n the tables represent the average of such ten runs to each of the

hree performance criteria. 

In what follows, we describe the choices made for the param-

ters in S-ORCT. Equal misclassification weights, W y i k 
= 0 . 5 , k =

 , . . . , K, k � = y i , have been used for the experiments. We have

dded the set of constraints (8) with ρk = 0 . 1 , k = 1 , . . . , K. The lo-

istic CDF has been chosen for our experiments: 

 ( ·) = 

1 

1 + exp ( −( ·) γ ) 
, 

ith a large value of γ , namely, γ = 512 . The larger the value of γ ,

he closer the decision rule defined by F is to a deterministic rule.

e will illustrate that a small level of randomization is enough for

btaining good results. We have trained S-ORCT, as formulated in

9) –(16) , for 17 × 17 pairs of values for ( λL , λG ) starting from λL = 0
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Table 3 

Results for the local S-ORCT of depth D = 2 as a function of λL , where δL represents the average 

percentage of predictor variables not used per branch node in the tree over the ten runs and acc , 

the average out-of-sample accuracy. 

λL 

Iris Wine Seeds Balance Thyroid Car 

δL acc δL acc δL acc δL acc δL acc δL acc 

0 8 95.9 15 96.6 10 94.4 33 96.6 57 92.8 20 92.7 

2 −12 42 95.9 51 98.6 33 93.8 58 92.0 61 92.7 36 91.5 

2 −11 42 95.9 54 98.4 38 93.8 60 91.1 59 92.9 33 91.9 

2 −10 42 96.2 54 97.3 38 94.0 65 91.0 64 92.6 36 91.5 

2 −9 42 95.9 56 97.5 43 93.8 67 91.2 62 92.7 36 91.4 

2 −8 42 95.9 56 96.8 48 93.2 60 91.9 65 92.5 36 91.4 

2 −7 42 95.9 59 96.8 48 91.3 60 91.7 70 92.1 36 91.3 

2 −6 42 95.9 59 96.8 52 94.0 65 92.2 72 92.1 38 91.6 

2 −5 42 95.4 59 96.8 52 94.4 58 92.6 74 92.2 40 91.3 

2 −4 42 95.9 59 97.3 57 93.8 58 92.4 79 92.2 42 91.1 

2 −3 42 93.2 62 97.5 67 94.6 63 91.1 83 92.1 40 91.7 

2 −2 50 89.7 62 97.7 67 94.4 65 90.6 87 92.3 47 90.4 

2 −1 50 92.7 64 98.2 71 93.6 67 89.2 90 92.0 51 90.2 

2 0 58 90.0 69 96.8 76 93.6 71 88.1 91 91.9 64 87.6 

2 1 67 90.5 77 95.2 81 90.2 75 87.2 92 92.0 71 85.4 

2 2 75 91.1 82 89.5 81 88.5 77 82.6 95 91.8 80 80.8 

2 3 83 88.6 90 76.4 91 73.6 83 77.3 100 92.2 91 68.2 
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followed by the grid 

{
2 r 

p | τB | , −12 ≤ r ≤ 3 , r ∈ Z 

}
, and, similarly,

λG = 0 followed by the grid 

{
2 r 

p 
, −12 ≤ r ≤ 3 , r ∈ Z 

}
. We start

solving the optimization problem with 

(
λL , λG 

)
= ( 0 , 0 ) , where the

multistart approach uses 20 random initial solutions. We continue

solving the optimization problem for λL = 0 but with larger values

of λG . Once all values of λG are executed, we start the process all

over again with the next value of λL in the grid. For pair ( λL , λG ),

we feed the corresponding optimization problem with the 20 solu-

tions resulting from the problem solved for the previous pair. For

a given initial solution, the computing time taken by the S-ORCT

typically ranges from 0.33 seconds (in Monks-1) to 22.27 seconds

(in Thyroid). 

For CART, the default parameter setting in rpart is used. 

4.3. Results for local sparsity 

Tables 2 and 3 present the results of the so-called local S-ORCT,

i.e., when λG = 0 and thus only local sparsity is taken into account.
Table 4 

Results for the global S-ORCT of depth D = 2 as a fu

percentage of predictor variables not used per tree

sample accuracy. 

λG 

Iris Wine Seeds 

δG acc δG acc δG acc 

0 0 95.9 0 96.6 0 94.4 

2 −12 0 96.2 18 97.7 0 94.0 

2 −11 0 96.2 15 97.5 0 93.8 

2 −10 0 96.2 15 97.5 0 94.0 

2 −9 0 95.9 15 97.3 0 93.8 

2 −8 0 95.9 15 97.7 0 93.8 

2 −7 0 95.9 15 97.9 14 94.6 

2 −6 0 95.4 15 98.2 14 95.4 

2 −5 2 95.7 15 98.2 14 95.4 

2 −4 0 95.4 15 98.4 14 94.6 

2 −3 0 95.7 23 98.4 29 93.6 

2 −2 25 95.4 23 97.9 29 95.2 

2 −1 25 95.7 31 96.6 29 94.2 

2 0 50 96.2 39 95.7 43 92.5 

2 1 50 96.2 46 94.3 57 90.2 

2 2 50 96.5 62 93.6 71 85.8 

2 3 75 96.2 85 71.1 86 72.5 
igs. 2 and 3 depict these results per data set, by showing simulta-

eously δL (blue solid line) and acc (red dashed line) as a function

f the grid of the λL ’s considered. As expected, the larger the λL ,

he larger the δL . The sparsest tree is shown in most of the data

ets for large values of the parameter λL , where the best solution

n terms of sparsity is obtained but the worst possible one in terms

f accuracy. In terms of accuracy, the best rates are sometimes

chieved when not all the predictor variables are included in the

odel. For instance, best performance is reached when sparsity is

bout 9–25% for Pima, the 30% for Monks-1, the 32% for Monks-2,

he 44% for Germancredit, the 47% for Car, the 52–56% for Thyroid,

he 54% for Monks-3, the 55–60% for Iris, the 72–90% for Sonar,

he 81% for both Wine and Seeds and the 87% for Ionosphere. We

ighlight the Creditapproval data set, on which one single predic-

or variable can already guarantee very good accuracy. For Ozone,

ccuracy remains over the 96% for the grid of λL ’s considered. Ac-

uracy might be slightly damaged but a great gain in sparsity is

btained. This is the case for Banknote, Spam, Balance or Wiscon-

in, which present a loss of accuracy lower than the 1 percentage

oint (p.p.), 4 p.p., 6 p.p. and 1 p.p. but 25%, 52%, 63% and 85% of

ocal sparsity is reached, respectively. 
nction of λG , where δG represents the average 

 over ten runs and acc , the average out-of- 

Balance Thyroid Car 

δG acc δG acc δG acc 

0 96.6 1 92.8 0 92.7 

0 96.7 3 93.0 0 93.4 

0 95.4 5 93.9 0 93.7 

0 95.9 5 93.9 0 94.1 

0 96.7 7 94.0 0 94.0 

0 96.2 12 94.1 0 94.7 

0 95.8 17 94.0 0 95.0 

0 96.1 26 94.0 0 94.9 

0 96.7 40 93.9 0 94.9 

0 96.5 57 93.8 0 94.7 

0 94.7 65 93.5 7 94.6 

0 91.1 73 91.5 7 94.1 

19 87.4 81 90.6 13 92.2 

25 87.0 83 90.0 27 86.7 

44 80.5 87 92.4 47 79.8 

56 71.3 95 91.7 73 68.2 

94 48.8 100 92.2 80 68.2 
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Fig. 2. Graphical representation, for each data set, of the average percentage of predictor variables per branch node, δL , together with the average out-of-sample accuracy 

obtained, acc , as a function of the values of λL considered in the local S-ORCT construction. (For interpretation of the references to color in this figure, the reader is referred 

to the web version of this article.). 
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Fig. 3. Graphical representation, for each data set, of the average percentage of predictor variables per branch node, δL , together with the average out-of-sample accuracy 

obtained, acc , as a function of the values of λL considered in the local S-ORCT construction. (For interpretation of the references to color in this figure, the reader is referred 

to the web version of this article.). 

Fig. 4. Graphical representation, for each data set, of the average percentage of predictor variables per tree, δG , together with the average out-of-sample accuracy obtained, 

acc , as a function of the values of λG considered in the global S-ORCT construction. (For interpretation of the references to color in this figure, the reader is referred to the 

web version of this article. 
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Fig. 5. Heatmaps representation, for each data set, of the average out-of-sample accuracy, acc , the average percentage of predictor variables not used per branch node, δL , 

and the average percentage of predictor variables not used per tree, δG , respectively, as a funcion of the grid of the sparsity parameters, λL and λG , considered in the S-ORCT 

of depth D = 2 construction. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.. 
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Fig. 5. Continued 
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4.4. Results for global sparsity 

This section is devoted to the global S-ORCT, i.e., when λL = 0

and thus only global sparsity is taken into account. We focus on

depth D = 2 , since for D = 1 global sparsity is equal to local spar-

sity. Similarly to Section 4.3 and Table 4 presents the results of

the global S-ORCT, while Fig. 4 visualizes these results by show-

ing simultaneously, per data set, δG (blue solid line) and acc (red

dashed line) as a function of the grid of the λG ’s considered. As

for local sparsity, as λG grows, δG increases. For Iris and Seeds, a

similar classification accuracy to that with all of the predictor vari-

ables is obtained while removing the 75% and 29% of them, re-

spectively. For Wine, the best rates of accuracy are obtained with

15–23% of global sparsity. A loss of less than 10 p.p. of accuracy

is observed for Balance but 25% of predictor variables are not be-

ing used, respectively. Car remains around the accuracy rate of 80%

while using half of the predictor variables. Thyroid, an imbalanced

data set, is over the 90% of accuracy for the whole grid of λG ’s

considered. 

4.5. Results for local and global sparsity 

In this section, results enforcing local and global sparsity are

presented by means of heatmaps, as seen in Fig. 5 . The experi-

ment has been conducted on data sets of K = 3 and 4 classes, for

which S-ORCTs of depth D = 2 are built. For each dataset, three

heatmaps are depicted as a function of the grid of the sparsity

regularization parameters, λL and λG : the average out-of-sample

accuracy, acc , and the local and global sparsities, δL and δG , re-

spectively, obtained over the ten runs performed. The color bar of

each heatmap goes from light green to dark blue, being the latter

the maximum accuracy, local sparsity or global sparsity achieved,

respectively. As a general behavior, the best rates of accuracy are

not always achieved only for 
(
λL , λG 

)
= ( 0 , 0 ) , but also for other
airs of the chosen grid, i.e., the data set remains equally well ex-

lained while needing less information. As before, according to lo-

al sparsity, for a fixed λG , δL has a growing trend. A similar behav-

or is observed for δG when λL is fixed. It is also worth mentioning

hat small changes of λL quickly lead to a gain in δL . Neverthe-

ess, as expected, the gain in δG is slower for the same range in
G . 

.6. Comparison S-ORCT versus CART 

A statistical comparison between the proposed S-ORCT and

ART, the classic approach to build decision trees, is provided in

his section. As stated in the introduction of the paper, CARTs, as

any other approaches that implement orthogonal cuts ( Bertsimas

 Dunn, 2017; Firat et al., 2019; Günlük et al., 2019 ), are lead-

rs in terms of local sparsity. Thus, the comparison S-ORCT ver-

us CART is performed in terms of accuracy and global spar-

ity. Tables 2 and 4 for S-ORCT have been considered for the

xperiment. 

CART has been trained and tested over the same ten runs as S-

RCT. For each pair S-ORCT( λG ) versus CART, two hypothesis tests

or the equality of means of paired samples were carried out, one

or accuracy and another for global sparsity, assuming normality,

t a 5% significance level. For this task, the t.test function in R

as been used. Fig. 6 depicts, for each data set, the resulting con-

dence intervals (blue solid line) at the 95% confidence level for

he difference in average accuracy (on the left) and global spar-

ity (on the right) between S-ORCT( λG ) and CART. The red dashed

orizontal line represents the null hypothesis in each case. Ex-

ept for Creditapproval and Thyroid, for the smaller values of λG ,

ur approach is significantly better than, or at least comparable

o, CART in terms of accuracy, while CART is significantly better

han, or at least comparable to, in terms of global sparsity. For

he larger values of λG , our approach starts to be comparable and
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Fig. 6. Graphical representation, for each data set, of the confidence intervals (blue solid line) at the 95% for the difference in average accuracy (on the left) and global 

sparsity (on the right) between S-ORCT( λG ) and CART. The red dashed horizontal line represents the null hypothesis in each case. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.. 
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Fig. 6. Continued 
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Fig. 6. Continued 
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Fig. 6. Continued 
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Fig. 6. Continued 
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hen dominate CART in terms of global sparsity at the cost of

ccuracy. 

. Conclusions and future research 

Recently, several proposals focused on building optimal classi-

cation trees are found in the literature to address the shortcom-

ngs of the classic greedy approaches. In this paper, we have pro-

osed a novel continuous optimization-based approach, the Sparse

ptimal Randomized Classification Tree (S-ORCT), in which a com-

romise between good classification accuracy and sparsity is pur-

ued. Local and global sparsity in the tree are modeled by includ-

ng in the objective function norm-like regularizations, namely, � 1 
nd � ∞ 

, respectively. Our numerical results illustrate that our ap-

roach can improve both sparsities without harming classification

ccuracy. Unlike CART, we are able to easily trade in some of our

lassification accuracy for a gain in global sparsity. 

Some extensions of our approach are of interest. First, this

etholodogy can be extended straightaway to a regression tree

ounterpart, where the response variable is continuous. Second,

ategorical data is addressed in this paper through the inclusion of

ummy predictor variables. For a given categorical predictor vari-

ble, and by means of an � ∞ 

-norm regularization, one can link

ll its dummies across all the branch nodes in the tree, with the

im of better modeling its contribution to the classifier. Third, it is

nown that bagging trees tends to enhance accuracy. An appropi-

te bagging scheme of our approach, where sparsity is a key point,

s a nontrivial design question. 
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