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1. Introduction

Decision trees (Yang, Liu, Tsoka, & Papageorgiou, 2017) are
a popular non-parametric tool for Classification and Regression
in Statistics and Machine Learning (Hastie, Tibshirani, & Fried-
man, 2009). Since they are rule-based, when small-sized, they
are deemed to be leaders in terms of interpretability (Athey,
2018; Baesens, Setiono, Mues, & Vanthienen, 2003; Carrizosa,
Martin-Barragan, & Romero Morales, 2011; Freitas, 2014; Good-
man & Flaxman, 2017; Jung, Concannon, Shroff, Goel, & Goldstein,
2017; Martens, Baesens, Van Gestel, & Vanthienen, 2007; Martin-
Barragan, Lillo, & Romo, 2014; Ridgeway, 2013; Ustun & Rudin,
2016).

It is well-known that the problem of building optimal decision
trees is NP-complete (Hyafil & Rivest, 1976). For this reason, classic
decision trees have been traditionally designed using greedy
procedures in which at each branch node of the tree, some purity
criterion is (locally) optimized. For instance, CARTs (Breiman,
Friedman, Stone, & Olshen, 1984) employ a greedy and recursive
partitioning procedure which is computationally cheap, especially
since orthogonal cuts are implemented, i.e., one single predictor
variable is involved in each branching rule. These rules are of
maximal sparsity at each branching node (excellent local sparsity),
making classic decision trees locally easy to interpret. However,
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when deep, they become to be harder to interpret since many
predictor variables are, in general, involved across all branching
rules (not so good global sparsity).

Addressing global sparsity is a challenge in decision trees and,
to the best of our knowledge, this has not been tackled appropri-
ately in the literature. Standard CARTs or Random Forests (RFs)
(Biau & Scornet, 2016; Breiman, 2001; Fernandez-Delgado, Cer-
nadas, Barro, & Amorim, 2014; Genuer, Poggi, Tuleau-Malot, &
Villa-Vialaneix, 2017) cannot manage it due to the greedy construc-
tion of the trees. Nonetheless, some attempts have been made, see
Deng and Runger (2012, 2013). Classic decision trees usually se-
lect their orthogonal cuts at each branch node by optimizing an
information theory criterion among all possible predictor variables
and thresholds. The regularization framework in Deng and Runger
(2012) considers a penalty to this criterion for predictor variables
that have not appeared yet in the tree. This approach is refined in
Deng and Runger (2013), by also including the importance scores
of the predictor variables, obtained in a preprocessing step running
a preliminary RF.

The mainstream trend of using a greedy strategy in the
construction of decision trees may lead to myopic decisions,
which, in turn, may affect the overall learning performance.
The major advances in Mathematical Optimization (Carrizosa &
Romero Morales, 2013; Olafsson, Li, & Wu, 2008; Silva, 2017) have
led to different approaches to build decision trees with some
overall optimality criterion, called hereafter optimal classification
trees. It is worth mentioning recent proposals which grow optimal
classification trees of a pre-established depth, both deterministic
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(Bertsimas & Dunn, 2017; Firat, Crognier, Gabor, Hurkens, & Zhang,
2019; Giinliik, Kalagnanam, Menickelly, & Scheinberg, 2019; Ver-
wer & Zhang, 2017; Verwer, Zhang, & Ye, 2017) and randomized
(Blanquero, Carrizosa, Molero-Rio, & Romero Morales, 2018). The
deterministic approaches formulate the problem of building the
tree as a mixed-integer linear optimization problem. Such ap-
proach is the most natural, since many discrete decisions are to
be made when building a decision tree. Although the results of
such optimal classification trees are encouraging, the inclusion of
integer decision variables makes the computing times explode,
giving rise to models trained over a small subsample of the data
set (Giinliik et al., 2019) and, as customary, with a CPU time limit
being imposed to the optimization solver. On the other hand, a
continuous optimization-based approach to build optimal random-
ized classification trees is proposed in Blanquero et al. (2018). This
is achieved by replacing the yes/no decisions in traditional trees
by probabilistic decisions, i.e., instead of deciding at each branch
node if an individual goes either to the left or to the right child
node in the tree, the probability of going to the left is sought.
The numerical results in Blanquero et al. (2018) illustrate the good
performance achieved in very short time. All these optimization-
based approaches are flexible enough to address critical issues that
the greedy nature of classic decision trees would find it difficult,
such as preferences on the classification performance in some
class where misclassifying is more damaging (Blanquero et al.,
2018; Verwer & Zhang, 2017; Verwer et al., 2017), or controlling
the number of predictor variables used along the tree (local and
global sparsity).

Optimal classification trees have been grown with both orthog-
onal (Bertsimas & Dunn, 2017; Firat et al, 2019; Giinliik et al.,
2019) and oblique cuts (Bennett & Blue, 1996; Bertsimas & Dunn,
2017; Blanquero et al.,, 2018; Norouzi, Collins, Johnson, Fleet, &
Kohli, 2015; Verwer & Zhang, 2017; Verwer et al., 2017). Oblique
cuts are more flexible than orthogonal ones since a combination
of several predictor variables is allowed in the branching. Trees
based on oblique cuts lead to similar or even better learning
performance than those based on orthogonal cuts, and, at the
same time, they exhibit a shallow depth, since several orthogonal
cuts may be reduced to one single oblique cut. Apart from the
flexibility that we can borrow from them, many integer decision
variables associated with orthogonal cuts are not present in the
oblique ones, which eases the optimization. Therefore, optimal
classification trees based on oblique cuts require a lower training
computing time while showing much more promising results in
terms of accuracy. However, this comes at the expense of damag-
ing interpretability, since, in principle, all the predictor variables
could appear in each branching rule. In this paper, we tackle this
issue.

We propose a novel optimized classification tree, based on
the methodology in Blanquero et al. (2018) and, therefore, in
oblique cuts, that yields rules/trees that are sparser, and thus en-
hance interpretability. We model this as a continuous optimiza-
tion problem. As in the classic LASSO model (Tibshirani, Wain-
wright, & Hastie, 2015), sparsity is sought by means of regular-
ization terms. We model local sparsity with the ¢;-norm, and the
global sparsity with the ¢,.-norm. The ¢, reguralization has been
applied to other classifiers, for instance, Support Vector Machines
(Maldonado, Bravo, Lopez, & Perez, 2017; Maldonado & Lopez,
2017; Zou & Yuan, 2008), but the ¢; is more popular. A novel
continuous-based approach for building this sparse optimal ran-
domized classification tree is provided. Theoretical results on the
range of the sparsity parameters are shown. Our numerical results,
where well-known real data sets are used, illustrate the efective-
ness of our methodology: sparsity in optimal classification trees
improves without harming learning performance. In addition, our
ability to trade in some of our classification accuracy, still being su-

perior to CART, to be comparable to CART in terms of global spar-
sity is shown.

The remainder of the paper is organized as follows. In
Section 2 we detail the construction of the Sparse Optimal Ran-
domized Classification Tree. Some theoretical properties are given
in Section 3. In Section 4, our numerical experience is reported.
Finally, conclusions and possible lines of future research are pro-
vided in Section 5.

2. Sparsity in optimal randomized classification trees
2.1. Introduction

We assume given a training sample {(%;, yi)} <i<n. Where ¥;
represents the p-dimensional vector of predictor variables of indi-
vidual i, and y; € {1, ..., K} indicates the class membership. With-
out loss of generality, we assume ¥; € [0,1], i=1,...,N.

Sparse Optimal Randomized Classification Trees, addressed in
this paper, extend the Optimal Randomized Classification Trees
(ORCTs) in Blanquero et al. (2018). An ORCT is an optimal bi-
nary classification tree of a given depth D, obtained by minimiz-
ing the expected misclassification cost over the training sample
Fig. 1. shows the structure of an ORCT of depth D = 2. Unlike
classic decision trees, oblique cuts, on which more than one pre-
dictor variable takes part, are performed. ORCTs are modeled by
means of a Non-Linear Continuous Optimization formulation. The
usual deterministic yes/no rule at each branch node is replaced
by a smoother rule: a probabilistic decision rule at each branch
node, induced by a cumulative density function (CDF) F, is ob-
tained. Therefore, the movements in ORCTs can be seen as ran-
domized: at a given branch node of an ORCT, a random variable
will be generated to indicate by which branch an individual has
to continue. Since binary trees are built, the Bernoulli distribution
is appropriate, whose probability of success will be determined
by the value of this CDF, evaluated over the vector of predictor
variables. More precisely, at a given branch node t of the tree,
an individual with predictor variables x will go either to the left
or to the right child nodes with probabilities F(%aﬂx—ut) and
1- F(%aﬂx — ¢), respectively, where a.; and u are decision vari-
ables. For further details on the construction of ORCTs, the reader
is referred to Blanquero et al. (2018). Sparse ORCT, S-ORCT, mini-
mizes the expected misclassification cost over the training sample
regularized with two polyhedral norms.

The following notation is needed:

Parameters
D depth of the binary tree,
N number of individuals in the training sample,
p number of predictor variables,
K number of classes,
{(®,¥)}1<icy training sample, where ¥; € [0, 1]? and
T yie{l,... K},
I, set of individuals in the training sample

belonging to class k, k=1, ... K,
misclassification cost incurred when
classifying an individual i, whose class is y;,
inclass k, y;,i=1,....,N, k=1,...,K,

F() univariate continuous CDF centered at 0, used
to define the probabilities for an individual to
go to the left or the right child node in the
tree. We will assume that F is the CDF of a
continuous random variable with density f,
local sparsity regularization parameter,

global sparsity regularization parameter,
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Fig. 1. Optimal randomized classification tree of depth D = 2.

Nodes

T set of branch nodes,

T set of leaf nodes,

N (t) set of ancestor nodes of leaf node t whose
left branch takes part in the path from the
root node to leaf node ¢, t € 1,

set of ancestor nodes of leaf node t whose
right branch takes part in the path from the
root node to leaf node ¢, t € 7,

Nr(t)

Decision
variables
ajc €[-1,1]  coefficient of predictor variable j in the
oblique cut at branch node t € 13, with a
being the p x |tg| matrix of these coefficients,

a= (ajt)j=1 yyyyy b tety” The expressions a;. and
a; will denote the j-th row and the t-th
column of a, respectively,
location parameter at branch node ¢t € 3, u
being the vector that comprises every u., i.e.,
= (Mt ) ey
Cit probability of being assigned to class label

k e {1,...,K} for an individual at leaf node

t, t € 77, being the K x |t;| matrix such that

C=(Cee)p=1...k, teq;-

e e [-1.1]

Probabilities
Dit (At Ut) probability of individual i going down the left

branch at branch node t. Its expression is

p,-t(a.f, [,Lf) :F(%aﬂxi — /,Lt>, i= 1, ...,N, te
B,
probability of individual i falling into leaf
node t. Its expression is P (a, ) =

[T pig(ag. ie) T1 (1-pi(@e. pe)), i=
t1eN; (t) treNg (b)
1,...,N, fET}_,
expected misclassification cost over the

training sample. Its expression is

1N K
ga pn,C)= N Z Z P¢(a, ) kZ Wyikckt'
i =1

=1tet

Pe(a, p)

g, p.C)

2.2. The formulation

With these parameters and decision variables, the S-ORCT is
formulated as follows:

—

p p
min g(a,IL,C)H\LZ”"j»||1JF)MGZ”"J‘-”oo (1

j=1 j=1

K
st. Y Ge=1.ter, (2)
k=1
Y Gez=1k=1,..K (3)
tety
ajpe[-1,1,j=1,...,p, t e 1, (4)
wee[-1,1],t e 13, (5)
CGe€[0.1].k=1,....K, tet. (6)

In the objective function we have three terms, the first being
the expected misclassification cost in the training sample, while
the second and the third are regularization terms. The second term
addresses local sparsity, since it penalizes the coefficients of the
predictor variables used in the cuts along the tree. Instead, the
third term controls whether a given predictor variable is ever used
across the whole tree, thus addressing global sparsity. The ¢.-
norm is used as a group penalty function, by forcing the coeffi-
cients linked to the same predictor variable to be shrunk simul-
taneously along all branch nodes. Note that both local and global
sparsity are equivalent when dealing with depth D = 1, as there is
a single cut across the whole tree.

In terms of the feasible region, for each leaf node tet, Cy
represents the probability that an individual at node ¢ is assigned
to class k € {1,...,K}. Constraints (2) force that such probabilities
sum to 1, while constraints (3) force the sum of the probabilities
along all leaf nodes te Ty assigned to class k to be at least one.

Theorem 1 guarantees the existence of an optimal deterministic
solution, i.e., such probabilities C, will all be in {0, 1}, and thus
(6) can be replaced by

thE{O,l}, k=1,... K terT. (7)
Constraints (6) and (7) will be used interchangeably when needed.

Theorem 1. There exists an optimal solution to (1)-(6) such that
G €{0,1}, k=1,....K, ter.

Proof. The continuity of the objective function (1), defined over a
compact set, ensures the existence of an optimal solution of the
optimization problem (1)-(6), by Weierstrass Theorem. Let a* =

— *__ 1—
(45 o 2= )iy € = (G e b 20 P

mal solution. Fixed a*, u*, then C* is optimal to the following

problem in the decision variables G, k=1,..., K, ter:
1N K p P
min YO Pe(@ )Y WG + AN [ ||+ 2 e
i=1tety k=1 j=1 j=1
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K
s.t. cht =], te T,
k=1
D CGez1 k=1,..K
tety

Geel0.1] k=1.....K te.

This is a transportation problem, to which the integrality of an
optimal solution is well-known to hold, ie., there exists €=
(C,d)k:1 ‘‘‘‘ K. ter, € {0, 1} for all k, t such that (a*, [L*,C) is also op-

timal for (1)-(6). O

Theorem 1 gives a new interpretation of constraints (2) and (3):
if (7) is used instead of (6), when C,, takes the value 1, then all
the individuals at node tet; are labelled as k; and 0, otherwise.
Constraints (2) state that any leaf node t € T; must be labelled with
exactly one class label, and constraints (3) state that each class k
has at least one node t with such label.

Once the optimization problem is solved, the S-ORCT predicts
the class of a new unlabeled observation with predictor vector x
with a probabilistic rule, namely, we estimate the probability of
being in class k as 3 ., Cyr - Pxe (@, p). If a deterministic classifica-
tion rule is sought, we allocate to the most probable class. More-
over, if prior probabilities IT,(x) are given, one can also use the
Bayes rule.

ORCTs were also shown to deal effectively with controlling the
correct classification rate on different classes. This idea can also
be applied to S-ORCTs. Hence, given the classes k=1,...,K to be
controlled and their corresponding desired performances p,, the
expectation of achieving each performance guarantee can be com-
puted with the ORCT parameters, provided that the following set
of constraints is added to the model:

Z ZPM (a, w)C = prclli

iel, tety

k=1,... K (8)

With these constraints we have a direct control on the classi-
fication performance in each class separately. This is useful when
dealing with imbalanced data sets.

2.3. A smooth reformulation

Problem (1)-(6) is non-smooth due to the norms | -||; and
|l - Il appearing in the objective function. A smooth version is eas-
ily obtained by rewritting both regularization terms using new de-
cision variables. Since the first regularization term includes abso-
lute values,

”af‘”] :Ziaﬁi’ i=1....p

tety

decision variables aj; € [-1,1], j=1,...,p, t € g, are split into
their positive and negative counterparts a7 a;, € [0,1], j=

jt’
1.....p, t e T, respectively, holding a; =af —a; and |aje| =
at +a-. Similarly, we denote at = (afr and a =
Jjt Jjt jt) .
Jj=1,...p, tetg

jt
decision variables ;€ 0, 1] are needed:

(a‘) . Regarding the second regularization term, new
j=1,...p, tetg

a; =max |a;|=B;€[0,1], j=1,...,p,
lai . na’ |aie| = B;10.1]. j p
and have to force §; > |a;| = ah+a,. j=1..... D, tetg.

We can now formulate S-ORCT as a smooth problem, thus
solvable with standard continuous optimization solvers, as done
in our computational section. Indeed, we have that (1)-(6) is

equivalent to

p p
min g(a* —a~, p,C) + ALY ") "(aj +a;) +A°)_B; 9)
=

j=1tetp

K
s.t. Zth=1, teT, (10)
k=1
Y Ce=1 k=1..K (11)
tety
Bi=d,+a,, j=1,....p, (12)
a}’t, a,€[0.1], j=1,....p, t e, (13)
Bjel0,1], j=1,....p, (14)
wee[-1,1], t e 13, (15)
the[O,l], k=1,....K, terT. (16)

Observe that, if we are only concerned about global sparsity,
and thus we set AL =0, the rewriting of the decision variables

aje, j=1,...,p, t et is no longer necessary and (4) replaces
(13), and (12) turns into

Bi=aj, j=1,...,p, t €1, (17)
Bj=—-ay, j=1,....,p, te 1. (18)

3. Theoretical properties

This section discusses some theoretical properties enjoyed by
the S-ORCT. Let us consider the objective function of (1)-(6). When
taking AL and AC large enough, the first term related to the per-
formance of the classifier becomes negligible and therefore a will
shrink to 0. The tree with a = 0 is the sparsest possible tree though
not the best promising one from the accuracy point of view, since
none of the predictor variables is used to classify. In this case, the
probability of an individual with predictor variables x being as-
signed to class k is independent of x, and nothing more than the
distribution of classes is available. In this section, we derive upper
bounds for the sparsity parameters, AL and AC, in the sense that
above these bounds the sparsest tree (with a* = 0) is a stationary
point of the S-ORCT, that is, there exists (a* = 0, u*,C*) such that
the necessary optimality condition with respect to a is satisfied.
This is done in Theorems 2 and 3.

Theorem 2. Let o [0, 1]. For

we[-1.1]1Bl i=1.w
cefo, 1yl

A>(1-0) max max |Veg(0. p.C)| and
p [o¢]

2> o max  max || Ve,g(0. n.C),.
pel-1.1]1l j=1..p 1
ce{0,1)¢*Iul

a* = 0 is a stationary point of the S-ORCT.

Proof. Let o, AL, AC be such that they satisfy the assumptions.
By Theorem 1, there exists (a*, w*, C*) optimal solution to (1)-
(6) satisfying Cf, € {0,1}Vk=1,...,K, t € 7. In the following we
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will show that (0, u*, C*) is a stationary point of the S-ORCT, i.e.,

p p
~Vag(0, p*.C*) € By (xl Yollail, +2Y" a ||OC) © (19)

j=1 j=1

where dq is the subdifferential operator.
For every a;., j=1,..., p, we have that

Oa, ([l ],) @) =B = {g e R : qll, <1}
da, (||@i]| )@ =By = {g e R : g, < 1}.
Hence,
~Va, (0, 1, €) € Ada, (|| a;.|,) (@) + 2%, (||@.| ) (0.
if, and only if,
~Va,8(0, ", C*) € A'Bo + A°By,
if, and only if, there exist qg, q]G e RI! such that
lail. =1
laf]l, <1
aj_g(O, n,C) = Atq:

if, and only if, there exist q§, f]? e RI™l such that

1. <
a1, < i
— Va,8(0. 1. C) = T + §j.-
Let us consider
i = —(1-0)Va,g(0. p*.C"),
F=— o Vag0.pu.C)
and check that the conditions are satisfied:
|||, = (1 = 0)| Va,g0, ", €| < (1-0)
max  max HVajg(o w,C) “ <AL
pel-1,1]lml j=1.
Cefo,1)¢<ul
|a5 ], = o] Va, 800, 7.1 |
max  max ||Vaj g0, 1.0, < 2%,
ne[-1.1]1®l j=1.s
cef0,1)¢Iul
4+ =—(1-0)Vag0.p*.C’) — 0V,
= *Vajg(O, ne,C).

Therefore, the desired result follows. O

+1°q5,

<0

g@0, u*,Cc")

A stronger result is proven for the S-ORCT of depth D=1 and
K = 2. Since local and global sparsity are equivalent for the S-ORCT
of depth D =1, without loss of generality, we can assume that
AC = 0. Therefore, the objective function of the S-ORCT of depth
D =1 can be written as:

g1 (@, (11, €) = g(@q, 11, €) + AHlaqll;,

where

1N 2
g(aq, q,€) = N Z |:Pi1 (a, Ml)ZW,»kaz

k=1

2
+(1=pa(as, )Y W, ika3:|

k=1

1 2
=N > |:Pz‘1 (@1, /1) ) Wi

k=1 iel, k'#k
+(=pn(ag. )y Wkk/ckza} (20)
k' #k

and
1 .
pil(a.1,u1)=F(EaT]xifu1), l=1,...,N.

A technical lemma is needed to prove the desired result.

Lemma 1. For any allocation rule C, the objective function of the S-
ORCT of depth D =1, g, is monotonic in w,; when aq = 0.

Proof. Fixed a; = (ajl)j=1.m,[)’ and € = (Cy)y_12. 1—2.3:
agl 1 K
3 = NZZ Zwkk/ck’z
M1 a,=0 k=1 iel, \Kk#k
opir(aq,
— > WiwCies M ,
Kk M a0
where
8F<la7x~_ ) 3<laTx4 _ >
3p,~1(a.1,,u1) _ p 1% — M D N 1251
O a(la X — Ml) oy
D
= —f(laﬁx,»—m), i=1,....N,
p
and
@) e i1 N
a,bh a;=0
Thus,

dgi(aq, u1,C)

= %f(—'ul) <Z Wi2 (G — G2)

I a,=0 il
+ ) Wy Gz —Cp)
iel,
1
= SR W2 (Gs - Go) ||
+Wor(1 -Gz — 14+ o))
1
= Nf(—/h)(CB —Co) Wiz || = Wa|Ia)).
Since f is a probability density function, the expression
&g](a{;fém’c) will always have the same sign for any
1 a;=0

value of pq and the desired result follows. O

Theorem 3. For

1
Als ©
=N A%,

~Wa1 ) xij+ Wiz ) ;)

ich, icl

max , 21
M]E{_l_l}f(m) (21)

a*, = 0 is a stationary point of the S-ORCT of depth D = 1.

Proof. Using the monotonicity of w; proven in Lemma 1 and
Theorem 2 with o = 0, we have that for
Al> max max |Va”g(0 1.0)|

T ef-1,1} j=1,..,
Ce{0,1)2*2
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= max_||Vq,g0, i11,0)]., (22)
pie{-1,1}

Cef0,1}?72
where g is as in (20), @ =0 is a stationary point of thr S-ORCT.
The remainder of the proof is devoted to rewriting (22) as in (21).

We proceed with the calculation of the gradient.
For j=1,...,p:

98(0, 41,€) _ 3g(@s, pt1,0) 1¢
J J a;=0 k=1 iely \Kk'#k
opi(aq,
- ZVka’CkG W ’
k' #k 71 a;=0
where
1
8F( alx; — )3<faTx~— )
opi(ay, ju1) p ' H p H
0a; - 1 da;
J1 3(?’{&‘ _ /LI) j1
Xij (1 T )
=—fl-a3x; — i=1,...,N.
pf D 1% — M1
and
9pir (@1, 1) Mf ), =1, N
daj a0 P ’ B
Thus,
0g(0, uq,C
g(Tl?) f( M1)<W122XU(C22—C23)
J iel;

+War Y x;i(Crp — C13)) :

iel

Now, we look for the maximum AL among every possible allo-
cation of the decision variables C, i.e.:

Aj, = max ||Va,g(0, w10, = max IDC .
Ce {01 Z 2 { 4><1
where
1
= prf(*ﬂl)
W Y Xt War X X Wi X xin Wiz 2, Xin
x : : : :
Wor YienXip War Ziep Xip Wiz Xy Xip Wiz Zier, Xip
and € = (Ci2.C13. G2, Co3)'.
max ||DC|l.o = max max {|dT C|,...,|d" C|
Cef0.1)" = (o tld; » Cl}
= max max {d'C,—-dTC,...,dT C,-dT C
Cef0,1}* { ! ! b P }
=max{ max d!C, max -dIC,
Ce{0,1}*! Ce{0,1}*!
max d, C,_max —d, C{.
Cef0,1}*! c€{0,1}“xl

A finite number of transportation problems is to be solved, with
the form:

z= max {+dTC
Cefo,1)! { J }
st. Cp+Cpp=1
Cz+Cn=1

Cp+Cz =1

Cn+C3=>1,

for which the integrality property holds. Then, we only have as
possible solutions: €= (1,0,0,1)7 or C=(0,1,1,0)T. Thus, the
optimal objective is obtained as follows:

_ T & TF
Zopt = Max { j:dj C|E=(1,0.0,1)T’ idi C}E=(0<1,1.0)T}

1
= max pr(—m)(—Wzlzxij+W1zzxij ,

iel, iel

f( M1)<W21 > X —Wa qu)}

icl, ich

= f( 1) WzlzXU-FleZXU-

iel, iel

Let us define

A, = f( lh) max_

W inj + W2 inj ,

ich icl
and the result holds when

Mz max 1L, 2]

4. Computational experience
4.1. Introduction

The aim of this section is to illustrate the performance of our
sparse optimal randomized classification trees S-ORCT’s. We have
run our model for a grid of values of the sparsity regularization
parameters AL and AC. The message that can be drawn from our
experimental experience is twofold. First, we show empirically that
our S-ORCT can gain in both local and global sparsity, without
harming classification accuracy. Second, we benchmark our ap-
proach against CART, the classic approach to build decision trees,
which considers orthogonal cuts and therefore has the best possi-
ble local sparsity. We show that we are able to trade in some of
our classification accuracy, still being superior to CART, to be com-
parable to CART in terms of global sparsity.

The S-ORCT smooth formulation (9)-(16) has been imple-
mented using Pyomo optimization modeling language (Hart et al.,
2017; Hart, Watson, & Woodruff, 2011) in Python 3.5 (Python Core
Team, 2015). As solver, we have used IPOPT 3.11.1 (Waichter &
Biegler, 2006), and have followed a multistart approach, where the
process is repeated 20 times starting from different random initial
solutions. For CART, the implementation in the rpart R package
(Therneau & Atkinson, 2019) is used. Our experiments have been
conducted on a PC, with an Intel®Core™ i7-2600 CPU 3.40 giga-
hertz processor and 16 gigabytes RAM. The operating system is 64
bits.

The remainder of the section is structured as follows.
Section 4.2 gives details on the procedure followed to test S-ORCT.
In Sections 4.3 and 4.4, respectively, we discuss the results for local
and global sparsities separately, while in Section 4.5 we present re-
sults when both sparsities are simultaneously taken into account.
Finally, Section 4.6 statistically compares S-ORCT versus CART in
terms of classification accuracy and global sparsity.

4.2. Setup

An assorted collection of well-known real data sets from the
UCI Machine Learning Repository (Lichman, 2013) has been cho-
sen for the computational experiments. Table 1 lists their names
together with their number of observations, number of predictor
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Table 1
Information about the data sets considered.

Data set Abbrev. N p K Class distribution
Monks-problems-3 Monks-3 122 11 2 51-49% °
Monks-problems-1 Monks-1 124 11 2 50-50% k=] 00 00 00 00 00 0 O F 00N — O F F
- o S
Monlcs—Prol?lems—Z Monks-2 169 11 2 62-38% § S| D2 DD DRRL AT I3
Connectionist-bench- ~ Sonar 208 60 2 55-45% - c
sonar g < o oo
lonosphere lonosphere 351 34 2 64-36% 9 Gl |lcooramualdITIRIGFGESER
Breast-cancer- Wisconsin 569 30 2 63-37% =
Wisconsin g AR R R R R
Credit-approval Creditapproval 653 37 2 55-45% © B PRI RIROIIIRIOIRO RO
Pima-indians-diabetes Pima 768 8 2 65-35% § o
Statlog-project- Germancredit 1000 48 2  70-30% o Q| CR MY NOMM~ONDL©~SS
German-credit 2 Ol |oY~"—~ANATON0WODIDNDDD D — —
Banknote- Banknote 1372 4 2 56-44% & coo— O ih o © O~ O m
authentification ) ° 9|3 DD DT T B BB WW BN O F O
Ozone-level-detection- Ozone 1848 72 2 97-3% ‘;‘ ‘é’ ClPOORRRRRRRRARDR0XN
one - ~
= o
Spambase Spam 4601 57 2 61-39% '§ SElalcoccommmmQILEERILRIIE
Iris Iris 150 4 3 333-33.3-33.3% £
Wine Wine 178 13 3 40-33-27% 2 =
Seeds Seeds 210 7 3 33.3-33.3-33.3% £ Tlg|mR320J33TI2gaTrecans
Balance-scale Balance 625 16 3  46-46-8% - % N
Thyroid-disease-ann-  Thyroid 3772 21 3 92.5-5-2.5% A £
thyroid -uz SJN. oo me S S
. 35 VOO0 == ANMO MM O D — —
Car-evaluation Car 1728 15 4 70-22-4-4% -
E o0 00 O W NN —OMO DN T
g Slovedednredneyiggg
=
. . . . =
variables and number of classes with the corresponding class dis- = g oo
. . . . . > = = —
tribution. In our pursuit of building small and, therefore, less com- : |El®|cccoccoco~aRAIBRE=F
plex trees, the construction of S-ORCTs has been restricted to depth g _
D =1 for two-class problems and depth D = 2 for three- and four- £ g oo ® .o
8 - -0~ —
class problems. 5 |2|E|33NnN3333488888¢8¢
. . .« . I
Each data set has been split into two subsets: the training sub- % | =
set (75%) and the test subset (25%). The corresponding S-ORCT is :5 Sl lcaanneaII0assns
built on the training subset and, then, accuracy, local and global g
sparsities are measured. The out-of-sample accuracy over the test g | £ g § § é ; é g § § § § § ; g g E g %
subset is denoted by acc. Local sparsity is denoted by &' and s §
. . >
reads as the average percentage of predictor variables not used per = é - CORDOA TN =10 D
[ QIO F N~ AN MU OMNWWDDD
branch node: k=
. g S—ANNYTNOMA NN O QN
1 |{ajt=0,]=1,...,p}| 5} Ll | FFFLTLF UL OO G 15O F 15—
8": Z % 100. Q S| |90 o0 00000 e e000 00 WP 00 DN O
o] £ b : |% i
% (St |lovmervo22835I553S
Global sparsity, 8¢, is measured as the percentage of predictor vari- o
. (9]
ables not used at any of the branch nodes, i.e., across the whole £ NI R B D R R v R
QLIS ONSNN O~ OO0 0 0 NN —
tree: - Sl NN NNNRNNRNRNRNRNOBGO
=<
. - 5
a.=0 j=1..p}| 5 |2 S
SG:H] J P x 100. 5 Ela|lcoorananalRIIRRIER=
p g
. ) E, N kv
Note that when D=1, local and global sparsity are measuring SR R R N NN NN NN NN R R i
the same since there is a single cut across the whole tree. The ] 2
training/testing procedure has been repeated ten times in order to N g e nz e RgRNa Y § §
avoid the effect of the initial split of the data. The results shown Q
in the tables represent the average of such ten runs to each of the £ Jlmeccowesosmneoasan
three performance criteria. RO ROl R IR =R S R S
In what follows, we describe the choices made for the param- c g E o MmN OO0 D
. . . . . = - = - -
eters in S-ORCT. Equal misclassification weights, W, =0.5, k = % g ZlR | ~NANREANNNNONMON 0
. 7
1,....K, k+#y; have b.een used. for the experiments. We have w e lrncogmarnmmanmnnnmn
added the set of constraints (8) with p, =0.1, k=1,...,K. The lo- S E TR 8582888888333 3X3
gistic CDF has been chosen for our experiments: oo | B
= o o
= - nwns T T~m
1 8|2 l%|o~0c0comorAmM~YOLBLBOND
F()= 7", ~% o
1+exp(=()y) PER- I 192399901997 wa
with a large value of y, namely, y = 512. The larger the value of y, Ex 3

the closer the decision rule defined by F is to a deterministic rule.
We will illustrate that a small level of randomization is enough for
obtaining good results. We have trained S-ORCT, as formulated in
(9)-(16), for 17 x 17 pairs of values for (AL, AC) starting from AL = 0
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Results for the local S-ORCT of depth D =2 as a function of Al, where 8" represents the average
percentage of predictor variables not used per branch node in the tree over the ten runs and acc,

the average out-of-sample accuracy.

Iris Wine Seeds Balance Thyroid Car
L

» st acc st acc st acc st acc 8t acc 8t acc

0 8 95.9 15 96.6 10 94.4 33 96.6 57 92.8 20 92.7
212 42 95.9 51 98.6 33 93.8 58 92.0 61 92.7 36 91.5
2-1 42 95.9 54 98.4 38 93.8 60 91.1 59 929 33 91.9
2-10 42 96.2 54 97.3 38 94.0 65 91.0 64 92.6 36 91.5
279 42 95.9 56 97.5 43 93.8 67 91.2 62 92.7 36 914
2-8 42 95.9 56 96.8 48 93.2 60 91.9 65 92.5 36 914
277 42 95.9 59 96.8 48 91.3 60 91.7 70 921 36 91.3
26 42 95.9 59 96.8 52 94.0 65 92.2 72 92.1 38 91.6
2-° 42 95.4 59 96.8 52 944 58 92.6 74 92.2 40 91.3
2-4 42 95.9 59 97.3 57 93.8 58 924 79 92.2 42 91.1
273 42 93.2 62 97.5 67 94.6 63 91.1 83 92.1 40 91.7
22 50 89.7 62 97.7 67 944 65 90.6 87 92.3 47 90.4
2-1 50 92.7 64 98.2 71 93.6 67 89.2 90 92.0 51 90.2
20 58 90.0 69 96.8 76 93.6 71 88.1 91 91.9 64 87.6
21 67 90.5 77 95.2 81 90.2 75 87.2 92 92.0 71 85.4
22 75 91.1 82 89.5 81 88.5 77 82.6 95 91.8 80 80.8
23 83 88.6 90 76.4 91 73.6 83 773 100 92.2 91 68.2

r

followed by the grid {pZ

ek -12<r<3, reZ}, and, similarly,
B

.
AC =0 followed by the grid {% -12<r<3, reZ}. We start

solving the optimization problem with (A%, A¢) = (0, 0), where the
multistart approach uses 20 random initial solutions. We continue
solving the optimization problem for AL = 0 but with larger values
of AC. Once all values of AC are executed, we start the process all
over again with the next value of Al in the grid. For pair (AL, A©),
we feed the corresponding optimization problem with the 20 solu-
tions resulting from the problem solved for the previous pair. For
a given initial solution, the computing time taken by the S-ORCT
typically ranges from 0.33 seconds (in Monks-1) to 22.27 seconds
(in Thyroid).
For CART, the default parameter setting in rpart is used.

4.3. Results for local sparsity

Tables 2 and 3 present the results of the so-called local S-ORCT,
i.e., when A¢ = 0 and thus only local sparsity is taken into account.

Table 4

Figs. 2 and 3 depict these results per data set, by showing simulta-
neously 8L (blue solid line) and acc (red dashed line) as a function
of the grid of the Al’s considered. As expected, the larger the AL,
the larger the 8L. The sparsest tree is shown in most of the data
sets for large values of the parameter AL, where the best solution
in terms of sparsity is obtained but the worst possible one in terms
of accuracy. In terms of accuracy, the best rates are sometimes
achieved when not all the predictor variables are included in the
model. For instance, best performance is reached when sparsity is
about 9-25% for Pima, the 30% for Monks-1, the 32% for Monks-2,
the 44% for Germancredit, the 47% for Car, the 52-56% for Thyroid,
the 54% for Monks-3, the 55-60% for Iris, the 72-90% for Sonar,
the 81% for both Wine and Seeds and the 87% for lonosphere. We
highlight the Creditapproval data set, on which one single predic-
tor variable can already guarantee very good accuracy. For Ozone,
accuracy remains over the 96% for the grid of AL's considered. Ac-
curacy might be slightly damaged but a great gain in sparsity is
obtained. This is the case for Banknote, Spam, Balance or Wiscon-
sin, which present a loss of accuracy lower than the 1 percentage
point (p.p.), 4 p.p., 6 p.p. and 1 p.p. but 25%, 52%, 63% and 85% of
local sparsity is reached, respectively.

Results for the global S-ORCT of depth D = 2 as a function of A¢, where 8¢ represents the average
percentage of predictor variables not used per tree over ten runs and acc, the average out-of-

sample accuracy.

Iris Wine Seeds Balance Thyroid Car
G

» 8¢ acc 8¢ acc 8¢ acc 8¢ acc 8¢ acc 8¢ acc

0 0 95.9 0 96.6 0 944 0 96.6 1 92.8 0 92.7
2712 0 96.2 18 97.7 0 94.0 0 96.7 3 93.0 0 934
21 0 96.2 15 97.5 0 93.8 0 95.4 5 93.9 0 93.7
2-10 0 96.2 15 97.5 0 94.0 0 95.9 5 939 0 94.1
279 0 95.9 15 97.3 0 93.8 0 96.7 7 94.0 0 94.0
2-8 0 95.9 15 97.7 0 93.8 0 96.2 12 94.1 0 94.7
277 0 95.9 15 97.9 14 94.6 0 95.8 17 94.0 0 95.0
2-6 0 95.4 15 98.2 14 954 0 96.1 26 94.0 0 94.9
2-5 2 95.7 15 98.2 14 95.4 0 96.7 40 93.9 0 94.9
274 0 95.4 15 98.4 14 94.6 0 96.5 57 93.8 0 94.7
273 0 95.7 23 98.4 29 93.6 0 94.7 65 93.5 7 94.6
272 25 95.4 23 97.9 29 95.2 0 91.1 73 91.5 7 94.1
21 25 95.7 31 96.6 29 94.2 19 87.4 81 90.6 13 92.2
20 50 96.2 39 95.7 43 92.5 25 87.0 83 90.0 27 86.7
21 50 96.2 46 943 57 90.2 44 80.5 87 924 47 79.8
22 50 96.5 62 93.6 71 85.8 56 713 95 91.7 73 68.2
23 75 96.2 85 711 86 72.5 94 48.8 100 92.2 80 68.2
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Fig. 2. Graphical representation, for each data set, of the average percentage of predictor variables per branch node, 8, together with the average out-of-sample accuracy
obtained, acc, as a function of the values of A" considered in the local S-ORCT construction. (For interpretation of the references to color in this figure, the reader is referred

to the web version of this article.).
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Fig. 3. Graphical representation, for each data set, of the average percentage of predictor variables per branch node, §', together with the average out-of-sample accuracy
obtained, acc, as a function of the values of AL considered in the local S-ORCT construction. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.).
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Fig. 4. Graphical representation, for each data set, of the average percentage of predictor variables per tree, 8¢, together with the average out-of-sample accuracy obtained,

acc, as a function of the values of A¢ considered in the global S-ORCT construction. (For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.
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acc, the average percentage of predictor variables not used per branch node, §*,

and the average percentage of predictor variables not used per tree, 8¢, respectively, as a funcion of the grid of the sparsity parameters, AL and A¢, considered in the S-ORCT

ig. 5. Heatmaps representation, for each data set, of the average out-of-sample accuracy,
of depth D

2 construction. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article..
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Fig. 5. Continued

4.4. Results for global sparsity

This section is devoted to the global S-ORCT, i.e., when AL =0
and thus only global sparsity is taken into account. We focus on
depth D =2, since for D = 1 global sparsity is equal to local spar-
sity. Similarly to Section 4.3 and Table 4 presents the results of
the global S-ORCT, while Fig. 4 visualizes these results by show-
ing simultaneously, per data set, 8¢ (blue solid line) and acc (red
dashed line) as a function of the grid of the A®’s considered. As
for local sparsity, as A® grows, 8¢ increases. For Iris and Seeds, a
similar classification accuracy to that with all of the predictor vari-
ables is obtained while removing the 75% and 29% of them, re-
spectively. For Wine, the best rates of accuracy are obtained with
15-23% of global sparsity. A loss of less than 10 p.p. of accuracy
is observed for Balance but 25% of predictor variables are not be-
ing used, respectively. Car remains around the accuracy rate of 80%
while using half of the predictor variables. Thyroid, an imbalanced
data set, is over the 90% of accuracy for the whole grid of AS’s
considered.

4.5. Results for local and global sparsity

In this section, results enforcing local and global sparsity are
presented by means of heatmaps, as seen in Fig. 5. The experi-
ment has been conducted on data sets of K =3 and 4 classes, for
which S-ORCTs of depth D =2 are built. For each dataset, three
heatmaps are depicted as a function of the grid of the sparsity
regularization parameters, AL and AC: the average out-of-sample
accuracy, acc, and the local and global sparsities, 8¢ and 8¢, re-
spectively, obtained over the ten runs performed. The color bar of
each heatmap goes from light green to dark blue, being the latter
the maximum accuracy, local sparsity or global sparsity achieved,
respectively. As a general behavior, the best rates of accuracy are
not always achieved only for (AL,AG) = (0, 0), but also for other

pairs of the chosen grid, i.e., the data set remains equally well ex-
plained while needing less information. As before, according to lo-
cal sparsity, for a fixed AC, 8! has a growing trend. A similar behav-
ior is observed for §¢ when AL is fixed. It is also worth mentioning
that small changes of Al quickly lead to a gain in 8!. Neverthe-
less, as expected, the gain in 8¢ is slower for the same range in
AC.

4.6. Comparison S-ORCT versus CART

A statistical comparison between the proposed S-ORCT and
CART, the classic approach to build decision trees, is provided in
this section. As stated in the introduction of the paper, CARTS, as
many other approaches that implement orthogonal cuts (Bertsimas
& Dunn, 2017; Firat et al., 2019; Giinliik et al., 2019), are lead-
ers in terms of local sparsity. Thus, the comparison S-ORCT ver-
sus CART is performed in terms of accuracy and global spar-
sity. Tables 2 and 4 for S-ORCT have been considered for the
experiment.

CART has been trained and tested over the same ten runs as S-
ORCT. For each pair S-ORCT(AC) versus CART, two hypothesis tests
for the equality of means of paired samples were carried out, one
for accuracy and another for global sparsity, assuming normality,
at a 5% significance level. For this task, the t.test function in R
has been used. Fig. 6 depicts, for each data set, the resulting con-
fidence intervals (blue solid line) at the 95% confidence level for
the difference in average accuracy (on the left) and global spar-
sity (on the right) between S-ORCT(A¢) and CART. The red dashed
horizontal line represents the null hypothesis in each case. Ex-
cept for Creditapproval and Thyroid, for the smaller values of AC,
our approach is significantly better than, or at least comparable
to, CART in terms of accuracy, while CART is significantly better
than, or at least comparable to, in terms of global sparsity. For
the larger values of AS, our approach starts to be comparable and
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then dominate CART in terms of global sparsity at the cost of
accuracy.

5. Conclusions and future research

Recently, several proposals focused on building optimal classi-
fication trees are found in the literature to address the shortcom-
ings of the classic greedy approaches. In this paper, we have pro-
posed a novel continuous optimization-based approach, the Sparse
Optimal Randomized Classification Tree (S-ORCT), in which a com-
promise between good classification accuracy and sparsity is pur-
sued. Local and global sparsity in the tree are modeled by includ-
ing in the objective function norm-like regularizations, namely, ¢,
and ¢, respectively. Our numerical results illustrate that our ap-
proach can improve both sparsities without harming classification
accuracy. Unlike CART, we are able to easily trade in some of our
classification accuracy for a gain in global sparsity.

Some extensions of our approach are of interest. First, this
metholodogy can be extended straightaway to a regression tree
counterpart, where the response variable is continuous. Second,
categorical data is addressed in this paper through the inclusion of
dummy predictor variables. For a given categorical predictor vari-
able, and by means of an ¢,-norm regularization, one can link
all its dummies across all the branch nodes in the tree, with the
aim of better modeling its contribution to the classifier. Third, it is
known that bagging trees tends to enhance accuracy. An appropi-
ate bagging scheme of our approach, where sparsity is a key point,
is a nontrivial design question.
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