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Abstract

This paper proposes a data-driven distributionally robust shortest path (DRSP) model where the distribution of the

travel time in the transportation network can only be partially observed through a finite number of samples. Specifi-

cally, we aim to find an optimal path to minimize the worst-case α-reliable mean-excess travel time (METT) over a

Wasserstein ball, which is centered at the empirical distribution of the sample dataset and the ball radius quantifies

the level of its confidence. In sharp contrast to the existing DRSP models, our model is equivalently reformulated

as a tractable mixed 0-1 convex problem, e.g., 0-1 linear program or 0-1 second-order cone program. Moreover, we

also explicitly derive the distribution achieving the worst-case METT by simply perturbing each sample. Experi-

ments demonstrate the advantages of our DRSP model in terms of the out-of-sample performance and computational

complexity. Finally, our DRSP model is easily extended to solve the DR bi-criteria shortest path problem and the

minimum cost flow problem.

Keywords: Distributionally robust shortest path, ambiguity set, Wasserstein metric, METT, mixed 0-1 convex

program

1. Introduction

The shortest path problem is one of the most fundamental problems in the transportation network and has broad

applications, see e.g. Baxter et al. (2014); Cao et al. (2016); Tilk et al. (2017). To obtain an optimal path, the travel

time in each arc of the network is essential. Due to different weather conditions, path capacity, traffic control and

etc, travel time is usually subject to large variabilities, which may greatly affect the selection of an optimal path. In

fact, travelers are not only concerned with the “nominal” travel time of each path but also its reliability (Bertsekas &

Tsitsiklis, 1991; Fosgerau & Engelson, 2011; Nikolova & Stier-Moses, 2014).

In the literature, stochastic shortest path (SSP) models have been proposed to handle the random uncertainty in

travel time under different criteria such as effective travel time (Lo & Tung, 2003), percentile travel time (Frank,

1969) and mean-excess travel time (Chen & Zhou, 2010). These models require an exact distribution of travel time
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for finding an optimal path. In practice, it is difficult to obtain the exact distribution since it may be time-varying

and can only be estimated through a finite sample dataset (Masson & Denœux, 2006). Thus, a natural method is

to approximate the SSP model via the sample-average approximation (SAA) method (Shapiro & Homem-de Mello,

1998; Verweij et al., 2003), where the true distribution is approximated by the discrete empirical distribution over the

sample dataset. This method is only applicable to situations where the distribution is time-invariant and a large number

of good samples can be generated cheaply. When the sample dataset is of low quality, the empirical distribution may

significantly deviate from the true distribution and the SAA method tends to exhibit poor out-of-sample performance.

From this perspective, the SAA method is not always reliable.

An alternative approach is to apply the distributionally robust (DR) optimization technique to the shortest path

problem (Cheng et al., 2013; Shahabi et al., 2015; Yang & Zhou, 2017; Zhang et al., 2018), leading to a distributionally

robust shortest path (DRSP) model. The DRSP model assumes that the true distribution belongs to an ambiguity set

of distributions, over which an optimal path is to be found in some worst-case sense, e.g., the one minimizes the

worst-case α-reliable mean-excess travel time (METT) (Zhang et al., 2018). For instance, the true distribution in

Chassein et al. (2019) is parameterized with a vector that is assumed to lie in some set constructed by exploiting

samples. However, it is NP-hard to solve most of the DRSP models (Yu & Yang, 1998) and only a few DRSP models

are tractable by some well-defined ambiguity set (Esfahani & Kuhn, 2018).

In general, the ambiguity set should be large enough to include the true distribution with a high probability but can

not be too “large” to avoid too conservative decisions. Moreover, the associated DRSP model needs to be as tractable

as possible. The moment-based ambiguity set which consists of distributions with specified moment constraints is

adopted for the DR optimization problem (Delage & Ye, 2010). Specifically, the DRSP model in Cheng et al. (2013);

Zhang et al. (2018) assumes that the ambiguity set contains distributions with the exactly known first and second

moments. Observe that this may lead to poor decisions if mismatch moments are used for the ambiguity set. In fact,

it is often the case that we cannot obtain exact moment information with a finite sample dataset. Thus, one inevitably

needs to further introduce uncertainty in the moment, which easily renders their DRSP models intractable. To resolve

it, a metric-based ambiguity set has been developed in Erdoğan & Iyengar (2006); Hu & Hong (2012); Jiang & Guan

(2016); Pflug & Wozabal (2007); Wozabal (2012).

In this paper, we propose a novel data-driven DRSP model with a metric-based ambiguity set for the unknown

distribution of travel time, which is defined as a ball centered at the empirical distribution over the finite sample dataset

and the ball radius reflects our confidence in the empirical distribution. That is, the higher the quality of the empirical

distribution, the smaller the ball radius. This facilitates us to utilize the sample dataset in a flexible way to hedge

uncertainty. Then, we further incorporate the support set information into our DRSP model where the travel time is

restricted to an interval constructed from the sample dataset. Noting that the empirical distribution is discrete and the

true distribution of travel time is usually continuous, we adopt the Wasserstein metric (Kantorovich & Rubinshtein,

1958) to measure the distance between any two distributions, which is different from the Kullaback-Leibler divergence

(Hu & Hong, 2012; Jiang & Guan, 2016) and the Prokhorov metric (Erdoğan & Iyengar, 2006).
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Then, our DRSP model aims to minimize the worst-case METT over the aforementioned Wasserstein ball. While

the moment-based DRSP model in Zhang et al. (2018) is NP-hard, our model can be equivalently reformulated as

a solvable and finite mixed 0-1 convex program, e.g., 0-1 linear program (LP) or 0-1 second-order cone program

(SOCP). Different from Zhang et al. (2018), the distribution that achieves the worst-case METT can also be explicitly

derived by simply perturbing each sample, which is very helpful to assess the quality of the optimal path. Since

the Wasserstein ball includes the true distribution with a high probability, the optimal path of our model offers good

out-of-sample performance. Moreover, it asymptotically converges to the solution of the SSP model under the true

distribution if the size of the sample dataset tends to infinity. Finally, experiment results show that our model achieves

a better out-of-sample performance than that of the moment-based DRSP model in Zhang et al. (2018) and the SAA

method. Our method is easily extended to solve the robust bi-criteria shortest path problem and the robust minimum

cost flow problem over the Wasserstein ball. Both problems are reduced to finite convex programs which can be

solved efficiently by existing algorithms. A preliminary version of this work has been presented in Wang et al. (2019),

which only introduces the DRSP model over the Wasserstein set. Overall, the main contributions of this paper are

summarized below.

(1) We propose a novel data-driven DRSP model which aims to find an optimal path to minimize the worst-case

METT within a Wasserstein ball.

(2) In contrast to the existing DRSP models, our model is equivalently reformulated as a solvable mixed 0-1 convex

problem and the worst-case distribution attaining the worst-case METT can be explicitly derived.

(3) Besides its good out-of-sample performance and low computational complexity, our model can be easily extended

to solve the robust bi-criteria shortest path problem as well as minimum flow cost problems.

The rest of the paper is organized as follows. Section 2 proposes the DRSP model to minimize the worst-case

METT over a Wasserstein ball. In Section 3, we reformulate our DRSP model as a mixed 0-1 convex problem. The

distribution achieving the worst-case METT is explicitly derived in Section 4. In Section 5, our model is extended to

solve other DR problems. In Section 6, we perform numerical experiments to illustrate the performance of our model.

Some conclusion remarks are drawn in Section 7.

2. Problem Formulation

2.1. The Shortest Path Problem and Reliability Criteria

Consider a directed and connected network G = (V,A) with the vertex setV and the arcs set A, where |V| = m

and |A| = n. Let ξi j denote the travel time on an arc (i, j) in A and ξ = {ξi j : (i, j) ∈ A} be the stacked vector of

the travel time over all arcs. A directed path is a sequence of arcs which connect a sequence of vertices in the same

direction. Let p = {pi j : (i, j) ∈ A} represent a directed path from the origin vertex o to the destination vertex d, where

pi j is a binary decision variable and is one if arc (i, j) is on the path from vertex o to vertex d.
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The standard shortest path problem aims to find an optimal path such that the sum of the travel time along the path

is minimized (Ahuja et al., 1995), i.e.,

minimize
p

∑
(i, j)∈A

ξi j pi j (1)

subject to
∑

j:(i, j)∈A

pi j −
∑

j:( j,i)∈A

p ji = bi,∀i ∈ V, (2)

pi j ∈ {0, 1},∀(i, j) ∈ A, (3)

where bo = 1, bd = −1 and bi = 0 for i ∈ V/{o, d}. The constraint in (2) ensures the flow balance for the origin-

destination pair (o, d). In the sequel, let P be the set of feasible paths from the original vertex o to the destination

vertex d, i.e.,

P = {p | p satisfies (2) and (3)}. (4)

The shortest path problem considers the network with a known vector of travel time, i.e., the constant vector ξ is

assumed to be exactly given. In practice, travel time variability is unavoidable due to uncertain factors, e.g. traffic

jams and weather conditions. Obviously, this vector has a significant impact on finding an optimal path for travelers.

For example, consider a simple network with only three vertices and three arcs in Figure 1. The traveler aims to find

an optimal path p∗ from 1 to 3 with the random travel time ξi j. Suppose that a traveler observes ξ13 = 3.5, ξ12 = 1.5,

2

1

 

ξ23

ξ13

ξ12

3

O D

Figure 1: Topology of a simple network where O represents the origin vertex and D represents the destination vertex.

ξ23 = 1.5. Then an optimal path is obtained via solving (1), i.e., 1 → 2 → 3 where a → b represents the directed arc

from vertex a to vertex b. However, the travel time vector may change to ξ13 = 2.5, ξ12 = 2, ξ23 = 1.2 and then the

optimal choice is reset as 1→ 3. Thus, the optimal path in the above is not always reliable if the uncertainty in travel

time is neglected.

To quantify the reliability of a path, some criteria have been proposed, such as effective travel time (ETT) (Lo &

Tung, 2003), percentile travel time (PTT) (Lo & Tung, 2003) and mean-excess travel time (METT) (Chen & Zhou,

2010). Under the assumption that ξ is a random vector with a distribution function F, the α-reliable METT of a path

and the corresponding SSP model are defined below.
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Definition 1. The α-reliable METT of path p is defined as

METTα(p) = min
t∈R

{
t +

1
α
EF {h(p, t, ξ)}

}
, (5)

where h(p, t, ξ) = [ξT p− t]+ and [x]+ = max{x, 0}. The associated SSP model is given by

minimize
p∈P

METTα(p). (6)

The METT which coincides with the conditional Value-at-Risk (Rockafellar et al., 2000) is one of the most im-

portant criteria to evaluate the path reliability. It is able to simultaneously address questions “how much time do I

need to allow” and “how bad should I expect from the worst cases?” (Chen & Zhou, 2010). However, solving the SSP

model in (6) requires the exact distribution function F.

2.2. Data-driven Robust Shortest Path Problem

Usually, the true distribution F in (6) is unavailable and can only be partially observed through a finite sample

dataset {ξ̂i}i∈[N] where ξ̂i is an independent sample of the random vector of travel time and [N] = {1, . . . ,N}. In this

case, a natural idea is to adopt the SAA method. Specifically, F is approximated by an empirical distribution FN over

the sample dataset, i.e.,

FN(ξ) =
1
N

N∑
i=1

1{ξ̂k≤ξ}

where 1A is the indicator of event A. Then the SSP model in (6) is approximately solved by

minimize
t∈R, p∈P

 t +
1
α

1
N

N∑
i=1

h(p, t, ξ̂i)

 . (7)

By Glivenko-Cantelli theorem (Cantelli, 1933; Glivenko, 1933), the empirical distribution FN converges weakly

to the true distribution F as N tends to infinity. This implies that the solution to the SAA model in (7) converges to

that of the SSP model in (6). That is, the SAA method is sensible only for the case where the true distribution F can

be well approximated by the empirical distribution.

When the size of the sample dataset is small and/or the sample ξ̂k is of low quality, the empirical distribution

FN may deviate far from the true distribution F. More importantly, the distribution F may not be constant and is

time-varying. Then, an optimal path of the SAA model in (7) may exhibit poor out-of-sample performance and is not

always reliable.

As in Esfahani & Kuhn (2018) for the continuous optimization problem, we adopt a data-driven robust approach

to hedge against the path unreliability either from the uncertainty of travel time or its distribution. The key idea is that

the true distribution F is expected to “close” to the empirical distribution FN with a high probability. In particular, we

believe that F may belong to an ambiguity set FN that is centered at the empirical distribution FN and its size reflects

our confidence in FN . The higher the confidence of FN , the smaller the ambiguity set FN .
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Since the true distribution F is usually continuous and the empirical distribution FN is discrete, we adopt the

Wasserstein metric (Kantorovich & Rubinshtein, 1958) to evaluate their distance, leading to a Wasserstein ball FN .

Then, we are interested in the worst-case METT (w-METT) over the Wasserstein ball FN , i.e.,

w-METTα(p) = sup
F∈FN

METTα(p)

= min
t∈R

t +
1
α

sup
F∈FN

EF {h(p, t, ξ)}
 , (8)

where the second equality follows from Xie (2018). Then our DRSP model is obtained as

minimize
p∈P

w-METTα(p). (9)

To evaluate our optimal path, we aim to find the worst-case distribution F∗ that achieves the w-METT, i.e.,

sup
F∈FN

EF {h(p, t, ξ)} = EF∗ {h(p, t, ξ)} .

2.3. Ambiguity Set via Wasserstein Metric

The key of the DRSP model (9) is how to construct the Wasserstein ball

FN = {F ∈ M(Ξ) : dW (FN , F) ≤ εN}, (10)

where εN ≥ 0 reflects our confidence in the empirical distribution FN andM(Ξ) is the set of some probability distri-

butions supported on Ξ, i.e., FN contains all distributions within the εN-Wasserstein distance from FN , in which the

metric dW is defined as follows.

Definition 2. The Wasserstein metric dW :M(Ξ) ×M(Ξ)→ R+ is defined as

dW (F1, F2) = inf
{∫

Ξ×Ξ

d(ξ1, ξ2)K(dξ1, dξ2) :∫
Ξ

K(ξ1, dξ2) = F1(ξ1),
∫

Ξ

K(dξ1, ξ2) = F2(ξ2)
}
,

where (Ξ, d) is a Polish metric space, K : Ξ × Ξ → R+ is the joint distribution of F1 ∈ M(Ξ) and F2 ∈ M(Ξ).

Moreover, d(ξ1, ξ2) = ‖ξ1 − ξ2‖p where ‖ · ‖ represents lp-norm on Rn.

Though dW satisfies the axioms of a metric, it may take the infinity value and thus is not a real distance. We need

the following assumption on the setM (Ambrosio & Gigli, 2013), under which dW is actually a distance metric.

Assumption 1. For any distribution F ∈ M(Ξ), it holds that∫
Ξ

‖ξ‖pF(dξ) < ∞.

Assumption 1 requires the first moment of the distribution F to be finite, and only sacrifices little modeling power.
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To the best of our knowledge, we are the first to adopt the Wasserstein ball in the DRSP model. We note that

a similar line of this research for a traveling salesman problem is studied in Carlsson et al. (2018). Alternative

metric-based ambiguity sets have also been adopted in DR optimizations, e.g., Kullback-Leibler set in Hu & Hong

(2012); Jiang & Guan (2016), and Prokhorov set in Erdoğan & Iyengar (2006). However, the Kullback-Leibler metric

is unable to effectively evaluate the distance between a continuous distribution and a discrete one. In particular, it

enforces the associated FN to be a set of discrete distributions. The Prokhorov metric easily leads to an intractable

shortest path model.

When the sample dataset is reasonably large, the Wasserstein ball FN includes the true distribution with a high

probability (Esfahani & Kuhn, 2018) and thus the DRSP model is expected to exhibit good out-of-sample perfor-

mance. Importantly, the proposed DRSP model can be equivalently reformulated as a mixed 0-1 program which

is solvable via existing optimization techniques, e.g. the outer approximation decomposition algorithm (Duran &

Grossmann, 1986), the branch-and-bound method (Gupta & Ravindran, 1985) and the extended cutting plane method

(Westerlund & Pettersson, 1995).

3. Reformulation of the DRSP Model

In this section, we transform the DRSP model (9) over the Wasserstein ball FN in (10) with or without the support

set to a finite mixed 0-1 convex problem respectively.

Norm
Without Support Set With Support Set

w-METT DRSP Model w-METT DRSP Model

p = 1 LP Mixed 0-1 LP LP Mixed 0-1 LP

p = 2 LP Mixed 0-1 SOCP SOCP Mixed 0-1 SOCP

p = ∞ LP Mixed 0-1 LP LP Mixed 0-1 LP

Otherwise LP
Mixed 0-1 Convex

Program

Mixed 0-1 Convex

Program

Mixed 0-1 Convex

Program

Table 1: Equivalent problems of the our DRSP model, where p represents the lp-norm on Rn.

3.1. The DRSP Model Without Support Set

We first derive equivalent formulations for the w-METT (8) and the proposed DRSP model (9) over the Wasser-

stein ball FN without a support set.

Theorem 1. Under Assumption 1, the w-METT in (8) over the Wasserstein ball FN can be computed by a finite linear

programming (LP) problem
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minimize
t,s,λ

t +
1
α

 1
N

N∑
i=1

si + λεN

 (11a)

subject to pT ξ̂i − t ≤ si, si ≥ 0, ∀i ∈ [N] (11b)

‖p‖q ≤ λ, (11c)

where ‖ · ‖q is the dual of lp-norm, i.e.,1/p + 1/q = 1.

Moreover, the DRSP model (9) is equivalently reformulated as the following mixed 0-1 convex problem

minimize
p,t,s,λ

t +
1
α

 1
N

N∑
i=1

si + λεN


subject to p ∈ P, (11b) and (11c).

(12)

To prove Theorem 1, a lemma is introduced below.

Lemma 1. For any w ∈ Rn, it holds that

sup
x∈Rn

{
wT x − λ‖x‖p

}
= sup

x∈Rn

{
(‖w‖q − λ)‖x‖p

}
. (13)

Proof. By Lemma 1 in Zhang et al. (2017), the maximum of sup‖x‖p=t

{
wT x

}
is explicitly given by t‖w‖q. Then we

obtain
sup
x∈Rn

{
wT x − λ‖x‖p

}
= sup

t≥0
sup
‖x‖p=t

{
wT x − λ‖x‖p

}
= sup

t≥0
sup
‖x‖p=t

{
wT x − λt

}
= sup

t≥0

{
t‖w‖q − λt

}
= sup
‖x‖p≥0

{
(‖w‖q − λ)‖x‖p

}
= sup

x∈Rn

{
(‖w‖q − λ)‖x‖p

}
,

which implies (13).

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. For any feasible path p ∈ P, it is easily seen from (10) that supF∈FN
EF {h(p, t, ξ)} can be obtained

by solving the following conic linear program

maximize
K(ξ, ξ̂i)≥0

∫
Ξ

N∑
i=1

h(p, t, ξ)K(dξ, ξ̂i)

subject to
∫

Ξ

K(dξ, ξ̂i) =
1
N
, ∀i ∈ [N]∫

Ξ

N∑
i=1

d(ξ, ξ̂i)K(dξ, ξ̂i) ≤ εN .

(14)
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We introduce a Lagrangian function for (14), i.e.,

L(ξ, λ, s) =

∫
Ξ

N∑
i=1

h(p, t, ξ)K(dξ, ξ̂i) −
∫

Ξ

N∑
i=1

siK(dξ, ξ̂i) −
∫

Ξ

N∑
i=1

λd(ξ, ξ̂i)K(dξ, ξ̂i) +
1
N

N∑
i=1

si + λεN . (15)

It follows that the Lagrange dual function can be represented as

g(λ, s) = sup
ξ∈Ξ

L(ξ, λ, s) = sup
ξ∈Ξ

∫
Ξ

N∑
i=1

(
h(p, t, ξ) − si − λd(ξ, ξ̂i)

)
K(dξ, ξ̂i) +

1
N

N∑
i=1

si + λεN . (16)

Consequently, the dual problem of (14) is given as

minimize
s,λ

1
N

N∑
i=1

si + λεN (17a)

subject to h(p, t, ξ) − λd(ξ, ξ̂i) ≤ si,∀ξ ∈ Ξ, i ∈ [N] (17b)

λ ≥ 0. (17c)

Consider the primal problem (14) and its dual problem (17). If εN > 0, there exists a strictly feasible solution

K = FN × FN to (14). Thus, the Slater condition for their strong duality holds (Shapiro, 2001). If εN = 0, the

Wasserstein ball FN reduces to a singleton {FN} and (14) changes to a sample average problem 1
N

∑N
i=1 h(p, t, ξ̂i).

Indeed, any feasible solution to the dual problem (17) satisfies that si ≥ h(p, t, ξ̂i) with ξ = ξ̂i and si ≥ 0 with ξ , ξ̂i

when λ tends to infinity. Accordingly, the optimal value of problem (17) reduces to the sample average problem
1
N

∑N
i=1 h(p, t, ξ̂i) as well. Overall, there is no duality gap between (14) and (17) under any case. Thus, it is sufficient

to solve the dual problem (17).

Since h(p, t, ξ) = [ξT p− t]+, the constraint in (17b) amounts to

sup
ξ∈Ξ

{
ξT p− t − λ‖ξ − ξ̂i‖p

}
≤ si, (18)

sup
ξ∈Ξ

{
−λ‖ξ − ξ̂i‖p

}
≤ si. (19)

The inequality (19) implies that si ≥ 0 since λ ≥ 0 and ξ̂i ∈ Ξ. For simplicity, we denote ∆ui = ξ − ξ̂i and re-express

the left-hand side of (18) as

sup
∆ui

{
pT (ξ̂i + ∆ui) − t − λ‖∆ui‖p

}
= sup

∆ui

{
pT ∆ui − λ‖∆ui‖p

}
+ pT ξ̂i − t

= sup
∆ui

{
(‖p‖q − λ)‖∆ui‖p

}
+ pT ξ̂i − t

=


pT ξ̂i − t, if ‖p‖q ≤ λ

+∞, if ‖p‖q > λ

9



where the second equality follows from Lemma 1. Then (14) can be reformulated as

minimize
s,λ

1
N

N∑
i=1

si + λεN

subject to pT ξ̂i − t ≤ si, si ≥ 0, ∀i ∈ [N]

‖p‖q ≤ λ.

(20)

Combining (20) with (8) leads to the equivalence of the w-METT and (11).

Consequently, the DRSP model in (9) can be reformulated as a mixed 0-1 convex problem (12), which completes

the proof.

Theorem 1 implies that the DRSP model (9) is equivalent to a finite mixed 0-1 convex program. Note that the

program in this paper is a discrete optimization problem which is more difficult to solve than the continuous optimiza-

tion program in Esfahani & Kuhn (2018). Furthermore, different lp-norms lead to different equivalent problems of

the proposed DRSP model. For example, when we adopt l1-norm or l2-norm in the Wasserstein distance, the DRSP

model is a 0-1 LP or 0-1 SOCP problem, respectively. See Table 1 for details.

3.2. The DRSP Model with the Support Set

The travel time is finite in practice and thus its support set should not be neglected. In this subsection, we

incorporate this information by assuming that the travel time ξi j belongs to an empirical interval [ai j, bi j] where

ai j = mink∈[N] ξ
k
i j and bi j = maxk∈[N] ξ

k
i j. Then we derive an equivalent formulation for our DRSP model (9).

Let Ξ = [a, b] in this subsection denote the support set where a = {ai j : (i, j) ∈ A} and b = {bi j : (i, j) ∈ A}. Since

Ξ = [a, b] is compact, any distribution F in FN given by (10) in this subsection automatically satisfies Assumption 1.

Following this, we derive equivalent problems for w-METT (8) and the proposed DRSP model (9).

Theorem 2. Let Ξ = [a, b], then the w-METT in (8) over the Wasserstein ball (10) can be computed by a finite convex

problem

minimize
t,s,λ,γi,ηi

t +
1
α

 1
N

N∑
i=1

si + λεN

 (21a)

subject to (p + γi − ηi)T ξ̂i − γT
i a + ηT

i b − t ≤ si (21b)

‖γi + p− ηi‖q ≤ λ (21c)

ηi ≥ 0,γi ≥ 0, si ≥ 0,∀i ∈ [N]. (21d)

Moreover, the DRSP problem (9) is re-expressed as

minimize
p,t,s,λ,γi,ηi

t +
1
α

 1
N

N∑
i=1

si + λεN


subject to p ∈ P, (21b), (21c) and (21d).

(22)
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Proof. The strong duality still holds for the inner largest expectation in (8), which allows us to reformulate problem

(8) as

minimize
t,s,λ

t +
1
α

 1
N

N∑
i=1

si + λεN

 (23a)

subject to h(p, t, ξ) − λd(ξ, ξ̂i) ≤ si,∀ξ ∈ Ξ, i ∈ [N] (23b)

λ ≥ 0. (23c)

The constraint in (23b) can be represented as

sup
ξ∈Ξ

{
ξT p− t − λ‖ξ − ξ̂i‖p

}
≤ si (24)

sup
ξ∈Ξ

{
−λ‖ξ − ξ̂i‖p

}
≤ si, (25)

where the inequality in (25) implies that si ≥ 0.

Note that Lemma 1 in Section 3.1 cannot be applied directly to (24). We utilize the Lagrange dual function to solve

this problem. For brevity, we denote ∆ui = ξ− ξ̂i and express the Lagrangian function of supξ∈Ξ
{
ξT p− t − λ‖ξ − ξ̂i‖p

}
as

L(∆ui,γi, ηi) =(p + γi − ηi)T (∆ui + ξ̂i) − λ‖∆ui‖p − γ
T
i a + ηT

i b − t. (26)

Then, the Lagrange dual function of (26) is given by

g(γi) = sup
∆ui

L(∆ui,γi, ηi)

= sup
∆ui

{
(p + γi − ηi)T ∆ui − λ‖∆ui‖p

}
+ (p + γi − ηi)T ξ̂i − γT

i a + ηT
i b − t

= sup
∆ui

{
(‖p + γi − ηi‖q − λ)‖∆ui‖p

}
+ (p + γi − ηi)T ξ̂i − γT

i a + ηT
i b − t

=


+∞, if ‖p + γi − ηi‖q > λ

(p + γi − ηi)T ξ̂i − γT
i a + ηT

i b − t, if ‖p + γi − ηi‖q ≤ λ

where the third equality follows from Lemma 1.

Consequently, supξ∈Ξ
{
ξT p− t − λ‖ξ − ξ̂i‖p

}
admits an equivalent problem

minimize
γi,ηi

(p + γi − ηi)T ξ̂i − γT
i a + ηT

i b − t

subject to ‖p + γi − ηi‖q ≤ λ

γi ≥ 0, ηi ≥ 0,

(27)

where the strong duality holds as the uncertainty set is non-empty.

Substituting (27) into constraints in (23b), we obtain that the w-METT (8) can be computed by the program (21)

and the DRSP model eventually is given by (22).
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We also summarize the results in Theorem 2 in Table 1. Different from the NP-hard moment-based DRSP model

with support set in Zhang et al. (2018), Table 1 shows that the Wasserstein distance with l1-norm, l2-norm and l∞-norm

leads to a tractable problem for our DRSP model, e.g., the mixed 0-1 LP or SOCP problem.

3.3. Asymptotic consistency

We finally discuss the asymptotic consistency of our DRSP model under the following mild condition.

Assumption 2. For the true distribution F, there exists a constant c > 1 such that∫
Ξ

exp(‖ξ‖cp)F(dξ) ≤ ∞

Under Assumption 2, the asymptotic consistency of our model can be formalized below.

Theorem 3. Under Assumption 2 and let βN ∈ (0, 1) with
∑∞

N=1 βN ≤ ∞. Define the radius εN of the Wasserstein ball

as

εN(βN) =


(

log(c1β
−1
N )

c2N

)1/max{n,2}
if N ≥ log(c1β

−1
N )

c2(
log(c1β

−1
N )

c2N

)1/c
if N <

log(c1β
−1
N )

c2
,

where c1 and c2 are two positive constants that depend on the constant c in Assumption 2.

Then the optimal value and the optimal solution of the DRSP model (9) converge to those of the SSP model (6)

with probability one as N tends to infinity.

Proof. Since h(p, t, ξ) is continuous in ξ and there exists L ≥ 0 with | h(p, t, ξ) | ≤ L(1 + ‖ξ‖) for all p ∈ P, t ∈ R

and ξ ∈ Ξ, then the asymptotic consistency of our DRSP model follows from Theorem 3.6 in Esfahani & Kuhn

(2018).

4. The Worst-case Distribution Achieving the w-METT

In this section we derive the worst-case distribution that attains the supremum of the w-METT in (8) for any

feasible pair of {p, t}, i.e., p ∈ P and t ∈ R.

Lemma 2. Given any feasible pair of {p, t}, then supF∈FN
EF{h(p, t, ξ)} is equivalent to

sup
ξ̃∈B

 1
N

N∑
i=1

h(p, t, ξ(i))

 (28)

where

B =

(ξ(1), . . . , ξ(N)) |
1
N

N∑
i=1

d(ξ(i), ξ̂i) ≤ εN , ξ
(i) ∈ Ξ

 .
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Proof. Fix any solution {p, t}, it follows from the weak duality that

sup
ξ̃∈B

 1
N

N∑
i=1

h(p, t, ξ(i))

 ≤ inf
λ≥0

sup
ξ(i)∈Ξ

 1
N

N∑
i=1

h(p, t, ξ(i)) − λ

 1
N

N∑
i=1

d(ξ(i), ξ̂i) − εN




= inf
λ≥0

λεN +
1
N

N∑
i=1

sup
ξ(i)∈Ξ

{
h(p, t, ξ(i)) − λd(ξ(i), ξ̂i)

}
= sup

F∈FN

EF {h(p, t, ξ)}

where the last equality follows from the program (17) in the proof of Theorem 1. This implies that supF∈FN
EF{h(p, t, ξ)}

is greater than (28).

Next we show that supF∈FN
EF{h(p, t, ξ)} is also less than (28). For any ε ≥ 0, it follows from the equivalent

program (17) that there exists {ξ̃(i)}i∈[N] ⊆ Ξ such that

sup
F∈FN

EF{h(p, t, ξ)} − ε < inf
λ≥0

λεN +
1
N

N∑
i=1

{
h(p, t, ξ̃(i)) − λd(ξ̃(i), ξ̂i)

} . (29)

If
(
ξ̃(1), . . . , ξ̃(N)

)
< B and let λ > 0, it holds that

λ

εN −
1
N

N∑
i=1

d(ξ̃(i), ξ̂i)

 < 0.

If λ tends to +∞ in (29), it leads to supF∈FN
EF{h(p, t, ξ)} = −∞. This contradicts the fact that supF∈FN

EF{h(p, t, ξ)} ≥

EFN {h(p, t, ξ)} > −∞. Thus,
(
ξ̃(1), . . . , ξ̃(N)

)
∈ B and

sup
F∈FN

EF{h(p, t, ξ)} − ε < inf
λ≥0

sup
ξ̃∈B

λεN +
1
N

N∑
i=1

{
h(p, t, ξ̃(i)) − λd(ξ̃(i), ξ̂i)

}
Since for any

(
ξ(1), . . . , ξ(N)

)
∈ B it holds that

λ

εN −
1
N

N∑
i=1

d(ξ(i), ξ̂i)

 ≥ 0,

it implies that

sup
F∈FN

EF{h(p, t, ξ)} − ε < sup
ξ̃∈B

 1
N

N∑
i=1

{
h(p, t, ξ(i))

}
Letting ε tend to zero leads to the desired inequality and hence we obtain that

sup
F∈FN

EF{h(p, t, ξ) = sup
ξ̃∈B

 1
N

N∑
i=1

h(p, t, ξ(i))

 .

Note that the objective function of (28) is continuous and its feasible set B is compact, the supremum problem

admits an optimal solution. That is, “sup” can be replaced by “max”. Since Lemma 2 implies the equivalence of the

optimal value of (28) and supF∈FN
EF{h(p, t, ξ)} for any feasible pair of {p, t}, we can construct a worst-case distribution

based on the optimal solution of (28).
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Theorem 4. Given any feasible pair of {p, t}, let ξ{p,t} =
(
ξ(1)
{p,t}, . . . , ξ

(N)
{p,t}

)
be an optimal solution of the optimization

problem in Lemma 2. Then the following distribution

F∗{p,t} =
1
N

N∑
i=1

δξ(i)
{p,t}

is the worst-case distribution, i.e.,

sup
F∈FN

EF {h(p, t, ξ)} = EF∗
{p,t}
{h(p, t, ξ)} .

Proof. We first show F∗
{p,t} belongs to the Wasserstein ball FN . Denote a joint distribution of FN and F∗

{p,t} as

Π{p,t} =
1
N

N∑
i=1

δ(ξ(i)
{p,t},ξ̂i)

.

Then by the definition of the Wasserstein metric we obtain that

dW (FN , F∗{p,t}) ≤
∫ ∥∥∥ξ − ξ′∥∥∥p Π{p,t}

(
dξ, dξ′

)
=

1
N

N∑
i=1

‖ξ(i)
{p,t} − ξ̂

i‖p ≤ εN ,

where the last inequality holds since
(
ξ(1)
{p,t}, . . . , ξ

(N)
{p,t}

)
∈ B. Thus, F∗

{p,t} is contained in the Wasserstein ball FN .

Consequently, we obtain that

sup
F∈FN

EF {h(p, t, ξ)} ≥ EF∗
{p,t}
{h(p, t, ξ)} =

1
N

N∑
i=1

(
h(p, t, ξ(i)

{p,t})
)

= sup
F∈FN

EF {h(p, t, ξ)}

where the last equality holds due to Lemma 2. This implies that F∗
{p,t} is one of the worst-case distribution in the

Wasserstein ball FN . Here we complete this proof.

Theorem 4 implies that the worst-case distribution has a finite support and the number of support elements is the

same as the number of the data samples. As the moment-based DRSP model is only solved by an approximation

method, they are unable to provide any result on the worst-case distribution.

5. Extensions

5.1. DR Bi-criteria Shortest Path Problem

Now we extend our DRSP model to the bi-criteria DR shortest path problem, i.e.,

minimize
t∈R,p∈P


∑

(i, j)∈A
ci j pi j

t + 1
α

supF∈FN
EF{h(ξ, t, p)}

 , (30)

where c = {ci j : (i, j) ∈ A} is the deterministic vector of the travel cost over all arcs and ci j is the cost on each arc

(i, j) ∈ A. Moreover, we set Ξ = Rn in this subsection.

Since the existence of a path simultaneously minimizing both objectives in (30) cannot be guaranteed, we follow

the idea of Mangasarian (1994) to seek weakly robust efficient paths with a bearable trade off between two objectives.
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Definition 3. Let f1(p) = cT p, f2(p, t) = t + 1
α
EF{h(ξ, t, p)}, then

{
p, t

}
is a weakly robust efficient solution of (30) if

and only if there exists λ1 ≥ 0, λ2 ≥ 0 and λ1 + λ2 , 0 such that

λ1 f1(p) + λ2 sup
F∈FN

f2(p, t) ≥ λ1 f1(p) + λ2 sup
F∈FN

f2(p, t)

holds for any feasible pair of {p, t}.

Corollary 1. The weakly robust efficient solution to (30) over the Wasserstein ball FN can be obtained by solving the

following problem

minimize
p,s,λ

λ1 f1(p) + λ2

t +
1
α

1
N

N∑
i=1

si + λεN


subject to pT ξ̂i − t ≤ si, si ≥ 0,∀i ∈ [N],

‖p‖q ≤ λ, p ∈ P.

(31)

Proof. Since the uncertainty only arises in the second objective function f2(p), which equals the objective function in

our DRSP model, the result follows from Theorem 1.

Corollary 1 implies that our DRSP model can be extended to the DR bi-criteria shortest path problem and its

weakly robust efficient solutions can be obtained simply by solving a deterministic convex problem.

5.2. DR Minimum Cost Flow Problem

This subsection considers the DR minimum cost flow problem based on the Wasserstein ball, i.e.,

minimize
x

sup
F∈FN

EF

 ∑
(i, j)∈A

ci jxi j


subject to

∑
j:(i, j)∈A

xi j −
∑

j:( j,i)∈A

x ji = bi,∀i ∈ V,

0 ≤ xi j ≤ ui j, ∀(i, j) ∈ A,

(32)

where ci j and ui j ≥ 0 are the random cost and the capacity of arc (i, j) respectively. bi > 0 is the supply of each vertex

i. Let x = {xi j : (i, j) ∈ A} represent a flow from the source vertex to the sink vertex, where xi j is the flow on arc (i, j).

Let X be the set of feasible flows of problem (32).

We are interested in the problem whose distribution of the random cost vector c = {ci j : (i, j) ∈ A} ∈ Rn belongs

to a Wasserstein ball FN . We prove that (32) can be reformulated as a modified network flow problem.

Corollary 2. Let d(·) = ‖ · ‖∞ and Ξ = Rn in the Wasserstein ball FN , the optimal DR flow to (32) can be obtained by

solving

minimize
x

∑
(i, j)∈A

 1
N

N∑
k=1

ĉk
i j + εN

 xi j

subject to x ∈ X,

(33)

where ĉk is the kth sample of the random cost vector and X is the set of all feasible flows.
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Proof. By Theorem 1, the problem (32) admits an equivalent program

minimize
x

1
N

N∑
k=1

sk + λεN

subject to
∑

(i, j)∈A

ĉk
i jxi j ≤ sk,∀k ∈ [N],

λ ≥ ‖x‖1, x ∈ X.

(34)

Eliminating the variables sk and λ from (34) leads to

minimize
x

1
N

N∑
k=1

∑
(i, j)∈A

ĉk
i jxi j + εN‖x‖1

subject to x ∈ X.

(35)

Since xi j ≥ 0, we can rewrite ‖x‖1 as
∑

(i, j)∈A xi j and reformulate (35) as (33), which is a nominal minimum cost flow

problem with edge cost ci j = 1
N

∑N
k=1 ĉk

i j + εN .

Corollary 2 implies that the DR minimum cost flow problem over the Wasserstein ball can be converted to a

deterministic network flow problem with arc cost ci j = 1
N

∑N
k=1 ĉk

i j + εN .

6. Experiments

Numerical experiments are conducted to validate the performance of our DRSP model in this section. We take the

commonly-used l1-norm to compute the difference of travel time of two vectors. In view of Table 1, our DRSP model

is reduced to a mixed 0-1 LP problem, which can be solved via existing optimization techniques. All experiments are

implemented on a 64 bit PC with an Intel Core i5-7500 CPU at 3.4GHz and 8 GB RAM. Cplex 12.6 is used to solve

the mixed 0-1 LP problem.

6.1. DR Shortest Path Problems

Experiments on the Eastern Massachusetts (EMA) network (Stabler et al., 2019) with 74 vertices and 258 links are

firstly performed to reveal the impact of different parameters on our DRSP model. Travel time of each arc is captured

by a random vector ξ = {ξi j : (i, j) ∈ A}. We find paths from the origin vertex 1 to the destination vertex 74 by solving

our DRSP model.

We assume that ξi j of different arcs is independent across the network and follows a mixture of Gaussian distri-

bution N(µi j, µi j × 10) and uniform distribution U(0, µi j) where µi j is obtained from Stabler et al. (2019). Clearly,

both distributions satisfy Assumption 1 with finite first moments. In the experiment, half of the dataset are generated

from N(µi j, µi j × 10) and the rest are generated from U(0, µi j). Impacts of the Wasserstein radius εN and the dataset

size N on the out-of-sample performance of our DRSP model are tested respectively. We compare our model with the

moment-based DRSP model in Zhang et al. (2018) and the SAA method in terms of the out-of-sample performance

and computation complexity. Table 2 shows the use of parameters in different experiments.
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Figure 2: Eastern Massachusetts (EMA) network with 74 vertices and 258 links.

We evaluate the out-of-sample performance by examining the cost of the model under new samples, i.e.,

minimize
t∈R

{
t +

1
α
EF{h(p, t, ξ)}

}
(36)

Noting that the true distribution F is a mixture of the Gaussian distribution and the uniform distribution, and

importantly unknown. We are unable to exactly compute (36). Instead, we randomly generate 500 samples from the

Gaussian distribution and 500 samples from the uniform distribution as test samples to approximate it, i.e.,

minimize
t∈R

t +
1

αNT

NT∑
i=1

{h(p, t, ξ̂i)


where ξ̂i is the ith test sample and NT is the size of test dataset.

α εN N

Impact of εN 0.1 {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, . . . , 1} {30, 100, 300}

Impact of N 0.1 0.1 {30, 50, . . . , 290}

Table 2: Parameters in different experiments.
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6.2. Performance of the DRSP Model Without Support Set

In this subsection we evaluate the performance of our DRSP model in (9).

6.2.1. Impact of the Wasserstein Radius

We first conduct experiments to test the impact of the Wasserstein radius εN on the out-of-sample performance of

our DRSP model. Parameters α, εN and N are selected as the first row of Table 2.

Since ‖p‖∞ = 1 for any feasible path p, one can argue from (11c) that l1-norm in the Wasserstein distance is not

sensible to our DRSP model without the support set. In this subsection we take l2-norm in the Wasserstein distance.

We perform 200 independent experiments and the averaged out-of-sample performance is shown in Figure 3. It

reveals that the performance improves until the Wasserstein radius exceeds a certain value, and then deteriorates as

the radius increases. As a result, the Wasserstein radius of our DRSP model should be selected based on the size of

the sample dataset for good out-of-sample performance.
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Figure 3: Averaged out-of-sample performance as a function of Wasserstein radius under sample datasets with different sizes. (a) N = 30, (b)

N = 100, (c) N = 300.

6.2.2. Impact of the Sample Size

In this subsection we perform experiments on the sample dataset of different sizes to examine the impact of the

sample sizes. Parameters in these experiments are set as the second row in Table 2. The averaged out-of-sample

performance over 200 independent experiments is presented in Figure 4.

The improvement of the out-of-performance with increasing dataset sizes in Figure 4 validates the asymptotic

consistency of our model as shown in Theorem 3.

6.3. Performance of the DRSP Model With Support Set

This subsection validates our DRSP model with the support set Ξ = [a, b] in Section 3.2. We test the impact of

radius εN and the sample size N on our DRSP model. All parameters are set as Table 2.
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Figure 4: Averaged out-of-sample performance as a function of sample size N for 200 independent experiments, where the support set of travel

time is Rn.

6.3.1. Impact of the Wasserstein Radius

We first test the impact of radius εN . Figure 5 describes the averaged out-of-sample performance over 200 in-

dependent experiments under different Wasserstein radii εN . Similar to results in Section 6.2.1, the out-of-sample

performance obtains its optimal value at a certain point and then deteriorates as the radius increases.
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Figure 5: Averaged out-of-sample performance as a function of Wasserstein radius under the sample dataset with different sizes where the support

set of travel time is [a, b]. (a) N = 30, (b) N = 100, (c) N = 300.

6.3.2. Impact of the Sample Size

Now, we test the impact of the sample size N. Figure 6 shows the out-of-sample performance averaged over 200

independent simulation runs as a function of N, in which the performance improves as N increases.

6.4. Comparisons with the state-of-the-art methods

In this subsection we compare our model with the SAA method and the DRSP model in Zhang et al. (2018)

where the ambiguity set is based on moment constraints. We set α = 0.1 and N = {20, 30, 50, 100, 200, 300, 500} in
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Figure 6: Averaged out-of-sample performance as a function of sample size N averaged over 200 independent simulations, where the support set

of travel time is [a, b] .

this subsection. Noting that the Wasserstein radius εN depends on the training data. We tune it for different sample

datasets to provide a powerful out-of-sample performance guarantee. Since the moment-based model is an intractable

co-positive program problem, Zhang et al. (2018) derives dual approximation methods to provide a lower bound and

an upper bound for the DR shortest path problem. They are denoted as M-LB and M-UB for short respectively.

We solve these models and evaluate their out-of-sample performance. For the purpose of comparison, we use the

following percentage difference (
DR

SAA
− 1

)
× 100%

where DR denotes the out-of-sample performance of paths obtained from the DR shortest path model and SAA

denotes that of the SAA method.

Comparisons in terms of the out-of-sample performance and the computation time are given in Table 3 and Table

4, respectively. A negative value in Table 3 indicates that the DR performs better than the SAA. One can observe that

our DRSP model with the support set (denoted as DRSP-S) exhibits the best out-of-sample performance if the dataset

is small, which however needs a longer computational time. As the dataset increases, our DRSP model without the

support set also performs better than the SAA method and the moment-based DRSP model. More importantly, it can

be solved in an appropriate time even when the sample set is large. Kindly note that both the exact mean and the

variance are needed and essential to the moment-based DRSP model. From this perspective, they need more exact

model information.

6.5. Real Road Network Experiments

Now we evaluate our DRSP model on a road network with a real dataset. We compare our model with the SAA and

the moment-based model. In this experiment, both α and N are the same as these in Section 6.4 and the Wasserstein

radius εN is tuned according to the sample dataset.
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Method
Number of Samples

20 30 50 100 200 300 500

DRSP 1.6 -0.3 -1.8 -2.5 -3.2 -5.2 -5.4

DRSP-S -7.1 -6.4 -6.4 -6.1 -6.6 -5.0 -3.3

M-LB -0.1 -0.2 -0.2 -0.5 -0.6 -0.3 -0.8

M-UB 0.6 -0.5 -1.6 -2.4 -2.0 -0.2 -0.6

Table 3: Percentage differences (in %) between the DR models and SAA in terms of out-of-sample performance.

Method
Number of Samples

20 30 50 100 200 300 500

DRSP 0.13 0.16 0.16 0.23 1.93 3.16 3.85

DRSP-S 0.66 1.05 2.02 5.93 18.26 37.48 100.72

M-LB 68.16 113.13 180.66 413.46 844.54 1158.12 2090.82

M-UB 3.40 3.73 3.71 6.44 11.66 23.20 29.77

SAA 0.73 0.83 1.89 2.43 3.98 7.58 11.50

Table 4: Averaged computation time (second) of different methods.

We construct a dataset of travel time from Tsinghua University (THU) to Beijing Capital International Airport

(BCIA) captured from the AMAP which provides a live traffic data interface1. Firstly we select twenty-one paths

which individuals usually take from THU to BCIA as illustrated in Figure 7. We set THU as the origin vertex and

BCIA as the destination vertex. Moreover, we select several way-points on each path as vertices in the network and

then provide an illustrative network of the map in Figure 8.

Figure 7: Map with 21 paths from THU to BCIA.

1https://lbs.amap.com/api/webservice/guide/api/direction#driving
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Figure 8: Simplified network between THU and BCIA.

We collect travel time of each arc along paths as shown in Figure 8 and update it every 10 minutes over a week

spanning from Sunday morning, January 06, 2019 to Sunday morning, January 13, 2019. Thus, we have collected

24 · 6 · 7 = 1008 different observations where each data point contains the travel time of all arcs.

Since the true distribution F of the travel time is unknown, it is unable to exactly compute the out-of-sample

performance. Similar to Section 6.1, we utilize 300 randomly chosen test samples from the dataset to approximate the

out-of-sample performance.

It should be noticed that we do not consider transportation expenses such as tolls for high-speed and bridge

maintenance of roads. Thus, the optimal path may charge more than others. Moreover, the time spent on waiting for

the traffic light is ignored as well.

Method
Number of Samples

20 30 50 100 200 300 500

DRSP -0.05 -0.5 -2.3 -2.4 -3.5 -3.4 -3.2

DRSP-S -1.3 -2.1 -4.3 -3.8 -3.3 -4.3 -3.7

M-LB 0.9 0.6 -1.5 -2.1 -2.3 -1.9 -2.0

M-UB 0.8 0.5 -1.9 -1.7 -1.9 -2.1 -1.8

Table 5: Percentage differences (in %) between the DR solutions and SAA solutions for out-of-sample performance.

Results averaged on 200 independent simulations are given in Table 5 and Table 6 which confirm the advantages

of our DRSP models as expected.
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Method
Number of Samples

20 30 50 100 200 300 500

DRSP 0.08 0.10 0.11 0.13 0.21 0.33 0.52

DRSP-S 0.11 0.13 0.17 0.27 0.58 1.01 1.82

M-LB 0.14 0.31 0.30 0.96 2.98 6.93 18.23

M-UB 0.40 0.33 0.37 0.56 0.84 1.27 1.96

SAA 0.21 0.21 0.25 0.47 0.80 1.20 2.15

Table 6: Averaged computation time (second) of different methods in different experiments.

7. Conclusion

We have proposed a data-driven DRSP model for finding optimal paths to minimize the w-METT over a Wasser-

stein ball. Our DRSP model can be reformulated as a solvable finite convex problem while the DRSP model over

the moment-based ambiguity set is an intractable co-positive program. We derived an explicit form of the worst-case

distribution in w-METT. Experimental results validate that the proposed DRSP model provides good out-of-sample

performance. Moreover, our model can be extended to the DR bi-criteria shortest path problem and the minimum cost

flow problem easily.
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