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Abstract

This paper deals with the problem of allocating costs in set covering situations.
In particular, we focus on set covering situations where the optimal covering is given
in advance. Thus, we take into account only the facilities that have to be opened
and look for rules distributing their cost. We define a cooperative game and study
the core and the nucleolus. We also introduce two new rules: the equal split rule on
facilities and the serial rule. We axiomatically characterize the core, the nucleolus,
and the two rules. Finally, we study several monotonicity properties of the rules.
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1 Introduction

An interesting logistic problem arises when there is a set of agents who wish to (or must)
be provided with a service which has to be located at several different points in order to
serve all those agents. This is a very well-known problem in operations research, called
the “set covering problem” (Berge, 1957; Toregas et al., 1971). In particular, there are a
set of potential locations, such that each of them covers a subset of agents to be served.
Each potential location has a fixed construction and start-up cost associated with it.
Therefore, the goal is to choose a subset of potential locations such that all agents are
covered and the cost is minimized. Set covering problems are important and interesting
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not only from the viewpoint of theoretical optimization, but also from that of practice.
Thus these problems have been applied in many different fields, see Beasley and Jørnsten
(1992). Garcia and Marin (2015) survey different covering location models.

After a set covering problem is solved, the next question to be answered is who must
pay the cost or, equivalently, how much each agent benefiting from the service must pay?
This question can be answering using cooperative game theory and/or cost sharing theory.

In this paper, we focus on situations in which the set of locations is already established
and there is no possibility of modifying the locations where the facilities are to be set up.
This can occur for several reasons, e.g. because a reasonable solution has been determined
cannot be improved on in a reasonable time (note that the set covering problem is NP-
complete (Karp, 1972)); because the cost to be divided is the maintenance cost; or because
the interested parties have reached an agreement on the final location of the facilities.
Therefore, we take into account only the facilities that have to be opened. For this
situation, we pose the following research questions:

• How much does each agent who benefits from the service have to pay?

• What properties do the cost sharing rules satisfy?

In order to answer these questions, we first introduce a cooperative game which sum-
marizes for each coalition the cost of using those locations that cover all agents in the
coalition at minimum cost. For this game we analyze the core (Gillies, 1953) and the
nucleolus (Schmeidler, 1969). Two more cost sharing rules are also introduced: The equal
split rule on facilities, and the serial rule. All these three rules are characterized by means
of different reasonable properties. In addition, different monotonicity properties are stud-
ied in order to learn more about the behavior of the rules when some changes in the
problem are introduced. To the best of our knowledge there is no previous research into
this approach for allocating the cost in set covering problems. Therefore, we are filling a
gap in the literature on cost sharing and logistics.

The rest of the paper is organized as follows. Section 2 presents a review of the
relevant literature. Section 3 describes our model and some preliminary concepts. Section
4 introduces the core and the three rules. Section 5 characterizes the core and the three
rules using a reduced set of properties. Section 6 analyzes the monotonicity properties of
the rules. Section 7 concludes.

2 Literature Review

In this section we review the literature most closely related to our paper. That literature
contains many papers studying operations research (OR) problems from a game theoretic
perspective. This is because in many OR problems there may be more than one agent
involved, so then a natural question to be answered is how to share the extra profits
or the cost savings obtained from cooperation. The classical OR problems studied from
a game theoretic perspective include minimum cost spanning tree problems (Claus and
Kleitman, 1973; Bird, 1976; Bergantiños and Vidal-Puga, 2007; Bergantiños and Lorenzo-
Freire, 2008), assignment problems (Shapley and Shubik, 1972), transportation problems
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(Sanchez-Soriano, 2003, 2006), linear production problems (Owen, 1975), source connec-
tion problems (Bergantiños et al., 2014) and network flow problems (Kalai and Zemel,
1982). Borm et al. (2001) provides a survey on OR-games.

Regarding location problems, cooperative game theory is used in Granot (1987) to deal
with the problem of locating one facility in a tree and generating a cost allocation. Tamir
(1992) shows that the class of cost allocation games on a tree graph has a non empty core.
Deng et al. (1999) consider a class of combinatorial optimization games, which includes
covering games, and state that the core is non empty if and only if the linear relaxation of
the corresponding linear program has an integer solution. Puerto et al., (2001) introduce
a family of cooperative games arising from continuous single facility location problems
and show two sufficient conditions so their location games to have a non-empty core.
Goemans and Skutella (2004) prove that for the unconstrained facility location problem
decisions as to whether the core is non empty and whether a cost allocation is in the core
are NP-complete. Caprara and Letchford (2010) define a more general class of games
that contains combinatorial games as a particular case, and compute “good” cost shares
for these games by using cutting plane and column generation methods. The several
papers that survey location games include that of Fragnelli and Gagliardo (2013), where
attention is given to problems that are open in this field.

In the literature several papers can be found that study the set covering problem from
different game theoretic approaches. Devanur et al. (2005) introduce a set covering cost
sharing mechanism based on the LP-relaxation of the set covering problem and prove that
the mechanism is strategyproof but not group strategyproof, and provides a solution close
to the optimum set covering. Li et al. (2005) define three generalized set covering games
and study cost sharing and strategyproof mechanisms for them. In one of the games, they
introduce a cost sharing method which is approximately budget-balanced and belongs
to the α-core. In the other two games, they propose strategyproof charging/payment
mechanisms for allocating the costs.

Our approach to set covering games differs from these papers in several aspects. First,
we consider a fixed solution as given, then define a cooperative game and study its core
and nucleolus. Second, we introduce two cost sharing methods based on the structure
of the given solution itself. And finally, we axiomatically characterize the proposed cost
sharing methods, including the nucleolus and the core. Therefore, our approach and
results are completely different and novel in this regard.

Recently, several non cooperative set covering games have been defined in the liter-
ature. Escoffier et al. (2010) define a strategic set covering game in which agents are
charged a fraction of the cost of the facility that they have chosen. The authors prove the
existence of pure strategy Nash equilibria and pure strong strategy equilibria for different
reasonable tax functions and study their price of anarchy, which is the worst case ratio
between the social cost of an equilibrium and the optimal social cost. Cardinal and Hoefer
(2010) define non cooperative set covering games and prove the existence of exact Nash
equilibria by using LP-relaxation and duality. They also prove that the price of stability,
which measures the best Nash equilibrium in terms of the optimum cost instead of the
worst equilibrium, is 1. Balcan et al. (2011) define non-cooperative covering games with
learning dynamics for studying convergence towards different equilibria which are close
to the optimum. And Piliouras et al. (2015) define non cooperative set covering games
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and prove the existence of Nash equilibria for them, also by using standard LP-relaxation.
They further determine the price of anarchy for those games. All these papers approach
the set covering problem from a non cooperative perspective, while we do so from a coop-
erative perspective. Thus, our approach and results are completely different from those
of the above-mentioned papers.

In conclusion, as far as we know, our game theoretic approach to set covering problems
and the results obtained are new and fill a gap in the literature on a relevant operations
research problem. We provide different cost sharing methods which are analyzed axiomat-
ically to show their interest and relevance in terms of reasonable properties that a cost
sharing method should satisfy.

3 Set covering model and preliminaries

A set of agents N = {1, ..., n} need a service that could be provided by a set of facilities
M. Each facility k ∈ M is characterized by a pair (ck, Ak) where ck ≥ 0 denotes the cost
of opening, maintaining, constructing, activating, etc. a facility and Ak ⊂ N is the set of
agents that are served when that facility is opened.

The set covering problem (SCP ) consists of opening a subset of M such that all agents
in N are served by at least one facility and the total cost is minimized. Formally, this
involves looking for TN ⊂ M such that

⋃

k∈TN

Ak = N and

∑

k∈TN

ck ≤
∑

k∈T

ck, for each T ⊂ M :
⋃

k∈T

Ak = N.

It is well-known that SCP is an NP-complete problem, i.e. there is no known algorithm
which always reaches an optimal solution of the problem in polynomial time.

We focus on set covering situations where a reasonable cover is given in advance. This
approach is meaningful in several circumstances. The first is related to situations where
the facilities have been open for some time, there is now a need to divide the maintenance
costs of the open facilities among the agents covered by them. The second one is related
to situations where the related set covering problem has been solved either by means of
an exact algorithm or by a heuristic or, the agents have simply reached an agreement on
what facilities are to be opened or built. Moreover, we seek only to take into account the
facilities already open so as to distribute the cost of the given cover among the agents.

A set covering cost sharing problem (a “problem”, for short) is a 4-tuple P = (N,M, c, A)
where:

• N = {1, . . . , n} is the set of agents.

• M = {1, . . . , m} is the set of facilities open.

• c = (ck)k∈M is the vector of costs associated with the facilities.

We assume that ck ≥ 0 for each k ∈ M .
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• A = {Ak}k∈M with Ak ⊂ N for each k ∈ M denotes the agents covered by each
facility.

We assume that all agents are covered, i.e.
⋃

k∈M

Ak = N , and there are no redundant

facilities, i.e. for each l ∈ M,
⋃

k∈M\{l}

Ak 6= N .

Let P be the set of all set covering sharing cost problems. Denote by c(P ) the total
cost of the facilities in M , i.e, c (P ) =

∑

k∈M

ck.

We now introduce some notation that will be used later.
Given a problem P = (N,M, c, A) and i ∈ N , letHi denote the set of facilities covering

agent i. Namely,
Hi = {k ∈ M : i ∈ Ak}.

Moreover, let N1 denote the set of agents covered by a single facility. Namely,

N1 = {i ∈ N : |Hi| = 1}.

A cost sharing solution (a “solution”, for short) is a mapping f : P → RN satisfying
that for all P ∈ P, f (P ) ⊂ RN and for each x ∈ f (P ),

∑

i∈N

xi = c (P ) .

This means that we only consider allocations which distribute all the cost associated
with the facilities among agents served by them (i.e., the classical efficiency condition
holds).

When a cost sharing solution is always a single allocation, then we call it a cost sharing

rule (a “rule”).

Given X, Y ⊂ RN , we define the set X + Y as

X + Y = {z = x+ y : x ∈ X and y ∈ Y } .

4 Cost sharing methods for set covering problems

In this section we introduce some rules for the set covering cost sharing problem which are
either based on a particular cooperative game associated with the problem or are related
to the structure of the problem.

4.1 Solutions based on game theory: the core and the nucleolus

Assume that to allocate the total cost of the facilities, the most relevant criterion is
considered to be the effect that each subset of agents has on that total cost. An approach
to the problem from the perspective of cooperative game theory would then be reasonable.
Thus, the first step is to define a cooperative game associated with the problem which
measures that effect on the total cost. Secondly a cooperative game solution must be used
to allocate the total cost among the agents.
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Following the idea above, we first associate with each problem P = (N,M, c, A) a cost
game (N, cP ) where for each S ⊂ N,

cP (S) = min
T⊂M

{

∑

k∈T

ck : S ⊂
⋃

k∈T

Ak

}

.

Notice that cP (S) measures the cost of covering agents in S and that cP (N) = c(P )
and cP (∅) = 0.

The core of a cost game (N, c) is defined as

core (N, c) =

{

(xi)i∈N :
∑

i∈N

xi = c (N) and
∑

i∈S

xi ≤ c (S) for each S ⊂ N

}

.

Given a problem P, the core of P , core (P ), is the core of the cost game cP associated
with P .

Our first result characterizes the core of a problem P.

Proposition 1 For each problem P = (N,M, c, A) we have that

core (P ) = {x ∈ RN
+ :

∑

i∈N

xi = c(P ); for each i /∈ N1, xi = 0,

and for each k ∈ M,
∑

i∈Ak∩N1

xi = ck}

Proof. We first prove ⊂ . Let x ∈ core (P ). Then x ∈ core (N, cP ) and hence

∑

i∈N

xi = cP (N) = c(P ).

By definition of the core of cP , for each k ∈ M ,

∑

i∈Ak∩N1

xi ≤ cP (Ak ∩N1) = ck.

Suppose that for some k ∈ M ,
∑

i∈Ak∩N1

xi < ck. Let S = N\(Ak ∩N1), then

∑

i∈S

xi = c (P )−
∑

i∈N\S

xi > c(P )− ck = cP (S)

where the last equality holds because A\Ak is the only covering for S. But
∑

i∈S

xi > cP (S)

contradicts that x ∈ core (P ). Hence,
∑

i∈Ak∩N1
xi = ck, ∀k ∈ M .

Since
∑

i∈Ak∩N1

xi = ck for all k ∈ M and
∑

i∈N

xi = c(P ) =
∑

k∈M ck, it follows that
∑

i/∈N1

xi = 0. Assume that xi > 0 for some i ∈ N1. Let k ∈ M be such that i ∈ Ak.
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Let S = {i} ∪ (Ak ∩N1). Then
∑

j∈S

xj = xi + ck > ck = cP (S), which contradicts that

x ∈ core (P ). Hence, xi = 0, ∀i /∈ N1.
Finally, we check that xi ≥ 0 for all i ∈ N. Given i ∈ N1 there is a single k(i) ∈ M such

that i ∈ Ak(i). If Ak(i) ∩N1 = {i}, then xi = ck(i) ≥ 0. Assume that Ak(i) ∩N1 = {i} ∪ S,
with S 6= ∅ and xi < 0. Since, xi +

∑

j∈S

xj = ck(i), it follows that
∑

j∈S

xj > ck(i) = cP (S)

which contradicts that x ∈ core (P ).
We now prove ⊃. Let

x ∈ {x ∈ RN
+ :

∑

i∈N

xi = c(P ); for each i /∈ N1, xi = 0,

and for each k ∈ M,
∑

i∈Ak∩N1

xi = ck}

Let S ⊂ N and S1 = S ∩N1. We consider two cases:

• S1 = ∅. Then
∑

i∈S

xi = 0 ≤ cP (S)

• S1 6= ∅. Let K = {k ∈ M : i ∈ Ak for some i ∈ S1}. Note that

∑

i∈S

xi =
∑

i∈S1

xi =
∑

k∈K

ck.

Now, let K ′ be the optimal covering of S. Thus, K ⊂ K ′. Therefore,

∑

i∈S

xi =
∑

k∈K

ck ≤
∑

k∈K ′

ck = cP (S).

Therefore the result holds.

Since there are no redundant facilities, each facility has at least one agent connected
only to it. Thus, the core of these games is always nonempty. This is good news because it
means that coalitionally stable allocations such as the nucleolus can always be proposed.

Consider the following example.

Example 2 Let N = {1, 2, 3} ; A = {A1, A2} where A1 = {1, 3} and A2 = {2, 3} ; c1 = 6
and c2 = 12.

The core contains only one allocation given by (6, 12, 0) which just coincides with the

nucleolus.

It is well-known that the nucleolus, an outstanding cooperative rule, is always in the
core when the core is nonempty. In general the nucleolus is not easy to calculate, but for
these problems it is easy.

We define the nucleolus of a problem P as the nucleolus of the associated cost game
(N, cP ) .
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The nucleolus satisfies the symmetry property. Namely, symmetric agents in the cost
game (N, c) receive the same allocation under the nucleolus. For each k ∈ N all agents
in N1 ∩ Ak are symmetric in (N, cP ) and the nucleolus belongs to the core. Thus, it can
be deduced that the nucleolus of a problem P is given by,

ηi(P ) =

{

0 if i /∈ N1

ck
|N1∩Ak|

if i ∈ N1 ∩ Ak

(1)

Note that the nucleolus distributes the cost of a facility equally among all agents
who are connected only to it. Moreover, agents connected to more than one facility pay
nothing. Thus, the nucleolus can be considered as quite ”unfair” because agents covered
by more than one facility pay nothing.

In the next subsection we define two rules that overcome this shortcoming.

4.2 Rules based on the cost structure of the problem

As mentioned in the previous section, the allocations in the core of the problem are quite
extreme. Agents covered by more than one facility pay nothing. The cost of each facility
is paid only by those agents who are covered by it alone. There are situations where being
covered by more than one facility is clearly better than being covered by just one. In such
situations, the core would provide unfair allocations of the total cost.

For this reason we consider other rules that do not belong to the core of the problem,
but provide fairer allocations in many cases. In particular, we introduce two rules which
are based on the structure of the problem: The equal split rule on facilities and the serial
rule.

The equal split rule on facilities (EF ) allocates the cost of each facility equally
among the agents covered by that facility. Formally,

EFi (P ) =
∑

k∈M :i∈Ak

ck
|Ak|

, for all i ∈ N. (EF rule)

In Example ?? the equal split rule allocates the cost of facility A1 equally between
agents 1 and 3 and the cost of facility 2 equally between 2 and 3. Thus, agent 1 pays 3,
agent 2 pays 6 and agent 3 pays 3 + 6 = 9.

The equal split rule on facilities could be appropriate for problems where being covered
by more than one facility is clearly better than being covered by only one, for example
when the facilities are parks or hospitals.

Given a problem P = (N,M,C,A) we assume, without loss of generality, that c1 ≤
c2 ≤ .... ≤ cm. By convention, we take c0 = 0 and A0 = ∅.

For each i ∈ N , let mP (i) denote the facility with the lowest index covering agent
i. Namely, m (i) = min {k : i ∈ Ak} . When no confusion arises we write m (i) instead of
mP (i)

Now we define the serial rule (S) as
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Si (P ) =

m(i)
∑

k=1

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

, for all i ∈ N. (serial rule)

This rule is inspired by the serial cost sharing method introduced in Moulin and
Shenker (1992). The idea behind of the serial rule is to divide the cost of each facility as
follows:

c1 = c1
c2 = c1 c2 − c1
c3 = c1 c2 − c1 c3 − c2 ...
... ... ... ... ... ...

cm = c1 c2 − c1 c3 − c2 ... cn − cn−1
∑

k∈M

ck = mc1 (m− 1) (c2 − c1) (m− 2) (c3 − c2) cn − cn−1

First, mc1 is allocated equally among all agents. Therefore, the cost of facility 1 (c1) is
fully paid. Now, all agents covered by that facility (A1) are removed from the procedure.
The costs of the remaining facilities are reduced by exactly c1.

Second, (m− 1) (c2 − c1) is divided equally among all agents in N\A1. Therefore, the
cost of facility 2 (c2) is fully paid. Now all agents covered by facility 2 (A2) are removed
from the procedure. The costs of the remaining facilities are reduced by exactly c2 − c1.

Third, (m− 2) (c3 − c2) is divided equally among all agent in N\ (A1 ∪A2) . The pro-
cedure continues as above.

In Example ?? the serial rule divides 2c1 = 12 equally among all agents. The remaining
(12-6) is assigned to agent 2, who is not covered by facility 1. Thus, agent 1 pays 4, agent
2 pays 4 + 6 = 10 and agent 3 pays 4.

The serial rule could be appropriate for problems where being covered by more than
one facility is the same as being covered by only one, e.g. when facilities are telephone
antennas.

5 Some properties and characterization of the rules

Cost sharing solutions may contain many possible allocations, but only one must be chosen
to be implemented. Therefore, a rule must somehow be applied. For this reason, from
now on we focus mainly on rules. To select a rule a number of criteria must be taken into
account. Two of them are the kind of service provided by the facilities and the properties
satisfied by the various candidate rules. We distinguish various groups of properties which
reflect different ideas of reasonable fairness that should be satisfied by a rule or solution.

The first group of properties is connected with what agents should pay after a rule is
applied according to their characteristics.

The first property says that no agent can obtain a profit.
A rule f satisfies non-subsidy if for all P = (N,M, c, A) and for all i ∈ N , fi(P ) ≥ 0.

9



The second property says that each agent i cannot pay more than the amount that
he/she would pay if i were the only agent.

A rule f satisfies individual rationality if for all P = (N,M, c, A) and for all i ∈ N ,

fi(P ) ≤ cP (i) = min {ck : i ∈ Ak} .

The third property says that if an agent is covered by a facility with no cost, then
that agents should pay nothing.

Agent i ∈ N is said to be null in P = (N,M, c, A) if the cost of providing the service
to agent i is 0, i.e. there is a facility k ∈ M such that i ∈ Ak and ck = 0.

A rule f satisfies null agent if for all P = (N,M, c, A) and all null agent i ∈ N ,
fi (P ) = 0.

The next property says that if all facilities covering agent i have cost 0, then agent i
pays nothing.

Agent i ∈ N is said to be totally null in P = (N,M, c, A) if the cost of every facility
providing the service to agent i is 0, i.e. ck = 0 for each facility k ∈ M such that i ∈ Ak.

A rule f satisfies totally null agent if for all P = (N,M, c, A) and all totally null
agent i ∈ N , fi (P ) = 0.

Note that if a rule satisfies null agent, then it also satisfies totally null agent. Therefore,
the totally null agent property is weaker than the null agent property.

The second group of properties indicates how a rule should treat agents who are equals
in terms of their situations in the set covering problem.

Agents i, j ∈ N are said to be symmetric in P = (N,M,A, c) if for each Ak ∈ A such
that i ∈ Ak and j /∈ Ak it holds that (Ak\ {i}) ∪ {j} = Ak′ for any Ak′ ∈ A and ck = ck′.

A rule f satisfies symmetry if for each P = (N,M, c, A) and each pair of symmetric
agents i, j ∈ N , fi (P ) = fj (P ).

A weaker version of symmetry can be considered by only taking into account the cost
of the cheapest facility that covers each agent. The idea is to consider that two agents
are symmetric when their corresponding cheapest facilities have the same cost.

Agents i, j ∈ N are said to be minimum cost symmetric in P = (N,M, c, A) if cP (i) =
cP (j) .

A rule f satisfies minimum cost symmetry if for each P = (N,M, c, A) and each
pair of minimum cost symmetric agents i, j ∈ N , fi (P ) = fj (P ).

The following properties indicate how the allocation of the total cost changes when
changes occur in the parameters defining the set covering problem.

The next property states that if the cost of a facility increases, then all agents covered
by that facility are affected in the same way.

Given a problem P = (N,M, c, A), Ak ∈ A let P ′ = (N,M, c′, A) be such that c′l = cl
for all l 6= k and c′k > ck. A rule f satisfies equal treatment on facilities if for each
i, j ∈ Ak,

fi(P
′)− fi(P ) = fj(P

′)− fj(P ).

10



Additional properties of this type, in particular monotonicity properties which we
consider relevant for problems of this kind, are analyzed below. They are not included in
this section because they are not needed to characterize the rules introduced.

The last group of properties that we consider is related to the possibility of adding up
the cost allocation of two set covering problems when they have same ”physical” structure
but different building costs.

A rule f satisfies additivity if for all P = (N,M, c, A), P ′ = (N,M, c′, A), and P ′′ =
(N,M, c+ c′, A),

f(P ′′) = f(P ) + f(P ′).

A weaker version of additivity can be considered by relaxing the set covering situations
in which the additivity holds.

A rule f satisfies cone-wise additivity if for all (N,M, c, A), (N,M, c′, A) and P ′′ =
(N,M, c+ c′, A) such that there is an order σ : M → {1, ..., m} satisfying the requirement
that if σ (k) < σ (k∗) , then cσ(k) ≤ cσ(k∗) and c′σ(k) ≤ c′σ(k∗),

f(P ′′) = f(P ) + f(P ′).

5.1 Characterization of the core

We prove that the core is the maximal solution satisfying non-subsidy, null agent, and
additivity. Therefore, any rule or solution that satisfies those properties will be located
in the core of the set covering game.

We define the properties of non-subsidy, null agent and additivity for rules, but the
core is a solution, not a rule. The definition of additivity for solutions is exactly the
same as for rules. The formulations of non-subsidy and null agent for solutions are the
following.

A solution f satisfies non-subsidy if for all P = (N,M, c, A), all x ∈ f (P ) and all
i ∈ N , xi ≥ 0.

A solution f satisfies null agent if for all P = (N,M, c, A), all x ∈ f (P ) and all null
agent i ∈ N , xi = 0.

We now present the main result of this subsection.

Proposition 3 The core is the maximal solution that satisfies non-subsidy, null agent,

and additivity.

Proof. From Proposition ??, it follows immediately that the core satisfies non-subsidy
and null agent. Now we show that it also satisfies additivity.

We first prove the following:

core(N,M, c, A) + core(N,M, c′, A) ⊂ core(N,M, c+ c′, A).

Let (N,M, c, A), (N,M, c′, A), x ∈ core(N,M, c, A) and x′ ∈ core(N,M, c′, A). Thus:

• x, x′ ∈ RN
+ and hence x+ x′ ∈ RN

+ .

11



•
∑

i∈N

xi =
∑

k∈M

ck and
∑

i∈N

x′
i =

∑

k∈M

c′k. Hence
∑

i∈N

(xi + x′
i) =

∑

k∈M

(c+ c′)k.

• Let i /∈ N1. Then xi = x′
i = 0 and therefore xi + x′

i = 0.

• For each Ak ∈ A,
∑

i∈Ak∩N1

xi = ck and
∑

i∈Ak∩N1

yi = c′k. Hence

∑

i∈Ak∩N1

xi + yi = ck + c′k.

Therefore, x+ x′ ∈ core(N,M, c+ c′, A).
We now prove that

core(N,M, c+ c′, A) ⊂ core(N,M, c, A) + core(N,M, c′, A).

Let z ∈ core(N,M, c + c′, A). Then z ∈ RN
+ ,

∑

i∈N

zi =
∑

k∈M

(ck + c′k) , zi = 0 for all

i /∈ N1 and
∑

i∈Ak∩N1

zi = ck + c′k.

Let x ∈ RN be defined in the following way:

• xi = 0, for all i /∈ N1.

• For each k ∈ M , let Ak ∩N1 = {i1, . . . , ih(k)}. Define x on Ak ∩N1 in the following
recursive way:

– xi1 = min{ck, zi1},

– xiq = min{ck −
∑q−1

j=1 xij , ziq}, for 2 ≤ q ≤ h(k).

Note that x ∈ RN
+ . Since

∑

i∈Ak∩N1

zq = ck+c′k, it follows that
∑

i∈Ak∩N1

xq = ck. Therefore

x ∈ core(N,M, c, A). Let x′ = z− x. It can be easily checked that x′ ∈ core(N,M, c′, A).
Therefore,

core(N,M, c+ c′, A) ⊂ core(N,M, c, A) + core(N,M, c′, A).

We now prove that if f is a solution satisfying all three properties, then f selects
allocations in the core. Let P = (N,M, c, A) and x ∈ f(P ). Since f satisfies non-subsidy,
x ∈ RN

+ . Obviously,
∑

i∈N

xi = c (P ) .

For each k ∈ M we define the problem P k = (N,M, ck, A) where ck is given by

ckh =

{

ck h = k,

0 h 6= k.
(2)

Since f satisfies additivity, f(N,M, c, A) =
∑

k∈M

f(N,M, ck, A). Thus, there is
{

xk
}

k∈M

such that for all k ∈ M, xk ∈ f(N,M, ck, A) and x =
∑

k∈M

xk.

12



Given i /∈ N1 and k ∈ M it follows that i is a null agent in (N,M, ck, A). Since f
satisfies null agent, xk

i = 0 for all k ∈ M. Therefore xi =
∑

k∈M

xk
i = 0.

Let k ∈ M . Agents in Ak ∩N1 are null agents in (N,M, cj, A) for each j 6= k. Since f
satisfies null agent, xj

i = 0 for each i ∈ Ak ∩N1 and j 6= k.
Each i ∈ N\ (Ak ∩N1) is a null agent in (N,M, ck, A). Since f satisfies null agent,

xk
i = 0 for each i ∈ N\ (Ak ∩N1) . Thus,

∑

i∈Ak∩N1

xk
i =

∑

i∈N

xk
i = ck.

Now,
∑

i∈Ak∩N1

xi =
∑

j∈M

∑

i∈Ak∩N1

xj
i =

∑

i∈Ak∩N1

xk
i = ck.

Therefore, x ∈ core(N,M, c, A).

5.2 Characterization of the nucleolus

In this subsection we give a characterization of the nucleolus with the properties of null
agent, symmetry and additivity.

Theorem 4 The nucleolus is the only rule that satisfies null agent, symmetry, and addi-

tivity.

Proof. First, we prove that the nucleolus satisfies additivity, null agent and symmetry.
Since the nucleolus belongs to the core, it satisfies null agent.
Let i, j ∈ N be symmetric in P = (N,M, c, A). We distinguish the following cases:

• i /∈ N1. By symmetry j /∈ N1. Therefore ηi(P ) = ηj(P ) = 0.

• There is k ∈ M such that i ∈ Ak ∩N1. Since i and j are symmetric, two situations
can arise:

– j ∈ Ak ∩N1. Then ηi(P ) = ηj(P ) = ck
|Ak|

.

– j /∈ Ak ∩ N1. Then j ∈ Ak′ ∩ N1, where Ak′ = Ak\{i} ∪ {j} with ck′ = ck.
Therefore, Ak ∩N1 = {i} and Ak′ ∩N1 = {j}. Thus, ηi(P ) = ck = ck′ = ηj(P ).

Let P = (N,M, c, A), P ′ = (N,M, c′, A) and i ∈ N . We distinguish two cases:

• i /∈ N1, then ηi(P ) = ηi(P
′) = ηi(P + P ′) = 0.

• There is k ∈ M such that i ∈ Ak ∩ N1. Then ηi(P ) + ηi(P
′) = ck

|Ak∩N1|
+

c′
k

|Ak∩N1|
=

ck+c′
k

|Ak∩N1|
= ηi(P + P ′).

13



We now prove that every rule f satisfying null agent, symmetry, and additivity satisfies
non-subsidy. Since f is additive the proof can be restricted to problems (N,M, c, A) such
that there is k ∈ M with cj = 0 for every j 6= k. Note that every i /∈ Ak ∩ N1 is a null
agent, so fi(P ) = 0. Moreover, all agents in Ak ∩ N1 are symmetric, thus they share
equally ck ≥ 0. Therefore, the rule satisfies non-subsidy.

Now, if a rule satisfies null agent, symmetry, and additivity, as a result of Proposition
?? it belongs to the core. Furthermore, there is only one symmetric allocation in the core
and it is the nucleolus. Therefore, the result holds.

We now prove that the properties used in Theorem ?? are independent.

Remark 5 (a) The equal distribution rule, given by ϕi(P ) = c(P )
|N |

, ∀i ∈ N , satisfies

symmetry and additivity, but not null agent.

(b) Consider the following rule, α:

αi(N,M, c, A)i =

{

0 if |Hi| > 1
ck if |Hi| = 1 and i = min {j : j ∈ Ak} .

α satisfies null agent and additivity but not symmetry.

(c) The rule that distributes the total cost c (P ) equally among the non null agents

satisfies null agent and symmetry, but not additivity.

5.3 Characterization of the equal split rule on facilities

The equal split rule on facilities provides cost allocations which are not in the core in
general, so properties other than those satisfied by the core must be used in order to
characterize it. The theorem below shows that such properties are totally null agent,
equal treatment on facilities, and additivity.

Theorem 6 The equal split rule on facilities is the only rule that satisfies totally null

player, equal treatment on facilities, and additivity.

Proof. It is straightforward to prove that the equal split rule on facilities satisfies totally
null agent and additivity. Now we prove that it also satisfies equal treatment on facilities.

Let P = (N,M, c, A), Ak ∈ A, and P ′ = (N,M, c′, A) such that c′k > ck and c′l = cl
for all l 6= k. Let i, j ∈ Ak. Then,

EFi(N,M, c′, A)−EFi(N,M, c, A) =
c′k − ck
|Ak|

= EFj(N,M, c′, A)− EFj(N,M, c, A).

Therefore, EF satisfies equal treatment on facilities.

Let f be a rule satisfying totally null agent, equal treatment on facilities, and addi-
tivity. Let P = (N,M, c, A) and for all k ∈ M, P k =

(

N,M, ck, A
)

defined as in formula
(??) . Since f satisfies additivity,

f(N,M, c, A) =
∑

k∈M

f(N,M, ck, A).

14



Now, it suffices to prove that for each k ∈ M ,

fi
(

N,M, ck, A
)

=

{

ck
|Ak|

i ∈ Ak,

0 i /∈ Ak.

Let k ∈ M. Since f satisfies totally null agent, fi(N,M, ck, A) = 0 for all i /∈ Ak.
Consider the problem (N,M, c0, A) where c0j = 0 for all j ∈ M . Since f satisfies totally

null agent, fi(N,M, c0, A) = 0 for all i ∈ N . Now, since f satisfies equal treatment on
facilities, for each i, j ∈ Ak it follows that

fi(N,M, ck, A)− fi(N,M, c0, A) = fj(N,M, ck, A)− fj(N,M, c0, A)

which turns out into
fi(N,M, ck, A) = fj(N,M, ck, A).

Since

∑

i∈Ak

fi
(

N,M, ck, A
)

=
∑

i∈N

fi
(

N,M, ck, A
)

= c
(

N,M, ck, A
)

= ck,

it follows that fi(P
k) = ck

|Ak|
for all i ∈ Ak.

We now prove that the properties used in Theorem ?? are independent.

Remark 7 (a) The equal distribution rule satisfies equal treatment on facilities and ad-

ditivity, but not totally null agent.

(b) The nucleolus satisfies totally null agent and additivity, but not equal treatment on

facilities.

Let P = (N,M, c, A) where N = {1, 2, 3},M = {1, 2}, A = {A1, A2} with A1 = {1, 2}
and A2 = {2, 3}, c1 = c2 = 1. Note that η(P ) = (1, 0, 1). Let P ′ = (N,A, c′), where

c′1 = 2, c′2 = c2 = 1. Then η(P ′) = (2, 0, 1). Therefore, η1(P
′)− η1(P ) 6= η2(P )− η2(P

′).
(c) The rule that distributes the total cost c (P ) equally among the non totally null

agents satisfies null agent and symmetry, but not additivity.

5.4 Characterization of the serial rule

We now prove that the serial rule can be characterized with the properties of null player,
minimum cost symmetry, and cone-wise additivity.

Theorem 8 The serial rule is the only rule that satisfies null player, minimum cost

symmetry, and cone-wise additivity.

Proof. It is straightforward to prove that the serial rule satisfies null agent.
We now prove that it also satisfies minimum cost symmetry. Let P = (N,M, c, A)

and i, j ∈ N such that cP (i) = cP (j). Then, cm(i) = cm(j). We distinguish two cases:

15



• m(i) = m(j). Then Si(P ) = Sj(P )

• m(i) 6= m(j). Assume, without loss of generality, that m(i) < m(j). Then, for all
m(i) ≤ k ≤ m(j), ck = cm(i) = cm(j). Now, the following emerges:

Sj(P ) =

m(j)
∑

k=1

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

=

m(i)
∑

k=1

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

+

m(j)
∑

k=m(i)+1

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

Since ck = ck−1 for all k = m(i)+1, ..., m(j) it can be concluded that Sj(P ) = Si(P ).

In order to prove that the serial rule satisfies cone-wise additivity, let (N,M, c, A) and
(N,M, c′, A) be such that there is an order σ satisfying the requirement that if σ (k) <
σ (k∗) , then cσ(k) ≤ cσ(k∗) and c′σ(k) ≤ c′σ(k∗). Without loss of generality we assume that
c1 ≤ c2 ≤ · · · ≤ cm and c′1 ≤ c′2 ≤ · · · ≤ c′m. Therefore, c1 + c′1 ≤ c2 + c′2 ≤ · · · ≤ cm + c′m.
Let i ∈ N , so

Si(N,M, c+ c′, A) =

m(i)
∑

k=1

(m− k + 1)
(

(ck + c′k)−
(

ck−1 + c′k−1

))

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

=

=

m(i)
∑

k=1

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

+

m(i)
∑

k=1

(m− k + 1)
(

c′k − c′k−1

)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

=

= Si(N,M, c, A) + Si(N,M, c′, A).

Hence, the serial rule satisfies cone-wise additivity.
Now we prove that the serial rule is the only rule that satisfies these properties. Let

f be a rule satisfying these properties. Let (N,M, c, A) ∈ P. Without loss of generality
we assume that M = {1, 2, . . . , m} with c1 ≤ c2 ≤ · · · ≤ cm. For each k ∈ M, let
(N,M, c∗k, A) given by:

c∗kh =

{

ck − ck−1 if h ≥ k,

0 h < k.

Let i ∈ N . Since f satisfies cone-wise additivity, it follows that

fi(N,M, c, A) =
m
∑

k=1

fi(N,M, c∗k, A).

Note that for all k > m(i), i is a null agent of (N,M, c∗k, A). Since f satisfies null
agent, fi(N,M, c∗k, A) = 0 for all k > m(i).
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Let k ∈ {1, . . . , m(i)}. Note that all agents in ∪k−1
l=0 Al are null agents in (N,M, ck, A).

Then, fj(N,M, ck, A) = 0 for all j ∈ ∪k−1
l=0Al. Besides, all agents inN\

(

∪k−1
l=0Al

)

, including
player i, are minimum cost symmetric in (N,M, c∗k, A). Therefore for all k ≤ m(i)

fi(N,M, c∗k, A) =
(m− k + 1) (ck − ck−1)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

.

Then,

fi(N,M, c, A) =

m(i)
∑

k=1

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

= Si(N,M, c, A).

We now prove that the properties used in Theorem ?? are logically independent.

Remark 9 (a) The equal distribution rule satisfies minimum cost symmetry and cone-

wise additivity but not null agent.

(b) The nucleolus satisfies null agent and cone-wise additivity, but not minimum cost

symmetry.

(c) The rule that distributes the total cost c (P ) equally among the non null agents

satisfies null agent and minimum cost symmetry but not cone-wise additivity.

6 Monotonicity properties for set covering rules

In this section we introduce some appealing monotonicity properties and analyze whether
our three rules satisfy those properties.

We consider a situation in which a new agent is taken into account but he/she could
be covered by existing facilities. Thus, none of the other agents would be worse off.

Let P = (N,M, c, A) , P ′ = (N ′,M, c, A′) ∈ P be such that N ′ = N ∪ {n+ 1},
A′

k ∈ {Ak, Ak ∪ {n+ 1}} for each k ∈ M , with at least some h ∈ M such that A′
h =

Ah ∪ {n+ 1}.
A rule f satisfies population monotonicity if for each i ∈ N it holds that fi (P

′) ≤
fi (P ).

Consider a set covering situation in which the cost of a facility increases. The property
below states that agents covered by such a facility cannot be better off.

Formally, let P = (N,M, c, A) , P ′ = (N,M, c′, A) be such that there is k ∈ M with
c′k > ck and c′h = ch for all h ∈ M\ {k}.

A rule f satisfies cost monotonicity if for each i ∈ Ak it holds that fi (P
′) ≥ fi (P ) .

The next property is a stronger version of the previous one. If the cost of a facility
increases no agent can be better off.
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A rule f satisfies strong cost monotonicity if for each i ∈ N it holds that fi (P
′) >

fi (P ) .
Obviously, strong cost monotonicity implies cost monotonicity.

Assume that a facility can cover more agents at the same cost but the rest of facilities
are still necessary to provide the cover. Thus, the new agents covered by this facility
cannot be worse off.

Let P = (N,M, c, A) and P ′ = (N,M, c, A′) be such that there is k ∈ M with Ak  A′
k,

A′
h = Ah for all h ∈ M\ {k} and N ′

1 ∩ A′
h 6= ∅ for all h ∈ M.

A rule f satisfies covering monotonicity if for each i ∈ A′
k\Ak it holds that fi (P

′) ≤
fi (P ) .

In the classical optimization model of set covering situations it is assumed that a set of
facilities must be opened such that every agent is covered by at least one facility. Applying
that philosophy to our model, it seems reasonable to propose that those agents who are
covered by more facilities should pay less because, in a sense, they help to decrease the
cost of the optimal solution.

On the other hand, there could be real situations in which being covered by more than
one facility is better for agents than being covered by a single facility (emergency centers,
children’s parks,etc.). In that case it seems reasonable to propose that those agents who
are covered by more than one facility should pay more than those covered by just one.

We introduce two monotonicity properties related to these situations. Consider a set
covering situation in which an agent i is covered by more facilities than agent j. We say
that a rule satisfies agent monotonicity 1 when agent i does not pay more than agent j,
and a rule satisfies agent monotonicity 2 when agent i does not pay less than agent j.

Formally, let P = (N,M, c, A) and i, j ∈ N be such that i ∈ Ak for every k ∈ M such
that j ∈ Ak.

A rule f satisfies agent monotonicity 1 if fi(P ) ≤ fj(P ).
In the same conditions, a rule f satisfies agent monotonicity 2 if fi(P ) ≥ fj(P ).

In the theorem below we discuss which monotonicity properties are satisfied by the
three rules.

Theorem 10 The following statements hold:

1. The nucleolus satisfies population monotonicity, cost monotonicity, strong cost mono-

tonicity, covering monotonicity and agent monotonicity 1.

2. The equal split rule on facilities satisfies population monotonicity, cost monotonicity,

strong cost monotonicity and agent monotonicity 2.

3. The serial rule satisfies population monotonicity, cost monotonicity, covering mono-

tonicity and agent monotonicity 1.

Proof. (1) The nucleolus.

• Population Monotonicity. Let P = (N,M, c, A) and P ′ = (N ′,M, c, A′) as in the
definition of population monotonicity. Let i ∈ N . We distinguish two cases:

18



– i ∈ N\N1. Since i is covered by the same facilities in P ′ as in P , it follows
that i ∈ N ′\N ′

1, and therefore ηi(P
′) = ηi(P ) = 0 for all i ∈ N\N1.

– i ∈ N1. Then there is a single k ∈ M such that i ∈ N1 ∩ Ak. Therefore
ηi(P ) = ck

|N1∩Ak|
. Moreover, i ∈ N ′

1 ∩ A′
k. Two cases can arise:

∗ n + 1 ∈ N ′
1 ∩A′

k. Then

ηi(P
′) =

ck
|N ′

1 ∩A′
k|

=
ck

|N1 ∩ Ak|+ 1
≤ ηi(P ).

∗ n + 1 /∈ N ′
1 ∩A′

k. Then N ′
1 ∩ A′

k = N1 ∩ Ak and ηi(P
′) = ηi(P ).

– Strong cost monotonicity. Let P = (N,M, c, A) and P ′ = (N,M, c′, A) be as
in the definition of strong cost monotonicity. Note that the amount by which
the cost of facility Ak is increased, is shared equally among the among agents
in N1∩Ah. Moreover, the other agents pay exactly the same as in the previous
situation. Now, the proof of the result is straightforward.

• Cost monotonicity. This is obvious because the nucleolus satisfies strong cost mono-
tonicity.

• Covering monotonicity. Let P = (N,M, c, A) and P ′ = (N,M, c, A′) be as in the
definition of covering monotonicity. Every i ∈ A′

k\Ak will be covered in P ′ by
at least two facilities (A′

k and the other facilities which cover i in P ). Therefore
ηi(P

′) = 0 ≤ ηi(P ).

• Agent monotonicity 1. Let P = (N,M, c, A) and i, j ∈ N be as in the definition of
the property. We distinguish two cases:

– j ∈ N\N1. Then i ∈ N\N1 and ηi(P ) = ηj(P ) = 0.

– j ∈ Ak ∩N1. Then i ∈ Ak. If i ∈ Ak ∩N1 then

ηi(P ) = ηj(P ) =
ck
|Ak|

.

Otherwise, there is k′ ∈ M such that i ∈ Ak ∩ A′
k. Thus

ηi(P ) = 0 ≤ ηj(P ) =
ck
|Ak|

.

(2) The equal split rule on facilities

• Population monotonicity. Let P = (N,M, c, A), P ′ = (N ′,M, c, A′) be as in the
definition of population monotonicity. The result is straightforward since in every
facility of P ′ there are at least the same agents as in P .

• Strong cost monotonicity. Let P = (N,M, c, A) and P ′ = (N,M, c′, A) be as in
the definition of strong cost monotonicity. Note that the amount by which the cost
of facility Ak is increased is shared equally among the among agents in N1 ∩ Ah.
Moreover, the other agents pay exactly the same as in the previous situation. Now,
the proof of the result is straightforward.
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• Cost monotonicity. This is obvious because the nucleolus satisfies strong cost mono-
tonicity.

• Agent monotonicity 2. The result is straightforward. If an agent i is covered by
every facility covering agent j, then agent i pays the same amount as j for every
facility covering j. For the facilities covering agent i but not agent j, if any, agent i
will pay but agent j will not, so agent i will pay at least the same as agent j,

(3) The serial rule

• Population monotonicity. Let P = (N,M, c, A) and P ′ = (N ′,M, c, A′) be as in the
definition of the property. Without loss of generality, we assume that c1 ≤ c2 ≤
· · · ≤ cm. Note that

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

≤
(m− k + 1) (ck − ck−1)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

A′
l

)
∣

∣

∣

∣

when 1 ≤ k ≤ m (n+ 1) ,

and

(m− k + 1) (ck − ck−1)
∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

=
(m− k + 1) (ck − ck−1)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

A′
l

)
∣

∣

∣

∣

when m (n+ 1) < k ≤ m.

Therefore, Si(P ) ≤ Si(P
′) for all i ∈ N .

• Cost monotonicity. Let P = (N,M, c, A), P ′ = (N,M, c′, A) and k ∈ M be as in
the definition of the property. Assume, without loss of generality, that c1 ≤ c2 ≤
· · · ≤ cm. Let i ∈ Ak. We distinguish the following cases:

– mP (i) < k. Then mP ′

(i) = mP (i) < k. Since c′h = ch for all h ≤ mP (i), it
follows that Si(P ) = Si(P

′).

– mP (i) = k. We distinguish the following cases:

∗ c′k ≤ ck+1. Then mP ′

(i) = k. Since c′h = ch for all h ≤ k−1, it follows that

Si (P ) =

k−1
∑

h=1

(m− h+ 1) (ch − ch−1)
∣

∣

∣

∣

N\

(

h−1
⋃

l=0

Al

)
∣

∣

∣

∣

+
(m− k + 1) (ck − ck−1)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

≤
k−1
∑

h=1

(m− h+ 1)
(

c′h − c′h−1

)

∣

∣

∣

∣

N\

(

h−1
⋃

l=0

Al

)
∣

∣

∣

∣

+
(m− k + 1)

(

c′k − c′k−1

)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

= Si(P
′).
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∗ c′k > ck+1. Then

Si(P ) =

k−1
∑

h=1

(m− h+ 1) (ch − ch−1)
∣

∣

∣

∣

N\

(

h−1
⋃

l=0

Al

)
∣

∣

∣

∣

+
(m− k + 1) (ck − ck−1)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

≤
k−1
∑

h=1

(m− h+ 1) (ch − ch−1)
∣

∣

∣

∣

N\

(

h−1
⋃

l=0

Al

)
∣

∣

∣

∣

+
(m− k + 1) (ck+1 − ck−1)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

=
k−1
∑

h=1

(m− h+ 1) (ch − ch−1)
∣

∣

∣

∣

N\

(

h−1
⋃

l=0

Al

)
∣

∣

∣

∣

+
(m− k + 1)

(

c′k+1 − c′k−1

)

∣

∣

∣

∣

N\

(

k−1
⋃

l=0

Al

)
∣

∣

∣

∣

≤ Si (P
′) .

• Covering monotonicity. Let P = (N,M, c, A) and P ′ = (N,M, c, A′) be as in
the definition of the property. Let i ∈ A′

k\Ak. Note that if ch ≥ cP (i), then
mP (i) = mP ′

(i). Hence Si(P ) = Si(P
′). If ch < cP (i), then mP (i) > mP ′

(i) = k.
Hence Si(P ) > Si(P

′).

• Agent monotonicity 1. Let P = (N,M, c, A) and i, j ∈ N be as in the definition
of the property. Note that if i ∈ Ak for every k ∈ M such that j ∈ Ak, then
cP (i) ≤ cP (j) and therefore, Si(P ) ≤ Sj(P ).

The table below summarizes the properties satisfied by each rule. The asterisk (∗)
denote the properties used in the characterizations.

Nucleolus Equal split Serial
Non-subsidy YES YES YES
Indiv. Ration. YES YES YES

Null YES * NO YES *
Totally Null YES YES * YES
Symmetry YES * YES YES

Minim. cost symm. NO NO YES *
Equal treat. facil. NO YES* NO

Additivity YES * YES * NO
Cone-wise addit. YES YES YES*
Population monot. YES YES YES
Cost monotonicity YES YES YES
Strong cost monot. YES YES NO
Covering monot. YES NO YES
Agent monot. 1 YES NO YES
Agent monot. 2 NO YES NO
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We finish this section by proving the statements of the previous table that have not
yet been proved.

We start with the nucleolus. From the definition we deduce that the nucleolus satisfies
non-subsidy and individual rationality. Since it satisfies null agent, we deduce that it also
satisfies totally null agent. Since it satisfies additivity, we deduce that it also satisfies
cone-wise additivity.

Consider Example ??. Agents 1 and 3 are minimum cost symmetric but the nucleolus
is (6, 12, 0) . Thus, the nucleolus does not satisfy minimum cost symmetry.

Let P = (N,M, c, A) as in Example ??. Let P ′ = (N,M, c′, A) be such that c′1 = 8
and c′2 = c2 = 12. Since the nucleolus of P ′ is (8, 12, 0) we deduce that it does not satisfy
equal treatment on facilities.

Consider Example ??. Taking j = 1 and i = 3 revels that the nucleolus does not
satisfy agent monotonicity 2.

We now study the equal split rule on facilities. From the definition we deduce that it
satisfies non-subsidy, individual rationality, and symmetry.

Let P = (N,M, c, A) be such that N, M , and A are defined as in Example ??.
Moreover c1 = 0 and c2 = 12. Thus, EF (P ) = (0, 6, 6) . Since agent 3 is a null agent
we deduce that EF does not satisfy null agent. Since agents 1 and 3 are minimum cost
symmetric, we deduce that EF does not satisfy minimum cost symmetry.

The following example shows that EF does not satisfy covering monotonicity.

Example 11 Let P = (N,M, c, A) where N = {1, 2, 3}, M = {1, 2}, A = {A1, A2}
with A1 = {1, 2} and A2 = {3}, c1 = 2, c2 = 2 . Note that EF (P ) = (1, 1, 2). Let

P ′ = (N,M,A′, c), where A′
1 = A1 = {1, 2} and A′

2 = {2, 3}. Then EF (P ′) = (1, 2, 1).
Note that 2 ∈ A′

2\A2, but 1 = EF2(P ) < EF2(P
′) = 2.

Consider Example ??. Then EF (P ) = (3, 6, 9) . Taking j = 1 and i = 3 revels that
EF does not satisfy agent monotonicity 1.

Finally we study the serial rule. From the definition we deduce that it satisfies non-
subsidy, individual rationality, and symmetry. Since it satisfies null agent, we deduce that
it also satisfies totally null agent.

Let P = (N,M, c, A) as in Example ??. Let P ′ = (N,M, c′, A) be such that c′1 = c1 = 6
and c′2 = 14. Since S (P ) = (4, 10, 4) and S (P ′) = (4, 12, 4) we deduce that S does not
satisfy equal treatment on facilities.

Let P = (N,M, c, A) and P ′ = (N,M, c′, A) be such that N, M , and A are defined
as in Example ??. Moreover c1 = c′2 = 0, c2 = c′1 = 6. Since S (N,M, c, A) = (0, 6, 0) ,
S (N,M, c′, A) = (6, 0, 0) , and S (N,M, c+ c′, A) = (4, 4, 4) we deduce that S does not
satisfy additivity.

Let P = (N,M, c, A) and P ′ = (N,M, c′, A) be such that N, M , and A are defined as
in Example ??. Moreover c1 = 6 and c2 = c′1 = c′2 = 12. Since S (N,M, c, A) = (4, 10, 4) ,
S (N,M, c′, A) = (8, 8, 8) we deduce that S does not satisfy strong cost monotonicity.

Consider Example ?? where S (N,M, c, A) = (4, 10, 4) . Taking j = 2 and i = 3 revels
that S does not satisfy agent monotonicity 2.
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7 Conclusions

This paper looks at the problem of allocating costs in set covering situations. In particular,
we address the distribution of costs when the facilities to be opened have been decided
in advance. Three rules are proposed. The first one is based on a well-known solution
concept of game theory: The nucleolus. The other two rules, called the equal split on
facilities and serial rules, are based on the structure of the problem itself. Each rule has
its own characteristics, so each is suitable for different contexts.

The nucleolus and the serial rule work well when being covered by a single facility
is the same as being covered by more than one. The nucleolus assigns the total cost to
agents covered by only one facility. In the serial rule agents covered by only one facility
pay less, but agents covered by several facilities pay something. The equal split rule on
facilities can be used in those situations in which being covered by a single facility is worse
than being covered by more than one. For this reason, agents covered by more than one
facility pay more than agents covered by only one.

The three rules are characterized by properties that are reasonable in each case. Fi-
nally, several monotonicity properties are studied for these rules.
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[16] Garćıa, S., & Maŕın, A. (2015). Covering location problems. In G. Laporte, S. Nickel,
& F. Saldanha da Gama (Eds.), Location Science (pp.93-114). Springer.

[17] Gillies, D.B. (1953). Some theorems on n-person games. PhD thesis, Princeton Uni-
versity, Princeton.

[18] Goemans, M. X., & Skutella, M. (2004). Cooperative facility location games. Journal
of Algorithms, 50(2), 194-214.

[19] Granot, D. (1987). The role of cost allocation in locational models. Operations Re-

search, 35, 234-248.

[20] Kalai, E., & Zemel, E. (1982). Totally balanced games and games of flow. Mathemat-

ics of Operations Research, 7, 476-478.

[21] Karp, R.M. (1972). Reducibility among combinatorial problems. In R. E. Miller, J.
W. Thatcher, & J.D. Bochlinger (Eds.), Complexity of computer computations (pp.
85-103). Springer

[22] Li, X.-Y., Sun, Z., Wang, W., & Lou, W. (2010). Cost sharing and strategyproof
mechanisms for set cover games. Journal of combinatorial optimization, 20(3), 259-
284.

[23] Moulin, H., & Shenker, S. (1992) Serial cost sharing. Econometrica, 60(5), 1009-1037.

24



[24] Owen, G. (1975). On the core of linear production games. Mathematical Program-

ming, 9, 358-370.

[25] Piliouras, G., Valla, T., & Vgh, L. A. (2015). LP-based covering games with low
price of anarchy. Theory of Computing Systems, 57(1), 238-260.

[26] Puerto, J., Garcia-Jurado, I., & Fernandez, F.R. (2001). On the core of a class of
location games. Mathematical Methods of Operations Research, 54, 373-385.

[27] Sanchez-Soriano, J. (2003). The pairwise egalitarian solution. European Journal of

Operational Research, 150(1), 220-231.

[28] Sanchez-Soriano, J. (2006). Pairwise solutions and the core of transportation situa-
tions. European Journal of Operational Research, 175(1), 101-110.

[29] Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal

on Applied Mathematics, 17(6), 1163-1170.

[30] Shapley, L. S. & Shubik, S. (1972). The assignment game I: The core. International
Journal of Game Theory, 1, 111–130.

[31] Tamir, A. (1992). On the core of cost allocation games defined on location problems.
Transportation Science, 27(1), 81-86.

[32] Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency
service facilities. Operations Research, 19(6), 1363-1373.

25


