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Abstract

We propose an improvement of the finite sample approximation of the central limit

theorems (CLTs) that were recently derived for statistics involving production effi-

ciency scores estimated via Data Envelopment Analysis (DEA) or Free Disposal Hull

(FDH) approaches. The improvement is very easy to implement since it involves a

simple correction of the variance estimator with an estimate of the bias of the already

employed statistics without any additional computational burden and preserves the

original asymptotic results such as consistency and asymptotic normality. The pro-

posed approach persistently showed improvement in all the scenarios that we tried in

various Monte-Carlo experiments, especially for relatively small samples or relatively

large dimensions (measured by total number of inputs and outputs) of the underlying

production model. This approach therefore is expected to produce more accurate esti-

mates of confidence intervals of aggregates of individual efficiency scores in empirical

research using DEA or FDH approaches and so must be valuable for practitioners. We

also illustrate this method using a popular real data set to confirm that the difference in

the estimated confidence intervals can be substantial. A step-by-step implementation

algorithm of the proposed approach is included in the Appendix.
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1 Introduction

Nonparametric envelopment estimators are frequently used by applied researchers in effi-

ciency and productivity analysis to facilitate measurement of producers’ performances. These

estimators are obtained by enveloping the clouds of points for an observed sample of input

and output levels of firms, and thus estimating the set of technologically feasible allocations

of inputs and outputs, also referred to as the production possibility set or, simply, the at-

tainable set. A distance from an input-output allocation to the boundary of the (estimated)

attainable set gives (an estimate of) technical or production efficiency of that allocation.

The most popular estimators of this type are known as data envelopment analysis (DEA)

if we assume the convexity of the set of attainable combinations of inputs and outputs (see

Farrell, 1957 and Charnes, Cooper and Rhodes, 1978) and the free disposal hull (FDH)

estimators that do not impose convexity, but only free disposability assumption on inputs

and outputs (see Deprins, Simar and Tulkens, 1984).1

Both DEA and FDH estimators found their use and became popular in many areas

of research from both theoretical and applied angles. They attracted significant attention

in management and operations literature (e.g., see Boussofiane, Dyson and Thanassoulis

(1991) and Cook and Seiford (2009) and references therein). Among the key conclusions

from the statistical literature is that under certain regularity conditions, these estimators

are consistent and have complicated limiting distributions, which are different depending on

the dimension of the production model (number of inputs and outputs), type of returns to

scale, and whether convexity is imposed or not. Moreover, inference for certain measures

of efficiency of a particular fixed point (e.g., an observed point of an individual firm) in the

attainable set is available by using appropriate bootstrap techniques; see Kneip, Simar and

Wilson (2008, 2011) and Simar and Wilson (2011) for the DEA case and Jeong and Simar

(2006) for the FDH case.2

On the other hand, in many situations, the applied researchers are interested to compare

means of group(s) of firms, or they might be interested in testing the hypotheses about the

attainable set (convexity, returns to scale, etc.) or in dynamic settings, they might be in-

terested to analyze changes in productivity over time, etc. In all these cases, the inference

will be based on statistics which are appropriate aggregating functions of the individual effi-

ciency scores over the sample. A recent work of Kneip, Simar and Wilson (2015) (hereafter

KSW) has shown that inference on simple sample means of estimated scores is problematic

unless the dimension of the problem (the total number of inputs and outputs) is very small

1Also see Afriat (1972).
2Also see Dyson et al. (2001) for the discussions on the advantages, limitations and suggested protocols

for DEA.
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(e.g. as small as 1 for the FDH case and 2 for the most common DEA estimates under

assumption of variable returns to scale). The basic problem comes from the fact that the

DEA/FDH efficiency estimates have a bias that does not vanish fast enough when the sample

size increases. However, KSW provide central limit theorems (CLT) based on a bias correc-

tion method. The important result is that, when using the appropriate statistics, regular

quantiles of the standard normal can be used to derive confidence intervals or to compute

p-values.

These basic results have been used in KSW for providing confidence intervals on the

mean of efficiency scores in a group, and have been adapted in various testing situations in

Kneip, Simar and Wilson (2016).3 It was then extended to inference for aggregate efficiency

in Simar and Zelenyuk (2018), and also to conditional measures of efficiency, with a test of

the separability condition in Daraio, Simar and Wilson (2018). Recently similar CLT results

have been derived for Malmquist indices (Kneip, Simar and Wilson, 2018) and for cost and

allocative efficiency in Simar and Wilson (2018).

In all these papers, the authors show with extensive Monte-Carlo experiments that the

CLT can be applied in many practical situations and that the results behave as expected:

improving the accuracy of the normal approximations (size and power of the tests, or coverage

of the resulting confidence intervals) when the sample size increases, but the accuracy may

reduce when the dimension of the problem increases. In some situations, these results might

be disappointing for the practitioner.

In this paper we suggest an “easy to compute” correction of the used statistics, that does

not require any additional computational burden and that improves the accuracy of the nor-

mal approximation provided by the corresponding CLT. In a nutshell, our approach involves

a simple correction of the variance estimator with an estimate of the bias of the already

computed statistics so that it preserves the original asymptotic results such as consistency

and asymptotic normality. We will describe in more details how the correction is motivated

and derived for the simplest case of average of efficiency scores (which cover all the exten-

sions mentioned above), and then for the case of aggregate efficiency, where the correction

requires more care. We illustrate how this works in practice in these two cases, with several

Monte-Carlo experiments (different dimensions and sample sizes) and with a real data set.

In some cases, the improvements may be substantial.

The paper is organized as follows. The next section introduces the basic notions and

notations and summarizes the background (i.e. the results from KSW). Section 3 gives the

basic idea of our corrected statistics in the simplest case of a simple average of efficiency scores

3In this paper we will focus on the case of one group of individuals (e.g., firms) that share or are bench-
marked with respect to the same technology.
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then Section 4 shows how to adapt this basic idea to other situations, with some emphasis on

the case of aggregate efficiency. Section 5 indicates through Monte-Carlo experiments how

this works in practice. Section 6 illustrates the proposed method with a real data set. Section

7 summarizes the concluding remarks. Finally, the practical implementation algorithm of

the proposed approach is summarized in the Appendix.

2 Theoretical Background

2.1 Key Definitions

Assume that each firm uses p inputs x ∈ Rp
+ to produce a vector of q outputs, denoted by

y ∈ Rq
+ and that the technology set, Ψ is defined as4

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y}, (2.1)

which gives the set of combinations of inputs and outputs that are technologically feasible.

The technology, or efficient frontier of Ψ, is given by

Ψ∂ =
{

(x, y) ∈ Ψ |
(
γ−1x, γy

)
6∈ Ψ for all γ > 1

}
. (2.2)

We assume the usual regularity conditions on technology in production theory (e.g., see Färe

and Primont, 1995). Specifically, the key assumptions we need are:

Assumption 2.1 Ψ is closed and Ψ∂ exists.

Assumption 2.2 All outputs and all inputs are strongly disposable, i.e., (xo, yo) ∈ Ψ ⇒
(x, y) ∈ Ψ ∀x = xo, y 5 yo.

For the sake of brevity we will focus on the case when efficiency is measured via the

so-called Farrell–Debreu output oriented measure of technical (in)efficiency (similar results

can be derived for other orientations). For a firm with an input-output allocation (x, y), this

(in)efficiency is defined as

λ(x, y) = sup{θ > 0 | (x, θy) ∈ Ψ}. (2.3)

Intuitively, (2.3) gives the maximum real number (equal or greater than unity) by which

one can multiply the output vector y to expand or contract it (radially) to the boundary of

4We use Rp+ and Rp++ to denote the non-negative and strictly positive real spaces of dimension p, respec-
tively.
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Ψ, while keeping the same level of input x and the same technology. Thus, for any feasible

input output allocation (i.e., ∀(x, y) ∈ Ψ) we have λ(x, y) ≥ 1, while its reciprocal gives

an efficiency level measured between 0 and 1. While this measure is defined for all points

in Rp
+ × Rq

+, for simplicity and practical considerations we also assume away the so-called

singularity points, such as (x,0q), (0p, y) and (0p,0q), where 0a is the origin of Ra
+, which

often lead to computational problems.

Many methods have been developed in the literature to estimate the technology frontier

Ψ∂ and the related values of efficiency scores, λ(x, y) from a sample of n iid observations on

inputs and outputs Xn = {(Xi, Yi) | i = 1, . . . , n}. Here we will focus on the DEA and FDH

nonparametric and consistent estimators that envelop the data under certain constraints on

technology. Specifically, if one wishes to assume Constant Returns to Scale (CRS) for Ψ,5

then the CRS-DEA estimator is given by

λ̂(x, y | Xn) ≡ max
ξ1,...,ξn,θ

{θ |
n∑
k=1

ξkYk = θ y,
n∑
k=1

ξkXk 5 x, θ ≥ 0, ξk ≥ 0}, (2.4)

inspired by Farrell (1957) and popularized as a linear program (LP) by Charnes, Cooper and

Rhodes (1978).6 Alternatively, if one wishes to assume Variable Returns to Scale (VRS) for

Ψ, then the VRS-DEA estimator is given by

λ̂(x, y | Xn) ≡ max
ξ1,...,ξn,θ

{θ |
n∑
k=1

ξkYk = θ y,
n∑
k=1

ξkXk 5 x,

θ ≥ 0, ξk ≥ 0,
n∑
k=1

ξk = 1}, (2.5)

i.e., constraint
n∑
k=1

ξk = 1 is added to the CRS-DEA specification (2.4).

If convexity of Ψ is not assumed, but only strong disposability of inputs and outputs,

then one can use the FDH estimator, introduced by Deprins, Simar and Tulkens (1984):

λ̂(x, y | Xn) ≡ max
θ
{θ | Yk = θ y, Xk 5 x, k = 1, . . . , n, θ ≥ 0}. (2.6)

5To be precise, technology Ψ exhibits CRS if and only if δΨ = Ψ, ∀δ > 0, which sometimes is referred
to as global CRS—the notion we will use here. This is different from the cases of the so-called local CRS,
where this or an analogous property holds in some neighborhood and, for example measured by the scale
elasticity (e.g., see Zelenyuk (2013) for the precise definitions in the DEA context and related references),
which we do not consider here.

6To be precise, both papers focused on the input orientation, which here (due to CRS) is the reciprocal
of the output orientation problem (2.4). See Sickles and Zelenyuk (2019) for more discussion and references
on DEA and related methods.
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2.2 Key results from KSW.

As pointed out above, under certain regularity conditions, the asymptotic statistical proper-

ties of DEA and FDH estimators for λ(x, y) have been established when evaluated at fixed

points (x, y), and bootstrap techniques have to be used for practical inference due to the

complex nature of the asymptotic distribution of the estimators.7

When confidence intervals for means or testing issues about the shape of Ψ∂ are concerned,

the practitioner needs the statistical properties of some statistics built from the estimators of

efficiency scores at the random points. The simplest statistic one may consider is the mean

of the efficiency scores to draw inference on µλ, the average efficiency score in the population

µλ = E
(
λ(X, Y )

)
, (2.7)

where the expectation is over the random variables (X, Y ). Below we will also need to

estimate the variance σ2
λ of the efficiency scores in the population:

σ2
λ = Var

(
λ(X, Y )

)
. (2.8)

Inference on µλ could be obtained from the sample mean of the estimated efficiency scores:

λn = n−1
n∑
i=1

λ̂(Xi, Yi | Xn), (2.9)

where one of the nonparametric estimators above would be evaluated at the sample points

(Xi, Yi).
8 However, the basic results in KSW indicate that this is not so easy and that a

simple CLT is not directly available as we now briefly explain.

Specifically, even the inference on the simple sample means of estimated scores is prob-

lematic except for cases when the dimension of the problem (the number of inputs and

outputs) is very small: e.g., 1 for the FDH case and 2 for the most common VRS-DEA case.

In a nutshell, the problem comes from the fact that the DEA/FDH efficiency estimates

have a bias that does not disappear fast enough with the increase in the sample size for

7See Simar and Wilson (2015) for more details, a comprehensive discussion and more references. It is
worth noting that among others, a key assumption is that Pr{(Xi, Yi) ∈ Ψ} = 1, ∀i = 1, . . . , n, i.e., all
observations are feasible with respect to the technology Ψ and that there is no noise. If there is noise in the
data, then a version of Stochastic DEA or Stochastic FDH (e.g., see Simar and Zelenyuk (2011)) can be used
to filter out the noise or outliers.

8Note a slight complication of notation here: λ(X,Y ) and λ(Xi, Yi) mean that the measure that was
defined in (2.3) for any point (x, y) is evaluated at a random point (X,Y ) and its ith realization (Xi, Yi),

respectively. Meanwhile, λ̂(Xi, Yi | Xn) denotes the estimate of λ(Xi, Yi), which was defined in (2.4)–(2.6) for
any point (x, y), here evaluated at the ith realization (Xi, Yi), where the estimation involved all the sample
Xn, rather than a subsample of it, as will also be used later.
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the estimation. To mitigate the problem, KSW developed new central limit theorems that

involve the bias correction method (using a generalized jackknife) and, if that is not enough

(depending on the chosen estimator and on the dimension of the problem), using means of

the efficiency estimates on a subsample of points. As a result, when using the appropriate

statistics, regular quantiles of the standard normal can be used to derive confidence intervals

or to compute p-values. In particular, KSW used these results for providing confidence

intervals for the mean of efficiency scores of a group, and provided a foundation for developing

the related results in various testing situations.

To be more precise, the key results from KSW can be summarized as follows: for the

FDH and DEA estimators, under some regularity conditions and as n→∞,

E
(
λ̂(Xi, Yi | Xn)− λ(Xi, Yi)

)
= Cn−κ +Rn,κ (2.10)

E

((
λ̂(Xi, Yi | Xn)− λ(Xi, Yi)

)2)
= o
(
n−κ

)
, (2.11)∣∣∣Cov

(
λ̂(Xi, Yi | Xn)− λ(Xi, Yi), λ̂(Xj, Yj | Xn)− λ(Xj, Yj)

)∣∣∣ = o
(
n−1
)

(2.12)

for some finite constant C and for all i, j ∈ {1, . . . , n}, i 6= j and where Rn,κ is the remainder

term of the series approximation, which is of order o (n−κ) or smaller. It is worth noting that

Rn,κ does not affect the asymptotic results of interest here, although specific rates of it are

available in KSW.9

Importantly, note that the values of the constant C, the rate κ, and the remainder term

Rn,κ depend on which estimator is used. Specifically:

• when we assume CRS, the CRS-DEA estimator (2.4) achieve the rate κ = 2/(p+ q).

• when we assume VRS, the VRS-DEA estimator (2.5) achieves the rate κ = 2/(p+q+1).

• when we do not assume convexity and maintain only the strong disposability as-

sumption, the appropriate estimator is the FDH estimator (2.6). It achieves the rate

κ = 1/(p+ q).

Using these results KSW showed that under certain regularity assumptions, as n→∞,

√
n
(
λn − µλ − Cn−κ + o(n−κ)

) L−→ N(0, σ2
λ). (2.13)

9To avoid confusion we remind the reader of the basic notations for the rates of convergence (see e.g.
Serfling, 1980, Sections 1.1.2 and 1.2.5). For a non-stochastic sequence of real numbers {cn}, we write cn =
O
(
n−κ

)
as n→∞, when |nκcn| remains bounded as n→∞. We write cn = o

(
n−κ

)
when limn→∞ nκcn = 0.

Similarly a sequence of random variables {ξn} is said to be bounded in probability if, for every ε > 0, there
exist Mε and a nε such that for all n > nε, Pr(ξn > Mε) < ε. The notation ξn = OP (1) will be used. Then
ξn = OP

(
n−κ

)
means that nκξn = OP (1). Further the notation ξn = oP

(
n−κ

)
will be used when nκξn

converges in probability to zero as n→∞.
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This leads to a problem: when κ ≤ 1/2 (e.g., for a CRS-DEA this happens already when

p + q > 3 for VRS-DEA when p + q > 2 and for FDH when p + q > 1!), the bias does

not converge to zero fast enough with the increase in the sample size, thus distorting the

standard CLT results, e.g., by centering the corresponding confidence intervals at a wrong

place, making such confidence intervals unreliable.

The solution suggested by KSW is to correct for the leading term in the inherent bias of

DEA and FDH, Cn−κ, via its consistent estimator, defined as

B̂n,κ = (2κ − 1)−1(λ
∗
n/2 − λn), (2.14)

where λ
∗
n/2 is a generalized jackknife analog of λn, obtained as

λ
∗
n/2 =

(
λ
(1)

n/2 + λ
(2)

n/2

)
/2, (2.15)

where λ
(1)

n/2 is a version of λn based on a random subset of Xn of size n/2 and λ
(2)

n/2 is the

analog based on the remaining part of the sample (for simplicity assume n is even). That is,

formally, for ` = 1, 2, one computes

λ
(`)

n/2 = 2n−1
∑

{i|(Xi,Yi)∈X
(`)
n/2
}

λ̂(Xi, Yi | X (`)
n/2),

where X (1)
n/2 ∩ X

(2)
n/2 = ∅ and X (1)

n/2 ∪ X
(2)
n/2 = Xn.

The intuitive idea behind the bias correction in (2.14) can be summarized as follows (for

details and proofs, see KSW). Equation (2.13) indicates that, asymptotically, the leading

term of the bias when using λ̄n for estimating µλ is driven by Cn−κ, where C is a constant. So

if we use half of the full sample, i.e. of size n/2, equation (2.13) indicates that asymptotically,

the leading term of the bias when using λ̄
(`)
n/2 for estimating µλ is driven by C2κn−κ for the

same constant C and for ` = 1, 2. Then by simple algebra (see KSW for details), it is clear

that B̂n,κ will approximate the bias term and what is important is that the error described

in equation (2.16) has the order of magnitude smaller than or equal to the remainder o(n–κ)

in (2.14).10

KSW also show that

B̂n,κ = Cn−κ +R′n,κ + oP
(
n−1/2

)
, (2.16)

where R′n,κ has the same order of magnitude as the original Rn,κ introduced above, thus

10As suggested in Kneip et al. (2016), this operation of a random split in two parts is repeated a large

number, L, of times by shuffling the observations in Xn before each split, providing B̂
(l)
n,κ for l = 1, . . . , L.

Then to reduce the variance of the bias estimator we use B̂n,κ = L−1
∑L
l=1 B̂

(l)
n,κ.
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making it a suitable correction of the bias.

With these results KSW obtain the following new CLTs.

Theorem 2.1 Under assumptions for Theorem 3.1, 3.2 or 3.3 of Kneip et al. (2015), for

p+ q ≤ 5 if a CRS-DEA estimator is used and Ψ exhibits CRS and is convex, for p+ q ≤ 4

if a VRS-DEA estimator is used and Ψ is convex, for p+ q ≤ 3 if an FDH estimator is used

and Ψ satisfies free disposability of inputs and outputs, when n→∞ we have

√
n
(
λn − B̂n,κ − µλ +Rn,κ

) L−→ N(0, σ2
λ), (2.17)

and when κ < 1/2 then, as n→∞ we have

√
nκ
(
λnκ − B̂n,κ − µλ +Rn,κ

) L−→ N(0, σ2
λ), (2.18)

with λnκ being a subsample version of λn, where the averaging is taken over a random sub-

sample X ∗nκ ⊂ Xn of size nκ = bn2κc < n. Formally

λnκ = n−1κ
∑

{j|(Xj ,Yj)∈X ∗
nκ}

λ̂(Xj, Yj | Xn). (2.19)

Note that the bounds on p+ q given for being able to apply (2.17) are due to the particular

definitions of Rn,κ for each estimator (see KSW for details).11 It is also worth noting that for

p+ q = 5 in the CRS case, p+ q = 4 in the VRS case and p+ q = 3 for the FDH case, both

versions of the CLT are applicable. As commented in KSW, looking to the specific form

of the remainder term, the second version of the CLT in these limiting cases is preferable,

because the neglected terms are of small order O(·). This is confirmed by the Monte-Carlo

experiments (see KSW and our simulation results below for details).

Of course, in practice the σ2
λ that appears in the theorem is not observed and for practical

inference it can be replaced by a consistent estimator. KSW suggest the following one

σ̂2
λ,n =

1

n

n∑
j=1

(λ̂(Xj, Yj|Xn)− λn)2, (2.20)

thus providing, when (2.17) can be applied, an asymptotically correct (1 − α) confidence

interval for µλ given by [
λn − B̂n,κ ± z1−α/2σ̂λ,n/

√
n
]
, (2.21)

where z1−α/2 is the corresponding quantile of the standard normal distribution. When the

11Again, we note that in all the cases, since Rn,κ = o(n−κ), the remainder term can be neglected here.
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dimension p+ q increases and κ < 1/2, an asymptotically correct (1−α) confidence interval

for µλ is given by [
λnκ − B̂n,κ ± z1−α/2σ̂λ,n/

√
nκ

]
. (2.22)

KSW also present some Monte-Carlo evidence, supporting the theory, confirming poor

performance of the standard CLT in this case and substantially better performance by the

CLTs they developed. Our goal in the next section is to try to improve the finite sample

approximations of these new CLTs.

3 Improving Approximations

As pointed out above, for practical inference, one needs a consistent estimator of σ2
λ, the

variance of the efficiencies in the population. We know that

σ2
λ = E(λ(X, Y )− µλ)2

and KSW have shown that σ̂2
λ,n is such an estimator. Looking to this choice, σ̂2

λ,n appears

to be an empirical version of Var
(
λ̂(X, Y | Xn)

)
. However, note that, by construction, we

know that this estimator underestimates σ2
λ = Var

(
λ(X, Y )

)
. Indeed,

λ(X, Y ) = sup{θ | (X, θY ) ∈ Ψ}

whereas

λ̂(X, Y | Xn) = sup{θ | (X, θY ) ∈ Ψ̂},

where, according to the chosen estimator, Ψ̂ is the conical convex hull (a CRS-DEA case),

or the convex hull (a VRS-DEA case) or the free disposal hull (an FDH case) of the clouds

of points Xn, implicitly defined in the expressions (2.4) to (2.6) above. However, note that

in all the cases, we have

Ψ̂ ⊂ Ψ

implying, with probability one, that

1 ≤ λ̂(X, Y | Xn) ≤ λ(X, Y ),

implying that the random variables λ̂(X, Y | Xn) are likely to have lower variance than the

random variables they try to predict, λ(X, Y ).12 Note also that, in practice, there are many

12Similar inequalities hold for the input efficiency scores, where 0 < θ(X,Y ) ≤ θ̂(X,Y | Xn) ≤ 1.
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instances when λ̂(Xi, Yi | Xn) = 1, which is likely to reduce the variability of the estimators

even more, relative to the variability of the unobserved random variables they try to predict.

This is a part of the source of the lower coverages than the nominal levels, that we observed

in all the Monte-Carlo experiments.

Our goal therefore is to provide and explore another consistent estimator of σ2
λ that

should at least partially correct for this disappointing property. The motivation for the new

variance estimator goes along the following lines.

A natural estimator of σ2
λ should be its empirical version (if available), i.e.

σ̃2
λ :=

1

n

n∑
i=1

(λ(Xi, Yi)− λ̃n)2

where

λ̃n :=
1

n

n∑
i=1

λ(Xi, Yi)

but the problem of course is that λ(Xi, Yi) is unavailable and so λ̃n and σ̃2
λ are also unavail-

able–we only know from existing asymptotic theory (see KSW), that

λ̃n = µλ +OP

(
n−1/2

)
.

A natural approach (taken by KSW) is to replace the unavailable λ(Xi, Yi) by their

consistent estimates λ̂(Xi, Yi | Xn) and the sample mean λ̃n by λn, but we know (as a

consequence of Lemma 4.1 in KSW) that

λn = µλ +Bn,κ + o(n−κ)

where the leading term for the bias is given by

Bn,κ = Cn−κ

as described above. Now, by (2.16) we have a consistent estimator of this bias term which is

already computed for deriving the CLT. So, we suggest replacing the unavailable λ̃n by its

bias corrected version, defined as

λ̃bcn := λn − B̂n,κ

(instead of λn as in KSW).
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So, in the end, the new consistent estimator of σ2
λ we propose is given by

̂̂σ2

λ,n =
1

n

n∑
i=1

(
λ̂(Xi, Yi | Xn)− λ̃bcn

)2
(3.1)

=
1

n

n∑
i=1

(
λ̂(Xi, Yi | Xn)− λn + B̂n,κ

)2
.

It is easy to check, using (2.16), that

λ̃bcn = µλ + o(n−κ) + oP (n−1/2), (3.2)

meaning that this correction will preserve the existing asymptotic properties (consistency

and asymptotic normality) derived by KSW, when ̂̂σ2

λ,n is used in place of unknown σ2
λ, and

has a chance of improving its approximation in practice, i.e., for finite samples (simulated or

real data), relative to cases when σ̂2
λ,n is used.

The resulting estimated (1− α) confidence intervals for µλ will therefore be

[
λn − B̂n,κ ± z1−α/2̂̂σλ,n/√n] , (3.3)

when (2.17) can be applied, and

[
λnκ − B̂n,κ ± z1−α/2̂̂σλ,n/√nκ] (3.4)

when (2.18) can be applied, and where, as before, z1−α/2 is the corresponding quantile of the

standard normal distribution.

Also note that after some elementary manipulations we can simplify the expression for

the new variance estimator to be

̂̂σ2

λ,n = σ̂2
λ,n + B̂2

n,κ, (3.5)

and so one can immediately see that, as expected, we increase slightly the original KSW

estimator (σ̂2
λ,n) with a positive term, B̂2

n,κ, which is of a small order, OP

(
n−2κ

)
. So, as

n→∞, this correction does not play any role asymptotically, but in finite samples the bias

may be so big that the difference is significant (in particular when κ decreases, i.e. when the

dimension p + q increases). We will investigate the practical consequences in some Monte-

Carlo experiments, confirming the usefulness of this correction, even with sample sizes as

large as n = 1000. Meanwhile, it might be worth noting that the theoretical developments

outlined above, in (3.1)–(3.5) are, to the best of our knowledge, novel to the literature.
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4 Implications to Other Results

4.1 Some Obvious Extensions

The basic results of KSW have been extended in various situations. Kneip et al. (2016)

indicate how to use these CLTs for testing the equality of the means of two groups of firms,

for testing the convexity of the attainable set and for testing returns to scale of the technology.

All these tests are built on a statistic which is the difference of two sample means of efficiency

scores computed on two independent random samples. Then the above CLTs can be used for

both sample means, corrected for the bias term and rescaled by an estimator of the variance

of the efficiency scores. It is clear that the accuracy of the procedures will be improved by

using in each case the corrected estimator defined in (3.5), adapted to each particular case.

The same applies to the inference suggested in Kneip et al. (2018), where CLTs are

derived for Malmquist indices, for the CLTs for conditional efficiency scores derived in Daraio

et al. (2018) (and for their test of the separability condition), and all the CLTs derived in

Simar and Wilson (2018) for various cost, revenue and allocative efficiencies. All the CLTs

there have a similar shape to the ones derived in KSW (and summarized above) with a bias

correction factor and a rescaling by an estimator of the variance of the efficiency scores.

Another natural application of our developments is to the context of the so-called ‘two-

stage approach’, where at the first stage one obtains DEA estimates and at the second stage

they are regressed on some variables that are believed to be influencing the inefficiency.

Developing new CLTs that account for the bias of estimates of dependent variables in this

approach has been analyzed in some details in KSW (see their section 5), where it was proven

that under the so-called ‘separability condition’ (see their Assumption 5.1), the CLTs are

also available for the second-stage regression (i.e., conditional mean estimation). For our

context, it is worth noting that their Theorem 5.1 also provided a consistent estimator of

the variance of the error term in a simple OLS framework. Clearly, the procedure suggested

in our paper (and illustrated for the context of unconditional means) can be relatively easily

adapted to improve their estimator (for the context of conditional means). The extension

for a more general second-stage approach (involving MLE-based truncated regression rather

than OLS) would be also similar and is one of natural future research directions.

To save space we do not give the details of all these extensions because they are rather ob-

vious to derive. The derivations are a bit more tedious for aggregate efficiencies as explained

in the next section.
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4.2 Aggregate Efficiency

Simar and Zelenyuk (2018) (hereafter SZ) adapt and generalize the results from KSW to the

case of CLT for aggregate or weighted efficiency (e.g., such as industry efficiency), which can

be defined in terms of a ratio of two true means. They focus their presentation on the output

aggregate technical efficiencies of a group of firms derived in Färe and Zelenyuk (2003), which

rest on certain assumptions on the aggregate technology and the law of one price w ∈ Rq
++

on output markets.

Here it is worth noting that the assumption of common prices is not needed for the devel-

opments in SZ or in this paper. This assumption is dictated from the aggregation theory, as

a necessary condition, in order to establish the equivalence of the aggregate revenue (defined

on aggregate technology) with the sum of individual revenues (defined on the individual

technologies). The common price can be understood as a market equilibrium price, which

in turn enables the theoretical solution to be obtained, while in practical applications it can

be replaced by an average price in the industry.

The output oriented aggregate technical efficiency over a group of n firms, can be written

as

τn =
n∑
i=1

λ(Xi, Yi)Si, (4.1)

where Si =
wTY ∂i∑n
i=1 w

TYi
is the weight of observation i (derived using economic theory reasoning

by Färe and Zelenyuk (2003)). The advantage of this aggregate efficiency measure is that

it accounts for the economic weight of each observation i in the sample, which can be very

important when the group consists of observations of different sizes (typically a case in prac-

tice). Because the sample mean of efficiency scores does not account for an economic weight

of an observation being aggregated, the aggregate efficiency can suggest values, conclusions

and policy implications that are very different from those suggested by the sample mean.

For example, consider a hypothetical case of an industry with 100 firms, where 99 firms

are 100% efficient yet are very small, say representing together only 1% of the industry in

terms of the market share, while suppose the remaining firm that controls the rest of the

market is only 50% efficient. Here, the sample mean of the efficiency scores will suggest that

the industry is nearly 100% efficient and this will grossly misrepresent the situation in this

industry, almost completely dominated by a very inefficient firm. The weighted mean will

show the efficiency of approximately 50% for this industry.

To develop their theory, SZ first show another (and equivalent) form of the aggregate

efficiency, namely
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τn =
n−1

∑n
i=1w

TY ∂
i

n−1
∑n

i=1w
TYi

, (4.2)

where Y ∂
i is the counterfactual output vector for the firm i obtained by its radial projection

on the efficient frontier Ψ∂, i.e. Y ∂
i = λ(Xi, Yi)Yi. That is, it is the ratio of the average

(or total) industry revenue evaluated at technically efficient levels of output to the average

(or total) industry revenue that was actually observed. To simplify further notation, we will

denote Zi = wTYi and Z∂
i = λ(Xi, Yi)Zi.

SZ consider the ratio of the true means, τ = µ1/µ2, as the parameter of interest, where

µ1 = E
(
Z∂
i

)
and µ2 = E

(
Zi
)
, and then by standard arguments SZ show that

√
n
(
τn − τ

) L−→ N(0, σ2
τ ), (4.3)

where

σ2
τ = τ 2

(
σ2
1

µ2
1

+
σ2
2

µ2
2

− 2
σ12
µ1µ2

)
, (4.4)

and where σ2
1 = Var(Z∂

i ), σ2
2 = Var(Zi) and σ12 = Cov(Z∂

i , Zi). Since τn is not available, we

will estimate τ by using our nonparametric frontier estimators to obtain

τ̂n =
µ̂1,n

µ̂2,n

=
(1/n)

∑n
i=1 Ẑ

∂
i

(1/n)
∑n

i=1 Zi
, (4.5)

where Ẑ∂
i = λ̂(Xi, Yi|Xn)Zi. Extending the theory of KSW, they derive an estimator of the

bias of τ̂n and a consistent estimator of its variance providing the CLT which is summarized

below.

The bias estimator deserves some details: the leading part of the bias is governed by the

inherent bias of the numerator due to the nonparametric estimators of λ(Xi, Yi). As in KSW,

the generalized jackknife is used for the estimation of the bias of the numerator only, i.e.

Bµ1,n,κ. By repeating the random splits in two parts L times (see above (2.14) and Footnote

10) we end up with the bias correction for τ̂n given by

B̂τn,κ =
B̂µ1,n,κ

µ̂2,n

=
L−1

∑L
`=1(2

κ − 1)−1
(
µ̂∗1,n,` − µ̂1,n

)
µ̂2,n

, (4.6)

where µ̂∗1,n,` is the analog of λ
∗
n/2, as defined in (2.14) and (2.15), and where the use of µ̂2,n at

the denominator does not change the order of the approximation (see SZ for details). They

obtain the following CLT.

Theorem 4.1 Under the appropriate set of Assumptions described in Theorem 3.1, 3.2 or
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3.3 of Kneip et al. (2015), for p + q ≤ 5 if a CRS-DEA estimator is used and Ψ is CRS

and is convex, for p+ q ≤ 4 if VRS-DEA estimator is used and Ψ is convex, for p+ q ≤ 3 if

FDH estimator is used and Ψ satisfies free disposability of inputs and outputs, when n→∞
we have

√
n
(
τ̂n − B̂τn,κ − τ +Rn,κ

)
L−→ N(0, σ2

τ ), (4.7)

where Rn,κ = o
(
n−κ

)
.

For κ < 1/2, then as n→∞ we have

√
nκ

(
τ̂nκ − B̂τn,κ − τ +Rn,κ

)
L−→ N(0, σ2

τ ), (4.8)

with τ̂nκ being a subsample version of τ̂n, in the sense that the averages are taken over a

random subsample X ∗nκ ⊂ Xn of size nκ = bn2κc < n. Formally

τ̂nκ =
n−1κ

∑
{j|(Xj ,Yj)∈X ∗

nκ
} Ẑ

∂
j

n−1κ
∑
{j|(Xj ,Yj)∈X ∗

nκ
} Zj

, (4.9)

where Ẑ∂
j = λ̂(Xj, Yj|Xn)Zj.

The remark after Theorem 2.1 above is still valid here. For practical inference, SZ propose

to estimate σ2
τ by plugging estimators of its components in equation (4.4), i.e.

σ̂2
τ,n = τ̂ 2n

[
σ̂2
1,n

µ̂2
1,n

+
σ̂2
2,n

µ̂2
2,n

− 2
σ̂12,n

µ̂1,nµ̂2,n

]
(4.10)

where σ̂2
1,n and σ̂2

2,n are the empirical variances of Ẑ∂
i and Zi, respectively, and σ̂12,n is the

empirical covariance between Ẑ∂
i and Zi. While SZ showed that this estimator is consistent,

i.e., σ̂2
τ

p−→ σ2
τ , they also showed that in the Monte-Carlo experiments, the estimated confi-

dence intervals based on the CLT with this estimator of σ2
τ were significantly under-covering

the true values (similarly as in KSW), even for samples like n = 1000.

The resulting estimated (1− α) confidence intervals for τ can thus be obtained as

[
τ̂n − B̂τn,κ ± z1−α/2σ̂τ,n/

√
n
]
, (4.11)

when (4.7) can be applied, and

[
τ̂nκ − B̂τn,κ ± z1−α/2σ̂τ,n/

√
nκ

]
(4.12)
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when (4.8) can be applied.

Using similar logic as in the section above, an alternative estimator for σ2
τ can be suggested

by correcting for the bias of µ̂1,n in the estimator of the variance of the nonparametric

estimators, i.e. σ̂2
1,n (note that this correction has no influence on σ̂12,n). Following the same

arguments as above we propose to use

̂̂σ2

1,n = σ̂2
1,n + B̂2

µ1,n,κ
, (4.13)

where B̂2
µ1,n,κ

is defined above as the numerator of (4.6). So we have

̂̂σ2

τ,n = τ̂ 2n

̂̂σ2

1,n

µ̂2
1,n

+
σ̂2
2,n

µ̂2
2,n

− 2
σ̂12,n

µ̂1,nµ̂2,n

 , (4.14)

giving an alternative consistent estimator of the variance σ2
τ with larger values as expected.

Thus, the corrected estimates of (1− α) confidence intervals for τ will therefore be

[
τ̂n − B̂τn,κ ± z1−α/2̂̂στ,n/√n] , (4.15)

when (4.7) can be applied, and

[
τ̂nκ − B̂τn,κ ± z1−α/2̂̂στ,n/√nκ] (4.16)

when (4.8) can be applied.

To the best of our knowledge, the theoretical developments outlined above, in (4.13)–(4.16)

are novel to the literature. Again, the proposed correction is of a small order, it vanishes

asymptotically fast enough to preserve the asymptotic results from SZ, yet it might give

significant improvements in practice in terms of more accurate confidence intervals, espe-

cially for moderate sample sizes and large dimensions, as illustrated in our Monte-Carlo

experiments below. To help a practitioner, a step-by-step implementation algorithm of the

proposed approach is summarized in the Appendix.

5 Monte-Carlo Evidence

In this section we summarize results from many Monte-Carlo (MC) experiments we con-

ducted to analyze the performance of the newly proposed estimators for the variances de-

scribed above, which aim to improve the approximation of the CLTs in finite samples.

As in the related works, to evaluate the performance we will estimate and present the
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mean coverage of confidence intervals for different approaches for various types of the data

generating process (DGP).13 Intuitively, a better coverage by a particular method suggests

that such method is likely to provide more accurate (and thus more reliable) confidence

intervals than a method with relatively poorer coverage. We focus on the usual choices for

the nominal confidence levels: 0.90, 0.95, 0.99 and for various sample sizes, for 1000 of MC

replications. Meanwhile, for the procedure of the bias estimation described above, we choose

L = 20 reshuffles.14

5.1 Simplified Scenarios

For all of the scenarios in this sub-section, the technology set is assumed to be characterized

by

Ψ = {(x, y) ∈ Rp
+ × R1

+ | y ≤ ψ(x)},

where for ψ(x) we use the Cobb–Douglas production function, as it appears to be the most

popular in empirical works and in past simulations. Specifically,

ψ(x) = y∂(x) = a0Π
p
r=1x

βr
r , (5.1)

where βr (r = 1, ..., p) are the partial scale-elasticity coefficients, which are the parameters

that are constant in a given scenario, whose sum reveals the returns to scale in the production.

We have varied these parameters across scenarios to check the sensitivity of results.15

Following common practice and without much loss of generality, each input is generated

from the standard uniform distribution, while the inefficiency scores are generated as λi ∼
|N(0, σ2

λ)| + 1 for various choices of σ2
λ.

16 The ‘observed outputs’ are then generated by

projecting the frontier points y∂(x) inside the technology set Ψ, i.e., Yi = ψ(Xi)/λi.
17

13Recall that this mean coverage is defined as the percentage of times an estimated confidence interval
with selected nominal confidence level covers the true value, out of all (here 1000) MC replications.

14Here, it is worth reminding that, as shown in KSW, the value of L = 1 is sufficient to apply the relevant
CLTs. In Kneip et al. (2016), they suggest repeating the shuffling L times in order to reduce the variance
of the bias estimator by a factor 1/L2. Every value of L is theoretically fine, only the numerical burden is
a limit for this choice. Other choices of L we tried (e.g., L = 10, 100, 1000) in pilot MC trials gave similar
results and so we decided to limit L to 20 to reduce the numerical burden.

15Because what matters the most from a theoretical perspective (e.g., for the rate of convergence) is the
total number of inputs and outputs (p + q), here we focus on a single-output case, i.e., q = 1, and consider
different numbers of inputs, changing p.

16We tried many choices of σ2
λ and the results were similar, with generally the same conclusion. The tables

present results for σ2
λ = 1.

17Recall that the data generating process that justifies asymptotic properties of DEA and FDH assumes
no noise and so we follow this assumption here as well.
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As in SZ, the true values of τ = µ1/µ2 were computed via a prior simulation of n =

2, 000, 000 realizations of (Yi, Y
∂
i = ψ(Xi)) and then using (4.5). While we will limit our focus

to the VRS-DEA estimator, which appears to be the most popular in practice, analogous

conclusions apply to the CRS-DEA and FDH estimators.

In the tables below, note that the shortcut ‘CLT1’ refers to the relevant part of CLT

when κ ≥ 1/2 (i.e., (2.17) for the sample mean and (4.7) for the aggregate efficiency) and

‘CLT2’ refers to the relevant part of CLT when κ < 1/2 (i.e., (2.18) for the sample mean and

(4.8) for the aggregate efficiency) and the asterisk indicates that the improved estimator for

the variance was used when applying these theoretical results.

We first consider the case where p = 1, q = 1, i.e., where the bias is very small and, in

fact, converges to zero fast enough so that even the standard CLT applies, although KSW

and SZ showed that their approaches (based on CLT1, i.e., (2.17) for the sample mean and

(4.7) for the aggregate efficiency) perform substantially better in the finite samples. Table

1 presents the results for such a case, when β1 = 0.4.18 As expected, because the bias is

very small and converges to zero very fast in this 1-by-1 case, the improvement due to the

proposed variance estimator is relatively small, yet persistent at virtually all sample sizes

and nominal levels we considered, whether for the sample mean or the aggregate efficiency

(i.e., weighted sample mean).

Similar results are obtained for p = 2, q = 1, and Table 2 presents the results for such

a case, where β1 = 0.4, β2 = 0.2. From this table, one can see that there is a slightly

more pronounced improvement from the proposed variance estimator, as expected, since the

estimation bias generally increases with an increase in dimension, ceteris paribus, yet it is

still not so large here, for the 2-input-1-output case.

The next case we consider is when p = 3, q = 1 and so both CLT1 and CLT2 apply (in the

case of DEA-VRS). Table 3 presents the results for β1 = 0.4, β2 = 0.2, β3 = 0.1 (other choices

show similar results). One can see that the improvement from using the proposed variance

estimator is persistent and larger than that observed for smaller dimensions, and both for

CLT1 and CLT2. It is especially substantial at relatively small samples. As expected,

because the methods are asymptotically equivalent, the larger the sample the smaller the

improvement (both in relative and in absolute terms), yet note that it is still observed even

for samples like 1000, e.g., for nominal coverage set at 0.95, the original approach of KSW

(when CLT2 is used) provides coverage of 0.918, while the improved version provides coverage

of 0.934. A similar conclusion is also obtained when observing results for the aggregate

18Here and in the other scenarios, many other choices of β’s were tried (including the case when the returns
to scale is close to constant) and they produced similar results, confirming robustness of the qualitative
conclusions.
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Table 1: Coverage for the Sample Mean and Aggregate Efficiency, for p = 1, q = 1
CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT1 CLT1∗ CLT1 CLT1∗ CLT1 CLT1∗

CLT for the Sample Mean

10 0.500 0.557 0.573 0.635 0.685 0.736

20 0.602 0.653 0.676 0.711 0.795 0.824

50 0.691 0.717 0.775 0.790 0.892 0.898

100 0.771 0.784 0.834 0.842 0.918 0.921

200 0.826 0.830 0.880 0.883 0.967 0.968

300 0.846 0.846 0.912 0.913 0.960 0.962

500 0.847 0.848 0.907 0.907 0.979 0.979

1000 0.867 0.867 0.914 0.914 0.979 0.979

CLT for the Aggregate Efficiency

10 0.529 0.580 0.587 0.657 0.706 0.757

20 0.611 0.646 0.675 0.716 0.825 0.845

50 0.717 0.738 0.797 0.812 0.903 0.918

100 0.769 0.775 0.846 0.856 0.933 0.935

200 0.816 0.821 0.892 0.896 0.973 0.975

300 0.844 0.844 0.914 0.916 0.976 0.976

500 0.843 0.843 0.912 0.912 0.981 0.981

1000 0.881 0.882 0.922 0.923 0.973 0.973

efficiency.

The MC results also suggest that all the estimated coverages, even with the improved

variance estimator, are still underestimating the nominal levels, especially for relatively small

samples. It is worth contrasting, however, that they are much better than the coverages

based on the standard CLT (which were around 0 for these nominal levels and for most of

the samples). This phenomenon is pertinent not just to our approach, but rather it is an

‘Achilles heel’ of all the nonparametric envelopment estimators of this type and is sometimes

referred to as the ‘curse of dimensionality’ problem, which is, intuitively, a price to pay for

the flexibility of being nonparametric. In particular, for DEA-VRS the order of the errors

is n−2/(p+q+1), which makes it problematic to try to make an inference with n = 50 and

p + q ≥ 6. See Section 2.5.1, Table 2.1 in Simar and Wilson (2013), e.g., with n = 50 and

p + q = 6, the achieved precision corresponds to the inference that one would expect with

n = 9 observations in a fully parametric model.

Nevertheless, we acknowledge that more work is needed to find further improvements in

the finite-sample approximations of the new CLTs. For example, looking into the higher

order approximations of the bias or/and the variance might be a fruitful way forward in

future research, e.g., similar to the approach taken in the literature on the fixed effects in
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Table 2: Coverage for the Sample Mean and Aggregate Efficiency, for p = 2, q = 1
CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT1 CLT1∗ CLT1 CLT1∗ CLT1 CLT1∗

CLT for the Sample Mean

10 0.282 0.352 0.321 0.405 0.407 0.484

20 0.395 0.445 0.437 0.505 0.549 0.636

50 0.503 0.563 0.591 0.638 0.705 0.752

100 0.611 0.650 0.708 0.735 0.836 0.859

200 0.693 0.712 0.770 0.784 0.880 0.892

300 0.733 0.748 0.815 0.829 0.923 0.926

500 0.789 0.793 0.864 0.868 0.945 0.948

1000 0.825 0.826 0.887 0.893 0.979 0.980

CLT for the Aggregate Efficiency

10 0.260 0.348 0.320 0.409 0.434 0.524

20 0.431 0.490 0.486 0.556 0.610 0.681

50 0.567 0.617 0.653 0.703 0.785 0.830

100 0.679 0.712 0.769 0.797 0.878 0.896

200 0.730 0.742 0.804 0.819 0.915 0.924

300 0.766 0.775 0.848 0.859 0.939 0.946

500 0.807 0.816 0.876 0.886 0.957 0.957

1000 0.839 0.842 0.897 0.901 0.970 0.973

the panel data estimation framework by Dhaene and Jochmans (2015).19

Next we consider the case when p = 4, q = 1 and so κ < 1/2, meaning that only the CLT2

case and its improvement (denoted as CLT2*) applies here. Table 4 presents the results for

β1 = 0.4, β2 = 0.2, β3 = 0.1, β4 = 0.15 (other choices show similar results). The same

conclusions as reached in the previous table apply here as well, except that the improvement

is even more pronounced (and applicable only for CLT2). Specifically, one can see from Table

4 that the improvement from using the proposed variance estimator is also persistent here

and more substantial (as expected, due to larger bias). The coverage is especially improved

at relatively small samples, and there is even an improvement when n = 1000, where, for

example, for 0.95 nominal coverage, the improved version provides coverage of 0.937, while

the original approach of KSW provides coverage of 0.912.

19We thank Koen Jochmans for the fruitful discussions on this idea.
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Table 3: Coverage for the Sample Mean and Aggregate Efficiency, for p = 3, q = 1.
CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗

CLT for the Sample Mean

10 0.136 0.189 0.172 0.251 0.162 0.227 0.216 0.290 0.211 0.299 0.267 0.380

20 0.197 0.263 0.283 0.368 0.237 0.308 0.338 0.429 0.314 0.405 0.426 0.538

50 0.338 0.397 0.487 0.576 0.389 0.477 0.569 0.647 0.511 0.588 0.680 0.778

100 0.454 0.509 0.608 0.674 0.521 0.573 0.703 0.771 0.642 0.710 0.842 0.891

200 0.475 0.524 0.705 0.748 0.568 0.623 0.784 0.835 0.732 0.771 0.906 0.937

300 0.595 0.634 0.770 0.809 0.671 0.721 0.857 0.882 0.805 0.845 0.937 0.959

500 0.636 0.661 0.793 0.827 0.728 0.755 0.880 0.894 0.852 0.876 0.956 0.967

1000 0.762 0.776 0.859 0.870 0.830 0.841 0.918 0.934 0.934 0.945 0.975 0.983

CLT for the Aggregate Efficiency

10 0.146 0.212 0.191 0.289 0.172 0.249 0.243 0.323 0.230 0.330 0.305 0.417

20 0.210 0.283 0.310 0.407 0.251 0.346 0.365 0.474 0.342 0.450 0.481 0.609

50 0.413 0.497 0.567 0.656 0.486 0.576 0.654 0.736 0.615 0.703 0.778 0.847

100 0.534 0.593 0.695 0.752 0.612 0.674 0.781 0.842 0.750 0.799 0.896 0.933

200 0.604 0.644 0.766 0.804 0.684 0.722 0.844 0.877 0.821 0.862 0.942 0.963

300 0.667 0.703 0.815 0.846 0.756 0.789 0.876 0.892 0.876 0.898 0.961 0.967

500 0.709 0.732 0.842 0.861 0.785 0.813 0.902 0.917 0.907 0.927 0.967 0.971

1000 0.786 0.796 0.846 0.866 0.862 0.869 0.923 0.931 0.941 0.948 0.979 0.981

Table 4: Coverage for the Sample Mean and Aggregate Efficiency, for p = 4, q = 1.

CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT2 CLT2∗ CLT2 CLT2∗ CLT2 CLT2∗

CLT for the Sample Mean

10 0.101 0.145 0.113 0.179 0.153 0.246

20 0.140 0.228 0.173 0.271 0.255 0.370

50 0.280 0.404 0.353 0.499 0.503 0.675

100 0.453 0.580 0.549 0.685 0.723 0.835

200 0.608 0.712 0.717 0.813 0.864 0.923

300 0.727 0.803 0.820 0.889 0.928 0.961

500 0.802 0.866 0.882 0.923 0.972 0.989

1000 0.849 0.872 0.912 0.937 0.976 0.984

CLT for the Aggregate Efficiency

10 0.108 0.172 0.129 0.206 0.180 0.276

20 0.174 0.271 0.212 0.334 0.302 0.443

50 0.386 0.524 0.475 0.597 0.619 0.760

100 0.562 0.684 0.662 0.785 0.834 0.914

200 0.725 0.806 0.820 0.889 0.926 0.964

300 0.811 0.867 0.888 0.929 0.957 0.979

500 0.856 0.891 0.921 0.944 0.983 0.992

1000 0.860 0.883 0.926 0.941 0.980 0.988
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Similar conclusions are obtained for the cases with larger dimensions. For the sake of

space we only present two more cases: p = 5, q = 1, in Table 5 where β1 = 0.4, β2 = 0.2,

β3 = 0.1, β4 = 0.15 and β5 = 0.05 and p = 7, q = 1 in Table 6, where β1 = 0.05, β2 = 0.1,

β3 = 0.15, β4 = 0.2, β5 = 0.125, β6 = 0.075, β7 = 0.025 (other values of parameters gave

similar conclusions).

Table 5: Coverage for the Sample Mean and Aggregate Efficiency, for p = 5, q = 1
CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT2 CLT2∗ CLT2 CLT2∗ CLT2 CLT2∗

CLT for the Sample Mean

50 0.166 0.293 0.221 0.381 0.344 0.534

100 0.330 0.491 0.425 0.609 0.597 0.804

200 0.569 0.715 0.681 0.812 0.832 0.935

300 0.648 0.770 0.750 0.855 0.892 0.969

500 0.775 0.850 0.846 0.920 0.957 0.988

1000 0.855 0.905 0.920 0.954 0.976 0.991

CLT for the Aggregate Efficiency

50 0.235 0.385 0.304 0.488 0.452 0.664

100 0.457 0.612 0.563 0.726 0.730 0.883

200 0.689 0.797 0.781 0.880 0.901 0.966

300 0.750 0.841 0.836 0.914 0.948 0.990

500 0.835 0.898 0.904 0.954 0.979 0.992

1000 0.867 0.915 0.935 0.966 0.986 0.996

As expected, the improvement is much more substantial here, and almost everywhere.

For example, for p = 5, q = 1, for the nominal coverage set at 0.95: for n = 500 the improved

approach provides coverage of 0.92, while the original approach of KSW provides coverage

of 0.846 and even for n = 1000, the original approach of KSW provides coverage of 0.92,

while the improved approach provides coverage of 0.954, i.e., almost exactly recovering the

nominal coverage.

Meanwhile, for p = 7, q = 1 and the nominal coverage is 0.95, one can see that for

n = 500 the improved approach provides coverage of 0.941, while the original approach of

KSW provides coverage of only 0.778, and when n = 1000 the improved approach provides

coverage of 0.973 (i.e., slightly overshooting, by 0.023), while the original approach of KSW

provides coverage of 0.895 (undershooting by 0.055). The results for the aggregate efficiency

are similar, with a bit more overshooting observed.
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Table 6: Coverage for the Sample Mean and Aggregate Efficiency, for p = 7, q = 1
CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT2 CLT2∗ CLT2 CLT2∗ CLT2 CLT2∗

CLT for the Sample Mean

50 0.087 0.198 0.116 0.249 0.197 0.397

100 0.155 0.323 0.219 0.433 0.355 0.652

200 0.379 0.589 0.466 0.708 0.643 0.901

300 0.481 0.708 0.589 0.830 0.796 0.961

500 0.690 0.849 0.778 0.941 0.928 0.992

1000 0.801 0.923 0.895 0.973 0.976 1.000

CLT for the Aggregate Efficiency

50 0.109 0.226 0.141 0.299 0.220 0.461

100 0.219 0.391 0.276 0.523 0.419 0.741

200 0.429 0.682 0.547 0.793 0.733 0.952

300 0.573 0.801 0.685 0.890 0.860 0.983

500 0.750 0.903 0.840 0.966 0.960 0.996

1000 0.858 0.945 0.924 0.984 0.987 1.000

5.2 Scenarios with Correlated Inputs

All the DGPs considered so far had no correlation between inputs, i.e., the so-called ‘or-

thogonal design’ (as was the case in many other studies). As pointed out by one of the

anonymous referees, the data observed in practice often has fairly high correlations among

some inputs (e.g., think of production of concrete, cakes and many other products which

require certain proportions of some or all inputs) and so it is indeed worth considering such

scenarios in MC, especially because so far there appears to be no theory on this matter.

To explore how our approach performs and compares in such situations, we considered

various DGPs with different levels of correlation and the results for a couple of typical

scenarios are presented here. Below we present the results for the scenario defined exactly as

in Table 3 except that the third input is defined as the sum of the standard uniform (i.e., as

in the previous examples) plus a proportion of the 1st input, while the second input is kept

uncorrelated with the other two, i.e.,

X3i = γ13X1i + Ui, X1i, Ui ∼ uniform(0,1), (5.2)

Thus, the correlation between the first input and the third inputs is controlled via the

coefficient of proportionality, γ13. When this coefficient is zero then we are back in the

orthogonal design and exactly as in Table 3, which makes it convenient for comparisons.

Meanwhile, setting this coefficient to 1.4 makes the standard correlation coefficient between
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the first and the third input being around 0.8, i.e., about the level often observed in real

data on production. The MC results for this level are presented in Table 7 and one can

see that the general conclusion that the correction of the variance leads to improvements

in the accuracy of the confidence intervals estimation is maintained here as well, in this

non-orthogonal design.

It is also interesting to compare Table 7 to Table 3. Doing so one can see evidence that

for all the methods the coverage is usually more accurate (sometimes substantially) relative

to the case of zero correlation among the variables, especially for relatively low samples (e.g.,

500 and below). For example, for n = 100 with zero correlation in the DGP the coverage of

CI for the sample mean with nominal level 0.95 when using CLT2 and CLT2*, respectively,

is about 0.70 and 0.77 when there is no correlation and about 0.82 and 0.86 for the same

DGP but with correlation of about 0.8 between two inputs. It is a similar story for the

coverage of the aggregate efficiency, as well as for other levels and for other sample sizes,

except for n = 1000, where there is a slight drop (relative to n = 500), which was sometimes

observed in the coverage for the correlated case relative to no correlation, although note that

the improved approach (CLT2*)is still doing better than the exiting approach (CLT2) at all

levels of confidence.

Table 7: Coverage for the Sample Mean and Aggregate Efficiency, with Correlated Inputs
with γ13 = 1.4

CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗

Coverage for the Sample Mean

10 0.211 0.288 0.257 0.351 0.248 0.342 0.294 0.403 0.314 0.411 0.389 0.487
20 0.320 0.403 0.415 0.513 0.368 0.460 0.476 0.599 0.461 0.560 0.590 0.719
50 0.431 0.513 0.597 0.661 0.510 0.593 0.673 0.758 0.637 0.736 0.800 0.869
100 0.601 0.653 0.746 0.801 0.677 0.729 0.822 0.861 0.802 0.851 0.921 0.953
200 0.668 0.713 0.802 0.837 0.751 0.787 0.877 0.908 0.863 0.889 0.956 0.971
300 0.715 0.751 0.834 0.859 0.803 0.822 0.894 0.915 0.904 0.916 0.964 0.971
500 0.742 0.770 0.856 0.878 0.822 0.840 0.922 0.931 0.916 0.926 0.978 0.989
1000 0.778 0.785 0.874 0.880 0.858 0.865 0.933 0.939 0.950 0.961 0.980 0.984

Coverage for the Aggregate Efficiency

10 0.231 0.334 0.297 0.399 0.266 0.379 0.334 0.446 0.356 0.444 0.423 0.534
20 0.348 0.446 0.474 0.593 0.411 0.526 0.548 0.665 0.531 0.643 0.669 0.768
50 0.520 0.594 0.657 0.737 0.595 0.661 0.752 0.822 0.719 0.796 0.859 0.903
100 0.666 0.724 0.775 0.825 0.758 0.798 0.861 0.897 0.861 0.897 0.944 0.966
200 0.714 0.747 0.816 0.847 0.806 0.839 0.891 0.912 0.910 0.924 0.975 0.979
300 0.740 0.770 0.866 0.883 0.819 0.849 0.925 0.938 0.912 0.922 0.975 0.979
500 0.764 0.779 0.862 0.874 0.831 0.844 0.930 0.943 0.925 0.933 0.982 0.988
1000 0.753 0.757 0.862 0.870 0.839 0.858 0.927 0.930 0.934 0.940 0.979 0.983
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Also note that for the improved approach in the DGP with correlated inputs, the coverage

almost reaches the nominal level at n = 500, and is reasonably close to it already at n = 200.

This is an encouraging evidence for our method, since indeed many production processes and

real data often involve highly correlated inputs. We explored if this evidence is confirmed

in other scenarios and with different DGPs and it appears to be so, although we believe a

separate study is needed (both theoretical and MC) to explore this matter in more detail to

reach a more robust conclusion.

We also tried the case where all inputs are correlated but at different levels. Specifically,

we considered a scenario defined exactly as the previous scenario, except that the second

input now also has a correlation with the first input (and therefore also with the third input)

in a similar fashion, at the same or different levels. While we tried many different levels of

correlation (and all confirmed the general conclusions), an interesting case to present here

seems to be one where one input has a positive correlation while another input has a negative

correlation, i.e., some inputs are complements while others are substitutes. Results of one

of such scenarios is presented in Table 8, where in addition to the previous scenario, we also

have

X2i = −γ12(X1i − 1) + Ui, X1i, Ui ∼ uniform(0,1), (5.3)

where γ12 = 0.5. Clearly, if γ12 = 0 then we are in exactly the same design as in Table 7.

Comparing Table 8 to Table 7 suggests that the results are very similar as in the case of zero

correlation.

Finally, in all such scenarios we observed that the general conclusions that we have arrived

in previous sub-section (that correcting the variance usually lead to improved coverage) are

maintained here when we have different levels of correlation between various inputs.

5.3 Scenarios with Multiple Outputs

In all of the simulations so far, we have considered the single output cases. This is because,

theoretically, the convergence rate depends on the total number of inputs and outputs (p+q),

not on p alone or q alone. It is however, important (as pointed out by one of the anonymous

referees) to check that this is confirmed in practice, especially for small samples.

While there are different ways to generate multi-output scenarios, here we try the follow-

ing approach (adapted from Zelenyuk (2019)): the production technology is characterized

by the following set
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Table 8: Coverage for the Sample Mean and Aggregate Efficiency, with Correlated Inputs
with γ13 = 1.4, γ12 = 0.5

CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗

Coverage for the Sample Mean

10 0.212 0.293 0.243 0.351 0.250 0.344 0.297 0.419 0.311 0.419 0.387 0.494
20 0.329 0.417 0.432 0.526 0.377 0.470 0.493 0.607 0.474 0.590 0.613 0.724
50 0.450 0.525 0.597 0.678 0.533 0.612 0.682 0.768 0.664 0.763 0.826 0.874
100 0.631 0.680 0.769 0.815 0.714 0.771 0.836 0.887 0.818 0.861 0.934 0.958
200 0.692 0.723 0.816 0.846 0.764 0.799 0.891 0.920 0.882 0.914 0.966 0.977
300 0.723 0.760 0.834 0.863 0.808 0.828 0.907 0.926 0.912 0.929 0.967 0.979
500 0.746 0.774 0.862 0.875 0.829 0.841 0.919 0.926 0.932 0.947 0.986 0.987
1000 0.729 0.741 0.842 0.857 0.812 0.822 0.919 0.926 0.920 0.929 0.978 0.982

Coverage for the Aggregate Efficiency

10 0.214 0.314 0.275 0.368 0.257 0.364 0.324 0.426 0.338 0.440 0.406 0.525
20 0.333 0.436 0.451 0.565 0.402 0.508 0.525 0.651 0.515 0.621 0.659 0.760
50 0.514 0.583 0.652 0.725 0.581 0.659 0.729 0.800 0.717 0.795 0.855 0.909
100 0.665 0.723 0.779 0.828 0.747 0.794 0.859 0.908 0.858 0.899 0.942 0.969
200 0.710 0.748 0.819 0.855 0.795 0.823 0.898 0.924 0.906 0.929 0.975 0.983
300 0.735 0.756 0.856 0.882 0.814 0.839 0.917 0.930 0.904 0.920 0.974 0.980
500 0.763 0.774 0.863 0.878 0.833 0.849 0.930 0.939 0.920 0.931 0.985 0.989
1000 0.729 0.736 0.848 0.854 0.810 0.823 0.915 0.921 0.907 0.921 0.973 0.977

Ψ =

(x, y) :

(
q∑

m=1

αm(ym)2

)1/2

≤
p∏
r=1

(xr)
βr

 (5.4)

where βr ≥ 0 and αm ≥ 0. That is, the right side of the inequality in (5.4) is the same as

in (5.1), while for the output-side of the technology characterization we use the weighted

Euclidian norm where, without loss of generality, we normalize
∑q

m=1 αm = 1. To generate

data coherent with this technology, we first generate efficient outputs for each i ∈ {1, ..., n},
e.g., as Ỹmi

iid∼ Uniform(0.1, 1) for each m ∈ {1, ..., q}, and then generate p − 1 of inputs,

e.g., as Xri
iid∼ Uniform(0, 1) for each r ∈ {2, ..., p},20 and then define the remaining input,

X1i, in terms of the other generated inputs and all the outputs according to (5.4), i.e., for

each i ∈ {1, ..., n}, we let

20We also tried Xri
iid∼ Uniform(0.1, 1) and results were similar (with slightly better coverage).
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X1i :=


(∑q

m=1 αm(Ỹmi)
2
)1/2

∏p
r=2 (Xri)

βr


1/β1

. (5.5)

The observed output vector is then defined in the same fashion as in the previous scenarios

by correcting the efficient outputs with the corresponding efficiency scores, i.e.,

Yi = Ỹi/λi, (5.6)

where λi is generated as in previous scenarios, i.e., λi ∼ |N(0, σ2
λ)|+ 1.

While we tried many scenarios and found similar results, for the sake of saving space here

we only present two scenarios. One of these scenarios is presented in Table 9, where p = 2

and q = 2 and α1 = 1/2 and α2 = 1/2 while the prices of outputs are wT = (1, 1.5), and the

rest of the parameters are the same as for Table 2. Also note that the scenario summarized

in Table 3 has the same dimension, 4, as this new scenario summarize in Table 9 and so to

some extent they are comparable on the grounds of equal dimensions and similar (though

not the same) DGPs. Comparing these tables, one can see that the coverage is slightly

lower, yet still very similar, for all approaches for samples of 100 and below and then much

more similar for the larger samples, confirming the theory that it is the total dimension that

matters. More importantly, note that the general conclusion that correcting the variance

improves the coverage is also confirmed here.

Another scenario that has p = 3 and q = 3 is presented in Table 10, where now we have

α1 = 0.5 and α2 = 0.3 and α3 = 0.2, while the prices of outputs are wT = (1, 1.5, 2), and

the rest of the parameters are the same as for Table 5, which has the same dimension, 6.

Observing these results and comparing them to a somewhat similar (though not the same)

scenario with p = 5 and q = 1 in Table 5 that has the same dimension p+ q shows a slightly

different tendency than in the previous scenario. Indeed, now the coverage is slightly better

for most of the sample sizes and especially for the samples of 200 and below, though note

that the difference becomes negligible for larger samples. Thus, while comparing the case

with more outputs and fewer inputs to that with more inputs and fewer outputs, keeping the

dimension (p+ q) the same, we see evidence that somewhat better coverage can be observed

in some scenarios (as in this one), yet also the opposite performance can be observed for

other scenarios (as in the previous example). This further confirms the theory that it is the

total dimension that matters. Again, the key conclusion that correcting the variance usually

improves the coverage is generally confirmed for all these and other scenarios we tried with

multiple outputs.
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Table 9: Coverage for the Sample Mean and Aggregate Efficiency for p = 2 and q = 2.

CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗ CLT1 CLT1∗ CLT2 CLT2∗

Coverage for the Sample Mean

10 0.094 0.137 0.125 0.186 0.115 0.162 0.149 0.220 0.148 0.216 0.205 0.283
20 0.140 0.209 0.224 0.309 0.173 0.258 0.270 0.377 0.242 0.340 0.368 0.500
50 0.243 0.314 0.404 0.504 0.305 0.405 0.492 0.596 0.427 0.536 0.637 0.752
100 0.388 0.451 0.582 0.656 0.452 0.537 0.662 0.732 0.596 0.671 0.794 0.871
200 0.503 0.574 0.712 0.776 0.607 0.657 0.804 0.852 0.744 0.801 0.913 0.943
300 0.598 0.637 0.765 0.806 0.694 0.737 0.843 0.876 0.809 0.843 0.939 0.960
500 0.662 0.690 0.807 0.837 0.752 0.781 0.876 0.903 0.873 0.895 0.957 0.967
1000 0.755 0.774 0.865 0.877 0.830 0.857 0.917 0.936 0.934 0.942 0.986 0.987

Coverage for the Aggregate Efficiency

10 0.102 0.143 0.162 0.217 0.142 0.186 0.216 0.274 0.200 0.272 0.343 0.419
20 0.150 0.215 0.285 0.364 0.203 0.278 0.371 0.455 0.319 0.414 0.550 0.659
50 0.286 0.344 0.481 0.566 0.353 0.425 0.587 0.684 0.522 0.603 0.771 0.844
100 0.435 0.480 0.639 0.697 0.506 0.577 0.728 0.796 0.673 0.733 0.873 0.911
200 0.567 0.617 0.788 0.819 0.662 0.713 0.847 0.873 0.808 0.840 0.936 0.960
300 0.606 0.645 0.793 0.826 0.707 0.743 0.878 0.907 0.838 0.873 0.972 0.981
500 0.674 0.707 0.845 0.862 0.757 0.782 0.895 0.909 0.889 0.908 0.969 0.981
1000 0.759 0.775 0.882 0.893 0.856 0.875 0.934 0.946 0.942 0.951 0.986 0.988

5.4 Handling Higher Dimensions

Similar conclusions appear to also hold for larger dimensions than those we have presented

here, typically with decreasing accuracy (for all methods) while increasing the dimensions,

confirming the theory and illustrating the so-called ‘curse of dimensionality’ phenomenon,

pertinent to DEA and FDH (as for many other nonparametric methods).

We also acknowledge that we have not explored the performance of higher dimensions

as thoroughly as the ones we presented here for two reasons. First, this task would indeed

be endless as one may always want to add yet another input or an output or both and in

different DGPs. Second, the evidence we see from our Monte Carlo experiments, as well as

from many other related studies we cited above, is that for DEA and FDH estimators, it is

indeed advised to keep the dimensions as low as possible, e.g., as those we presented here,

unless critical for the analysis.

Dimension reduction techniques are available for practitioners to achieve such a task. For

example, one may use methods that are the variations of the principal component analysis

adapted to DEA (e.g., see Daraio and Simar (2007) and Wilson (2018) and references therein)

or use the economic aggregation approach adapted to DEA (e.g., see Zelenyuk (2019) and

references therein), or a mixture of these two or other suitable approaches.
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Table 10: Coverage for the Sample Mean and Aggregate Efficiency for p = 3 and q = 3.

CI level = 0.90 CI level = 0.95 CI level = 0.99

CLT2 CLT2∗ CLT2 CLT2∗ CLT2 CLT2∗

Coverage for the Sample Mean

50 0.203 0.346 0.253 0.427 0.372 0.614
100 0.420 0.599 0.514 0.708 0.678 0.872
200 0.627 0.783 0.727 0.872 0.876 0.962
300 0.741 0.853 0.827 0.921 0.939 0.988
500 0.813 0.895 0.887 0.942 0.967 0.995
1000 0.873 0.920 0.931 0.969 0.988 0.995

Coverage for the Aggregate Efficiency

CLT2 CLT2∗ CLT2 CLT2∗ CLT2 CLT2∗

50 0.278 0.401 0.373 0.532 0.632 0.791
100 0.486 0.650 0.622 0.768 0.824 0.926
200 0.659 0.801 0.782 0.885 0.929 0.977
300 0.747 0.853 0.845 0.920 0.952 0.989
500 0.814 0.886 0.891 0.941 0.965 0.993
1000 0.854 0.912 0.921 0.959 0.976 0.988

5.5 Summary of Monte Carlo Evidence

Overall, by comparing all the tables (those presented and those we omitted to conserve

space), an expected general conclusion is confirmed: in the overwhelming majority of cases,

the larger the dimension the larger the improvement tends to be due to the new variance

estimator we proposed in this paper.

All in all, since a better coverage by a method typically implies better accuracy (and

therefore greater reliability) of the estimated confidence intervals, the general conclusion

from all the MC experiments we performed is that the proposed method should be very

valuable for practitioners, at least as a robustness check.

6 Empirical Illustration

In this section we illustrate the methods that we discussed above for a real data set. For

this purpose we have chosen a popular in the literature data set about rice producers in

the Philippines, which was originally sourced from the International Rice Research Institute

(IRRI) and popularized by Coelli et al. (2005) who used it for illustrating various examples

of frontier and efficiency estimation and also made it available online.21 This makes it a

convenient resource for illustrations and comparisons and facilitates the possibility of repli-

21http://www.uq.edu.au/economics/cepa/crob2005/software/CROB2005.zip
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cations by others. MATLAB codes handling the application are available upon request from

the corresponding author.

The data set contains annual information on 43 rice producers in the Tarlac region of

the Philippines, for 8 years (from 1990 to 1997). The particular information we use here is:

one output (measured in tones of freshly threshed rice) and three inputs: (i) area planted

(measured in hectares), (ii) labour used (measured in man-days of family and hired labor)

and (iii) Fertilizers (measured in kilograms of active ingredients). For more details on the

data, see Coelli et al. (2005, p. 325–326). It is worth noting that the correlation between all

the inputs is fairly high in the data set (ranging from 0.83–0.92).

For this data we apply the VRS-DEA approach to estimate the Farrell–Debreu output

oriented inefficiency scores (2.3). Table 11 presents the summary of the results. Specifically,

columns 2 through 9 present the results for each year separately (i.e., using 43 observations

to estimate an annual frontier) and column 10 presents results for the data pooled across

the 8 years (i.e., using 344 observations to estimate the so-called ‘grand’ or ‘pooled’ or

unconditional frontier for the 8 years). The reason for pooling the data (and thus ignoring

possible technological change) is to illustrate the methods for a relatively large sample. We

also tried pooling over a smaller number of years, e.g., 2, 3, 4 years, and the results are

qualitatively the same.

The results include the VRS-DEA estimates of the simple and weighted sample means and

their bias corrected versions and of the corresponding lower and upper bounds of CIs using

the existing approaches (KSW for the simple mean and SZ for the weighted mean) and the

lower and upper bounds of CIs from the improved approach proposed in this paper. (Results

for other choices of significance α are qualitatively the same, yielding slightly narrower CIs,

yet preserving the general conclusions.)

Before going into discussion of the estimates of confidence intervals, a few remarks are

in order. First, the simple sample means of the (in)efficiency scores range from 1.20 to 1.51

(i.e., efficiency level of 0.83 to 0.66) with respect to an annual frontier and 1.8 (i.e., efficiency

level of 0.55) with respect to the pooled frontier.22 Second, note that, in all the periods,

the aggregate efficiency (weighted sample means of the inefficiency scores) are substantially

lower (i.e., showing higher average efficiency levels) than the simple sample means, e.g., for

1990 it is 1.30 vs. 1.51 and for the pooled frontier it is 1.57 vs. 1.8. Third, note on the

substantially large bias correction for both the weighted means and especially for the simple

means: e.g., it corrects the sample means of inefficiency for 1990 from 1.51 to 2.03, or for

22This difference between the averages of efficiency scores with respect to the annual frontiers and the
pooled frontier suggests about a potential technological change over the whole period, which for simplicity
of illustration and for staying within the scope of the paper we will ignore here.

31



the pooled frontier from 1.80 to 2.27, while for the aggregate efficiency the correction is from

1.3 to 1.57 in 1990 and from 1.57 to 1.9 for the pooled frontier.

Regarding the confidence intervals, in general, from virtually all the results, one can see

that they are larger (and sometimes substantially so) when the improved approach proposed

in this paper is used—this is consistent with the MC results, where the estimated CI were

also large, which enabled the provision of a more accurate coverage of the true values by the

confidence intervals.

For example, for the simple sample mean of efficiency scores for 1990 (column 2) the

CI based on the KSW approach is from 1.77 to 2.48, while the CI based on the improved

approach is from 1.66 to 2.59, i.e., the difference in length of CI for the improved approach is

about 31%. Similarly, when using the pooled data for 1990–1997 (column 10) the CI based

on the KSW approach is from 2.13 to 2.47, while the CI based on the proposed approach is

from 2.10 to 2.50, i.e., the difference in length of CI for the improved approach here is about

18%.

Meanwhile, for the aggregate efficiency (weighted sample mean), which gave fairly differ-

ent numbers than the simple means, the estimated confidence intervals are also wider when

using the improved methods relative to the SZ method, yet for this data the difference is not

as large as for the simple means, although it can also be viewed as substantial. For example,

for 1990 the CI based on the SZ approach is from 1.4 to 1.77, while the CI based on the

improved approach is from 1.34 to 1.83, i.e., the difference in length of CI for the improved

approach is about 32%. Similarly, in column 10 (pooled data for 1990–1997) the CIs based

on the SZ approach are from 1.8 to 2.07, while the CI based on the proposed approach is

from 1.78 to 2.09, i.e., the difference in length of CI for the improved approach is about 15%.

To conclude this section, it is worth reminding readers that CIs from both approaches are

theoretically correct from an asymptotic point of view, since they are equivalent as n→∞.

However, as can be seen from our simulations, for practitioners, who typically work with

finite samples (and often sample below 1000 observations), the corrected method suggested

in our paper is expected to provide more accurate estimates of confidence intervals (and

typically wider) than those from the existing methods. In practical terms, this means that

a too narrow confidence interval has a higher likelihood to mislead decision makers and

stakeholders when, for example, comparing the efficiency of an industry or sub-groups of

firms within it, etc.

All in all, since the proposed methods are expected to be more accurate and involve the

same level of computational complexity as the existing methods, they therefore seem very

appealing to be used regularly in practice, at least for the sake of reaching robust conclusions.
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Table 11: Real Data Illustration: VRS-DEA Estimates of Simple and Weighted Means of
Efficiency and their 0.99% Confidence Intervals for Rice Producers in the Philippines.

1990 1991 1992 1993 1994 1995 1996 1997 pooled

For the Sample Mean

DEA estimate 1.51 1.41 1.20 1.27 1.40 1.33 1.38 1.40 1.80
Bias corrected 2.03 1.75 1.42 1.49 1.75 1.56 1.70 1.81 2.27

Lower bound of est. CI 1.77 1.42 1.23 1.32 1.51 1.34 1.44 1.49 2.13
Lower bound of est. CI-Improved 1.66 1.37 1.18 1.29 1.44 1.30 1.38 1.39 2.10

Upper bound of est. CI 2.48 2.06 1.53 1.72 2.03 1.79 1.92 1.93 2.47
Upper bound of est. CI-Improved 2.59 2.12 1.57 1.76 2.10 1.83 1.98 2.04 2.50

For the Aggregate Efficiency

DEA estimate 1.30 1.26 1.11 1.22 1.37 1.25 1.29 1.29 1.57
Bias corrected 1.57 1.48 1.24 1.38 1.69 1.44 1.54 1.58 1.90

Lower bound of est. CI 1.40 1.23 1.10 1.16 1.35 1.23 1.31 1.32 1.80
Lower bound of est. CI-Improved 1.34 1.19 1.08 1.14 1.30 1.20 1.27 1.25 1.78

Upper bound of est. CI 1.77 1.65 1.30 1.58 1.93 1.61 1.78 1.70 2.07
Upper bound of est. CI-Improved 1.83 1.68 1.32 1.60 1.98 1.63 1.82 1.76 2.09

7 Concluding Remarks

In this paper we propose a simple yet practically valuable improvement of the finite sam-

ple approximation of the recently derived central limit theorems for the statistics involving

production efficiency estimates from DEA or FDH. This improvement is indeed very easy

to implement because it amounts to a simple correction of the already developed statistics

and involves no extra computational burden, while also preserving the existing asymptotic

theory, including consistency and asymptotic normality.

The evidence from our Monte-Carlo experiments suggest that the proposed approach

persistently gave improvements in most of the cases that we tried, especially for relatively

small samples or relatively large dimensions of the assumed production model. The empirical

illustration for a popular real data set we used confirms that the difference in the estimated

confidence intervals can be substantial.

Given the importance of the central limit theorems in practical applications of statistical

testing and constructions of confidence intervals, this approach is expected to be very useful

(and at almost no additional computational costs) for practitioners analyzing production

efficiency using DEA or FDH approaches—by providing more accurate and thus more reliable

estimates of confidence intervals of aggregate functions of individual efficiencies. This, in

turn, should help decision makers in making better decisions.

Some fruitful directions for future research would include a thorough investigation of how

similar corrections can improve statistical testing based on the new CLTs. Among others,
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this includes testing between groups within a population (e.g., industry), tests of returns to

scale or convexity assumptions, as well as testing in the framework of the two-stage truncated

regression context and the related separability condition. Finally, we note again that there

is still fairly large scope for improving the finite sample approximations, especially for very

small samples. In particular, exploring the higher order approximations of the bias or/and

the variance might be a fruitful way forward for such improvements. It also seems fruitful to

explore in greater details how the high correlation among inputs (as seems typical in many

real data on production processes) can improve the accuracy of estimation and inference

with these and other related methods.
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Appendix: Practical Implementation Algorithm

Here, we summarize the algorithm for estimating confidence intervals, which was used in the

simulations and for the real data illustration in this paper and can be adapted to other cases.

Step 1. Compute the efficiency scores using a chosen estimator (DEA or FDH).

Step 2. Compute the relevant statistic for the parameter of interest (e.g., simple sample

mean using (2.9) or weighted sample mean using (4.1)).

Step 3. Estimate the bias of the statistic (e.g., using (2.14) for the simple sample mean or

(4.6) for the weighted sample mean).

Step 4. Estimate the relevant variance:

(a) for the simple sample mean, use (2.20) for the KSW approach and use (3.1) for

the improved approach;

(b) for the weighted sample mean, use (4.10) for the SZ approach and use (4.14) for

the improved approach.

Step 5. Select the confidence interval α and estimate the lower and upper bounds for the

asymptotic CIs of the parameter of interest, e.g.:

(i) when κ ≥ 1/2:

(a) for the simple sample mean, use (2.21) for the KSW approach and use (3.3)

for the improved approach;

(b) for the weighted sample mean, use (4.11) for the SZ approach and use (4.15)

for the improved approach;

(ii) when κ < 1/2

(a) for the simple sample mean, use (2.22) for the KSW approach and use (3.4)

for the improved approach;

(b) for the weighted sample mean, use (4.12) for the SZ approach and use (4.16)

for the improved approach.
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