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Abstract

We study the algorithmic problem of optimally covering a tree with k mobile robots. The
tree is known to all robots, and our goal is to assign a walk to each robot in such a way that
the union of these walks covers the whole tree. We assume that the edges have the same length,
and that traveling along an edge takes a unit of time. Two objective functions are considered:
the cover time and the cover length. The cover time is the maximum time a robot needs to
finish its assigned walk and the cover length is the sum of the lengths of all the walks. We
also consider a variant in which the robots must rendezvous periodically at the same vertex in
at most a certain number of moves. We show that the problem is different for the two cost
functions. For the cover time minimization problem, we prove that the problem is NP-hard
when k is part of the input, regardless of whether periodic rendezvous are required or not. For
the cover length minimization problem, we show that it can be solved in polynomial time when
periodic rendezvous are not required, and it is NP-hard otherwise.

Keywords: Combinatorial Optimization; Tree Cover; Vehicle Routing; Dynamic Programming;
Multi-Agent Systems.

1 Introduction

Operations research techniques have long been used in robotics. For instance, trajectory opti-
mization and motion planning are application areas in which operations research is widely used
[18, 15]. For many robotic applications, terrain coverage is a crucial task; for instance, in search
and rescue [20], lawn mowing [3], and surveillance by unmanned aerial vehicles [1, 13], to name
a few. Naturally, coverage can be sped up with multiple robots, turning the problem into a
multi-robot coverage problem, in which a path has to be calculated for each robot.

Multi-agent problems have been studied for many years in combinatorial optimization. Com-
puting optimal sets of routes to be covered by sets of robots to guard or cover terrains is a crucial
problem in areas of research such as vehicle touting (VRP) [33, 11, 22], location routing (LRP)
[26] and multiple traveling salesman (mTSP) [5]), which are of prime interest in operations re-
search. In this paper, we will study problems in which the agents are unmanned aerial vehicles
(UAVs) (also known as drones) which cover terrains, and, additionally, could meet periodically
to share information.

In the terrain coverage problem, the environment can be modeled by a geometric structure,
represented as the union of polygonal obstacles, or a graph structure. The former model assumes
that the robots know everything within their sight, and thus the problem is related to art gallery
problems. This model is popular in the computational geometry community [34]. For the latter
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model, the terrain is partitioned into cells, inducing a graph whose nodes correspond to locations
in the cells and edges correspond to paths between the locations. In this paper, we consider
the graph model, assuming that the underlying graph is a tree. In fact, a spanning tree has
frequently been used for multi-robot coverage [19]. This appears, for instance, when considering
the dual graph of a triangulation of the terrain.

Choset [9] provides a survey of coverage algorithms that distinguishes between off-line al-
gorithms, in which a map of the work area is given to the robots, and on-line algorithms, in
which no map is given. Two variants can also be considered according to the cost of movement:
the cost can be uniform, when the move of a robot to a neighboring state takes unit time, or
non-uniform otherwise. The problems introduced in this paper assume an off-line/uniform-cost
scenario. We also consider the variant in which the robots are required to meet at most every
p steps for some fixed positive integer p. We assume that all robots rendezvous at the same
vertex at the same time. This rendezvous version is motivated by papers such as [23, 21].

Regarding objective functions, it is frequently desirable to minimize the time at which cov-
erage is completed. In this case, the multi-robot coverage problem calls to compute a walk for
each robot so that the cover time is minimized. However, the energy efficiency of a robot’s walk
can also take into account the distance travelled. In this paper we also consider another cost
measure, the cover length, meaning the sum of the lengths of all the walks needed to cover the
tree. Note that these cost functions are different because when a robot stops and remains at a
vertex, the overall cover time may increase but the cover length does not.

Before the statement of the optimization problems, we introduce some notation and assump-
tions for our model. Suppose we are given a terrain modeled by a tree T = (V,E), where V and
E are the vertices and edges sets, respectively, that have to be covered by k identical robots
modeled by moving points on the tree. The terrain is discretized by means of n convex cells
and each vertex of T represents a cell in the terrain. We allow two or more robots to share a
vertex or a point on an edge of T , without colliding or blocking each other. We also assume
that the robots walk along the edges of T , and that it takes one unit of time to traverse an
edge. Specifically, in one unit of time (in a step), a robot can move from one vertex to an
adjacent vertex or it can stay on the same vertex. Finally, we assume that all robots share an
internal synchronized clock. We call the journey made by a robot a walk. Although a walk
W is a set of edges and vertices, we denote a walk by the sequence of m visited vertices; i.e.,
W := (u1, . . . , um) where ui are vertices of T and two consecutive elements are either adjacent
or equal.

When they are equal, the robot stays at the same vertex during the move. For convenience,
we assume that the robot stops at the last vertex of the sequence. We refer to such a sequence
as a walk on T . Similarly, a path in this paper is a walk in which each vertex is visited once.
We denote the set of vertices of a tree T (respectively a walk) as V (T ) (respectively V (W )).

The time of a walk W , t(W ), is the number of steps that a robot needs to carry out the
journey described by W . Formally, the time of a walk is one less than the number of terms in
W ; t(W ) = m− 1. The length of a walk W , l(W ), is the number of times the robot changes its
position. Formally, this is the number of times that ui 6= ui+1, for i = 1, · · · ,m− 1.

A strategy is an assignment of a walk to each robot. Formally, it is a k-tuple S :=
(W1, . . . ,Wk) of k walks on T , where Wi is the walk assigned to the i-th robot. We say that S
is a covering strategy if each vertex of T is in at least one walk Wi. That is, a covering strategy
is an assignment of a walk to each robot such that every vertex is visited at least once.

The robots rendezvous at time j if all of them are at the same vertex at that time. Thus,
for a given strategy, a set of robots rendezvous if the j-th term on their walks is the same. If
rendezvous is required, we also assume that the robots meet at the end of their walks. This may
be necessary in scenarios in which all participants need full knowledge of a solution.

The time of a strategy S, t(S), is the total time it takes for the robots to carry out the
journey described by their assigned walks. Since the robots move in parallel we have:

t(S) = max
1≤i≤k

{t(Wi)}.

The length of a strategy S, l(S), is the sum of the lengths of all the walks. Thus,

l(S) =

k∑
i=1

l(Wi).

In this paper, we consider the following optimization problems according to the tree/off-
line/uniform-cost/rendezvous framework:

• Minimum Length Covering Problem (MLCP) Find a minimum length covering
strategy with k robots starting at given positions.

• Minimum Length Covering Problem with Rendezvous (MLCPR) Find a covering
strategy of minimum length with k robots at given starting positions, in which the robots
rendezvous at most every p steps, for a given positive integer p.
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• Minimum Time Covering Problem (MTCP) Find a minimum time covering strategy
with k robots starting at given positions.

• Minimum Time Covering Problem with Rendezvous (MTCPR) Find a covering
strategy of minimum time with k robots at given starting positions, in which the robots
rendezvous at most every p steps, for a given positive integer p.

OPTIMAL TREE COVERING

MIN LENGTH MIN TIME

RENDEZVOUSNO RENDEZVOUS

NO RENDEZVOUS RENDEZVOUS

NP-HARD

ONE SOURCE TWO SOURCES

POLYNOMIAL

WITH MULTIPLE ROBOTS

POLYNOMIAL

NP-HARD NP-HARD

Figure 1: Complexity of the tree covering optimization problems.

It is well known that most of the optimization problems for multi-agent coverage (as well
as the VRP, LRP and m-TSP) are NP-hard. In this paper, we show that the computational
complexity of the optimization problems presented above is different for the two objective func-
tions, length and time. We prove that MTCP is NP-hard. Obviously, the NP-hardness of the
non-rendezvous version implies NP-hardness for the rendezvous case. However, we show that
the MLCP can be solved in polynomial time using dynamic programming for one or two sources
and then the complexity of the rendezvous version has to be independently established; for this
case, we prove that the problem is NP-hard if k is part of the input. Finally, the MLCP when
the k robots start at arbitrary l positions remains open. Our results are summarized in Figure 1.

The rest of the paper is organized as follows. In Section 2, we present the related literature.
In Section 3, the MLCP is proved to be polynomial on k (number of robots) and n (number of
vertices of the tree). Concretely, we give an O(k2n) time complexity algorithm when all robots
start at the same vertex and an O(k4n) time complexity algorithm when the robots start at
two different locations. In Section 4 we prove that the MLCPR is NP-hard. In Section 5, we
prove that the MTCP is NP-hard even for the non-rendezvous version. Finally, in Section 6
some conclusions and open problems are given.

2 Related work

Many methods developed in operations research have been used in robotics. An example related
to the problems studied in this paper is the problem of finding an optimal routing scheme for
sets of delivery vehicles departing from a central depot, which is a problem of major interest in
operations research; e.g., see [10]. The delivery vehicles are required to cover a set of locations,
such as stores, where some goods have to be delivered or picked up. A variant that has been
studied in robotics is the so-called dynamic version of the vehicle routing problem, which deals
with on-line arrival of customer demands [29, 7, 4]. Other well studied variations include im-
posing limits on the capacity of the vehicles, or time windows restricting the time during which
goods have to be delivered; see [30, 28].

Also, area coverage with k robots is a problem that has long been investigated by the robotics
research community. The case k = 1 is related to the covering salesman problem in which a
robot must visit a neighborhood of the city that minimizes the travel length [3]. It is should
be noted that a different problem is the exploration of a completely unknown environment by a
team of mobile robots; that is, the on-line formulation – see [8] for a review.

Regarding covering problems on a tree, a path planning algorithm for the off-line formulation
of the multi-robot coverage problem is proposed in [19]. The authors split a spanning tree
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(previously computed to model a terrain) in such a way that each robot covers an equal portion
of the tree. A closely related work on a tree, but for the on-line version, is [12], where a swarm
of mobile agents has to explore a tree, with the additional constraint that all the agents have to
be close to each other; i.e. the distance between any pair of agents is at most a given positive
number.

The problems studied in this paper are inspired in the use of unmanned aerial vehicles,
or drones, which are being deployed on a known underlying graph to perform tasks such as
the delivery of goods or surveillance. The main advantage of delivery drones compared to
regular delivery ground vehicles are that they can operate over congested roads without delay
and without a costly human pilot. However, unmanned aerial vehicles have restrictions such as
limited battery capacity or limited wireless capacity, which pose challenging problems to achieve
persistence (sequences of visits to sites in a periodic fashion) [31], robustness (fault tolerance is
particularly important for unmanned autonomous vehicles) [6] and, rendezvous (for example, if
there is a separate team of charging robots that the drones can dock with in order to recharge)
[27].

Note that similar problems arise in applications in which instead of drones, we use ground
vehicles that move along the edges of networks representing a map of roads. Thus, these
optimization problems with drones automatically fall into research areas such as VRP, LRP or m-
TSP. Some challenging optimization problems in the interrelated areas VRP and aerial robotics
have been addressed recently. For instance, [32] models the problem of finding sequences of visits
to discrete sites in a periodic fashion such as a vehicle routing problem with time windows, and
solves it using exact methods developed in the operations research community. [17] presents
a multi-criteria optimization model taking into account three objectives: minimizing the total
distances traveled by the drones, maximizing customer satisfaction and minimizing the number
of drones used. Customer satisfaction is modeled by using time window constraints. In a recent
paper [2], the authors study the so-called TSP with drone, which considers the combination of a
truck and a drone in the commercial sector called “last-mile delivery”. Such a combined system
is found to give substantial savings compared to the truck-only solution.

Finally, we mention a problem studied in operations research which examines the coverage
of nodes of a graph using k trees [14]. The goal is to find a set of k trees such that the maximum
weight of the used subtrees is minimized. The motivation arises from what the authors call the
nurse station location scenario, in which nurses are assigned patients to care for. This problem
is NP-hard and the authors give an algorithm to obtain a solution that is at most four times
the size of the optimal solution. When the graph to be covered is a tree, a 2-approximation
algorithm is given in [24]; see also [25]. Note that the previous problem, although very close
to ours, is quite different because we allow the robots to traverse an edge several times. To
the best of the authors’ knowledge, the optimization problems presented in this paper have not
been studied before.

3 Minimum Length Covering Problem (MLCP)

Before presenting our results for the MLCP without rendezvous, we state a useful technical
result. It enables us to transform the problem of finding a minimum length strategy for T with
k robots to the problem of finding a tuple of k paths that minimizes a certain objective function.
Given a graph G, we denote by C(G) the set of its connected components and by V (G) the set
of its vertices.

Lemma 3.1 Let S := (W1, . . . ,Wk) be a minimum length covering strategy for T with k robots.
The edge set of each Wi can be decomposed into two sets: the edges of a path P (Wi) and the
edges of a forest F (Wi). Moreover,

• (a) each edge in P (Wi) is traversed once by the i-th robot;

• (b) each edge in F (Wi) is traversed twice by the i-th robot and is never traversed by any
other robot;

• (c) each C ∈ C(F (Wi)) satisfies∣∣∣∣∣V (C) ∩

(
k⋃

i=1

V (P (Wi))

)∣∣∣∣∣ = 1; and

• (d) for every pair (j, l), j 6= l, we have that

V (F (Wj)) ∩ V (F (Wl)) ⊂
k⋃

i=1

V (P (Wi)).
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Proof. We first show that a robot can traverse an edge of T at most twice. By contradiction,
suppose that S is a minimum-length covering strategy for T and there exists an edge (v, w)
that is traversed at least three times by the i-th robot. Then Wi can be written as Wi =:
(Q1, v, w,Q2, w, v,Q3, v, w,Q4) for some walks Q1, Q2, Q3 and Q4. See Figure 2a. Note that
we can replace Wi by the walk (Q1, v,Q3, v, w,Q2, w,Q4) and obtain a covering strategy for T
of shorter length, contradicting the optimality of S.

(a) (b) (c)

Figure 2: (a) A walk traversing the edge (v, w) three times. (b),(c) show the cases
when two robots traverse an edge three times.

We define P (Wi) and F (Wi). For each Wi, let P (Wi) be the subgraph of T induced by
the edges in Wi traversed once by the i-th robot, and let F (Wi) be the subgraph of T induced
by the edges in Wi traversed twice by the i-th robot. Note that since the edges in P (Wi) are
traversed once by the i-th robot and T is a tree, then P (Wi) is a path and F (Wi) is a forest;
this proves (a). To prove (b), it only remains to show that no robot other than the i-th robot
visits the edges in F (Wi).

Suppose that an edge (v, w) in F (Wi) is visited also by the j-th robot, for some j 6= i.
Without loss of generality suppose that the i-th robot visits (v, w) first from v to w, and
afterwards from w to v. Then Wi can be written as Wi =: (Q1, v, w,Q2, w, v,Q3) for some
walks Q1, Q2 and Q3. We have the following cases:

1. Wj visits v first.

Then Wj can be written as (R1, v, w,R2) for some walks R1 and R2. See Figure 2b.
By replacing Wi with (Q1, v,Q3) and Wj with (R1, v, w,Q2, w,R2), we obtain a covering
strategy for T of shorter length, contradicting the optimality of S.

2. Wj visits w first.

Then Wj can be written as (R′1, w, v, R
′
2) for some walks R′1 and R′2. See Figure 2c.

By replacing Wi with (Q1, v,Q3) and Wj with (R′1, w,Q2, w, v, R
′
2), we obtain a covering

strategy for T of shorter length, contradicting the optimality of S.

Figure 3: Illustration of property (c).

We now prove (c) by contradiction. Suppose that there exists a connected component C in
some F (Wi) such that

X =:

∣∣∣∣∣V (C) ∩

(
k⋃

j=1

V (P (Wi))

)∣∣∣∣∣ > 1

as illustrated in Figure 3. Since T is a tree and F (Wi) is edge disjoint from P (Wi), we have
that |X ∩ V (P (Wi))| = 1. Let {u} := X ∩V (P (Wi)), let v be a vertex in X distinct from u and
let Wj be the walk such that v ∈ P (Wj). Root C at u and let Tv be the subtree of C rooted at
v. Let Tu := C \ Tv. Let Qu and Qv be in-order traversals of Tu and Tv, respectively.
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Note that Wi and Wj can be written as Wi =: (R1, u, R2, u, R3) and Wj =: (R4, v, R5)
for some walks R1, R2, R3, R4 and R5. By replacing Wi with (R1, u,Qu, u, R3) and Wj with
(R4, v,Qv, v, R5) we obtain a covering strategy for T of length one less than the length of S.
(In particular the edge joining v to its parent C is no longer traversed.) This is a contradiction
to the optimality of S.

Finally, we prove (d) by contradiction. Suppose that a pair F (Wj) and F (Wl) intersect at
a u vertex not in

k⋃
i=1

V (P (Wi)).

Let C1 and C2 be the connected components of F (Wj) and F (Wl) containing u respectively. See
Figure 4. Let v be the vertex of C1 in P (Wj). Root C1 at v and let w be the parent of u in C1.
Then Wj and Wl can be written as Wj =: (Q1, w, u,Q2, u, w,Q3) and Wl =: (R1, u, R2) for some
walks Q1, Q2, Q3, R1 and R2. By replacing Wj with (Q1, w,Q3) and Wl with (R1, u,Q2, u, R2),
we obtain a covering strategy for T of length one less than the length of S, a contradiction.

Figure 4: Illustration of property (d).

�

Suppose now that S := (W1, . . . ,Wk) is a minimum length covering strategy for T . Let e
be an edge of a walk Wi. By Lemma 3.1 we have the following. If e is in exactly q of the paths
P (Wi), then it is visited exactly q times. Otherwise, e is visited exactly twice. Therefore, the
cost of S is given by:

l(S) =

k∑
i=1

l(P (Wi)) + 2

k∑
i=1

|E(F (Wi)|

=

k∑
i=1

l(P (Wi)) + 2

k∑
i=1

∑
C∈C(F (Wi))

(|C| − 1)

=

k∑
i=1

l(P (Wi)) + 2

∣∣∣∣∣V (T ) \
k⋃

i=1

V (P (Wi))

∣∣∣∣∣ . (1)

The last equality follows from (c) and (d) of Lemma 3.1. A remarkable property of Equation (1)
is that the cost of S only depends on the paths P (Wi). In the following lemma we show that if
we are given a tuple of k-paths, then we can efficiently build a covering strategy with the same
structure as in Lemma 3.1.

Lemma 3.2 Let P := (P1, . . . , Pk) be a tuple of k paths in T . Then in O(n) time we can
compute a covering strategy S := (W1, . . . ,Wk) for T with k robots that satisfies the following.
The edge set of each Wi can be decomposed into two sets: the edges of a path P (Wi) = Pi and
the edges of a forest F (Wi). Moreover,

• (a) each edge in P (Wi) is traversed once by the i-th robot;

• (b) each edge in F (Wi) is traversed twice by the i-th robot and is never traversed by any
other robot;

• (c) each C ∈ C(F (Wi)) satisfies that∣∣∣∣∣V (C) ∩

(
k⋃

i=1

V (P (Wi))

)∣∣∣∣∣ = 1; and

• (d) for every pair j 6= l we have that

V (F (Wj)) ∩ V (F (Wl)) ⊂
k⋃

i=1

V (P (Wi)).

Proof. Starting from i = 1 to k, we construct Wi as follows. For each vertex v of Pi, let Tv be
the tree rooted at v with the maximum number of edges such that
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• V (Tv) ∩ V (Pi) = {v} and

• (V (Tv) \ {v}) ∩Wj = ∅ for all j < i.

Note that Tv can be computed in O(|Tv|) by doing a depth-first search starting at v. Let Qv be
an in-order traversal of Tv starting at v.

Assume Pi =: (v1, . . . , vm) and let

Wi := (v1, Qv1 , . . . , vm, Qvm).

Thus, Wi is the walk in which the i-th robot follows Pi, stopping at every vertex v of Pi to do
an in-order traversal of Tv. Let P (Wi) = Pi and F (Wi) =

⋃
v∈V (Pi)

Tv. Let S = (W1, . . . ,Wk).
Since every vertex of T is in some Tv for some Pi, S is a covering strategy for T with k robots.
By construction, S satisfies (a),(b), (c) and (d). Finally, S is computed in time

k∑
i=1

∑
v∈Pi

O(|Tv|) = O(n).

�

Lemmas 3.1 and 3.2 together imply that to find a minimum covering strategy for T with
k robots, it is sufficient to find a tuple of k paths (P1, . . . , Pk) that minimizes the following
expression.

k∑
i=1

l(Pi) + 2

∣∣∣∣∣V (T ) \
k⋃

i=1

V (Pi)

∣∣∣∣∣ . (2)

In what follows we use this fact implicitly. We represent a covering strategy by its tuple of
paths. Each path is represented by a linked list. This representation enable us to update our
covering strategies efficiently, thus we use dynamic programming. For brevity, we only show
how to compute the costs. Computing the corresponding strategies can be done as in the proof
of Lemma 3.2.

3.1 All Robots Starting at the Same Vertex

Assume that all robots start at a vertex u of T and let 1 ≤ j ≤ k be an integer. Let

One-source[T, u, j]

be the cost of a minimum-length covering strategy for T with j robots, all starting at u.

Theorem 3.3 The set
{One-source[T, u, j] : 1 ≤ j ≤ k}

can be computed in O(k2n) time.

Proof. Assume that T is rooted at u and the children of every vertex of T are listed in some
arbitrary order. For every vertex v ∈ T , let Tv be the subtree of T rooted at v and let Tv[i]
be the subgraph of T consisting of the union of the subtrees rooted at the first i children of v
together with the edges joining these children to v. See Figure 5.

Figure 5: A subtree of T rooted at a vertex v. The subtree Tv[i] is enclosed by dashed
lines.

We use an auxiliary table C[v, i, j], where v runs over all vertices of T , 1 ≤ i ≤ degree(v)
and 0 ≤ j ≤ k. For j > 1, the table C[v, i, j] stores the cost of a minimum exploring strategy for
Tv[i] with j robots all starting at v. For every vertex v in T , we set C[v, i, 0] to be equal to twice
the number of edges in Tv[i]. Note that this is the cost of exploring Tv[i] with a robot that starts
and ends its walk at v. Also note that C[u,degree(u), j] is the desired One-source[T, u, j].
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Let v be a vertex of T and let v1, . . . , vm be its children. Consider an optimal covering
strategy for Tv[i] with j robots all starting at v. Assume that it is represented by a tuple of
paths that minimize (2). By Lemma 3.1, if none of these paths end at a vertex of Tvi , then Tvi

is covered by one robot; this robot visits the edge (v, vi) twice. If l > 0 of these paths end at a
vertex of Tvi , then each of the corresponding robots visits the edge (v, vi) once; the remaining
paths end at a vertex of Tv[i− 1]. Therefore, C[v, i, j] is equal to the minimum of

C[v, i− 1, j] + C[vi, degree(vi), 0] + 2

and
C[v, i− 1, j − l] + C[vi, degree(vi), l] + l,

for all 1 ≤ l ≤ j.
We compute C[v, i, j] from bottom to top. Having computed C[v, i, j] for all vertices at

height h of the rooted tree, we compute these values for the vertices at height h−1. Since there
are in total O(kn) entries in C and computing each entry takes O(k) time, the algorithm spends
O(k2n) time.

�

3.2 Robots starting at two vertices

In this section, we show that the case in which the k robots start at two different locations u
and v can also be solved by dynamic programming.

Let s, t ≥ 0 be integers. For s, t ≥ 1 let

Two-sources[T, u, v, s, t]

be the cost of an optimal covering strategy for T in which s robots start at u and t robots start
at v. Let

Two-sources[T, u, v, 0, t]

be the cost of an optimal covering strategy for T in which 1 robot starts and ends at u, and t
robots start at v. Let

Two-sources[T, u, v, s, 0]

be the cost of an optimal covering strategy for T in which 1 robot starts and ends at v, and s
robots start at u.

To solve the problem of two starting locations, we first need some definitions and a pair of
technical results. Let u and v be two vertices of T . We rename the vertices of the path γ from
u to v in T as x1, x2, . . . , xm; i.e., γ := (u = x1, x2, . . . , xm = v). Let F be the forest obtained
by removing all the edges in γ from T ; let T1, . . . , Tm be the connected components of F , where
Ti is the component containing xi. Assume that Ti is rooted at xi. Let Tu,v[i] be the tree
consisting of the union of the subpath γi := (x1, . . . , xi) and the trees T1, . . . , Ti (see Figure 6).

Figure 6: The tree Tu,v[i] is in the polygonal region. The path joining u = x1 to
v = xm is marked with solid black line segments. T1, . . . , Tm are marked with dashed
black line segments.

For integers 1 ≤ k′ ≤ k, 0 ≤ j ≤ k′ and 1 ≤ i ≤ m, let

Destination-path[T, u, v, xi, k
′, j]

be cost of an optimal covering strategy for Tu,v[i] with k′ robots all starting at u in which at
least j robots end their walks at xi, and let

Destination-path[T, u, v, xi, 0, 0]

be the cost of an optimal covering strategy for Tu,v[i] with 1 robot that starts and ends at u.

8



Theorem 3.4 The set{
Destination-path[T, u, v, xi, k

′, j] : 0 ≤ j ≤ k′ ≤ k, and 1 ≤ i ≤ m
}

can be computed in O(k3n) time.

Proof. First we use Theorem 3.3 to compute the set

{One-source[Ti, xi, l] : 1 ≤ i ≤ m and 1 ≤ l ≤ k} .

This can be done in
∑m

i=1O(k2|Ti|) = O(k2n) time. We now show how to compute Destination-path[T, u, v, xi, k
′, j]

depending on the values of i and j. Consider an optimal covering strategy for Tu,v[i] with k′

robots all starting at x1 = u in which at least j robots end their walks at xi and assume that
it is represented by a tuple of k′ paths that minimize (2). We have the following cases:

• i = 1.

In this case, at least l ≥ j paths consist only of the vertex x1 and the remaining paths end
at a vertex of T1. Therefore, Destination-path[T, u, v, x1, k

′, j] is equal to the minimum
of

One-source[T1, x1, k
′ − l],

overall j ≤ l ≤ k′.
• i > 1 and j = 0.

In this case, no path is required to end at xi. If no path ends at a vertex of Ti, then
Ti is explored by a single robot that visits the edge (xi−1, xi) twice. If l > 0 paths end
at a vertex of Ti, then each of the corresponding robots visits the edge (xi−1, xi) once.
Therefore, Destination-path[T, u, v, xi, k

′, 0] is equal to the minimum of

Destination-path[T, u, v, xi−1, k
′, 0] + One-source[Ti, xi, 0] + 2

and
Destination-path[T, u, v, xi−1, k

′, l] + One-source[Ti, xi, l] + l,

over all 1 ≤ l ≤ k′.
• i > 1 and j > 0.

Suppose that l ≥ j of the paths end at a vertex of Ti. Thus, each of their corresponding
robots visits the edge (xi−1, xi) once, j of them end their walks at xi, and l−j of them may
end their walks at a vertex of Ti different from xi. Therefore, Destination-path[T, u, v, xi, k

′, j]
is equal to the minimum of

Destination-path[T, u, v, xi−1, k
′, l] + One-source[Ti, xi, l − j] + l,

over all j ≤ l ≤ k′.
Using dynamic programming, each entry can be computed in O(k) time. Thus, computing the
whole table can be done in O(k3n) time. �

Lemma 3.5 Let (x, y) be an edge of an optimal covering strategy for T that is visited by at
least two different robots. Then all robots traverse (x, y) in the same direction; either from x to
y or from y to x.

Proof. By contradiction, suppose that a robot traverses (x, y) from x to y and that another
robot traverses (x, y) from y to x. Let (W1, x, y,W2) be the walk traversed by the first robot,
and (W ′1, y, x,W

′
2) be the walk traversed by the second robot. If we replace the first walk by

(W1, x,W
′
2) and the second walk by (W ′1, y,W2), we obtain a covering strategy of smaller length

and the result follows. �

The next theorem shows how to find an optimal covering strategy for T for the case when
there are two starting locations, u and v.

Theorem 3.6 The set

{Two-sources[T, u, v, s, t] : 0 ≤ s, t ≤ k}

can be computed in O(k4n) time.

Proof. First, we use Theorem 3.3 to compute in O(k2n) time the set

{One-source[Ti, xi, l] : 1 ≤ i ≤ m and 1 ≤ l ≤ k} .

We now use Theorem 3.4 to compute in O(k3n) time the sets{
Destination-path[T, u, v, xi, k

′, j] : 0 ≤ j ≤ k′ ≤ k, and 1 ≤ i ≤ m
}
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and {
Destination-path[T, v, u, xi, k

′, j]colon0 ≤ j ≤ k′ ≤ k, and 1 ≤ i ≤ m
}
.

Note that in the first set the robots start at u, and in the second set the robots start at v.
For every triple of integers 1 < i ≤ m, 0 ≤ s, t ≤ k, let C[i, s, t] be the cost of an optimal

covering strategy for T in which s robots start at u, t robots start at v and (xi−1, xi) is the
last edge of γ that is visited by a robot starting at u. Let C[1, s, t] be the cost when no robot
starting at u visits an edge of γ. Note that Two-sources[T, u, v, s, t] is equal to the minimum
of C[i, s, t] over all 1 ≤ i ≤ m.

By Lemma 3.5, we know that in an optimal covering strategy, at most one vertex of γ
is visited by both a robot starting at u and a robot starting at v. Therefore, C[i, s, t] can
be computed from Destination-path[T, u, v, xi, s, j] and Destination-path[T, v, u, xi, t, j] as
follows:

• i = 1.

In this case, no robot starting at u traverses the edge (x1, x2). Therefore, at least one
robot starting at v visits x2, and T1 is visited by the s robots starting at u and possibly
some robots starting at v. Thus, C[1, s, t] is equal to the minimum of

One-source[T1, x1, s+ j] + Destination-path[T, v, u, x2, t, j] + j,

over all 0 ≤ j ≤ t.
• i = m.

In this case, no robot starting at v traverses the edge (xm−1, xm). Therefore, at least one
robot starting at u visits xm and Tm is visited by the t robots starting at v and possibly
some robots starting at u. Thus, C[m, s, t] is equal to the minimum of

One-source[Tm, xm, t+ j] + Destination-path[T, u, v, xm−1, s, j] + j,

over all 0 ≤ j ≤ t.
• 1 < i < m.

In this case, at least one robot starting at u enters Ti. If a robot starting at u visits the
edge (xi−1, xi) twice, then, by Lemma 3.5, no robot starting at v can enter Ti. Therefore,
C[i, s, t] is equal to the minimum of

Destination-path[T, u, v, xi, s, 0] + Destination-path[T, v, u, xi+1, t, 0]

and

Destination-path[T, u, v, xi−1, s, j] + One-source[Ti, xi, j + l]+

Destination-path[T, v, u, xi+1, t, l] + j + l,

over all 1 ≤ j ≤ s and 0 ≤ l ≤ t.
Using dynamic programming, each entry can be computed in O(k2) time (we have two indices

j and l). Thus, computing the whole table can be done in O(k4n) time.
�

4 Minimum Length Covering Problem with Rendezvous
(MLCPR)

In this section, we consider that case in which the robots have to rendezvous at most every p > 0
steps. We assume that all robots start at a given vertex and end at a common vertex. We prove
that the problem of finding a minimum-length covering strategy with rendezvous on a tree T is
NP-hard. Let us formalize the corresponding decision problem (Length Covering Strategy with
Rendezvous).

Problem 4.1 (LCSR) Let T be a tree and let u be a vertex of T . Let k, ` and p be positive
integers. Decide whether there exists a covering strategy S for T , with k robots starting at u,
such that the robots rendezvous at most every p steps and l(S) is at most `.

We can prove that the LCSR problem is NP-complete by a reduction from 3-PARTITION.
Thus, MLCPR is NP-hard.

Problem 4.2 (3-PARTITION) Let B be a positive integer. Let A be a set of 3m positive
integers such that B

4
< a < B

2
for all a ∈ A, and

∑
a∈A a = mB. The 3-PARTITION problem

asks whether A can be partitioned into m sets A1, . . . , Am such that for each 1 ≤ i ≤ m,∑
a∈Ai

a = B.
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Note that in such a partition, each Ai must consist of three elements. This problem is known
to be strongly NP-complete [16]. This implies that it remains NP-complete even when B is
bounded by a polynomial on m. The following result can be stated.

Theorem 4.3 The LCSR Problem is NP-complete.

Proof. Given a strategy, it can be verified in polynomial time whether it satisfies that the
robots rendezvous at most every p steps. Since the length of a given strategy can also be
computed in polynomial time, we have that LCSR is in NP.

Let (A,B) be an instance of 3-PARTITION such that |A| = 3m and B is bounded by a
polynomial on m. In the following, we construct (in polynomial time) an instance of LCSR that
has a solution if and only if A admits a 3-PARTITION.

Given A := {a1, . . . , a3m}, we consider the following tree T . See Figure 7. Let P1, . . . , P3m

be 3m paths, starting at the same vertex u, such that l(Pi) = ai. Let

T ′ =

3m⋃
i=1

Pi.

Let Q = (v1, . . . , v3B+4) be a path of length 3B + 3. Finally, let

T := T ′ ∪Q ∪ (u, v1).

Note that T ′ has mB edges and since B is bounded by a polynomial on m, T can be constructed
in polynomial time. Let k := m+ 1, p := 2B + 2 and

` = m(2B + 2) + (m+ 1)(2B + 2) + (2B + 2) = (2m+ 2)(2B + 2)

Figure 7: The construction of the instance T.

We claim that T has a covering strategy with k robots starting at v1, that rendezvous at
most every p steps, and of length at most ` if and only if A admits a 3-PARTITION. Recall
that all robots must rendezvous at the end of their corresponding walks.

First, let A1, . . . , Am be a 3-partition of A. The covering strategy of T is as follows. Consider
m robots covering T ′ with rendezvous at v1 with length 2mB + 2m (using the 3-partition. The
i-th robot covers the 3 paths associated with Ai) while a robot waits at v1 for 2mB+ 2m steps.
After that, the m+ 1 robots meet at v2B+2 and one robot visits the last vertex of Q and joins
the rendezvous at v2B+2 again. It is easy to see that the length of such strategy is exactly `.

Conversely, let S be a covering strategy of T with k robots starting at v1 that rendezvous
at most every p steps, and of length at most `. We prove that A admits a 3-PARTITION.

We claim that in S, all the robots reach the vertex v2B+2. Suppose, on the contrary, that
at least one robot does not visit v2B+2. Thus, since the path from v2B+2 to v3B+4 is of length
B + 1, the robot visiting the last vertex of Q is not able to rendezvous with the other robots
again, a contradiction. Thus, S spends at least length (m+ 1)(2B + 2) + (2B + 2) to cover Q.

On the other hand, we also claim that the edges of T ′ are visited at least twice. Suppose, on
the contrary, that an edge of Pi is visited once. Therefore, the robots reach their final position
at Pi. Since the length of Pi is less than B

2
, then at least mB − B

2
edges of T ′ \ Pi must be

visited twice. Moreover, since the robots do not reach their final position at some vertex of Q,
then the edges of Q from v1 to v2B+2 must be visited at least twice by all the robots and the
edges from v2B+2 to v3B+3 must be visited twice by at least one robot. Note that in this case,
all the robots visit (u, v1) at least once. Thus, the length of S is at least

2(m+ 1)(2B + 2) + (2B + 2) + (m+ 1) + 2(mB − B

2
) > `,
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a contradiction. Therefore, the claims above imply that

l(S) ≥ 4mB + 4B + 2m+ 4

and then at least one robot does not visit (u, v1) (due to the length constraint).
As a consequence, when a robot enters T ′ through (v1, u), in order to rendezvous with the

other robots it must exit T ′ through (v1, u) again. Moreover, it must rendezvous with the
other robots in at most 2B + 2 steps; thus the robot visits at most 3 endpoints of the paths
P1, . . . , Pm, and afterwards exits through (u, v1). Since there are 3m such paths, this happens
exactly m times. Partition A according to these visits so that a set {ai, aj , ak} in this partition
corresponds to a robot entering T ′ and visiting the endpoints of Pi, Pj and Pk before exiting
T ′ to rendezvous with the other robots. Note that for all Ai,∑

a∈Ai

a ≤ B.

Since ∑
a∈A

a = mB,

this implies that for all Ai, ∑
a∈Ai

a = B,

and A1, . . . , Am is a 3-partition of A.
�

5 Minimum Time Covering Problem (MTCP)

We prove that the problem of computing a minimum time covering strategy is NP-hard, regard-
less of whether periodic rendezvous are required. The corresponding decision problem (time
covering strategy) is as follows.

Problem 5.1 (TCS) Let T be a tree, with k robots at given starting positions and let t be a
positive integer. Decide whether there exists a covering strategy S for T with these robots so that
t(S) is at most t.

To prove the NP-completeness of the TCS problem, we also use a reduction from 3-PARTITION.

Theorem 5.2 The TCS Problem is NP-complete.

Proof. Computing the time of a given covering strategy for T can be done in polynomial time;
thus we have that TCS is in NP.

Let (A,B) be an instance of 3-PARTITION such that |A| = 3m and B is bounded by a
polynomial on m. We construct (in polynomial time) an instance of TCS that has a solution if
and only if A admits a 3-PARTITION.

The instance of TCS is as follows. Given A := {a1, . . . , a3m}, let P1, . . . , P3m be 3m paths,
all starting at the same vertex u, such that l(Pi) = ai. Let L = 2

∑3m
i=1 ai. Let Q1, . . . , Qm be

m paths, each of length L and starting at u. Finally, let

T :=

(
3m⋃
i=1

Pi

)
∪

(
m⋃
i=1

Qi

)
,

k := m and t = L + 2B. Note that since B is bounded by a polynomial on m, T can be
constructed in polynomial time. We claim that T has a covering strategy of time at most t,
with k robots all starting at u if and only if A admits a 3-partition.

Let A1, . . . , Am be a 3-partition of A. Denote by P−1 the path P traveled in opposite
direction. For 1 ≤ i ≤ m, let Ai := {ai1 , ai2 , ai3}, let xi be the last vertex of Pi and let P ′i be
the subpath of Pi formed by its internal vertices. Thus Pi = uP ′ixi. Now, for 1 ≤ i ≤ m, let

Wi := Pi1P
′−1
i1

Pi2P
′−1
i2

Pi3P
′−1
i3

Qi.

Notice that each Wi spends time L + 2B. Therefore, (W1, . . . ,Wm) is a covering strategy
for T of time at most t, with k robots all starting at u.

Conversely, let (W1, . . . ,Wm) be a covering strategy for T of time at most t, with k robots
all starting at u. We claim that a robot visits at most one leaf of the path Qi. Otherwise, its
walk would spend at least 3L > L+2B = t time. Note that L = 2Bm > B. The above property
allows us to match the m robots with the paths Qi. Now, let q(i) be the index such that the i-th
robot visits the last vertex of Qq(i). It is easy to see that the i-th robot cannot end at a vertex
not in Qq(i), otherwise the time of its walk Wi would be at least 2L + 1 = L + 2Bm + 1 > t
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for m > 0. We may assume that the walk Wi ends at the end-vertex of Qq(i), because before
reaching this vertex, it visits all the interior vertices of Qq(i). We may also assume that no two
robots visit the same path P ′ixi. Therefore, each walk Wi is of the form

Wi := Pi1P
′−1
i1

Pi2P
′−1
i2

Pi3P
′−1
i3
· · ·PisP

′−1
is

Qq(i),

for some indices i1, i2, . . . , is. Since

l(Pi1P
′−1
i1

Pi2P
′−1
i2
· · ·PisP

′−1
is

u) ≤ 2B

and

l(PjP
′−1
j u) >

B

2
(ai >

B

4
),

we have that s = 3. For 1 ≤ i ≤ m, let Ai := {ai1 , ai2 , ai3}. Now,

ai1 + ai2 + ai3 = l(Pi1P
′−1
i1

Pi2P
′−1
i2

Pi3P
′−1
i3

u)/2 ≤ B.

Finally, since
m∑
i=1

ai = mB,

actually
ai1 + ai2 + ai3 = B,

and the result follows.
�

6 Conclusions

In this paper, we have studied some optimization problems for covering a terrain (modeled by
a tree) by using a team of k > 1 robots. We addressed two variants of the problem, minimizing
the time it takes to cover the terrain, and minimizing the total distance traversed by the robots.
We also considered the problem when a periodic rendezvous is or is not required. We showed
that for the non-rendezvous case, the two variants are different. The cover time problem is
NP-hard (this implies the NP-hardness for the rendezvous case) while the cover length problem
is polynomial. Moreover, we proved that the cover length variant with rendezvous becomes
NP-hard.

We showed how to efficiently solve the Minimum Length Covering Problem (MLCP) when
the robots start at one or two given vertices. The main open question is therefore whether the
MLCP starting at s arbitrary positions is NP-hard when s is part of the input. Finally, from
a practical standpoint, efficient heuristics with good performance should be of interest for the
hard covering problems illustrated in Figure 1.
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