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Abstract

We study the impact of two basic principles of fairness on the structure

of elimination-type competitions and perform our analysis by focusing on

sports competitions. The first principle states that stronger players should

have a larger chance of winning than weaker players, while the second prin-

ciple provides equally strong players the same chances of being the final

winner. We apply these requirements to different kinds of knockout compe-

titions, and characterise the structures satisfying them. In our results, a new

competition structure that we call an antler is found to play a referential

role.
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1. Introduction

Numerous choice problems require the selection of an alternative from a

set of options on the basis of the information obtained from pairwise com-

parisons among the available alternatives. Examples of these problems can

be found in voting theory (cf. Brams and Fishburn 2002, Laslier 1997, Levin

and Nalebuff 1995, Moulin 1986), multi-criteria decision making (Larichev

2001, Olson 1996), and promotion mechanisms implemented in firms (Rosen

1986). However, the most popular problem of this type is probably that

of selecting a winner in a sports competition, where the alternatives are

the competing “players” and the pairwise comparisons take the form of

“matches”.

In this work, we present an axiomatic approach to the fairness aspect of

these kinds of selection problems when the competition is of an eliminative

nature. Our analysis is potentially applicable in different situations, but we

frame the study in the field of sports competitions, which by itself is highly

relevant due the enormous economic and social relevance that the sports

industry has nowadays.

Among other results, we identify a particular competition structure,

which we call an antler, that can be used as a reference for clarifying the dis-

cussion as to the fairness of different kinds of competitions, which is usually

guided by intuition. In particular, we prove that any elimination-type struc-

ture containing an antler as a substructure may give weaker players greater

probabilities of being the final winners than stronger players (Theorem 1).

As a matter of fact, the US National Football League (NFL) playoffs have an

antler structure and the North American National Basketball Association

(NBA) playoffs contain an antler, which means that they suffer from the

said drawback, while the postseason playoffs of the two leagues in the North

American Major League Baseball (MLB) do not contain an antler and thus

have no such problem. This result has implications for the usual knockout

tournaments involving 2q players in q rounds. A consequence of Theorem 1

is that no such competitions guarantee that stronger players have a higher
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chance of winning if q ≥ 3.

Every sports competition needs a well-defined and pre-established set of

basic rules that determines the “competition system”: who plays against

whom and at which stage of the competition. Different objectives can be

plausibly considered when designing the competition system, such as the

intensity of the matches, suspense, attracting the interest of the spectators,

optimising organisational costs, and so on. However, fairness is in general

within the goals of any competition designer.

Discussions about whether one or another system is more or less fair

than another are often made at an intuitive and informal level. In our work,

we provide a structured analysis of such discussions and formally define two

neat principles of fairness that respond to what is commonly pursued in real

practice and translate to our context the Aristotelian Justice Principle of

“treating equals equally and unequals unequally”. In our framework, these

principles require on the one hand that the competition system should favour

stronger players (we call this “monotonicity in strength”), and on the other

hand that equally strong players should have the same chances of being the

final winner (“equal treatment”). We then study to what extent different

elimination-type competition formats perform in relation to these principles,

trying to give formal support to such informal debates. For example, the

typical kind of problem that we want to solve is how to fairly seed the tennis

players in a professional tennis tournament based on their ATP ranking, but

also to discuss about the fairness of alternative systems of competition.

In elimination competitions, which are also called “knockout” tourna-

ments, the competition is organised in rounds or “stages”. Losers are elim-

inated and players progress as they win their corresponding matches in the

round, being paired off in the next round, so that the final winner is the

player who wins all the rounds. Typical examples are the playoff formats

found in North American professional sports. These competitions can be

represented by binary trees, as exemplified in Figure 1.

Elimination competitions, such as the one displayed in Figure 1, are

called balanced because all players are required to win the same number of
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1 2 3 4 5 6 7 8

Figure 1: A balanced elimination competition.

matches to become the final winner. In some cases some players have the

right of “byes”; meaning that, on the basis of a previous qualification rating,

they have the privilege to skip the initial round (or rounds) without the need

of playing. In fact, “byes” become necessary if the number of players is not

a power of 2. A special type of elimination competition with byes has a

so-called “stepladder” structure (see Figure 2). This system and its variants

are used in ten-pin bowling and squash, for example.

The design of an elimination competition requires a solution to the prob-

lem of “seeding”; that is, of assigning players’ names to the “leaves” of the

competition’s tree. This involves deciding the pairing in the initial matches

and, if that is the case, which player(s) deserve(s) the byes. Clearly, the

seeding will have a crucial impact on the chances for a player to become the

final winner.

5 4

3

2

1

Figure 2: A stepladder competition.

Each format has its pros and cons, related for instance with the number

of matches needed to have a final winner, organisational costs, profitability
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for the organiser, or the manipulability by the players. While admitting the

importance of all of these issues, in this work we exclusively concentrate on

the analysis of elimination-type competitions from the point of view of the

fairness that is intrinsically associated to their structure according to our

axiomatic constraints.

1.1. Literature overview

The literature about fairness in elimination competition systems is rather

disseminated. Related works usually study particular competition systems

and fairness aspects related with their specificities. Most of the attention

in this respect has been paid to the performance of alternative seeding pro-

cedures in balanced elimination-type competitions with a limited number

of players. The closest works to ours are found in the fields of manage-

ment mathematics and operations research: Horen and Riezman (1985)

provide results about fair seeding for four-player and eight-player balanced

elimination-type competitions; Prince et al. (2013) provide some compu-

tational results for the eight-player and 16-player cases using an alterna-

tive notion of fairness. Karpov (2016, 2018) axiomatically studies particu-

lar seeding rules in balanced competitions under certain restrictions of the

probability domain. Dagaev and Suzdaltsev (2018) solve a discrete optimisa-

tion problem to analyse under which conditions certain seedings in balanced

competitions maximise spectator interest when they care about competitive

intensity. Groh et al. (2012) studies a property similar to monotonicity

in strength for the case of four-players balanced competitions where the

players may exert different effort depending on heterogeneous valuations of

winning. Less closely related are the works by Geenens (2014), which anal-

yses how decisive a game is with respect to the final victory, or Aronshtam

et al. (2017), which studies the computational complexity of manipulability

of knockout competitions in order to favour particular players.

Hwang (1982) and Schwenk (2000) pay attention to random seeding and

re-seeding methods. Baumann et al. (2010) addresses the disadvantages of

these kinds of methods, such as the increase in travel costs, the reduction in
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gambling demand and spectator interest, and incentive compatibility prob-

lems. In this work, we assume that the seeding is deterministic from the very

beginning, taking the aforementioned drawbacks into consideration and ap-

pealing to real practice, which includes the most prestigious elimination-type

competitions, such as the football World Cup, the ATP and WTA tennis

tournaments and the playoff stages of the main North American sports.

Fairness in sports has also been recently analysed from other different

perspectives, which are worth mentioning: Kendall and Lenten (2017) pro-

vide a comprehensive review of changes in sporting rules which have led to

unexpected unfair consequences; Csató (2018, 2019d) and Dagaev and Sonin

(2018) show that a player can be strictly better off with a weaker perfor-

mance in some tournaments; Fornwagner (2018), Lenten (2016), Lenten et

al. (2018) analyse similar situations in the case of leagues with drafts. The

principle that equally skilled players should have the same probability of

winning has been studied in the case of tie-breaking mechanisms in football

and tennis (Apestegúıa and Palacios-Huerta 2010, Brams and Ismail 2018,

Che and Hendershott 2008, Cohen-Zada et al. 2018, Palacios-Huerta 2012),

the schedule in sequential round-robin tournaments (Durán et al. 2017,

Krumer and Lechner 2017, Sahm 2019), the kick-off time of the matches

(Krumer 2019), the determination of the brackets in a multi-stage tourna-

ment on the basis of the first stage results (Guyon 2018) and the rules of

seeding the FIFA (Féderation Internationale de Football Association) World

Cup groups (Guyon 2015, Cea et al. 2019 and Laliena and López 2019).1

There is a remarkable line of research that introduces explicitly exertion

of effort as a strategic variable and studies the possibility for manipulation by

players (cf. Brown and Minor 2014, Rosen 1986, Groh et al. 2012, Krumer et

al. 2017, Pauly 2014 and Vong 2017). The analysis has always been made for

a small number of players (usually four) because it is generally accepted that

the extension to a larger number of players involves an excessive complexity

due to the highly complicated combinatorial structure of the problem.

1We thank an anonymous referee for drawing our attention to these references.
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As to the comparison among different competition systems, most studies

apply statistical simulation techniques to check the fulfillment of particular

properties, or how the competition systems perform according to particular

metrics (cf. Appleton 1995, McGarry and Schutz 1997, Scarf et al. 2009,

Ryvkin 2010 and Ryvkin and Ortmann 2008). There is also a considerable

body of literature in operations research related to sports that considers

many aspects other than fairness which lie outside the scope of this work.

The interested reader is referred to Wright (2014) for a survey in the field.

1.2. Our contribution

We formalise the mentioned basic ideas of fairness by means of two simple

axioms that have a “rank-preserving” flavour: the first one is a “monotonic-

ity in strength” condition requiring that “stronger players should have a

higher probability of being final winners”, and an “equal treatment” condi-

tion which states that “equally strong players should have the same proba-

bility of being the final winner”.

Our results include characterisations of the competition formats satisfy-

ing these fairness properties. We also specify the class of seeding rules that

let the structures satisfy the axioms. Generally speaking, equal treatment

leads to balanced competitions in which every player participates in the same

number of matches (Theorem 2 and Theorem 3), while when monotonicity

in strength is under consideration, all elimination competitions fulfilling it

should not contain a special substructure, which we call an “antler” (Theo-

rem 1). This structure combines the characteristics of balanced elimination

competitions with the “byes” spirit of stepladders. Moreover, we show that

the seeding rule for which an antler-free competition satisfies monotonicity

in strength is unique. As already pointed out above, it is possible to find

major competitions that are antler-free (the postseason playoffs of the two

MLB leagues – National and American – or any stepladder) and others that

are not (the NFL playoffs or any balanced elimination competition with

more than four players).

The rest of the work is organised as follows. Section 2 presents the
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basic elements of the formal model and introduces the two fairness axioms.

Section 3 is devoted to the characterisation results. Section 4 concludes and

addresses possible extensions of the model. All proofs are relegated to the

Appendix.

2. The model

The main ingredients of our model are the graph representation of a

competition system (Subsection 2.1), the ordinal information about each

player’s relative strength, represented by a binary relation R and the set of

“winning probability matrices” that are consistent with R (Subsection 2.2),

the notion of a seeding rule, and the probability of each player being the

final winner as a consequence of all the previous elements (Subsection 2.3).

In Subsection 2.4 we present the two fairness axioms by making use of all

the previous formal elements.

2.1. Graph representation of competition systems

We assume that matches always take place between two players in such

a way that ties are not possible and each match is represented by an el-

ementary binary tree; that is, a graph with three nodes {a, b, w} and two

links {aw, bw} with, let us say, player i being assigned to node a, player

j being assigned to node b, and the winner of the match between i and j

being assigned to node w. In this case, we say that i is matched with j and

that the winner of this match reaches node w. Elimination competitions

can then be represented by a finite binary tree connecting in a specific way

such elementary binary trees, like those in Figures 1 and 2.

Given a binary tree t, we denote by V (t) the set of its nodes (or vertices).

The set of leaves (or terminal nodes) of t is denoted by Λ(t), Λ(t) ⊂ V (t).

The distance between two nodes of t ∈ G is defined by the minimal number of

edges that are necessary to connect them. The level `(v) of a node v ∈ V (t)

is the distance between it and the root of the binary tree t. The k-th level of

a tree t is the set of all its nodes of level k. In our context, the level of a tree
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is interpreted as a round.2 The height h(t) of a binary tree t is the maximal

level of its leaves, h(t) = maxλ∈Λ(t){`(λ)}. By Λk(t) we denote the set of

leaves of t whose level is k. We say that a binary tree t ∈ G is balanced (or

that it represents a balanced competition) if the level of all of its leaves is

the same. Notice that a stepladder competition is represented by a binary

tree t with two leaves at level h(t) and a unique leaf at each level ` for all

` < h(t).

2.2. Players’ strength and winning probabilities

Real competitions often use some objective strength ordering to decide the

seeding in an elimination tournament, or how teams are slotted into differ-

ent groups in a two-stage competition. Those orderings typically depend on

past performance. Prominent examples are the Association of Tennis Pro-

fessionals (ATP) or the Women’s Tennis Association (WTA) rankings, used

in the major professional tennis competitions; the FIFA World Ranking,

used for the FIFA World Cup; and the NBA playoffs, the seeding of which

is determined by a team’s ranking in the regular season.

In what follows, we consider a finite set N of competing players and

assume that the elements of N are completely ordered according to a binary

relation R of strength so that, for all i, j ∈ N , iRj is interpreted as “player

i is at least as strong as player j”. The corresponding asymmetric and

symmetric factors of R are denoted, respectively, by P and I, so that iP j

reads “ i is strictly stronger than j” and iIj reads “ i and j are equally

strong”.

We attach a probabilistic meaning to R in the sense that iRj means

that “the probability that player i defeats in a match player j is greater

than or equal to 0.5”. We denote this fact by pij ≥ 0.5. Given that R is

complete, we have that iP j is accordingly interpreted as pij > 0.5 and iIj is

2Rounds are usually numbered in inverse terms; that is, the last level of the tree

constitutes the first round of the competition, the second last level constitutes the second

round and so on.
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interpreted as pij = 0.5. Also, given that R is transitive, for all i, j, k ∈ N ,

pij ≥ 0.5 and pjk ≥ 0.5 implies pik ≥ 0.5. Throughout the next sections,

we take the non-deterministic view that 0 < pij < 1 holds for all i, j ∈ N .

This assumption is taken simply to show that the presence of deterministic

values is not what makes the different theorems and lemmas hold in a trivial

way. It is easy to check that all results also hold for the case of pij ∈ [0, 1]

for all i, j ∈ N . We adopt the convention that the players in N are ordered

according to R; that is, if iP j then i < j (if iIj then either i < j or j < i).

According to this interpretation, every binary relation of strength R

induces a set of winning probability matrices defined on N ×N that support

(or are compatible with) R. More precisely, we denote by PR the set of all

probability matrices such that, for p ∈ PR, we have that pij ≥ 0.5 if and

only if iRj. We assume that R is known. However, it is not necessary to

know the particular values of p because all of the fairness properties under

analysis are required to be fulfilled for every probability matrix p ∈ PR
given a strength binary relation R.

We assume that each p ∈ PR satisfies the following two conditions:

∀i, j ∈ N, pij + pji = 1. (1)

∀i, j ∈ N, pij ≥ 0.5 implies pik ≥ pjk for each k ∈ N \ {i, j} . (2)

Note that condition (1), together with the convention that iP j implies

i < j and the fact that pij ≥ 0.5 if and only if iRj has the consequence that

i < j implies pij ≥ 0.5.

Conditions (1) and (2) follow related models such as David (1963),

Hwang (1982), Horen and Riezman (1985), and Schwenk (2000). The in-

terpretation of (1) is straightforward. Condition (2) simply expresses the

fact that any player defeats with higher probability a weaker player than

a stronger player. It also implies that if two players are equally strong

(pij = 0.5), then they should defeat with equal probability any third player.

Conditions (1) and (2) are equivalent to what is sometimes referred

as “strong stochastic transitivity” of the representing probability matrix
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(cf. David 1963). If players are displayed in the matrix according to their

strength, then strongly stochastically transitive matrices are nondecreasing

in rows, nonincreasing in columns and, whenever pij = 0.5, the correspond-

ing rows and columns of i and j are equal. Given a binary relation R, our

fairness properties are required to be fulfilled for each probability matrix

p ∈ PR, so that the particular details of p are not needed for the results.

As the reader can easily see, if a probability matrix p ∈ PR satisfies the

above two conditions (as we assume), then the binary relation R is transitive.

Moreover, for a, b, c, d ∈ N we have that

aRbRcRd implies pad ≥ pbc. (3)

This fact is frequently used in the proofs to follow.

2.3. Seeding and the probability of being the final winner

Given a finite set N of competing players and a binary tree t, a seeding

is a function s : Λ(t)→ N that assigns each leaf of t to a player of N . When

s(λ) = i holds for λ ∈ Λ(t) and i ∈ N , we say that “player i is assigned,

or “seeded”, to leaf λ”. We say that s is a feasible seeding for t when each

player in N is seeded to exactly one leaf of t and |Λ(t)| = |N |.

Definition 1 An elimination-type competition is a pair (t,N) such that t

is a binary tree representing the structure of the competition and N is the

set of players to be seeded to the leaves of t with |Λ(t)| = |N |.

Definition 2 An elimination-type competition, (t,N), is balanced if t is a

balanced binary tree.

Given an elimination-type competition (t,N), the set of all feasible seed-

ings for (t,N) will be denoted by S(t,N). A seeding s ∈ S(t,N) determines

the set of potential matches that can be played at each round. Moreover, if

a probability matrix p is given, the set of potential matches at each round

is endowed with a probability distribution. Then, given (t,N), p ∈ PR, and

s, s′ ∈ S(t,N), we say that s and s′ are equivalent if the probability distribu-

tion associated with the set of potential matches at each level for s and for
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s′ is the same. For instance, Figure 3 represents, for a balanced binary tree

of height 2, a situation where the two left seedings are equivalent but none

of these two seedings is equivalent to the right one.

1 2 3 4

(a)

4 3 1 2

(b)

1 3 2 4

(c)

Figure 3: The seedings in (a) and (b) are equivalent, while those in (a) and (c), and in

(b) and (c) are not.

Given an elimination-type competition (t,N), we say that the player who

reaches the root of t is the winner of the competition (t,N). Also, given an

elimination-type competition (t,N), a seeding s ∈ S(t,N) and a probability

matrix p ∈ PR, we denote by ϕi(t, s,p) the probability that player i ∈ N
wins the competition. Notice that, if s and s′ are equivalent seedings, then

ϕi(t, s,p) = ϕi(t, s
′,p) holds for each i ∈ N .

2.4. Fairness axioms

In order to formally state the two fairness principles discussed in the

Introduction, we assume that a binary relation R of strength is defined on

the player set N .

Monotonicity in Strength (MS) An elimination-type competition (t,N)

satisfies MS if there exists s ∈ S(t,N) such that, for all i, j ∈ N and for all

p ∈ PR such that pij > 0.5, ϕi(t, s,p) > ϕj(t, s,p) holds.

Equal Treatment (ET) An elimination-type competition (t,N) satisfies

ET if there exists s ∈ S(t,N) such that, for all i, j ∈ N and for all p ∈ PR
such that pij = 0.5, ϕi(t, s,p) = ϕj(t, s,p) holds.

MS requires that the competition should benefit stronger players under

any of the possible probability matrices compatible with the strength of the

players. In fact, many competitions are precisely designed to avoid that

worse teams win by luck: for example, stepladder competitions seem to be
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precisely aimed to benefit better players, best players are matched with the

worst ones in knockout competitions or, sometimes, matches with multiple

legs give a significant home advantage (like in basketball).3 Analogously,

ET requires that the competition should treat equally every pair of equally

strong players, independently of the remaining values in the probability

matrix.

Alternative approaches to MS and ET could consist of imposing the

corresponding property for at least one probability matrix, or considering

particular probability matrices. The fact that the axioms are stated for all

probability matrices is consistent with our view that the seeder, in general,

has limited information and might not know the exact numerical proba-

bilities in the matrix. In such an environment MS and ET guarantee that

stronger players will have a greater probability of winning and equally strong

players will have the same probability of winning. This is also important

from a practical perspective. In competitions consisting of a regular season

followed by a knockout stage, the rules used for seeding in the knockout stage

are usually proxies of R obtained on the basis of end-of-season standings.

This is the case of the most popular North American professional sports.

Thus, it is relevant to know whether a competition structure, and a seeding

in that competition, make the competition satisfy the axioms regardless of

the precise numerical scores reflecting the strength of the teams at the end

of the regular season.

3. Characterisation results

This section is divided in two subsections. Subsection 3.1 contains several

definitions and preliminary results that end with a characterisation of the

class of elimination competitions that satisfy monotonicity in strength. Sub-

3Csató (2020) checks this property in the qualification for the UEFA European Cham-

pionship. This is an example that this axiom is relevant not only theoretically but also for

researchers modelling sports tournaments and for administrators in charge of tournament

design.

13



section 3.2 includes a characterisation of the competitions satisfying equal

treatment.

3.1. Antler-free competitions and monotonicity in strength

In order to characterise the class of elimination competitions satisfying

MS, a special type of binary trees (antlers) needs to be introduced.

Definition 3. A binary tree t is an antler if h(t) = 3; |Λ(t)| = 6;
∣∣Λ3(t)

∣∣ = 4

and
∣∣Λ2(t)

∣∣ = 2. We say that an antler is asymmetric if the leaves in Λ2(t)

have a common immediate predecessor and is symmetric if the leaves in

Λ2(t) have distinct immediate predecessors.

(a) (b)

Figure 4: The binary tree in (a) is an asymmetric antler, while the one in (b) is a symmetric

antler.

Antlers combine the characteristics of balanced elimination trees with the

“byes” spirit of stepladders and are a natural way of organising a 6-player

knockout competition.

The most prominent example of symmetric antlers is the US National

Football (NFL) Conference playoffs. It was also applied in the final playoffs

of the Australian National Soccer League (NSL) until 2004 and in some

popular e-sports such as the Superliga Orange of the Spanish League of

Professional Videogames (LVP) and the World Finals of the Clash Royal

League (CRL).

As for asymmetric antlers, it is a structure followed, for example, by

the Final Playoffs of the Australian A-League soccer championship (the

successor of the aforementioned NSL) or the Pro Kabaddi Final Playoffs (a

popular sport in South Asia). The British rugby’s Super League Playoffs
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followed, from 2002 to 2008, a slight modification of an asymmetric antler,

where the loser of the match between the two teams with a bye had a second

opportunity by playing the winner of the two rounds between the no-bye

teams. A similar structure is followed by the League of Legend’s (LOL)

Season playoffs, another popular worldwide professional e-sport.

Antlers are of a definite theoretical interest. As later proved in Theorem

1, they constitute the minimal competitions violating MS in the sense that

removing any match from an antler results in a system that satisfies MS and

any tree that contains an antler lets the competition system violate MS.

This naturally leads to the definition of an antler-free tree as a binary tree

that does not contain any (symmetric or asymmetric) antler as a subgraph.

With respect to their graph structure, antler-free trees can be charac-

terised as binary trees having particular features. Lemma 1 in this section

provides such a characterisation with the aim of facilitating the definition

of the increasingly balanced rule as well as the statement and the proof of

Theorem 1. Let us consider first the following preliminary definitions.

A root-to-leaf path connects the root of t with a leaf of t. By γ(t) we

denote a root-to-leaf path of length h(t) (i.e., γ(t) is a maximal root-to-leaf

path in t) and by Vγ(t) we denote the set of nodes of γ(t). For v ∈ Vγ(t),

tv denotes the subtree of t with root v and Λ−γ(tv) the set of leaves of tv

for which there is a shortest path to v not including any other node from

Vγ(t). Finally, we denote by h−γ(tv) the maximal distance between v and

the leaves in Λ−γ(tv).

Definition 4. A binary tree t is an extended stepladder of degree x, x ∈
{1, . . . , h(t)}, if maxv∈Vγ(t) h−γ(tv) = x.

That is, in an extended stepladder of degree x, x is the maximal distance

between a node of γ(t) and a leaf that is not in γ(t).4 Any binary tree is in

fact an extended stepladder of some degree. For example, balanced elimi-

4Clearly, by t being a binary tree, there are at least two maximal root-to-leaf paths in

t. Despite this fact, it can be easily shown that the degree of an extended stepladder is

robust with respect to the selection of the maximal root-to-leaf path.
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nation competitions with four players and asymmetric antlers are extended

stepladders of degree 2, balanced elimination competitions with eight players

and symmetric antlers are extended stepladders of degree 3, while standard

stepladders and elementary binary trees are extended stepladders of degree

1.

We denote by ESx the set of extended stepladders of degree at most x

(note that ESx ⊆ ESx′ for x′ ≥ x). Furthermore, we use ES∗2 to denote the

subclass of ES2 defined as follows. An extended stepladder t of degree at

most 2 belongs to ES∗2 only if there exists a maximal root-to-leaf path γ(t)

such that for all v, v′ ∈ Vγ(t) with |`(v)− `(v′)| = 1, we have that h−γ(tv) = 2

implies h−γ(tv′) = 1. Clearly, ES1 ⊆ ES∗2 but not every extended stepladder

of degree 2 belongs to ES∗2 . Figure 5 exemplifies two extended stepladders

of degree 2 with only one of them belonging to ES∗2 . Notice further that

asymmetric antlers do belong to ES2 but not to ES∗2 , while symmetric

antlers do even not belong to ES2 because they are extended stepladders of

degree 3. Another interesting example of a competition belonging to ES∗2

can be found in the MLB, whose two leagues postseason playoffs – American

and National – correspond exactly to Figure 6.

(a) (b)

Figure 5: Extended stepladders of degree 2. Only the one displayed in (a) belongs to ES∗2 .

The next lemma characterises antler-free binary trees.

Lemma 1 A binary tree belongs to ES∗2 if and only if it is antler-free.

Let us now introduce a seeding rule, which we call “increasingly bal-

anced”. This rule takes into account the following two characteristics of

antler-free binary trees: (1) they allow for four players to be involved in
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Figure 6: Structure of the two leagues’ brackets in the MLB Postseason playoffs.

a balanced elimination competition, and (2) they also incorporate byes at

different levels.

We formally define the increasingly balanced seeding for binary trees

in ES2 and, therefore, by ES∗2 ⊂ ES2 and Lemma 1, for antler-free trees

as well. Since the rule makes use of the notion of a balanced seeding for

balanced elimination competitions with four players, we first introduce this

type of seeding. Given an admissible elimination competition (t,N) with

|N | = 4 and a binary relation of strength R, we say that a seeding s :

Λ(t)→ N is balanced (and we denote it by s4∗) if there are players i, j ∈ N
who are initially playing against each other under s such that iRk and kRj

holds for each k ∈ N \ {i, j}. Thus, a seeding that matches 1 with 4 and 2

with 3 is always balanced. But a seeding that matches 1 with 3 and 2 with

4 would also be balanced if (and only if) 1I2 or 3I4. Similarly, a seeding

that matches 1 with 2 and 3 with 4 would also be balanced if (and only if)

2I3I4.

We are now prepared to define the increasingly balanced seeding.

Definition 5. Let (t,N) be an elimination competition with t ∈ ES2.

Given a binary relation of strength R, we say that a seeding s : Λ(t) →
N is increasingly balanced (and we denote it by sib) if the following three

conditions hold:

(1) For all λ, λ′ ∈ Λ(t), λ ∈ Λ`(t) and λ′ ∈ Λ`
′
(t) with ` > `′ implies

s(λ′)Rs(λ);

(2) For all ` ∈ {1, . . . , h(t)− 1}, Λ`(t) = {λ, λ′, λ′′} with λ′ and λ′′

having a common intermediate predecessor implies s(λ)Rs(λ′′′) for each

λ′′′ ∈ {λ′, λ′′};
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8 5 6 7

4

1 2 3

Figure 7: An increasingly balanced seeding in an extended stepladder of degree 2.

(3)
∣∣Λh(t)(t)

∣∣ = 4 implies that: (a) iRj holds for each i ∈ N with

`(s−1(i)) < h(t) and j ∈ N with `(s−1(j)) = h(t), and (b) s(λ) = s4∗(λ) for

each λ ∈ Λh(t)(t).

In other words, sib assigns players to leaves in such a way that weaker

players are seeded to higher levels in the tree (condition (1) of the defini-

tion). When more than one player is seeded at the same level, then the

rule distinguishes between two possibilities: (a) if the level is not maximal

then the best player among those seeded at that level is seeded to the leaf,

guaranteeing that he/she will play against the survivor of the previous elim-

ination process (condition (2); this would be the case of players 1, 2 and 3 in

Figure 7); and (b) if the level is the maximal one and there are four leaves

at it, then among the weakest four players, the weakest one is matched with

the fourth weakest and the other two are matched together (condition (3);

this would be the case of players 5 to 8 in Figure 7).

Note also that there are two cases in which sib is silent. The first case

is when there are three leaves of t at the same level and, therefore, the

two weakest players among the three seeded at that level play their initial

match. Clearly, in such a case, the two possible seedings of these players

are equivalent (in Figure 7 this means that by switching players 2 and 3 we

obtain an equivalent seeding). The second case is when there are only two

leaves of t at level h(t). In this case, the two seedings of the two weakest

players are equivalent (this would correspond to switching the two players

that play the first round in Figure 6).
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It should also be noted that, due to the structure of the extended steplad-

der competition of degree 2, if there are three or four leaves at a certain level,

then four players are playing a balanced elimination sub-competition. The

key feature of sib is that it ensures that the strongest of the newly seeded

players at that level will play against the survivor of the previous elimination

process who, by the construction of sib, is necessarily weaker than any of

the newly seeded players. In other words, sib ensures that in any balanced

elimination sub-competition played by four players, the strongest player is

matched with the weakest player.

Theorem 1 not only characterises the set of elimination competitions

that satisfy MS as those displayed by an antler-free binary tree but also

uniquely specifies the increasingly balanced seeding as the one for which MS

is satisfied.

Theorem 1 An elimination-type competition (t,N) satisfies MS with respect

to s ∈ S(t,N) if and only if t is antler-free and s = sib.

The proof of Theorem 1 is quite complex and is relegated to the Ap-

pendix. The following example is just a brief outline of part of the intuition

behind the theorem. Consider an asymmetric antler competition (cf. Figure

4(a)) and let us briefly show that it violates MS even if the seeding rule is

sib. The key point here is Lemma 3 in the Appendix, which connects to part

(1) in the definition of sib and shows that for a competition to satisfy MS,

better players should not be seeded to leaves that are further away from the

root. In other words, if 1R2R3R4R5R6, players 3 to 6 should be seeded at

level 3 and play a balanced subcompetition, while players 1 and 2 will be

seeded at level 2. Consider then a probability matrix which is compatible

with R in such a way that players 1, 2, and 3 are almost equally strong

and much stronger than the other three players. Then the probability for

player 3 to reach the root will be significantly higher than that of player 2

(initially playing against the almost equally strong player 1). This contra-

dicts MS since player 2 is stronger than player 3. Such contradictions do

not hold for antler-free competitions such as stepladders, even if they are
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arbitrarily large. However, similar reasoning can be applied to other basic

non-antler-free trees and, by means of inductive techniques, the argument

can be extended to larger structures containing them.

As already mentioned in the Introduction, Theorem 1 has implications

in many real competitions where for instance 2q players participate in bal-

anced elimination competitions. A remarkable corollary of Theorem 1 is

that no balanced competition satisfies MS if q ≥ 3, that is, if eight or more

players compete, then it cannot be guaranteed that stronger players have a

higher probability of being the final winners. This includes the case of the

widespread balanced seeding, confirming the folk wisdom of, for example,

many NCAA basketball followers (see Baumann et al. 2010).5 Obviously,

the result also concerns any other seeding like the equal gap and the close

seedings (Dagaev and Suzdaltsev 2018 and Karpov 2016, 2018). The reason

for this is that the binary trees that represent those competitions contain

an antler.

3.2. Balanced competitions and equal treatment

The following theorem has the flavour of an impossibility result. It shows

that the only elimination competition that satisfies ET is a degenerate com-

petition consisting of a unique match between two players.

Theorem 2 An elimination-type competition (t,N) satisfies ET if and only

if t is an elementary binary tree.

Theorem 2 shows that the equal treatment requirement turns out to be

too restrictive when applied to elimination competitions. We explore next

the implications of considering a weaker version of ET.

5In the case of eight players the “balanced” seeding would consist of matching 1 with

8 and 4 with 5 in one branch, and 2 with 7 and 3 with 6 in the other branch of the

binary tree. Horen and Riezman (1985) provide a formal proof of this type of conclusion

for the case of 8-player balanced knockout tournaments by using deterministic probability

matrices.
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Weak Equal Treatment (WET) An elimination-type competition (t,N)

satisfies WET if there exists s ∈ S(t,N) such that iIj for all i, j ∈ N implies

ϕi(t, s,p) = ϕj(t, s,p) for all i, j ∈ N .

WET expresses the idea that, as for the final probability of winning, the

competition should not be biased towards any particular player if all of them

are equally skilled. WET is weaker than ET in the sense that it only applies

when all players are equally strong. This weakening makes it possible to

obtain a characterisation theorem that connects equal treatment with the

class of balanced competitions.

Theorem 3 An elimination-type competition (t,N) satisfies WET if and

only if t is balanced.

4. Concluding remarks and further research

The results of this work enable the evaluation and comparison of different

types of elimination competitions on the basis of two reasonable principles

of fairness. Our model connects with the specific line of research devoted to

the study of seeding procedures in the case of balanced elimination compe-

titions (cf. Dagaev and Suzdaltsev 2018, Horen and Riezman 1985, Hwang

1982, Karpov 2016, 2018, Prince et al. 2013, and Schwenk 2000). We see

as especially remarkable the way in which monotonicity leads to a singular

structure, which we have called an antler and which was found to play a

referential role in our analysis, helping to clarify the discussion about the

fairness of different real elimination competitions. Only antler-free competi-

tions guarantee MS and, for that purpose, the increasingly balanced seeding,

sib, is needed.

To the best of our knowledge three types of antler-free competition are

played in practice: stepladder competitions; four-player balanced competi-

tions and the MLB leagues postseason playoffs (Figure 6).

In stepladders, sib means that the stronger the player is the later it

enters the competition. In four-player balanced competitions, sib requires

he pairings to be (1,4) and (2,3). In Figure 6 (the MLB playoffs) sib means
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that 1 plays against the winner out of 4 and 5, and the winner out of (1,

(4,5)) plays against the winner of the match between 2 and 3.

For all three types of competition referred to above, real antler-free com-

petitions follow the increasingly balanced seeding (including the MLB post-

season playoffs).6 This means that Theorem 1 concurs with the intuition of

the competition designers in those cases and that the increasingly balanced

seeding can be extended to more complex structures with an arbitrary high

number of players and byes whenever they are antler-free.

In general, our results show that there are limited numbers of competi-

tion systems that are fair in the sense of satisfying both types of fairness we

consider: The combination of ET and MS results in balanced competitions

with only two players.7 When a weaker version of equal treatment, WET,

is considered instead, the result is just extended to balanced competitions

with two or four players.

For possible extensions of our model, we note that the stochastic transi-

tivity condition assumed with respect to the probability matrices is sufficient

but not necessary for the associated binary relation of strength to be tran-

sitive. Notice that any weakening of this condition would result in a larger

number of probability matrices satisfying it and, thus, in even smaller class

of competitions fulfilling the corresponding fairness axioms.

The fact that MS is required to hold for all probability matrices compat-

ible with R is one of the reasons why so few fair competitions are obtained.

As already explained, we have founded this approach, for example, on the

informational basis that could be reasonably assumed for the competition

6A recent counterexample is the Spanish Football Supercopa held in January, 2020 in

Saudi Arabia between Barcelona, Real Madrid, Valencia and Atlético de Madrid with a

four-players knockout competition format, where the pairings were decided randomly.
7As noted by a referee, ET and MS together have the same flavour as the Self-

consistency axiom in the context of aggregation of paired comparisons (Chebotarev and

Shamis 1997, 1998), which leads to some impossibility results when trying to implement

scoring procedures (Csató 2019b, 2019c). See also Csató 2019a for a closely related result

in the context of journal ranking.
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designers. In fact, in order to fluently run the proofs of the theorems we

have often used “pathological” probability matrices which enable us to rule

out different kinds of competition types as fair. However, it would be of

great interest to know whether the class of fair competition structures can

be enlarged by considering “almost fair” competitions, in the sense that they

would only be unfair under artificious or extreme cases. We believe that our

results pave the way for such research.
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[16] Csató, L. (2019c). Some impossibilities of ranking in generalized tour-

naments. International Game Theory Review, 21 (01), 1940002.
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1. Appendix: Proofs

We start by noting that in elimination competitions, provided that two

players i and j are equally strong (pij = 0.5), it is always possible to exchange

the leaves they have been assigned by some seeding without affecting the

probabilities of winning of any player. The reason for this is simple and

it is based on condition (2), which implies that pik = pjk holds for each

k ∈ N \{i, j}. Thus, we are generally allowed to fix a particular player from

those who are equally strong in a given situation without loss of generality.

Proof of Lemma 1. The proof consists of the following tree steps.

Step 1 If t is symmetric-antler-free, then t ∈ ES2.

Proof. Let t be a symmetric-antler-free binary tree and suppose that t /∈
ES2. The latter implies that t is an extended stepladder of degree x ≥ 3 with

respect to a maximal root-to-leaf path γ(t), as defined previously. Therefore,

there exists a node v ∈ Vγ(t) and a leaf λ ∈ Λ−γ(tv) such that the distance

between v and λ is x. Denote by π the path connecting v and λ. Let y be

the immediate successor of v in π, y′ the immediate successor of y in π and

y′′ the immediate successor of y′ in π (notice that such nodes exist because

Preprint submitted to European Journal of Operational Research January 22, 2020



x ≥ 3). Because t is a binary tree, y has another immediate successor

z′ 6= y′ and y′ has another immediate successor z′ 6= y′′. Meanwhile, given

that v ∈ Vγ(t) and that γ(t) is a maximal root-to-leaf path, there are at

least three consecutive successor nodes x, x′ and x′′ that belong to Vγ(t)

(otherwise, there would be a longer root-to-leaf path connecting the root

with λ). Again, since t is a binary tree, x has another immediate successor

w′ 6= x′ and x′ has another immediate successor w′′ 6= y′′. Now, notice that

the set of nodes {v, x, y, x′, y′, x′′, y′′, z′, w′, z′′, w′′} and the corresponding

edges form a symmetric antler, which is a contradiction.

Step 2 If t is antler-free, then t ∈ ES∗2 .

Proof. Notice first that if t is antler-free then t is both symmetric-antler free

and asymmetric-antler free. Given that ES∗2 ⊂ ES2 and in view of Step 1

it suffices to show that if t ∈ ES2 does not contain an asymmetric antler,

then t ∈ ES∗2 . Suppose not and let γ(t) be a maximal root-to-leaf path in t.

If t ∈ ES2 \ES∗2 , then there are two nodes v, v′ ∈ Vγ(t) with `(v′) = `(v) + 1

and h−γ(tv) = h−γ(tv′) = 2.

Moreover, given that γ(t) is a maximal root-to-leaf path, v′ has at least

two consecutive successors x and x′ belonging to Vγ(t), and given that t is a

binary tree, x has another immediate successor y 6= x′. Consider then the

set of nodes consisting of v, v′, x, x′, y, the immediate successors of v and

v′, as well as the leaves in Λ−γ(tv) ∪ Λ−γ(tv′). Note that this set of nodes

together with the corresponding edges form an asymmetric antler, which is

a contradiction.

Step 3 If t ∈ ES∗2 , then t is antler-free.

Proof. Note first that if t ∈ ES1 ⊆ ES∗2 , then it is antler-free. Suppose

then that t is an extended stepladder of degree 2 belonging to ES∗2 . Clearly,

t does not contain a symmetric antler t′ because each symmetric antler

is an extended stepladder of degree 3 and, thus, t containing t′ implies

that t should be an extended stepladder of degree at least 3, which is a

contradiction. Let us show now that t ∈ ES∗2 implies that t does not contain

an asymmetric antler.
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Suppose that, to the contrary, t contains an asymmetric antler tA. Let

γ(t) and γ′(tA) be maximal root-to-leaf paths in t and tA, respectively. There

are two possibilities:

(i) Vγ′(tA) ∩ Vγ(t) = ∅. Consider the root vA0 of tA and the closest prede-

cessor v of vA0 such that v ∈ Vγ(t). Let d be the distance between vA0 and v.

Then we have that h−γ(tv) > d+ 3 in contradiction to t being an extended

stepladder of degree 2.

(ii) Vγ′(tA) ∩ Vγ(t) 6= ∅. Let Vγ′(tA) = {vA0 , vA1 , vA2 , vA3 } be such that, for

all i ∈ {1, 2, 3}, vAi is the immediate successor of vAi−1 and vA0 is the root

of tA. Given that Vγ′(tA) ∩ Vγ(t) 6= ∅ there exists vAi ∈ Vγ′(tA) ∩ Vγ(t). Note

that vAi ∈ Vγ(t) implies vAj ∈ Vγ(t) for all j < i. Therefore vA0 ∈ Vγ(t). We

distinguish then two cases: either vA0 ∈ Vγ(t) and vA1 /∈ Vγ(t) or vA0 , v
A
1 ∈ Vγ(t).

If vA0 ∈ Vγ(t) and vA1 /∈ Vγ(t), then h−γ(tvA0
) ≥ 3 in contradiction to t being an

extended stepladder of degree 2. If vA0 , v
A
1 ∈ Vγ(t), then by the structure of

an asymmetric antler, and given that t is an extended stepladder of degree 2,

we know that h−γ(tvA0
) = h−γ(tvA1

) = 2, which is a contradiction to t ∈ ES∗2 .

Proof of Theorem 1. We start with two additional lemmas. Lemma 2

states that a four-player balanced elimination competition satisfies MS only

for the balanced seeding as defined in Section 3, while Lemma 3 shows that,

for a competition to satisfy MS, better players should not be seeded to leaves

that are further away from the root of the tree. We then proceed with proof

of Theorem 1.

Lemma 2 A balanced elimination competition (t,N) with h(t) = 2 satisfies

MS with respect to a seeding s ∈ S(t,N) if and only if s = s4∗.

Proof. Let (t,N) be as above with N = {1, 2, 3, 4} and recall that

1R2R3R4 holds. Assume, w.l.o.g., that s4∗ is such that player 1 is matched

with player 4 and player 2 is matched with player 3. Consider then the

seeding rule s = s4∗ and fix any probability matrix p ∈ PR. We have to

show that pij > 0.5 for some i, j ∈ N implies ϕi(t, s4∗ ,p) > ϕj(t, s4∗ ,p).

There are six possible cases.
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Case 1 (i = 1 and j = 2). We have ϕ1(t, s4∗ ,p) = (p14·p23·p12)+(p14·p32·p13)

> (p23 ·p14 ·p21)+ (p23 ·p41 ·p24) = ϕ2(t, s4∗ ,p), where the inequality follows

from p12 > p21 (due to p12 > 0.5) and from p13 ≥ p23, p14 ≥ p24 and

p32 ≥ p41 (due to (3)).

Case 2 (i = 1 and j = 3). We have ϕ1(t, s4∗ ,p) = (p14·p23·p12)+(p14·p32·p13)

> (p32 ·p14 ·p31) +(p32 ·p41 ·p34) = ϕ3(t, s4∗ ,p), where the inequality follows

from p13 > p31 (due to p13 > 0.5), p23 ≥ p32 (by p23 ≥ 0), p12 ≥ p41 (by

p12 ≥ 0.5 and p14 ≥ 0.5), and from p14 ≥ p34 (due to p13 > 0.5 and condition

(2)).

Case 3 (i = 1 and j = 4). We have ϕ1(t, s4∗ ,p) = (p14·p23·p12)+(p14·p32·p13)

> (p41 ·p23 ·p42) +(p41 ·p32 ·p43) = ϕ4(t, s4∗ ,p), where the inequality follows

from p14 > p41 (due to p14 > 0.5), p12, p13 ≥ 0.5, and p42, p43 ≤ 0.5.

Case 4 (i = 2 and j = 3). We have ϕ2(t, s4∗ ,p) = (p23·p14·p21)+(p23·p41·p24)

> (p32 ·p14 ·p31) +(p32 ·p41 ·p34) = ϕ3(t, s4∗ ,p), where the inequality follows

from p23 > p32 (due to p23 > 0.5), p21 ≥ p31 and p24 ≥ p34 (due to p23 > 0.5

and condition (2)).

Case 5 (i = 2 and j = 4). We have ϕ2(t, s4∗ ,p) = (p23·p14·p21)+(p23·p41·p24)

> (p41 ·p23 ·p42) +(p41 ·p32 ·p43) = ϕ4(t, s4∗ ,p), where the inequality follows

from p24 > p42 (due to p24 > 0.5), p21 ≥ p41 (due to p24 > 0.5 and condition

(2)), and from p14, p23 ≥ 0.5 and p32, p43 ≤ 0.5 (due to p being compatible

with R).

Case 6 (i = 3 and j = 4). We have in this last case ϕ3(t, s4∗ ,p) = (p32 ·p14 ·
p31)

+(p32 · p41 · p34) > (p41 · p23 · p42) + (p41 · p32 · p43) = ϕ4(t, s4∗ ,p), where the

inequality follows from p34 > p43 (due to p34 > 0), p14 ≥ p23 (by (3)), and

from p31 ≥ p41 and p32 ≥ p42 (due to p34 > 0.5 and condition (2)).

We conclude that (t,N) satisfies MS with respect to s4∗ . Notice that it

was necessary to prove the six cases because, for example, if p12 > 0.5 implies

ϕ1(t, s4∗ ,p) > ϕ2(t, s4∗ ,p), this does not necessarily mean that p13 > 0.5

implies ϕ1(t, s4∗ ,p) > ϕ3(t, s4∗ ,p) in the case 1I2P3.
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Let us now consider a seeding rule s ∈ S(t,N) which differs from s 6= s4∗ .

Let ε > 0 be arbitrarily small and p ∈ PR be defined as follows:

p=


0.5 0.5 + ε 0.5 + 2ε 1− ε

0.5 0.5 + ε 1− 2ε

0.5 1− 3ε

0.5


There are two possible cases with respect to the seeding produced by s.

Case 1 (the initial matches are between 1 and 2, and 3 and 4, respectively).

We have in this case:

ϕ3(t, s,p) = (p34 ·p12 ·p31)+(p34 ·p21 ·p32) ≈ (1 ·0.5 ·0.5)+(1 ·0.5 ·0.5) ≈ 0.5

and

ϕ2(t, s,p) = (p21 ·p34 ·p23)+(p21 ·p43 ·p24) ≈ (0.5 ·1 ·0.5)+(0.5 ·0 ·1) ≈ 0.25,

in contradiction to p23 > 0.5 and (t,N) satisfying MS.

Case 2 (the initial matches are between 1 and 3, and 2 and 4, respec-

tively). Considering again the probability matrix shown previously, we have

ϕ1(t, s,p) = (p13 ·p24 ·p12)+(p13 ·p42 ·p14) ≈ (0.5·1·0.5)+(0.5·0·1) ≈ 0.25 and

ϕ2(t, s,p) = (p24 ·p13 ·p21)+(p24 ·p31 ·p23) ≈ (1 ·0.5 ·0.5)+(1 ·0.5 ·0.5) ≈ 0.5,

which is in contradiction to p12 > 0.5 and (t,N) satisfying MS.

Lemma 3 Let R be a strength relation defined on N , (t,N) an elimination

competition, and s ∈ S(t,N). If (t,N) satisfies MS with respect to s, then

`(λ) > `(λ′) for λ, λ′ ∈ Λ(t) implies s(λ′)Rs(λ).

Proof. Suppose that the implication is false. That is, given R, let (t,N)

satisfy MS with respect to s such that s(λ)Ps(λ′) holds for some λ, λ′ ∈
Λ(t) with `(λ) > `(λ′). For (t,N) to satisfy MS, it is necessary that

ϕs(λ)(t, s,p
′) > ϕs(λ′)(t, s,p

′) for all probability matrices p′ ∈ PR such that

p′s(λ),s(λ′) > 0.5. Let us consider a probability matrix p ∈ PR such that, for

all i, j ∈ N , pij ≈ 0.5 with ps(λ),s(λ′) > 0.5. Then ϕs(λ)(t, s,p) ≈ 0.5`(λ) and

ϕs(λ′)(t, s,p) ≈ 0.5`(λ
′). Because `(λ) > `(λ′), ϕs(λ)(t, s,p) < ϕs(λ′)(t, s,p).

Taking into account that ps(λ),s(λ′) > 0.5, the latter inequality implies that

(t,N) violates MS with respect to s, which is a contradiction.
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Before moving to the proof of the sufficiency and necessity parts of The-

orem 2, let us introduce the following additional concept. We say that a

binary tree t with h(t) = 3 is a one-bye antler, if |Λ(t)| = 7 with
∣∣Λ3(t)

∣∣ = 6

and
∣∣Λ2(t)

∣∣ = 1. Clearly, any one-bye antler is an extended stepladder of

degree 3. Further, for t and t′ being binary trees, we say that (1) t′ is an

extension from the leaves of t if t′ and t have the same root and Λ(t) ⊆ Λ(t′);

(2) t′ is an extension from the root of t if t is a subtree of t′; (3) t′ is a limited

extension from the root of t, if t is a subtree of t′ and Λh(t)(t) ⊆ Λh(t′)(t′).

Thus, a limited extension from the root of a tree t never has leaves at a

height that is greater than the height of any of the leaves of t.

Proof of Theorem 1 (Sufficiency). Given a strength relation R defined

on the player set N , we have to prove that an elimination competition (t,N)

with t being antler-free satisfies MS with respect to sib.

Let (t,N) be such that t is antler-free and s = sib. By Lemma 1, t ∈ ES∗2 .

Take a maximal root-to-leaf path γ(t) and note that t ∈ ES∗2 irrespective of

the choice of γ(t). For s ∈ S(t,N), v ∈ Vγ(t), and any probability matrix p,

we denote by pvi (s) the probability that player i ∈ N reaches v under a given

seeding s and by vh the unique leaf in Vγ(t). Moreover, we collect in the set

S1
v(s) all players whose first match in the competition is against a player

who has already reached some v′ ∈ Vγ(t) with `(v′) > `(v); correspondingly,

S2
v(s) stands for the set of all players who had to play an initial match before

having the possibility to meet a player who has already reached some node

from Vγ(t) at a higher level than v. Note that for each i ∈ N we have that,

due to t ∈ ES∗2 , either i = s(vh) or i ∈ S1
v(s)∪S2

v(s) holds for some v ∈ Vγ(t).

We denote by vx the closest predecessor belonging to Vγ(t) of x = s(λ)

for some λ ∈ Λ(t). Note that, for each v ∈ Vγ(t), any probability matrix p,

and any two players k, j ∈ N with pkj > 0.5 and s−1(k), s−1(j) ∈ Λ(tv), we

have that pvk(s) > pvj (s) implies ϕk(t, s,p) > ϕj(t, s,p). The reason is that

for each i ∈ N with s−1(i) ∈ Λ(tv) we have

ϕi(t, s,p) = pvi (s) ·
∏
x∈S1

v′ (s):`(v
′)<`(v) pix ·

∏
y,z∈S2

v′ (s):`(v
′)<`(v)(piypyz +

pizpzy).
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Hence, ϕk(t, s,p) > ϕj(t, s,p) is implied by pvk(s) > pvj (s), pkx ≥ pjx for

each x ∈ N following from condition (2), and pyz (pzy) being independent

of any other parameter in the respective formulae for k and j.

Thus, to prove the sufficiency part of Theorem 1, let us now consider

the increasingly balanced rule sib. We have to show that (t,N) satisfies

MS with respect to sib. In view of the argument that was just explained,

assuming that pkj > 0.5, then it is enough to find a node v ∈ Vγ(t) with

s−1
ib (k), s−1

ib (j) ∈ Λ(t) and pvk(sib) > pvj (sib). We distinguish the following

three possible cases:

(i) `(s−1
ib (k)) < `(s−1

ib (j)) and there is no m ∈ N with `(s−1
ib (m)) =

`(s−1
ib (k)). Clearly, player k does not need to win any match to reach vk ∈

Vγ(t). Therefore, given that sib seeds worse players to higher levels, pv
k

k (sib) >

0.5 and because j has to defeat k to reach vk, pv
k

j (sib) < 0.5.

(ii) `(s−1
ib (k)) < `(s−1

ib (j)) and there exists m ∈ N with `(s−1
ib (m)) =

`(s−1
ib (k)). In this case, player k is involved in a balanced sub-competition of

four players. Let v∗ be the root of the sub-competition (note that v∗ ∈ Vγ(t)

with pv
∗
k (sib) being the probability for player k to win the sub-competition).

For player j, pv
∗
j (sib) is the product of two probabilities: the probability to

reach the sub-competition, that is, to reach the node v ∈ Vγ(t) such that

`(v) = `(s−1
ib (k)); and, the probability to win the sub-competition. Given

that the sub-competition is played under a balanced seeding, we know from

the proof of Lemma 2 that for any probability matrix with pkj > 0.5, then

the probability for k to win the sub-competition is strictly greater than the

one for j. We conclude that pv
∗
k (sib) > pv

∗
j (sib) should hold.

(iii) `(s−1
ib (k)) = `(s−1

ib (j)). Also in this case, players k and j are involved

in a balanced sub-competition of four players. Following the same reasoning

as in (ii), we obtain pv
∗
k (sib) > pv

∗
j (sib).

Proof of Theorem 1 (Necessity). We have to prove that if (t,N) satisfies

MS with respect to some seeding s, then t is antler-free and s = sib. To prove

that t is antler-free in such a case, we will show that if t contains an antler,

then the competition (t,N) violates MS. More precisely, in Steps 1 to 9 of
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the proof, we show progressively and in an exhaustive way that all of the

different types of structures that can contain an antler violate MS. In Step

10 we finally prove that the seeding s with respect to which (t,N) satisfies

MS is necessarily s = sib.

Step 1 Let (t,N) be an elimination competition with t being a symmetric

antler. Then (t,N) violates MS.

Proof. Note that N = {1, . . . , 6} holds in this case. Let λ2
` and λ2

r be the

two leaves of t that are at level 2 of its left and right branch, respectively.

Similarly, let λ3a
` and λ3b

` be the two leaves at level 3 of t’s left branch, while

λ3a
r and λ3b

r be the two leaves at level 3 of t’s right branch. We proceed

by reduction to the absurd; that is, we assume that (t,N) satisfies MS and

then prove that we reach a contradiction. By Lemma 3, any s ∈ S(t,N) with

respect to which (t,N) satisfies MS should be such that the two strongest

players are seeded to λ2
` and λ2

r . Assume w.l.o.g. that these players are

1 and 2, and that s(λ2
` ) = 1 and s(λ2

r) = 2. There are then six possible

non-equivalent seedings for the remaining players:

(i) s(λ3a
` ) = 3, s(λ3b

` ) = 4, s(λ3a
r ) = 5, s(λ3b

r ) = 6.

(ii) s(λ3a
` ) = 3, s(λ3b

` ) = 5, s(λ3a
r ) = 4, s(λ3b

r ) = 6.

(iii) s(λ3a
` ) = 3, s(λ3b

` ) = 6, s(λ3a
r ) = 4, s(λ3b

r ) = 5.

(iv) s(λ3a
` ) = 4, s(λ3b

` ) = 5, s(λ3a
r ) = 3, s(λ3b

r ) = 6.

(v) s(λ3a
` ) = 4, s(λ3b

` ) = 6, s(λ3a
r ) = 3, s(λ3b

r ) = 5.

(vi) s(λ3a
` ) = 5, s(λ3b

` ) = 6, s(λ3a
r ) = 3, s(λ3b

r ) = 4.

To prove that (t,N) violates MS, we next show that for each of the six

possible seedings we can find a probability matrix p ∈ PR defined on N

such that there exists i ∈ N with pi−1,i > 0.5 (and, therefore, (i−1)Pi) and

ϕi(t, s,p) > ϕi−1(t, s,p).

(i) Take p as follows: pjk > 0.5 if j < k; pj6 ≈ 1 for all j < 6, and pjk ≈
0.5 for all j, k < 6. We have then ϕ5(t, s,p) ≈ 0.25 > 0.125 ≈ ϕ4(t, s,p)

while p45 > 0.5.

(ii) Consider the same probability matrix p as in case (i), then ϕ4(t, s,p) ≈
0.25 > 0.125 ≈ ϕ3(t, s,p) while p34 > 0.5.
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(iii) Let p be such that pjk > 0.5 if j < k; pjk ≈ 1 if j ∈ {1, 2} and

k ∈ {4, 5, 6}, and pjk ≈ 0.5, otherwise. Then ϕ2(t, s,p) ≈ 0.5 > 0.375 ≈
ϕ1(t, s,p) while p12 > 0.5.

(iv) Take p as follows: pjk > 0.5 if j < k; pjk ≈ 1 if j ∈ {1, 2} and k = 6,

and pjk ≈ 0.5, otherwise. Then ϕ2(t, s,p) ≈ 0.375 > 0.25 ≈ ϕ1(t, s,p) while

p12 > 0.5.

(v) Let p be as follows: pjk > 0.5 if j < k; 1 ≈ p15 ≈ p16 ≈ p25 ≈ p26 ≈
p36 ≈ p46, and pjk ≈ 0.5, otherwise. Then ϕ2(t, s,p) ≈ 0.375 > 0.25 ≈
ϕ1(t, s,p) while p12 > 0.5.

(vi) Consider the same probability matrix p as in cases (i) and (ii), then

ϕ5(t, s,p) ≈ 0.25 > 0.125 ≈ ϕ4(t, s,p) while p45 > 0.5.

For later steps in the proof, it is important to remark that, according

to the probability matrices shown above and the one shown in the proof of

Lemma 3, whatever seeding s ∈ S(t,N) we consider in a symmetric antler t,

not only exists a probability matrix p and i ∈ N such that pi−1,i > 0.5 and

ϕi(t, s,p) > ϕi−1(t, s,p) but it also holds that it is possible to find such a

matrix p where pi−1,i ≈ 0.5 and pik ≈ pi−1,k for all k ∈ N \ {i− 1, i}.

Step 2 Let (t,N) be an elimination competition with t being an asymmetric

antler, then (t,N) violates MS.

Proof. Clearly N = {1, . . . , 6} holds also in this case. Assume w.l.o.g. that

t’s left branch has four leaves at level h(t) = 3, and denote them (from left

to right) by λ3a
` , λ3b

` , λ3c
` and λ3d

` . Clearly, t’s right branch has two leaves

(λ2a
r and λ2b

r ) at level 2. Let v1 be the node in the left branch of t which is an

immediate successor of the root of t. Note that {λ3a
` , λ

3b
` , λ

3c
` , λ

3d
` } are the

leaves of the balanced subtree t1 of t whose root is v1. We proceed again by

reduction to the absurd. Assume that (t,N) satisfies MS. By Lemma 3, the

two strongest players should be seeded to the two leaves at level 2. Assume

w.l.o.g. that these players are 1 and 2 and that s(λ2
` ) = 1 and s(λ2

r) = 2.

We then fix a seeding s′ : Λ(t1) → {3, 4, 5, 6}, note that s′ ∈ S(t1,N\{1,2}),

and consider the following two possibilities.

Case 1 (s′ 6= s′4∗). Consider the matrix used in the proof of Lemma 2 and

9



apply it to the set of players {3, 4, 5, 6}. According to the proof, if s 6= s4∗ ,

then there exists a pair of players i, i − 1 ∈ {3, 4, 5, 6} and a probability

matrix p′ ∈ PR|{3,4,5,6} such that p′i−1,i > 0.5 and p′v1i > p′v1i−1. Moreover

p′i−1,i ≈ 0.5 and p′i−1,k ≈ p′i,k also holds for all k ∈ {3, 4, 5, 6}. Let p be

defined on N such that pjk = p′jk for all j, k > 2; p13 = p23 = p12 = 0.5

and, therefore, pjk = p3k for all j < 3 and all k ∈ N . By pi3 ≈ pi−1,3 and

by p satisfying condition (2) we have pi2 ≈ pi−1,2 and pi1 ≈ pi−1,1. Thus,

pi−1,k ≈ pi,k for all k ∈ N .

Note then that ϕi(t, s,p) = p′v1i · (p12pi1 + p21pi2) and ϕi−1(t, s,p) =

p′v1i−1 · (p12pi−1,1 +p21pi−1,2). By p′v1i > p′v1i−1, pi1 ≈ pi−1,1 and pi2 ≈ pi−1,2, we

have ϕi(t, s,p) > ϕi−1(t, s,p) in contradiction to (t,N) satisfying MS with

respect to s.

Case 2 (s′ = s′4∗). Consider the following probability matrix p ∈ PR:

p=



0.5 0.5 0.5 + ε 1− 2ε 1− ε 1− ε

0.5 0.5 + ε 1− 2ε 1− ε 1− ε

0.5 1− 3ε 1− 2ε 1− 2ε

0.5 1− 3ε 1− 3ε

0.5 0.5

0.5


According to p, s′4∗ matches either 3 with 6 and 4 with 5, or it matches

3 with 5 and 4 with 6. In either case, we have p23 > 0.5 and, after making

the necessary computations, ϕ3(t, s,p) ≈ 0.5 > 0.25 ≈ ϕ2(t, s,p). Thus,

(t,N) violates MS with respect to s.

As in Step 1, it is important to remark that, according to the probability

matrix shown previously and the ones shown in the proofs of Lemma 2 and

Lemma 3, whatever seeding s ∈ S(t,N) we consider in an asymmetric antler

t, not only exists a probability matrix p and i ∈ N such that pi−1,i > 0.5

and ϕi(t, s,p) > ϕi−1(t, s,p) but it also holds that it is possible to find such

a matrix p where pi−1,i ≈ 0.5 and pik ≈ pi−1,k for all k ∈ N \ {i− 1, i}.

Step 3 Let (t,N) be an elimination competition system with t being a one-

bye antler. Then (t,N) violates MS.

Proof. We proceed again by reduction to the absurd assuming that (t,N)
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violates MS. Note that N = {1, . . . , 7} holds in this case. Assume w.l.o.g.

that t’s left branch has four leaves at level h(t) = 3, and denote them (from

left to right) by λ3a
` , λ3b

` , λ3c
` and λ3d

` . Clearly, t’s right branch has two leaves

(λ3a
r and λ3b

r ) at that same level and one leaf (λ2
r) at level 2. By Lemma

3, the best player should be seeded to λ2
r . Assume w.l.o.g. that s(λ2

r) = 1.

We distinguish now two possibilities depending on the leaf player 7 has been

seeded at.

Case 1 (s(λ) = 7 for some λ of t’s right branch). There are two subcases:

(i) s(λ4a
r ) = 6 and s(λ4b

r ) = 7 (or vice versa w.l.o.g.) and (ii): s(λ4a
r ) = x

and s(λ4b
r ) = 7 (or vice versa) with x < 6.

(i) If s(λ4a
r ) = 6 and s(λ4b

r ) = 7, then let p ∈ PR be a probability matrix

such that pjk > 0.5 for all j, k ∈ N with j < k, pj7 ≈ 1 for all j ∈ N \ {7},
and pjk ≈ 0.5 for all j, k ∈ N \ {7}. By making the necessary calculations,

we obtain ϕ6(t, s,p) ≈ 0.25 > 0.125 ≈ ϕ5(t, s,p) while p67 > 0.5, which is a

contradiction to (t,N) satisfying MS.

(ii) If s(λ4a
r ) = x and s(λ4b

r ) = 7, then let p ∈ PR be a probability matrix

such that pjk > 0.5 for all j, k ∈ N with j < k, pjk ≈ 0.5 for all j, k ∈ N \{1},
and p1k = 0.7 for all k ∈ N \ {1}. By making the necessary calculations,

we obtain ϕ6(t, s,p) ≈ 0.09 > 0.075 ≈ ϕx(t, s,p) while px6 > 0.5, reaching

again a contradiction.

Case 2 (s(λ) = 7 for some λ of t’s left branch). Let x be the player whose

initial match is against player 7 and suppose w.l.o.g., that s(λ4c
` ) = 7 and

s(λ4d
` ) = x. Then remove from t the nodes λ4c

` and λ4d
` , and also the corre-

sponding edges to their immediate predecessor vλ. Note that the remaining

subgraph tA of t is a symmetric antler with vλ being now a leaf of tA. Con-

sider the seeding s′ : Λ(tA) → {1, . . . , 6} defined as follows: s′(vλ) = x and

s′(λ) = s(λ) for each λ ∈ Λ(tA) \ {vλ}, and note that s′ ∈ S(tA,N\{7}). In

other words, s′ can be interpreted as a situation in which x wins his or her

match against 7 and the remaining matches are not yet played.

By Step 1, the competition (tA, N \ {7}) violates MS. That is, there

exists a probability matrix p′ ∈ PR|N\{7} such that, for some i ∈ N \ {7},
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p′i−1,i > 0.5 and ϕ′i(t
A, s′,p′) > ϕ′i−1(tA, s′,p′). Moreover, we know that p′

can be constructed in such a way that p′i−1,i ≈ 0.5 and p′ik ≈ p′i−1,k holds

for each k ∈ N \ {i− 1, i, 7}.
Consider now the probability matrix p ∈ PR such that pjk = p′jk for all

j, k ∈ N \{7}, and pk7 ≈ 1 for all k ∈ N \{7}. For the final winning probabil-

ities of each k < 7 we have by construction that ϕk(t, s,p) ≈ ϕ′k(t
A, s′,p′).

By hypothesis, p′i−1,i > 0.5 and ϕ′i(t
A, s′,p′) > ϕ′i−1(tA, s′,p′) holds and,

thus, pi−1,i > 0.5 and ϕi(t, s,p) > ϕi−1(t, s,p) holds as well. Hence, (t,N)

also violates MS in this case. Moreover, as in Step 1, it is interesting to

remark for the later steps in the proof that, for any seeding in a one-bye

antler t, we can always find a probability matrix p ∈ PR that makes the

competition (t,N) violate MS and such that pi−1,i ≈ 0.5 and pik ≈ pi−1,k

holding for some i ∈ N and all k ∈ N \ {i− 1, i}.

Step 4 Let (t,N) be an elimination competition system with h(t) = 3 and t

being balanced. Then (t,N) violates MS.

Proof. Note that N = {1, . . . , 8} holds in this case. Let x be the player

whose initial match is against player 8, and remove from t the nodes s−1(8)

and s−1(x) together with the corresponding edges to their immediate prede-

cessor, vλ. Note that the remaining subgraph tA of t is a one-bye antler with

vλ being now a leaf of tA. Consider then the seeding s′ : Λ(tA)→ {1, . . . , 7}
defined as follows: s′(vλ) = x and s′(λ) = s(λ) for each λ ∈ Λ(tA) \ {vλ},
and notice that s′ ∈ S(tA,N\{8}).

By Step 3, (tA, N \ {8}) violates MS. That is, there exists a probability

matrix p′ ∈ PR|N\{8} such that p′ij > 0.5 and ϕ′j(t
A, s′,p′) > ϕ′i(t

A, s′,p′)

for the corresponding final winning probabilities of some i, j ∈ N \ {8}.
Moreover, we know that p′ can be constructed in such a way that p′ij ≈ 0.5

and p′ik ≈ p′jk holds for each k ∈ N \ {8}.
Consider now the probability matrix p defined on N such that pjk ≈ p′jk

holds for all j, k < 8 and pk8 ≈ 1 holds for all k < 8. For the final win-

ning probabilities of each k < 8 we have by construction that ϕk(t, s,p) ≈
ϕ′k(t

A, s′,p′). Therefore, pij > 0.5 and ϕj(t, s,p) > ϕi(t, s,p) as it is re-
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quired to prove that the competition (t,N) violates MS. Moreover, by con-

struction, p is such that pij ≈ 0.5 and pik ≈ pjk for each k ∈ N .

Step 5 Let (t,N) be an elimination competition system with t being a lim-

ited extension from the root of an antler. Then (t,N) violates MS.

Proof. Let tA be the (symmetric or asymmetric) antler contained in t and

fix any s ∈ S(t,N). Because s is arbitrary, to show that (t,N) violates MS,

it suffices to show that the violation holds with respect to s. Let N ′tA(s) be

the set of players seeded by s to a leaf of tA. For notational convenience,

when i ∈ N ′
tA

(s) we will label this player as i′.

By Lemma 3, Step 1 in the case of symmetric antlers, and Step 2 in

the case of asymmetric antlers, we know that for any seeding in tA we can

find a probability matrix p ∈ PR|N′
tA

(s)
that makes

(
tA, N

)
violate MS. In

particular, for s′ = s|Λ(tA), there exists a matrix p′ and players i′, h′ ∈ N ′
tA

(s)

with p′h′,i′ > 0.5 and ϕi′(t
A, s′,p′) > ϕh′(t

A, s′,p′). Moreover, we know that

p′ can be constructed in such a way that p′h′,i′ ≈ 0.5 and p′h′,k′ ≈ p′i′,k′

holding for each k′ ∈ N ′
tA

(s).

Now, for all k ∈ N \N ′
tA

(s) let sup(k) = min{x′ ∈ N ′
tA

(s) such that x′ >

k} and inf(k) = max{x′ ∈ N ′
tA

(s) such that x′ < k}.
Let us define a probability matrix p on N such that (1) for all x′, y′ ∈

N ′
tA

(s), px′y′ = p′x′y′ ; (2) for all k ∈ N \ N ′
tA

(s) such that sup(k) exists,

pk,sup(k) = 0.5 (and pkw = psup(k),w for each w ∈ N); (3) for all k ∈ N ′
tA

(s)

such that sup(k) does not exist, pk,inf(k) = 0.5 (and pkw = pinf(k),w for each

w ∈ N).

In other words, p restricted to the elements of N ′
tA

(s) is equal to p′, and

all the players that are not seeded to tA are assimilated as equally strong

as his or her immediately weaker player in N ′
tA

(s). Moreover, if for some

element k not seeded to tA there is no weaker player in N ′
tA

(s), then k is

considered as equally strong as its immediately stronger player in N ′
tA

(s).

Thus, by construction, p ∈ PR.

Note that, by p′h′w′ ≈ p′i′w′ for each w′ ∈ N ′
tA

(s), we have by construction

that ph′w ≈ pi′w holds for each w ∈ N .

13



Now, let Vv0,vA0
be the set of nodes of the shortest path between the

root v0 of t and the root vA0 of tA. Note that, due to t being a binary

tree, for each v ∈ Vv0,vA0
with `(v) ≥ 1 there always exists a unique node

v′ /∈ Vv0,vA0 with ` (v′) = `(v) at distance 2 from v. That is, the two players

having reached these two nodes play against each other to arrive at their

common immediate predecessor v′′ ∈ Vv0,vA0
with ` (v′′) = `(v) − 1. By

letting Nv′ be the set of all players seeded by s to some leaf of the subtree

of t rooted at v′, we get ϕi(t, s,p) = ϕi′(t
A, s′,p′) ·

∏
v∈V

v0,v
A
0
,`(v)≥1

∑
k∈Nv′

pi′kp
v′
k

and ϕh(t, s,p) = ϕh′(t
A, s′,p′) ·

∏
v∈V

v0,v
A
0
,`(v)≥1

∑
k∈Nv′

ph′kp
v′
k .

Recall that pi′,w ≈ ph′,w holds for each w ∈ N . Moreover, pv
′
k is in-

dependent of whether i′ or h′ have reached node v ∈ Vv0,vA0
. Therefore,

ϕi′(t
A, s′,p′) > ϕh′(t

A, s′,p′) implies ϕi(t, s,p) > ϕh(t, s,p). Given that

phi > 0.5 by the construction of p, the competition (t,N) violates MS.

Step 6 Let (t,N) be an elimination competition with t being a limited ex-

tension from the root of a one-bye antler. Then (t,N) violates MS.

The proof is analogous to the proof of Step 5.

Step 7 Let (t,N) be an elimination competition with t being a limited ex-

tension from the root of a balanced tree of height 3. Then, (t,N) violates

MS.

Again, the proof is analogous to that of Step 5.

Step 8 Let t∗ be a limited extension from the root of an antler tA and (t,N)

be an elimination competition with t being an extension from the leaves of

t∗. Then, (t,N) violates MS.

Proof. For the proof of the statement of Step 8, we will need the following

additional notation.

Let d(v0, v
A
0 ) stand for the geodesic distance between the root v0 of t and

the root vA0 of tA. For x ∈
{

0, . . . , h(t)− d(v0, v
A
0 )
}
, we denote by tx0 the

subgraph of t consisting of all nodes v ∈ V (t) with `(v) ≤ d(v0, v
A
0 ) + x and

the corresponding edges of t connecting them. That is, tx0 is just the tree t
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when being truncated at level d(v0, v
A
0 ) + x. Clearly, x = h(tA) = 3 implies

tx0 = t∗.

We denote by Mx the set of matches at level d(v0, v
A
0 )+x of tx0 (with mx

being a typical element of Mx), and by T xk the set of subgraphs of tx0 that can

be obtained from tx0 by removing a number k of matches at level d(v0, v
A
0 )+x

(with txk being a typical element of T xk ). Clearly, T x|Mx| = tx|Mx| = tx−1
0 .

Moreover, for any tree txk ∈ T xk we consider a set of players Nx
k =

{1, . . . , nxk} that makes competition (txk, N
x
k ) feasible; that is, a set of players

whose cardinality is nxk = |Λ(txk)|.
Consider now, for any k ≤ |M4|, any tree t4k ∈ T 4

k and the corresponding

set of players N4
k that makes (t4k, N

4
k ) feasible. Let R be the ordering of

strength defined on N4
k . Assume that (t4k, N

4
k ) satisfies MS. By Lemma 3 we

know that, for t4k to satisfy MS with respect to some seeding s ∈ S(t4k,N
4
k), the

worst player according to R should be seeded to some leaf of t4k that belongs

to some match in M4. If the worst player is not unique, then assume w.l.o.g.

that the selected player is n4
k. Let us denote by m′4 the match to which n4

k

is seeded, by (λ′4a ) and (λ′4b ) its two leaves, and by (n4
k) 6= n4

k the second

player seeded to m′4; that is, the opponent of n4
k. Now, let (t′4k+1, N

4
k+1)

be the competition in which t′4k+1 has been obtained from t4k by removing

the match m′4 and N4
k+1 is a set of nk − 1 players. Clearly, the common

immediate predecessor w of λ′4a and λ′4b becomes now a leaf of t′4k+1 to be

denoted by λw. Hence, Λ(t′4k+1) = Λ(t4k) ∪ {λw} \ {λ′4a , λ′4b }.
The inductive reasoning starts by proving that, roughly speaking, if the

competition (t4k, N
4
k ) satisfies MS and the match where the worst player is

seeded at is removed, then the remaining structure also satisfies MS.

Claim Let (t4k, N
4
k ) and (t′4k+1, N

4
k+1) be as above. If (t4k, N

4
k ) satisfies MS,

then (t′4k+1, N
4
k+1) also satisfies MS.

Proof of the Claim. Assume that (t4k, N
4
k ) satisfies MS but (t′4k+1, N

4
k+1) does

not. Let R′ be defined on N4
k+1 such that R′ = R|N4

k+1\{n
4
k}

. Consider the

seeding s′ : Λ(t′4k+1) → N4
k+1 defined as follows: for each λ ∈ Λ(t′4k+1) \

{λw}, s′(λ) = s(λ) and s(λw) = n4
k (note that N4

k+1 = N4
k \ {n4

k} and that
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n4
k ∈ N4

k+1). That is, s′ can be interpreted as a situation in which n4
k wins

his match against n4
k and the remaining matches are not yet played. By

hypothesis (t′4k+1, N
4
k+1) violates MS. This implies that for the seeding s′

there exists some probability matrix p′ ∈ PR′ defined on N4
k+1 such that

p′ij > 0.5 and ϕj(t
′4
k+1, s

′,p′) > ϕi(t
′4
k+1, s

′,p′) holds for some i, j ∈ N4
k+1.

Let p be a probability matrix on N4
k , which is defined as follows: pij = p′ij

for all i, j ∈ N4
k \
{
n4
k

}
, and pi,n4

k
≈ 1 for each i ∈ N4

k \
{
n4
k

}
. Note that p ∈

PR|N4
k

by construction. Also by construction, ϕi(t
′4
k+1, s

′,p′) ≈ ϕi(t
4
k, s,p)

holds for each i ∈ N4
k \

{
n4
k

}
. Therefore, pij > 0.5 and ϕj(t

4
k, s,p) >

ϕi(t
4
k, s,p) holds for some i, j ∈ N4

k . Hence, we have a contradiction to

the hypothesis that (t4k, N
4
k ) satisfies MS, which completes the proof of the

claim.

Note that this claim holds also for k+ 1 =
∣∣M4

∣∣. In this particular case,

tk+1 = t4|M4| = t30 = t∗ which leaves us with the following three possibilities:

(i) There are two leaves at distance 2 from vA0 ; that is, there is no ex-

tension from any leaf at distance 2 from vA0 and, therefore, t∗ is a limited

extension from the root of a (symmetric or asymmetric) antler.

(ii) There is a unique leaf at distance 2 from vA0 . In this case, t∗ is a

limited extension from the root of a one-bye antler.

(iii) There are no leaves at distance 2 from vA0 . In this case, t∗ is a limited

extension from the root of a balanced tree of height 3.

For each of these three possible cases, we have proven in the previous

steps that no competition whose graph is t∗ = t4|M4| does satisfy MS.

Now, for any k ∈ {0, . . . ,
∣∣M4

∣∣ − 1}, take any competition (t4k, N
4
k )

with t4k ∈ T 4
k . Note that from (t4k, N

4
k ) it is always possible to define a

sequence (t4k, N
4
k ), (t4k+1, N

4
k+1), . . . , (t4|M4|, N

4
|M4|) by removing the match at

level d(v0, v
A
0 )+4 where the corresponding worst player n4

k, n
4
k+1, . . ., n4

|M4|−1

has been seeded. Given that (t4|M4|, N
4
|M4|) violates MS, and considering the

claim, an inductive argument also allows to prove that (t4k, N
4
k ) violates MS.

Therefore, in particular, (t40, N
4
0 ) violates MS. Recalling that t5|M5| = t40, we

can recursively replicate the inductive argument at level d(v0, v
A
0 ) + 5 to
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conclude that for all k ∈
{

0, 1, . . . ,
∣∣M5

∣∣− 1
}

, every competition (t5k, N
5
k )

with t5k ∈ T 5
k violates MS. The reasoning can be successively applied when t

has been truncated at higher levels, until we reach the tree t = t
h(t)−d(v0,vA0 )
0 ,

which proves that the competition system (t,N) violates MS.

Step 9 Let (t,N) be an elimination competition with t containing an antler.

Then, (t,N) violates MS.

Proof. The statement follows from the fact that if a tree t contains an

antler, then, clearly, it is some form of extension from the leaves of a limited

extension from the root of an antler and by Step 8.

Step 10 Let (t,N) be an elimination competition with t being antler-free.

Then, (t,N) satisfies MS with respect to s ∈ S(t,N) only if s = sib.

Proof. We proceed by reduction to the absurd. We assume that (t,N)

satisfies MS, s 6= sib, and show that this leads to a contradiction. In other

words, we show that, given a strength ordering R defined on N , it is possible

to find a probability matrix p ∈ PR such that if s 6= sib then there exist

i, j ∈ N such that pij > 0.5 but ϕi(t, s,p) < ϕj(t, s,p).

We know from Lemma 3 that for (t,N) to satisfy MS, it should be the

case that for any probability matrix p, and any λ, λ′ ∈ Λ(t), `(λ) < `(λ′)

implies ps(λ),s(λ′) ≥ 0.5. Moreover, by Lemma 1, t ∈ ES∗2 . Take now a

maximal root-to-leaf path γ(t) and note that for any probability matrix p,

s 6= sib implies either that

(i) There exist leaves λa, λb ∈ Λ(t) with `(λa) = `(λb) < h(t) such

that: (1) only λa has an immediate predecessor belonging to Vγ(t) and (2)

ps(λb),s(λa) > 0.5, or that

(ii)
∣∣Λh(t)(t)

∣∣ = 4 with the players in
{
s(λ) : λ ∈ Λh(t)(t)

}
not being

seeded in a balanced way.

We proceed by showing that in both cases we reach a contradiction.

Case (i) Let k be the number of players seeded by s to leaves at higher level

than `(λa) = `(λb). We construct the desired p in three steps.

First, we set pn−k,n−k+1 > 0.5 and pn−k+1,z ≈ 1 to hold for each z >

n − k + 1. By Lemma 3, the set of players seeded to the leaves at higher
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level than `(λa) is {n, n− 1, . . . , n− k + 1}. Thus, the probability pv
s(λa)

n−k+1

with which player n− k+ 1 reaches node vs(λa) ∈ Vγ(t) is arbitrarily close to

1.

Second, let x1, x2, and x3 be the three players seeded to the three

leaves at level `(λa) and set px1x2 ≥ 0.5 and px2x3 ≥ 0.5. By construc-

tion, px3,(n−k+1) > 0.5. Note also that, with a probability arbitrary close to

1, the players (n − k + 1), x1, x2, and x3 play a balanced sub-competition

at level `(λa) with the root of the sub-competition being v ∈ Vγ(t) with

`(v) = `(λa) − 2. Moreover, by hypothesis, n − k + 1 plays a match

against some player xi (i ∈ {2, 3}) such that px1xi > 0.5. Therefore, by

Lemma 2, it is possible to define a probability matrix p′ on the player set

{n−k+ 1, x1, x2, x3} such that there are players i, j ∈ {n−k+ 1, x1, x2, x3}
with p′ij > 0.5 and p′vi < p′vj . Moreover, we know by the proof of Lemma 2

that p′ can always be constructed in such a way that p′iw ≈ p′jw holds for

each w ∈ {n − k + 1, x1, x2, x3}. We then take pxy = p′xy to hold for all

x, y ∈ {n− k + 1, x1, x2, x3}. This implies that, according to p, pvi < pvj . It

also implies piw ≈ pjw for each w ∈ {n− k + 1, x1, x2, x3}.
Third, we take pzx1 = 0.5 to hold for each z ∈ N who is seeded at a

lower level than `(λa). That is, every player who is seeded at a lower level

than `(λa) is considered as being equally strong as the strongest player at

level `(λa). Note that the latter fact together with pn−k+1,z ≈ 1 for each

z > n− k + 1 implies piw ≈ pjw for each w ∈ N .

In summary, the constructed probability matrix p is as follows: the

restriction of p on the player set {n − k + 1, x1, x2, x3} is p′; x1 is equally

strong as every player who is seeded at lower levels; and, each player in

{n − k + 1, x1, x2, x3} wins with a probability close to 1 the match against

any player being seeded at higher levels and is different from n−k+1. Now,

by using the notation of Step 1 and recalling that `(v) = `(λa)− 2, we have

ϕi(t, s,p) = pvi (s) ·
∏
x∈S1

v′ (s),`(v
′)<`(v) pix ·

∏
y,z∈S2

v′ (s),`(v
′)<`(v)(piypyz +

pizpzy)

and

ϕj(t, s,p) = pvj (s) ·
∏
x∈S1

v′ (s),`(v
′)<`(v) pjx ·

∏
y,z∈S2

v′ (s),`(v
′)<`(v)(pjypyz +
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pjzpzy).

Then, we have that pvj > pvi , pix ≈ pjx for each x ∈ N , and because pyz

(pzy) is independent of any other parameter in the respective formulae for i

and j, we conclude that ϕj(t, s,p) > ϕi(t, s,p) should also hold, which is in

contradiction to (t,N) satisfying MS with respect to s in this case.

Case (ii) Note that in this case
∣∣Λh(t)

∣∣ = 4 implies that the node v ∈ Vγ(t)

with `(v) = h(t)− 2 is the root of a balanced subtree of t. We construct the

desired p in two steps.

First, let {a, b, c, d} ⊆ N be the set of players seeded to the leaves in

Λh(t). It follows then from Lemma 2 that, for each of the two possible

non-balanced seedings of the players in {a, b, c, d} to the leaves in Λh(t),

there exists a probability matrix p′ on {a, b, c, d} such that p′ij > 0.5 and

p′vj > p′vi holds for some i, j ∈ {a, b, c, d}. Moreover, it follows from the proof

of Lemma 2 that p′ can be constructed in such a way that p′ij ≈ 0.5 and

p′iw ≈ p′jw for each w ∈ {a, b, c, d}. Thus, we take p to be such that pxy = p′xy

for all x, y ∈ {a, b, c, d}. Let a be a strongest player and d a weakest player

among those in {a, b, c, d}. By Lemma 3, for all players x ∈ N \ {a, b, c, d}
and i ∈ {a, b, c, d}, pxi ≥ 0.5.

Second, we set pzw = 0.5 to hold for all z, w ∈ N \ {b, c, d}.
Thus, p is as follows: the restriction of p on the player set {a, b, c, d} is

p′, while each of the remaining players (who are seeded to leaves at lower

levels that h(t) in the tree) is considered as equally strong as the strongest

player in {a, b, c, d}. Moreover, p′iw ≈ p′jw holding for each w ∈ {a, b, c, d}
implies by construction that piw ≈ pjw is also true for each w ∈ N .

By using the notation of Step 1 and recalling that `(v) = h(t) − 2, we

have

ϕi(t, s,p) = pvi (s) ·
∏
x∈S1

v′ (s):`(v
′)<`(v) pix ·

∏
y,z∈S2

v′ (s):`(v
′)<`(v)(piypyz +

pizpzy)

and

ϕj(t, s,p) = pvj (s) ·
∏
x∈S1

v′ (s):`(v
′)<`(v) pjx ·

∏
y,z∈S2

v′ (s):`(v
′)<`(v)(pjypyz +

pjzpzy).
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Again we have that pvj > pvi , pix ≈ pjx for each x ∈ N , and because pyz

(pzy) is independent of any other parameter in the respective formulae for i

and j, we conclude that ϕj(t, s,p) > ϕi(t, s,p) holds. Thus, we have again

a contradiction to (t,N) satisfying MS with respect to s. This completes

the proof of Theorem 1.

Next we prove Theorems 2 and 3 for axioms ET and WET. The presen-

tation of the proofs turns out to be more efficient if Theorem 3 is proved

before Theorem 2.

Proof of Theorem 3. Let (t,N) be an elimination competition with t

being balanced and let s ∈ S(t,N) be an arbitrary but fixed seeding. Given

the balancedness of t, any of its leaves has the same level coinciding with

h(t). Then, by pij = 0.5 for all i, j ∈ N , ϕi(t, s,p) = (0.5)h(t) holds for each

i ∈ N . Thus, (t,N) satisfies WET.

Suppose now that (t,N) is an elimination competition satisfying WET

but such that t is not balanced. Suppose that iIj holds for all i, j ∈ N and

thus, pij = 0.5 for all i, j ∈ N . Let s ∈ S(G,N) be the seeding with respect

to which (t,N) satisfies WET. Given that t is not balanced there are leaves

λ, λ′ ∈ Λ(t) with `(λ) 6= `(λ′). We have then ϕs(λ)(t, s,p) = (0.5)`(λ) 6=
(0.5)`(λ

′) = ϕs(λ′)(t, s,p) in contradiction to (t,N) satisfying WET.

Proof of Theorem 2. The proof for (t,N) satisfying ET when t is an

elementary binary tree (and thus |N | = 2) is immediate.

Let us now prove that if (t,N) satisfies ET, then t is an elementary

binary tree. Note first that the structure of the proof of Theorem 3 de facto

proves that if t is not a balanced tree then (t,N) violates ET (as being a

stronger axiom than WET). Therefore we have to prove that if (t,N) is

an admissible competition such that t is balanced and |N | > 2, (that is,

h(t) > 1) then (t,N) violates ET.

Let (t,N) be any admissible competition as above and consider R such

that 1I2I . . . I(n− 1)Pn holds. Take any probability matrix p ∈ PR. Note

that pin > 0.5 and pij = 0.5 holds for all i, j ∈ N \{n} and j 6= i. Denote by

t` and tr the unique proper sub-trees of t such that h(t`) = h(tr) = h(t)− 1.
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Take any s ∈ St,N and denote by N` and Nr the set of players seeded by

s to the leaves of t` and tr, respectively. Assume without loss of generality

that n ∈ N`.

For k ∈ {`, r} let the notations s|tk and p|k stand for the restriction

of s to tk and of p to Nk, respectively. Notice then that for k ∈ {`, r}
and i ∈ Nk, ϕi(tk, s|tk ,p|k) is the probability that player i wins the sub-

competition (tk, Nk).

Claim: If (t`, N`) violates ET, then (t,N) violates ET as well.

Proof of the claim: Suppose that (t`, N`) violates ET, that is, there are

i, j ∈ N` such that iIj and ϕi(t`, s|t` ,p|`) 6= ϕj(t`, s|t` ,p|`). Notice that

ϕi(t, s,p) = ϕi(t`, s|t` ,p|`) ·
∑
q∈Nr

piqϕq(tr, s|tr ,p|r)

and

ϕj(t, s,p) = ϕj(t`, s|t` ,p|`) ·
∑
q∈Nr

pjqϕq(tr, s|tr ,p|r).

Since pij = 0.5 implies by (2) that piq = pjq holds for all q ∈ Nr, we

conclude from ϕi(t`, s|t` ,p|`) 6= ϕj(t`, s|t` ,p|`) that ϕi(t, s,p) 6= ϕj(t, s,p).

Consider now the unique sub-tree t∗ of t` with h(t∗) = 2 and n being

seeded by s to a leaf of t∗. Let {m1,m2,m3} be the set of the other three

players seeded by s to the leaves of t∗ and suppose that, without loss of

generality, players m3 and n play an initial match. For the probabilities of

players m2 and m3 to win the sub-competition (t∗, {m1,m2,m3, n}) we get

ϕm2(t∗, s|t∗ ,p|{m1,m2,m3,n}) = pm2,m1 ·pm2,m3 ·pm3,n+pm2,m1 ·pm2,n ·pn,m3

and

ϕm3(t∗, s|t∗ ,p|{m1,m2,m3,n}) = pm3,n · pm3,m1 · pm1,m2 + pm3,n · pm3,m2 ·
pm2,m1 .

Recall that pm′,n > 0, 5 and pm′,nm′′ = 0, 5 holds for all m′,m′′ ∈
{m1,m2,m3} and m′ 6= m′′. We conclude then that

ϕm3(t∗, s|t∗ ,p|{m1,m2,m3,n}) > ϕm2(t∗, s|t∗ ,p|{m1,m2,m3,n}). Since pm2,m3 =

0.5, the sub-competition (t∗, {m1,m2,m3, n}) violates ET.

Finally, by using the above claim and applying a consecutive reasoning

as many times as necessary, we conclude that any admissible competition
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(t,N) with t being a balanced tree and h(t) > 2 violates ET.
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