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Abstract

Unexpected service disruptions in transportation systems caused by accidents, sys-

tem breakdowns, poor weather conditions, etc., are quite common. When disruptions

occur, rescheduling of vehicles is often needed in order to mitigate the damage caused by

the disruptions. In integrated production and outbound distribution systems, a disrup-

tion in outbound distribution operation affects not only the delivery plan but also the

production schedule. In this paper, we consider a simple integrated scheduling model

of production and outbound deliveries with a minimum headway constraint between

vehicle departures, and study the situation where an optimal solution of the integrated

scheduling model has been obtained but the delivery service is suddenly unavailable for

a certain time period due to some unexpected incidents. We would like to determine

a new production and delivery schedule in which no delivery takes place during the

unavailable period. The objective is to simultaneously maintain a low cost schedule and

control the magnitude of changes in the delivery times of the finished goods. We con-

sider three different ways to control the time disruption, and develop polynomial-time

algorithms for the corresponding problems.

Keywords: Scheduling; rescheduling; outbound delivery; transportation disruption; dy-

namic programming



1 Introduction

Unexpected service disruptions in transportation systems caused by accidents, system breakdowns,

poor weather conditions, etc., are quite common. When disruptions occur, rescheduling of vehicles

is often needed in order to mitigate the damage caused by the disruptions. In some systems,

production scheduling and outbound distribution planning are performed simultaneously. This kind

of integrated planning is typically used in make-to-order environments in which there is a need to

deliver finished goods to customers with a very short lead time. In these integrated production and

outbound distribution systems, a disruption in outbound distribution operation affects not only

the delivery plan but also the production schedule, since a revised job sequence that groups the

jobs into a smaller number of shipments often enables the finished jobs to be delivered to different

customers more effectively when the disruption period is over. This increases the complexity of

the rescheduling decisions. A common phenomenon after a disruption period is that a large group

of backlogged finished jobs needs to be delivered to customers. However, in many transportation

systems, simultaneous departure of delivery vehicles from the production facility is impossible.

This occurs, for example, when the loading dock of the outbound vehicles has limited capacity, or

when there is a safety clearance requirement between vehicles, etc. Hence, a minimum headway

constraint often exists between departure times of vehicles, and this further increases the difficulty

of the rescheduling decisions.

Rescheduling of deliveries will affect the arrival times of the finished orders at the customers’ lo-

cations. Both early and late arrivals are undesirable, as they will disrupt the customers’ operations.

Orders arriving earlier than planned will increase customers’ inventories, while orders arriving later

than planned will slow down customers’ operations. A simple disruption control mechanism is to

penalize the deviation of the finished order arrival time from the original arrival time at a constant

rate per unit time. However, in some operations where the products are time-sensitive, an excessive

amount of change in finished order arrival time occurring to some deliveries is highly undesirable.

In such a case, controlling the maximum deviation of finished order arrival time from the original

arrival time is more appropriate. In some applications, a promise of on-time delivery is given to

1



customers. For those applications, the amount of deviation of finished order arrival time from the

original arrival time is subject to a maximum tolerance.

In this paper, we consider a simple integrated scheduling model of production and outbound

deliveries, and consider the situation where an optimal solution of the integrated scheduling model

has been obtained but the delivery service is suddenly unavailable for a certain time period due to

some unexpected incidents. We would like to determine a new production and delivery schedule

in which no delivery takes place during the unavailable period and there is a minimum headway

constraint between vehicle departures. The objective is to simultaneously maintain a low cost

schedule and control the magnitude of changes in the delivery times of the finished goods. We

consider three possible ways to control the magnitude of changes in the delivery times. The goal

of this research is to develop methods for rescheduling the production and delivery efficiently.

Integrated scheduling of production and outbound distribution has been studied extensively.

Different studies have considered models with different machine environments in the production

facility, different constraints on the jobs, different inventory characteristics, different forms of de-

livery, different numbers of customers, and different performance measures. A number of surveys

on these studies have appeared in the literature; see, for example, Chen (2004, 2010), Wang et

al. (2015), and Moons et al. (2017). Various applications of integrated production and outbound

distribution scheduling models have also been reported. Wang et al. (2005) studied a United States

Postal Service mail processing and distribution center’s operations and presented an optimization

model to determine the processing sequence of the incoming mail that best matches a given out-

bound truck delivery schedule. Motivated by the operations of a make-to-order based PC assembly

manufacturer, Li et al. (2004, 2005, 2006) analyzed several problems with the aim to synchronize

the assembly schedule and the allocation of available flight capacity for delivery. Motivated by the

operations of Dell, which adopts a “commit-to-delivery” business mode in a make-to-order environ-

ment, Stecke and Zhao (2007) analyzed production scheduling problems that minimize the total

shipping cost of customer orders, where the delivery service is performed by a third-party logis-

tics company. Geismar and Murthy (2015) considered the operations of a paper manufacturing

plant, where delivery is made by railcars. They analyzed the cost reduction obtained through the
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coordination of production and distribution. Motivated by steel coil production, Li et al. (2017)

and Tang et al. (2019) studied different integrated production, inventory, and delivery problems in

which finished jobs need to be delivered to customer sites by transporters. Lmariouh et al. (2019)

studied the production and distribution process of a bottled-water company, and they developed

a mathematical programming model for integrated production, inventory, and transportation deci-

sions.

Rescheduling of production operations has been studied for different causes of scheduling dis-

ruptions. These include studies of rescheduling a disrupted schedule caused by machine breakdown

(see, e.g., Yin et al. 2016), arrivals of new orders (see, e.g., Hall and Potts 2004), job unavail-

ability (see, e.g., Hall and Potts 2010), job rework (see, e.g., Liu and Zhou 2013), etc. Herrmann

(2006) provided a review of basic concepts about rescheduling and discussed different rescheduling

strategies, policies, and methods. Rescheduling of transportation services has also been studied

extensively. Visentini et al. (2014) provided a recent survey on these works. Some studies specifi-

cally focus on particular types of transportation services. Clausen et al. (2010) conducted a review

on the literature on disruption and recovery of aircraft schedules, while Cacchiani et al. (2014)

conducted a review on the literature on railway rescheduling.

Despite the great deal of rescheduling research on operations scheduling models and trans-

portation models, very few studies have considered rescheduling issues in integrated production

and outbound distribution systems. Cai and Zhou (2014) considered a problem involving a firm

which produces fresh products to supply to an export market as well as a local market. When the

transportation service to the export market is disrupted with an uncertain time period of unavail-

ability, the firm needs to decide whether it should let the finished products wait and increase the

risk of decay, or put them for sale in the local market. For unfinished products, the firm needs to

decide on the production start times and processing sequence. Unlike Cai and Zhou’s work, our

rescheduling model on integrated production and outbound distribution focuses on rescheduling

both the production operation and the delivery plan when the outbound delivery service is dis-

rupted for a known period of time. Other works that involve disruptions in integrated production

and distribution systems include, for example, Hishamuddin et al. (2013) who considered lot-sizing
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decisions in a production and inventory system when the transportation service is disrupted, Sawik

(2016) who studied the scheduling of multi-stage supply chains subject to disruption risks, and Giri

and Sarkar (2017) who developed mechanisms for coordinating a supply chain with a third-party lo-

gistics service provider when there is a possibility of disruption in the production operation. Unlike

these works, the production part of our integrated production and outbound distribution system

is modeled as a single machine that processes jobs for different customers. For a recent survey of

disruption recovery research in supply chains, see Ivanov et al. (2017).

The underlying integrated production and outbound delivery scheduling model that we consider

in this paper can be described as follows. There is a production facility, which we refer to as a “ma-

chine,” that processes customer orders, which we refer to as “jobs,” one by one. The jobs belong to

different customers, and finished jobs are delivered to the customers by vehicles. There are a small

number of customers at different locations, and there are sufficient homogeneous vehicles available.

Each vehicle can carry multiple finished jobs that belong to the same customer in each delivery,

and each delivery incurs a constant cost. There is a minimum headway requirement between two

consecutive vehicle departures. The objective of the underlying model is a weighted sum of the

total arrival time of finished jobs at the customer locations and the total cost of delivery. In our

rescheduling model, we assume that an optimal solution of the underlying integrated production

and outbound delivery scheduling problem is known, but there is an unexpected disruption causing

the delivery service to shut down completely for a certain time period. Our rescheduling model’s

decisions include resequencing the jobs in the production facility and re-determining the departure

times of the finished jobs from the production facility. We use the same “time disruption” mea-

surement as in Hall and Potts (2004, 2010) and Hall et al. (2007) to measure the damage caused

by the disruption. As mentioned earlier, different applications require different ways to control the

delivery time disruptions. Hence, we consider three different approaches: (i) to impose a penalty

on the total delivery time disruption of the jobs; (ii) to impose a constraint on the maximum deliv-

ery time disruption among the jobs; and (iii) to impose a penalty on the maximum delivery time

disruption among the jobs. These result in three variants of the rescheduling model.

The rest of the paper is organized as follows. In Section 2, we provide a mathematical description
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and some important properties of our model. In Section 3, we propose methods for determining the

optimal solutions to the three variants of the rescheduling model. Section 4 discusses the special case

with no minimum headway requirement. Section 5 concludes this study and suggests some future

research directions. The proofs of all lemmas are presented in the Appendix (see Supplementary

Materials).

2 Model Definitions and Properties

In this section, we provide a mathematical description and some important properties of our model.

The underlying integrated production and outbound delivery problem is discussed in Section 2.1,

while the corresponding rescheduling problems are discussed in Section 2.2.

2.1 The Underlying Integrated Production and Outbound Delivery Problem

The underlying integrated production and outbound delivery problem being considered can be

described mathematically as follows. There are a given set of n jobs J = {J1, J2, . . . , Jn} and a

given set of k customers K = {K1, K2, . . . , Kk}, where k is fixed. The jobs need to go through a

production operation, and the completed jobs need to be delivered to their customers located at

different locations. In the production operation, jobs are processed by a single machine without

preemption. All jobs are available for processing at time 0. For i = 1, 2, . . . , k, let Ji ⊆ J be

the subset of jobs that need to be delivered to customer Ki, and let Ji = {Ji1, Ji2, . . . , Jini
},

where ni = |Ji|. Then, J1 ∪ J2 ∪ · · · ∪ Jk = J and n1 + n2 + · · ·+ nk = n. For i = 1, 2, . . . , k

and j = 1, 2, . . . , ni, let pij > 0 be the processing time of Jij in the production operation. For

notational convenience, we assume the jobs are indexed in such a way that pi1 ≤ pi2 ≤ · · · ≤ pini

for all i = 1, 2, . . . , k. Sufficient delivery vehicles are available, and each vehicle can carry up to c

completed jobs per shipment to a customer location, where c ≤ n. Each shipment going to customer

Ki incurs a fixed cost φi ≥ 0, and the travel time between the production facility and customer Ki

is τi ≥ 0, for i = 1, 2, . . . , k. Jobs that belong to different customers cannot be delivered together

in the same shipment. A feasible solution π of the problem comprises a production schedule and
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a delivery schedule of the jobs. Let Eij(π) denote the departure time of Jij from the production

facility after Jij completes its production operation, Dij(π) denote the time when Jij arrives at

customer Ki, and ri(π) denote the number of shipments used for delivering the jobs to customer

Ki. The departure times of any two consecutive shipments must be at least δ ≥ 0 time units

apart. Thus, for any Jij and Jhl, a feasible solution π requires |Eij(π) − Ehl(π)| to be either

0 or at least δ. We refer to δ as the “minimum headway” of departures. Note that Dij(π) =

Eij(π) + τi. The time-based performance, which is a measurement of customer service, is given by

∑k
i=1

∑ni

j=1 Dij(π), while the total cost of delivery is
∑k

i=1 ri(π)φi. The objective of this problem

is to determine a solution π such that

Γ0(π) = α

k
∑

i=1

ni
∑

j=1

Dij(π) + β

k
∑

i=1

ri(π)φi

is minimized, where α, β ≥ 0 are input parameters that represent the importance of the two

performance measures. Let

Γ̃0(π) = α
k

∑

i=1

ni
∑

j=1

Eij(π) + β
k

∑

i=1

ri(π)φi.

Since Γ̃0(π) differs from Γ0(π) by a constant α
∑k

i=1 niτi for any solution π, minimizing Γ0(π) is

equivalent to minimizing Γ̃0(π). We denote the problem as problem P0.

In many applications, the minimum headway δ is very small compared to job processing

times. If δ is no greater than the processing time of any job in the production operation (i.e.,

δ ≤ minJij∈J {pij}), then any feasible solution of problem P0 satisfies the minimum headway

constraint, and problem P0 becomes the same as problem (P2) in Chen and Vairaktarakis (2005),

except we assume k is fixed. Problem (P2) in Chen and Vairaktarakis (2005), if expressed in Chen’s

(2010) notation, is problem 1||V (∞, c), direct|k|
∑

Dj + TC. Hall and Potts (2003, sec. 3.1) have

presented a dynamic programming algorithm for the problem 1||V (∞,∞), direct|k|
∑

Dj + TC

with an O(nk+1) running time, and this computational complexity remains valid for problem

1||V (∞, c), direct|k|
∑

Dj + TC (see Table 5 in Chen 2010). Hence, under the condition “δ ≤

minJij∈J {pij},” problem P0 is solvable in O(nk+1) time. Note that when k is not fixed, whether or

not problem 1||V (∞,∞), direct|k|
∑

Dj + TC can be solved in polynomial time remains an open

question (see Table 5 in Chen 2010).
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Hall and Potts (2003) have shown that problem 1||V (∞,∞), direct|k|
∑

Dj + TC possesses the

following optimality properties:

(C1) There is no idle time between jobs in the production schedule.

(C2) Jobs that belong to the same shipment are processed consecutively by the machine.

(C3) A job which is processed earlier is delivered no later than a job which is processed later.

(C4) Jobs that belong to the same customer are processed by the machine in SPT order (i.e.,

nondecreasing order of processing times).

We will show that properties (C1)–(C4), as well as the following optimality property, also holds

for problem P0:

(C5) The departure time of each shipment is either equal to the completion time of production of

the last job in that shipment, or equal to the departure time of the previous shipment plus δ

(if the current shipment is not the first shipment).

Lemma 1 There exists an optimal solution of problem P0 which satisfies properties (C1)–(C5).

To enhance the applicability of our model, we do not restrict our analysis to the case where

δ ≤ minJij∈J {pij}. In the following, we present an algorithm that determines an optimal solution

of problem P0 for any δ ≥ 0. Let

E0 =

{

k
∑

i=1

qi
∑

j=1

pij + yδ

∣

∣

∣

∣

∣

qi = 0, 1, . . . , ni for i = 1, . . . , k; y = 0, 1, . . . , n− 1

}

.

The set E0 contains all possible shipment departure times in an optimal solution that satisfies

properties (C1)–(C5). The following dynamic program determines an optimal solution of P0 that

satisfies these properties.

Algorithm A0

Preprocessing :

For each (q1, . . . , qk), where qi = 0, 1, . . . , ni for i = 1, 2, . . . , k, determine
∑k

i=1

∑qi

j=1 pij. De-

termine the elements of E0 and arrange them in ascending order.

Value function:
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f(q1, . . . , qk; t) = minimum total cost Γ̃0(π
′) of a partial schedule π′ for processing and delivering

jobs Ji1, Ji2, . . . , Jiqi
, for i = 1, 2, . . . , k, such that the departure time of the last shipment is

equal to t.

Recursive relation: For qi = 0, 1, . . . , ni (i = 1, 2, . . . , k) such that
∑k

i=1 qi ≥ 1, and for t ∈ E0 such

that t ≥
∑k

i=1

∑qi

j=1 pij:

f(q1, . . . , qk; t) =



















































min
{

f(q1, . . . , qh−1, q
′
h, qh+1, . . . , qk; t− δ) + α(qh − q′h)t + βφh

∣

∣ h = 1, . . . , k;

0 ≤ q′h < qh such that qh − q′h ≤ c
}

, if t >
∑k

i=1

∑qi

j=1 pij;

min
{

f(q1, . . . , qh−1, q
′
h, qh+1, . . . , qk; t

′) + α(qh − q′h)t + βφh

∣

∣ h = 1, . . . , k;

0 ≤ q′h < qh such that qh − q′h ≤ c; t′ ∈ E0 such that
∑k

i=1

∑qi

j=1 pij −
∑qh

j=q′
h
+1

phj ≤ t′ ≤ t− δ
}

, if t =
∑k

i=1

∑qi

j=1 pij.

Boundary conditions :

f(0, . . . , 0; 0) = 0;

f(0, . . . , 0; t) = +∞ if t ∈ E0;

f(q1, . . . , qk; t) = +∞ if t /∈ E0 or (t ∈ E0 and t <
∑k

i=1

∑qi

j=1 pij).

Optimal solution value: min
{

f(n1, . . . , nk; t)
∣

∣ t ∈ E0; t ≥
∑k

i=1

∑ni

j=1 pij

}

.

Theorem 1 Algorithm A0 finds an optimal solution for problem P0 in O(cn2k+1) time.

Proof. Suppose that a partial production and delivery schedule comprising the first qi jobs of

customer Ki, for i = 1, 2, . . . , k, has been formed. Let t be the departure time of the last shipment

in this partial schedule, and suppose the last shipment is for customer Kh and contains qh−q′h jobs.

We consider two different scenarios. The first scenario is t >
∑k

i=1

∑qi

j=1 pij. Under this scenario,

by property (C5), the departure time of the second last shipment is equal to t−δ, and the recursive

relation enumerates all possible values of h and q′h of this partial schedule. The second scenario

is t =
∑k

i=1

∑qi

j=1 pij . Under this scenario, the recursive relation not only enumerates all possible

values of h and q′h of the partial schedule, but it also enumerates all possible departure times of the

second last shipment. The minimum headway constraint implies that the departure time t′ of the

second last shipment is no greater than t − δ, and t′ must be no less than the completion time of

production of the second last shipment. Thus,
∑k

i=1

∑qi

j=1 pij −
∑qh

j=q′h+1
phj ≤ t′ ≤ t− δ. Hence,
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algorithm A0 compares all possible solutions that satisfy the properties in Lemma 1. Therefore,

algorithm A0 finds an optimal solution of problem P0.

In the preprocessing step, the quantity “
∑k

i=1

∑qi

j=1 pij” can be computed recursively for all

possible q1, q2, . . . , qk values in O(nk) time. Because E0 contains O(nk+1) elements and there are

O(nk) combinations of q1, q2, . . . , qk, the recurrence relation of A0 is executed O(n2k+1) times.

Among these O(n2k+1) executions of the recurrence relation, only O(nk) executions are for the sec-

ond scenario. Each execution of the first scenario requires O(c) time, which covers the enumeration

of O(1) possible customer Kh for the last shipment and the enumeration of O(c) possible values of

q′h. Each execution of the second scenario requires O(cnk+1) time, which covers the enumeration of

O(1) possible customers Kh for the last shipment, O(c) possible values of q′h, and O(nk+1) possible

values of t′. Hence, algorithm A0 requires O(n2k+1 · c + nk · cnk+1) = O(cn2k+1) time.

Algorithm A0 has a similar structure as some dynamic programs developed for other integrated

production and distribution models, where the value functions make use of multiple parameters to

keep track of the number of completed jobs for each customer (see, e.g., algorithm SF in Hall and

Potts 2003, algorithm DP2 in Chen and Vairaktarakis 2005, and algorithm A1 in Li et al. 2017).

The main difference between algorithm A0 and these dynamic programs is that algorithm A0 also

enumerates the shipment departure times in the set E0.

2.2 The Rescheduling Problems

In the rescheduling model, we consider the situation where an optimal solution π∗ of P0 that

satisfies (C1)–(C5) has been obtained. However, due to some unexpected incidents, the delivery

service is unavailable during the time period [0, T ). As a result, both production and delivery need

to be rescheduled. As mentioned in Section 1, we consider three possible ways to limit the time

disruption. Thus, we consider three variants of the rescheduling model.

The first variant is to determine a solution σ with Eij(σ) ≥ T for i = 1, 2, . . . , k and j =

1, 2, . . . , ni, such that

Γ1(σ) = α

k
∑

i=1

ni
∑

j=1

Dij(σ) + β

k
∑

i=1

ri(σ)φi + γ

k
∑

i=1

ni
∑

j=1

|Dij(σ)−Dij(π
∗)|
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is minimized, and that any two consecutive shipments are at least δ time units apart. In this cost

function, |Dij(σ)−Dij(π
∗)| is the delivery time disruption of Jij, and γ ≥ 0 is an input parame-

ter that represents the importance of the additional performance measure “
∑k

i=1

∑ni

j=1 |Dij(σ) −

Dij(π
∗)|.” We denote this variant as problem P1, which penalizes the delivery time disruption at

a constant rate per unit time for each job. Let

Γ̃1(σ) = α

k
∑

i=1

ni
∑

j=1

Eij(σ) + β

k
∑

i=1

ri(σ)φi + γ

k
∑

i=1

ni
∑

j=1

|Eij(σ)− Eij(π
∗)|.

Note that Γ1(σ) = Γ̃1(σ) + α
∑k

i=1 niτi for any solution σ. Hence, minimizing Γ1(σ) is equivalent

to minimizing Γ̃1(σ).

The second variant is to determine a solution σ with Eij(σ) ≥ T for i = 1, 2, . . . , k and j =

1, 2, . . . , ni, such that

max
i=1,...,k; j=1,...,ni

|Dij(σ)−Dij(π
∗)| ≤ θ, (1)

and that

Γ2(σ) = α

k
∑

i=1

ni
∑

j=1

Dij(σ) + β

k
∑

i=1

ri(σ)φi

is minimized, and that any two consecutive shipments are at least δ time units apart, where θ ≥ 0

is an input parameter. We denote this variant as problem P2. This variant is applicable to the

situation where a promise of on-time delivery is given to customers, and thus a maximum tolerance

θ is imposed on the delivery time disruption of every job (see Hall and Potts 2004 for a similar

“maximum time disruption” constraint in one of their models). Let

Γ̃2(σ) = α

k
∑

i=1

ni
∑

j=1

Eij(σ) + β

k
∑

i=1

ri(σ)φi.

Note that minimizing Γ2(σ) is equivalent to minimizing Γ̃2(σ), and constraint (1) is equivalent to

the constraint

max
i=1,...,k; j=1,...,ni

|Eij(σ)− Eij(π
∗)| ≤ θ. (2)

The third variant is to determine a solution σ with Eij(σ) ≥ T for i = 1, 2, . . . , k and j =

1, 2, . . . , ni, such that

Γ3(σ) = α

k
∑

i=1

ni
∑

j=1

Dij(σ) + β

k
∑

i=1

ri(σ)φi + γ max
i=1,...,k; j=1,...,ni

|Dij(σ)−Dij(π
∗)|

10



is minimized, and that any two consecutive shipments are at least δ time units apart, where

γ ≥ 0 is an input parameter that represents the importance of the additional performance measure

“maxi=1,...,k; j=1,...,ni
|Dij(σ) − Dij(π

∗)|.” We denote this problem as problem P3. This variant is

applicable to the situation where an excessive change in delivery time occurring to some jobs needs

to be discouraged. Let

Γ̃3(σ) = α

k
∑

i=1

ni
∑

j=1

Eij(σ) + β

k
∑

i=1

ri(σ)φi + γ max
i=1,...,k; j=1,...,ni

|Eij(σ)−Eij(π
∗)|.

Note that minimizing Γ3(σ) is equivalent to minimizing Γ̃3(σ).

As will be discussed in Section 3.3, our proposed method for solving problem P3 requires the

solving of problem P2 for different values of parameter θ. Thus, problem P2 can be viewed as a

stepping stone for solving problem P3. Note that problems P1 and P3 are always feasible, while

problem P2 may be infeasible.

Lemma 2 For m = 1, 2, 3, if problem Pm is feasible, then there exists an optimal solution of Pm

that satisfies properties (C1)–(C3) in which the jobs belonging to each customer are processed by

the machine in the same SPT sequence as in π∗.

Note that the optimal solution of Pm mentioned in Lemma 2 not only satisfies property (C4),

but its SPT processing sequence is the same as that of π∗. However, this optimal solution may

not satisfy property (C5); see the numerical example presented in Section 3.1, which shows that

property (C5) does not necessarily hold for problem P1.

Remark 1 Problems P1, P2, and P3 can be applied to the situation where some jobs have been

completed before time zero but have not been delivered. Under this situation, we replace those

completed jobs by dummy jobs with zero processing times. It is easy to check that Lemmas 1 and 2

remain valid after replacing the processing times of the completed jobs by zero.
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3 Solution Methods

We consider the situation where an optimal solution π∗ of P0 that satisfies (C1)–(C5) has been

obtained. In the following subsections, we present solution methods for the rescheduling problems

P1, P2, and P3. Results of a computational study are also reported.

3.1 Solution Method for Problem P1

The following lemma provides some optimality properties of problem P1.

Lemma 3 There exists an optimal solution of P1 which satisfies the properties in Lemma 2 such

that the departure time of each shipment is equal to one of the following values: (i) T ; (ii) one

of the values in E0 minus yδ, for some y = 0, 1, . . . , n − 1; or (iii) departure time of the previous

shipment plus δ (if the current shipment is not the first shipment).

Define

E1 =

[{

k
∑

i=1

qi
∑

j=1

pij + yδ

∣

∣

∣

∣

∣

qi = 0, 1, . . . , ni for i = 1, . . . , k; y = −n + 1, . . . ,−1, 0, 1, . . . , 2n− 2

}

∪
{

T + yδ
∣

∣ y = 0, 1, . . . , n− 1
}

]

∩ [T, +∞).

The set E1 contains all possible shipment departure times in an optimal solution that satisfies

the properties in Lemmas 2 and 3. The following dynamic programming algorithm, which is an

extension of algorithm A0, determines an optimal solution of P1 that satisfies these properties.

Algorithm A1

Preprocessing :

Re-index the jobs in such a way that {Jij | j = 1, . . . , ni} are processed in increasing order of j in

solution π∗ for all i = 1, 2, . . . , k. For each (q1, . . . , qk), where qi = 0, 1, . . . , ni for i = 1, 2, . . . , k,

determine
∑k

i=1

∑qi

j=1 pij. Determine the elements of E1 and arrange them in ascending order.

Value function:

f(q1, . . . , qk; t) = minimum total cost Γ̃1(σ
′) of a partial schedule σ′ for processing and delivering

jobs Ji1, Ji2, . . . , Jiqi
, for i = 1, 2, . . . , k, such that the departure time of the last shipment is

equal to t.

12



Recursive relation: For qi = 0, 1, . . . , ni (i = 1, 2, . . . , k) such that
∑k

i=1 qi ≥ 1, and for t ∈ E1 such

that t ≥
∑k

i=1

∑qi

j=1 pij,

f(q1, . . . , qk; t)

= min

{

f(q1, . . . , qh−1, q
′
h, qh+1, . . . , qk; t

′) + α(qh − q′h)t + βφh + γ

qh
∑

j=q′
h
+1

|t−Ehj(π
∗)|

∣

∣

∣

∣

∣

h = 1, . . . , k; 0 ≤ q′h < qh such that qh − q′h ≤ c; t′ ∈ E1 ∪ {0} such that t′ ≤ t− δ

}

.

Boundary conditions :

f(0, . . . , 0; 0) = 0;

f(0, . . . , 0; t) = +∞ if t ∈ E1;

f(q1, . . . , qk; t) = +∞ if t ∈ E1 ∪ {0} and t <
∑k

i=1

∑qi

j=1 pij.

Optimal solution value: min
{

f(n1, . . . , nk; t)
∣

∣ t ∈ E1; t ≥
∑k

i=1

∑ni

j=1 pij

}

.

Theorem 2 Algorithm A1 finds an optimal solution for problem P1 in O(cn3k+2) time.

Proof. Suppose that a partial production and delivery schedule comprising the first qi jobs of

customer Ki, for i = 1, 2, . . . , k, has been formed. Let t be the departure time of the last shipment

in this partial schedule, and suppose the last shipment is for customer Kh and contains qh − q′h

jobs. Then, the departure time t′ of the second last shipment must be equal to one of the values

in E1 (if the last shipment is not the only shipment in the partial schedule). Property (C3) and

the minimum headway constraint imply that t′ ≤ t − δ. Thus, the recursive relation enumerates

all possible departure times t′ of the second last shipment of this partial schedule. In addition, the

recursive relation enumerates all possible values of h and q′h. Hence, algorithm A1 compares all

possible solutions that satisfy the properties in Lemmas 2 and 3.

Because E1 contains O(nk+1) elements and there are O(nk) combinations of q1, q2, . . . , qk, the

recurrence relation of A1 is executed O(n2k+1) times. Each execution of the recurrence rela-

tion enumerates O(1) possible customers Kh for the last shipment, O(c) possible values of q′h,

and O(nk+1) possible values of t′. In each execution of the recurrence relation, the summation

“
∑qh

j=q′
h
+1
|t − Ehj(π

∗)|” can be determined recursively. Thus, each execution of the recurrence

relation requires O(cnk+1) time. Hence, algorithm A1 requires O(cn3k+2) time.

13



Note that the computational complexity of algorithm A1 is higher than that of algorithm A0.

This is because problem P0 possesses more optimality properties than problem P1. Specifically,

property (C5) does not apply to problem P1. Hence, algorithm A1 needs to enumerate more

possible departure times for the shipments than algorithm A0.

To see why property (C5) does not apply to P1, consider the following example with a single

customer and zero minimum headway: δ = 0, k = 1, n1 = 56, p1,1 = p1,2 = · · · = p1,56 = 1,

c = 8, α = 20, β = 10, γ = 41, φ1 = 55, and T = 48. An optimal solution π∗ of problem

P0 obtained by algorithm A0 is shown in Figure 1(a), where the jobs {J1j | j = 1, . . . , 56} are

processed in increasing order of j. In this solution, r1(π
∗) = 8, E1j(π

∗) = 7dj/7e (j = 1, 2, . . . , 56),

and Γ̃0(π
∗) = α

∑n1

j=1 E1j(π
∗) + βr1(π

∗)φ1 = (20)(1764)+ (10)(8)(55) = 39680. When the delivery

service is unavailable during the time period [0, 48), a unique solution σ∗ of problem P1 obtained
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Figure 1: An example of problem P1.
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by algorithm A1 is shown in Figure 1(b), where r1(σ
∗) = 7,

E1j(σ
∗) =























48, for j = 1, 2, . . . , 40;

49, for j = 41, 42, . . . , 48;

56, for j = 49, 50, . . . , 56;

and Γ̃1(σ
∗) = α

∑n1

j=1 E1j(σ
∗)+βr1(σ

∗)φ1+γ
∑n1

j=1 |E1j(σ
∗)−E1j(π

∗)| = (20)(2760)+(10)(7)(55)+

(41)(996) = 99886. In this optimal solution, the 6th delivery shipment departs from the production

facility at time 49, even though this shipment is ready for delivery at time 48. This is because

E1j(π
∗) =











42, for j = 41, 42;

49, for j = 43, 44, . . . , 48;

which implies that jobs 41, 42, . . . , 48 have a total delivery time disruption of 2·|48−42|+6·|48−49|=

18 if the 6th shipment departs at time 48, and have a smaller total delivery time disruption of

2 · |49−42|+6 · |49−49| = 14 if the 6th shipment departs at time 49. In this example, the optimal

solution σ∗ does not satisfy property (C5).

3.2 Solution Method for Problem P2

The following lemma provides some optimality properties of problem P2.

Lemma 4 If the given instance of problem P2 is feasible, then there exists an optimal solution

which satisfies the properties in Lemma 2 such that the departure time of each shipment is equal to

one of the following values: (i) T; (ii) one of the values in E0; (iii) one of the values in E0 minus θ;

or (iv) the departure time of the previous shipment plus δ (if the current shipment is not the first

shipment).

Define

E2 =

[{

k
∑

i=1

qi
∑

j=1

pij − zθ + yδ

∣

∣

∣

∣

∣

qi = 0, 1, . . . , ni for i = 1, . . . , k; z = 0, 1; y = 0, 1, . . . , n− 1

}

∪

{

T − zθ + yδ

∣

∣

∣

∣

∣

z = 0, 1; y = 0, 1, . . . , n− 1

}]

∩ [T, +∞).

The set E2 contains all possible shipment departure times in an optimal solution that satisfies the

properties in Lemma 4. The following dynamic programming algorithm, which is an extension
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of algorithm A0, solves problem P2 when the problem is feasible and returns an infinite optimal

solution value when the problem is infeasible.

Algorithm A2

Preprocessing :

Re-index the jobs in such a way that {Jij | j = 1, . . . , ni} are processed in increasing order of j in

solution π∗ for all i = 1, 2, . . . , k. For each (q1, . . . , qk), where qi = 0, 1, . . . , ni for i = 1, 2, . . . , k,

determine
∑k

i=1

∑qi

j=1 pij. Determine the elements of E2 and arrange them in ascending order.

Value function:

f(q1, . . . , qk; t) = minimum total cost Γ̃2(σ
′) of a partial schedule σ′ for processing and delivering

jobs Ji1, Ji2, . . . , Jiqi
, for i = 1, 2, . . . , k, such that the departure time of the last shipment is

equal to t.

Recursive relation: For qi = 0, 1, . . . , ni (i = 1, 2, . . . , k) such that
∑k

i=1 qi ≥ 1, and for t ∈ E2 such

that t ≥
∑k

i=1

∑qi

j=1 pij and minh=1,...,k s.t. qh>0 |t−Ehqh
(π∗)| ≤ θ,

f(q1, . . . , qk; t) = min
{

f(q1, . . . , qh−1, q
′
h, qh+1, . . . , qk; t

′) + α(qh − q′h)t + βφh

∣

∣

∣

h = 1, . . . , k and 0 ≤ q′h < qh such that qh − q′h ≤ c, |t− Ehqh
(π∗)| ≤ θ,

and |t− Eh,q′
h
+1(π

∗)| ≤ θ; t′ ∈ E2 ∪ {0} such that t′ ≤ t− δ
}

.

Boundary conditions :

f(0, . . . , 0; 0) = 0;

f(0, . . . , 0; t) = +∞ if t ∈ E2;

f(q1, . . . , qk; t) = +∞ if t ∈ E2 ∪ {0} and t <
∑k

i=1

∑qi

j=1 pij;

f(q1, . . . , qk; t) = +∞ if minh=1,...,k s.t. qh>0 |t− Ehqh
(π∗)| > θ.

Optimal solution value: min
{

f(n1, . . . , nk; t)
∣

∣ t ∈ E2; t ≥
∑k

i=1

∑ni

j=1 pij; minh=1,...,k |t−Ehnh
(π∗)|

≤ θ
}

.

Theorem 3 Algorithm A2 either detects infeasibility of or finds an optimal solution for problem

P2 in O(cn3k+2) time.
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Proof. Suppose that a partial production and delivery schedule comprising the first qi jobs of

customer Ki, for i = 1, 2, . . . , k, has been formed. If the last shipment is for customer Kh and

contains qh − q′h jobs, then by Lemma 4, the departure time t′ of the second last shipment must

be equal to one of the values in E2 (if the last shipment is not the only shipment in the partial

schedule). Property (C3) and the minimum headway constraint imply that t′ ≤ t − δ. Thus,

the recursive relation enumerates all possible values of t′. Since Eh,q′
h
+1(π

∗) ≤ Eh,q′
h
+2(π

∗) ≤

· · · ≤ Ehqh
(π∗), the conditions “|t− Ehqh

(π∗)| ≤ θ” and “|t− Eh,q′
h
+1(π

∗)| ≤ θ” in the recurrence

relation are satisfied if and only if |t− Ehj(π
∗)| ≤ θ for j = q′h + 1, q′h + 2, . . . , qh, or equivalently,

maxj=q′
h
+1,...,qh

|t− Ehj(π
∗)| ≤ θ. Hence, the recursive relation enumerates all possible values of h

and q′h that satisfy constraint (2). The inequality “minh=1,...,k s.t. qh>0 |t − Ehqh
(π∗)| ≤ θ” ensures

that there exist some h and q′h values which satisfy constraint (2). If this inequality is violated,

then the boundary condition sets f(q1, . . . , qk; t) to +∞. Therefore, algorithm A2 compares all

possible feasible solutions that satisfy the properties in Lemma 4, and it finds an optimal solution

of problem P2 if the optimal solution value is finite.

Because E2 contains O(nk+1) elements and there are O(nk) combinations of q1, q2, . . . , qk, the

recurrence relation of A2 is executed O(n2k+1) times. Each execution of the recurrence relation

enumerates O(1) possible customers Kh for the last shipment, O(c) possible values of q′h, and

O(nk+1) possible values of t′. Thus, each execution of the recurrence relation requires O(cnk+1)

time. Hence, algorithm A2 requires O(cn3k+2) time.

3.3 Solution Method for Problem P3

The main idea of our solution method for problem P3 is to develop a set S that contains all possible

maximum delivery time disruptions of an optimal solution. Then, we can restrict our search for

an optimal maximum delivery time disruption to the elements of S. Note that in any solution of

problem P3, there is a “bottleneck job” whose delivery time disruption is the largest among all

jobs. To develop the set S, we first construct a set E3 that contains all possible shipment departure

times of a bottleneck job in an optimal solution of problem P3.

For notational convenience, we assume, without loss of generality, that the jobs {Jij | j =
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1, . . . , ni} are processed in increasing order of j in solution π∗ for all i = 1, 2, . . . , k. Under this

assumption, Ei1(π
∗) ≤ Ei2(π

∗) ≤ · · · ≤ Eini
(π∗). Define

E3 =

[{

k
∑

i=1

qi
∑

j=1

pij ± yδ

∣

∣

∣

∣

∣

qi = 0, 1, . . . , ni for i = 1, . . . , k; y = 0, 1, . . . , n− 1

}

∪

{

Eij(π
∗) + Ehl(π

∗)− yδ

2

∣

∣

∣

∣

i, h = 1, . . . , k; j = 1, . . . , ni; l = 1, . . . , nh; y = 0, 1, . . . , n− 1

}

∪
{

T + yδ
∣

∣ y = 0, 1, . . . , n− 1
}

]

∩ [T, +∞)

The rationale behind the definition of E3 is as follows. Any solution of problem P3 contains different

groups of consecutive shipments, where the departure times of two consecutive shipments within

each group is δ time units apart. In the definition of E3, the term “
∑k

i=1

∑qi

j=1 pij ± yδ” represents

the departure time of the bottleneck job when this bottleneck job belongs to a group of consecutive

shipments in which one of the shipments’ departure time is
∑k

i=1

∑qi

j=1 pij. Let θ denote the

maximum delivery time disruption of the solution. The term “
Eij(π

∗)+Ehl(π
∗)−yδ

2 ” represents the

departure time of the bottleneck job when this bottleneck job belongs to a shipment with departure

time Eij(π
∗)− θ, while another bottleneck job with a later departure time Ehl(π

∗)+ θ exists in the

same group of consecutive shipments, and the departure time of these two shipments are yδ time

units apart (thus, [Ehl(π
∗)+θ]−[Eij(π

∗)−θ] = yδ, or equivalently, Eij(π
∗)−θ =

Eij (π∗)+Ehl(π
∗)−yδ

2 ).

The term “T + yδ” represents the departure time of the bottleneck job when this bottleneck job

belongs to a group of consecutive shipments in which the first shipment’s departure time is T .

Define

S =
{

|t− Eij(π
∗)|

∣

∣ t ∈ E3; i = 1, . . . , k; j = 1, . . . , ni

}

.

Because E3 contains all possible shipment departure times of a bottleneck job in an optimal solution

of P3, set S contains all possible maximum delivery time disruptions of this optimal solution.

Lemma 5 below and its proof provide a formal argument of this idea.

For any solution σ of problem P3, let

∆ij(σ) = |Eij(σ)− Eij(π
∗)|
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denote the delivery time disruption of job Jij in this solution, and let

∆max(σ) = max
i=1,...,k; j=1,...,ni

{∆ij(σ)}

denote the maximum delivery time disruption of this solution.

Lemma 5 There exists an optimal solution σ∗ of problem P3 such that ∆max(σ
∗) ∈ S.

We now present an algorithm which determines an optimal solution of P3.

Algorithm A3

Step 1: For each s ∈ S,

(a) solve the problem using algorithm A2 with θ set equal to s (and ignore the cost term

γ maxi=1,...,k; j=1,...,ni
|Dij(σ)−Dij(π

∗)| in the objective function Γ3(γ)), let σ(s) be the

solution obtained, and Z(s) be the objective value of this solution;

(b) let Z ′(s) = Z(s) + γs.

Step 2: Among {σ(s) | s ∈ S}, select the solution with the smallest Z ′(s) value.

Theorem 4 Algorithm A3 finds an optimal solution of problem P3 in O(cn4k+4) time.

Proof. By Lemma 5, it suffices to consider candidate solutions with a maximum delivery time

disruption in set S. Suppose there exists such an optimal solution with a maximum delivery time

disruption s ∈ S. Then, an optimal solution of problem P3 can be obtained by applying algorithm

A2 with θ set equal to s, and the optimal objective value of P3 is equal to the objective value of the

solution generated by algorithm A2 plus γs. Hence, algorithm A3, which enumerates all possible

s values, finds an optimal solution of P3.

Set E3 contains O(nk+1) elements. Thus, S contains O(nk+2) elements. Hence, Step 1 of

algorithmA3 is executed O(nk+2) times. By Theorem 3, each execution of Step 1 requires O(cn3k+2)

time. Therefore, the running time of algorithm A3 is O(cn4k+4).

Remark 2 Algorithm A3 can be implemented more efficiently as follows. First, we precompute

Z(∞); that is, the optimal value of Γ̃2(σ) when constraint (2) is relaxed. Then, we execute Step 1
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of A3 in increasing order of s. In each iteration, we keep track of the best s value obtained so

far. Let s0 denote the s value being considered. Then, s∗ = argmin{Z ′(s) | s ≤ s0; s ∈ S} is the

best s value obtained so far. Note that Z ′(s) ≥ Z(∞) + γs and that Z(∞) + γs is nondecreasing

in s. Hence, Step 1 can be terminated immediately once Z(∞) + γs ≥ Z(s∗), or equivalently

s ≥ [Z(s∗)− Z(∞)]/γ. Another way to improve the efficiency of algorithm A3 is to consider only

those s values that satisfy the condition “s ≥ T −mini=1,...,k{Ei1(π
∗)}.” If this condition is violated,

then in Step 1(a), algorithm A2 will return an infinite solution value when θ is set equal to s. Thus,

it suffices to consider those s values that satisfy this condition.

3.4 Computational Study

When the delivery service is shut down unexpectedly for the time period [0, T ), our rescheduling

model aims to determine a revised production and delivery plan, with a mechanism to avoid serious

disruption in the arrival time of the finished jobs at the customers’ locations. On the other hand,

managers who seek simplicity often make use of solution approaches that are easy to implement.

Hence, we conduct computational experiments to investigate by how much the solutions generated

by our rescheduling methods improve over the solution obtained by a simple solution approach

which only adjusts the departure times of the delivery shipments without revising the production

schedule. Specifically, we compare the optimal solutions of our models with a solution σ̄ obtained

as follows:

(i) Solution σ̄ has the same processing sequence as the original schedule π∗.

(ii) Solution σ̄ has the same delivery shipments as the original schedule π∗.

(iii) The departure time of the `th shipment in solution σ̄ is min{T +(`−1)δ, E∗
` }, where E∗

` is the

departure time of the `th shipment in the original schedule π∗.

In other words, solution σ̄ uses the same processing sequence and delivery shipments as schedule

π∗, and it attempts to deliver all delayed shipments as early as possible after the disruption period.

In this computational study, we analyze the improvement of our solution methods over the sim-

ple solution approach when solving the rescheduling problems P1 and P3. These two rescheduling
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problems impose penalties on the total time disruption of jobs and maximum time disruption of

jobs, respectively, and are always feasible. For h = 1, 3, we let σ∗
h denote the optimal solution of

problem Ph, and let

Ih =
Γh(σ̄)− Γh(σ∗

h)

Γh(σ̄)
× 100%,

which is the percentage improvement of solution σ∗
h over solution σ̄.

The test data are selected as follows. We set α = β = 1, δ = 10, c = 3, φ1 = φ2 = · · · = φk = 10,

and T = 30. Job processing times are randomly generated, with each pij being uniformly distributed

in {1, 2, . . . , 10}. For each job Jj ∈ J , we randomly assign a customer from {K1, K2, . . . , Kk} to Jj

with equal probability. Since α
∑k

i=1 niτi is a constant, for simplicity, we set τ1 = τ2 = · · · = τk = 0.

For problem P1, we consider n ∈ {10, 20, 40, 80}, k ∈ {1, 2, 3}, and γ ∈ {1
4 , 1, 4}. Thus, there are

36 combinations of n, k, and γ values for P1. For problem P3, because the penalty γ is applied to

the maximum of n jobs instead of the sum of n jobs, we consider n ∈ {10, 20, 40, 80}, k ∈ {1, 2, 3},

and γ ∈ { n
16 , n

4 , n}, so that a heavier unit delivery time disruption penalty is imposed on larger

instances. Thus, there are also 36 combinations of n, k, and γ values for P3. Different n and k

values correspond to different problem sizes, while different γ values correspond to different levels

of control of delivery time disruption. For each combination of n and k, we generate 10 random

test instances. For each test instance, we determine σ∗
1 using algorithm A1, determine σ∗

3 using

algorithm A3, determine σ̄, and then compute I1 and I3. Algorithms A1 and A3 are coded in

C++, and the experiments are run on a computer with an Intel Core i7-7700HQ 2.80-GHz CPU

and 32 GB of RAM. The efficiency improvement methods described in Remark 2 are used when

A3 is implemented.

Table 1 summarizes the results of the computational study, where each row reports the mean

result of the 10 random instances. The running times of algorithms A1 and A3 are reported in

the “Time” columns. From the computational results, we observe that I1 and I3 decrease as n

increases. In other words, the effectiveness of solution σ̄ increases as the number of jobs increases.

Thus, compared to the simple solution approach, algorithms A1 and A3 can obtain significant cost

saving when the number of jobs is small. When the number of jobs is large, solution σ̄ is effective.

Hence, for large size problems, the simple solution approach is an alternative method for obtaining
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Table 1: Computational results.

Problem P1 Problem P3

n k
γ = 1

4
γ = 1 γ = 4 γ = n

16
γ = n

4
γ = n

I1 Time I1 Time I1 Time I3 Time I3 Time I3 Time
(%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.)

1 9.70 0.0 11.51 0.0 15.01 0.0 8.62 0.0 7.92 0.0 5.96 0.0

10 2 11.39 0.0 12.56 0.0 15.00 0.0 9.88 0.0 8.21 0.0 6.27 0.0

3 10.83 0.1 12.02 0.1 14.80 0.1 9.64 0.1 8.41 0.0 6.43 0.0

1 5.70 0.1 7.37 0.1 11.04 0.1 5.00 0.0 4.69 0.0 3.75 0.0

20 2 5.20 0.7 6.04 0.7 8.39 0.7 4.40 0.4 4.07 0.2 3.23 0.2

3 7.30 2.4 8.19 2.4 10.99 2.4 6.12 1.5 4.60 1.1 3.67 0.7

1 2.22 0.7 2.99 0.7 5.05 0.7 1.94 0.2 1.86 0.2 1.58 0.2

40 2 2.89 10.8 3.83 10.8 6.37 10.9 2.40 4.0 2.28 3.1 1.95 2.9

3 2.34 75.5 2.88 74.8 4.69 75.9 1.72 48.0 1.57 26.3 1.31 21.5

1 0.86 6.5 1.24 6.5 2.38 6.5 0.73 1.6 0.71 1.6 0.65 1.6

80 2 1.18 172.2 1.67 173.0 3.21 173.0 0.90 55.3 0.86 46.9 0.78 44.7

3 1.21 1072.6 1.68 1068.5 3.18 1072.6 0.88 365.0 0.86 301.2 0.78 285.4

approximation solutions efficiently.

We also observe that I1 increases as γ increases, while I3 decreases as γ increases. This is because

in problem P1 the quantity
∑k

i=1

∑ni

j=1 |Eij(σ
∗)−Eij(π

∗)| obtained by algorithm A1 is significantly

smaller than the quantity
∑k

i=1

∑ni

j=1 |Eij(σ̄)−Eij(π
∗)| obtained by the simple solution approach,

while in problem P3 the quantity maxi=1,...,k; j=1,...,ni
|Eij(σ

∗) − Eij(π
∗)| obtained by algorithm

A3 is quite close to the quantity maxi=1,...,k; j=1,...,ni
|Eij(σ̄) − Eij(π

∗)|. Thus, the numerator of

I1 increases significantly as γ increases, while the numerator of I3 is relatively insensitive to an

increase in γ.

The running times of both algorithms A1 and A3 increase as n and k increase. According to

Theorems 2 and 4, algorithm A3 has significantly higher computational complexity than algorithm

A1. However, as shown in Table 1, algorithm A3 can be executed more efficiently than algorithm

A1 by using the implementation techniques presented in Remark 2. Note that the running time of

algorithm A3 decreases as γ increases. This is because when γ gets larger, the first implementation

method presented in Remark 2 becomes more effective in reducing the number of s values that

need to be enumerated.
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4 Special Case with No Minimum Headway Constraint

If there is no minimum headway constraint (i.e., δ = 0), the rescheduling problems can be solved

more efficiently. In this section, we discuss the computational complexities of problems P1, P2,

and P3 when δ = 0.

When δ = 0, it is easy to show that there exists an optimal solution of P1 which satisfies the

properties in Lemma 2 such that the departure time of each shipment is equal to one of the following

values: (i) T ; (ii) completion time of production of the shipment’s last job; or (iii) departure time

of one of the shipment’s jobs in solution π∗. The following dynamic program determines such an

optimal solution.

Algorithm A′
1

Preprocessing :

Re-index the jobs in such a way that {Jij | j = 1, . . . , ni} are processed in increasing order of j in

solution π∗ for all i = 1, 2, . . . , k. For each (q1, . . . , qk), where qi = 0, 1, . . . , ni for i = 1, 2, . . . , k,

determine
∑k

i=1

∑qi

j=1 pij.

Value function:

f(q1, . . . , qk) = minimum total cost Γ̃1(σ
′) of a partial schedule σ′ for processing and delivering

jobs Ji1, Ji2, . . . , Jiqi
, for i = 1, 2, . . . , k.

Recursive relation: For qi = 0, 1, . . . , ni (i = 1, 2, . . . , k) such that
∑k

i=1 qi ≥ 1,

f(q1, . . . , qk) = min

{

f(q1, . . . , qh−1, q
′
h, qh+1, . . . , qk) + α(qh − q′h)s + βφh

+ γ

qh
∑

j=q′h+1

|s−Ehj(π
∗)|

∣

∣

∣

∣

∣

h = 1, . . . , k; 0 ≤ q′h < qh such that qh − q′h ≤ c;

s ∈ Sh(q1, . . . , qk; q
′
h) such that s ≥ s̃(q1, . . . , qk)

}

,

where s̃(q1, . . . , qk) = max{T,
∑k

i=1

∑qi

j=1 pij} and Sh(q1, . . . , qk; q
′
h) =

{

s̃(q1, . . . , qk), Eh,q′
h
+1(π

∗),

Eh,q′h+2(π
∗), . . . , Ehqh

(π∗)
}

.

Boundary condition: f(0, . . . , 0) = 0.

Optimal solution value: f(n1, . . . , nk).
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Suppose that a partial production and delivery schedule comprising the first qi jobs of customer

Ki, for i = 1, 2, . . . , k, has been formed. If the last shipment is for customer Kh and contains

qh − q′h jobs, then the departure time of the last shipment must be equal to one of the values

in Sh(q1, . . . , qk; q
′
h). The departure time of the last shipment must also be at least s̃(q1, . . . , qk).

Thus, the above recursive relation enumerates all possible departure times s of the last shipment

of this partial schedule. In addition, the recursive relation enumerates all possible values of h and

q′h. The recurrence relation is executed O(nk) times, and each execution of the recurrence relation

enumerates O(1) possible customers Kh for the last shipment, O(c) possible values of q′h, and O(c)

elements of Sh(q1, . . . , qk; q
′
h). Therefore, we have the following result.

Theorem 5 When δ = 0, problem P1 can be solved in O(c2nk) time.

When δ = 0, it is easy to determine if a given instance of problem P2 is feasible by checking

whether or not θ ≥ T −mini=1,...,k; j=1,...,ni
{Eij(π

∗)}. It is easy to show that if δ = 0 and the given

instance of P2 is feasible, then there exists an optimal solution of P2 which satisfies the properties

in Lemma 2 such that the departure time of each shipment is equal to the largest of the following

values: (i) T ; (ii) completion time of production of the shipment’s last job; or (iii) departure time

of the shipment’s last job in solution π∗ minus θ. The following dynamic program either determines

such an optimal solution or returns an infinite optimal solution value.

Algorithm A′
2

Preprocessing :

Re-index the jobs in such a way that {Jij | j = 1, . . . , ni} are processed in increasing order of j in

solution π∗ for all i = 1, 2, . . . , k. For each (q1, . . . , qk), where qi = 0, 1, . . . , ni for i = 1, 2, . . . , k,

determine
∑k

i=1

∑qi

j=1 pij.

Value function:

f(q1, . . . , qk) = minimum total cost Γ̃2(σ
′) of a partial schedule σ′ for processing and delivering

jobs Ji1, Ji2, . . . , Jiqi
, for i = 1, 2, . . . , k.

Recursive relation: For qi = 0, 1, . . . , ni (i = 1, 2, . . . , k) such that
∑k

i=1 qi ≥ 1 and that
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maxh=1,...,k s.t. qh>0{Ehqh
(π∗) + θ} ≥ max{T,

∑k
i=1

∑qi

j=1 pij},

f(q1, . . . , qk) = min
{

f(q1, . . . , qh−1, q
′
h, qh+1, . . . , qk) + α(qh − q′h)sh(q1, . . . , qk) + βφh

∣

∣

∣
h = 1, . . . , k;

0 ≤ q′h < qh such that qh − q′h ≤ c and Eh,q′
h
+1(π

∗) + θ ≥ sh(q1, . . . , qk)
}

,

where sh(q1, . . . , qk) = max{T,
∑k

i=1

∑qi

j=1 pij, Ehqh
(π∗)− θ}.

Boundary conditions :

f(0, . . . , 0) = 0;

f(q1, . . . , qk) = +∞ if maxh=1,...,k s.t. qh>0{Ehqh
(π∗) + θ} < max{T,

∑k
i=1

∑qi

j=1 pij}.

Optimal solution value: f(n1, . . . , nk).

Suppose that a partial production and delivery schedule comprising the first qi jobs of customer

Ki, for i = 1, 2, . . . , k, has been formed. If the last shipment is for customer Kh and contains

qh − q′h jobs, then the departure time of the last shipment must be equal to sh(q1, . . . , qk). Note

that sh(q1, . . . , qk) ≥ Ehqh
(π∗)− θ ≥ Ehj(π

∗)− θ for j = q′h + 1, q′h + 2, . . . , qh. Thus, the condition

“Eh,q′h+1(π
∗)+ θ ≥ sh(q1, . . . , qk)” in the recurrence relation is satisfied if and only if Ehj(π

∗)− θ ≤

sh(q1, . . . , qk) ≤ Ehj(π
∗) + θ for j = q′h + 1, . . . , qh, or equivalently, maxj=q′

h
+1,...,qh

|sh(q1, . . . , qk)−

Ehj(π
∗)| ≤ θ. Hence, the recursive relation enumerates all possible values of h and q′h such that

the partial schedule satisfies constraint (2). The inequality “maxh=1,...,k s.t. qh>0{Ehqh
(π∗) + θ} ≥

max{T,
∑k

i=1

∑qi

j=1 pij}” ensures that there exist some h and q′h values such that constraint (2) is

satisfied. If this inequality is violated, then the boundary condition sets f(q1, . . . , qk) to +∞. The

recurrence relation is executed O(nk) times and each execution of the recurrence relation requires

O(c) time. Therefore, we have the following result.

Theorem 6 When δ = 0, problem P2 can be solved in O(cnk) time.

Algorithms A′
1 and A′

2 have a similar structure as some dynamic programs developed for other

integrated production and distribution models (see, e.g., Hall and Potts 2003, Chen and Vairak-

tarakis 2005, and Li et al. 2017). However, in the recursive relation of A′
1 there is a need to search

the values of s in the set Sh(q1, . . . , qk; q
′
h), and in the recursive relation of A′

2 the search of q′h is

restricted by the constraint “Eh,q′
h
+1(π

∗) + θ ≥ sh(q1, . . . , qk).”
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If δ = 0, then when applying algorithm A3 to solve problem P3, we may replace algorithm A2

by algorithm A′
2 in Step 1(a) of algorithm A3. This can reduce the running time of each execution

of Step 1 to O(cnk). Note that when δ = 0, we have |E3| = O(nk) and |S| = O(nk+1), and thus

Step 1 of algorithm A3 is executed O(nk+1) times. Therefore, we have the following result.

Theorem 7 When δ = 0, problem P3 can be solved in O(cn2k+1) time.

Table 2 summarizes the complexity results of the case with δ > 0 and the case with δ = 0.

Note that the computational complexities of the solution methods for problems P1, P2, and P3

are significantly higher when δ > 0. This is because when δ is positive, the number of possible

shipment departure times in the optimal solutions is significantly larger.

Table 2: Computational complexities of solution methods.

Problem P1 Problem P2 Problem P3

δ > 0 O(cn3k+2) O(cn3k+2) O(cn4k+4)

δ = 0 O(c2nk) O(cnk) O(cn2k+1)

5 Conclusions

This paper considers an integrated production and outbound distribution model and analyzes the

job rescheduling decision in response to a disruption in the delivery service. We develop polynomial-

time dynamic programming algorithms for three variants of this rescheduling problem. The main

idea in the development of these algorithms is the construction of the sets E1, E2, and E3, which

contain all the possible shipment departure times in the optimal solutions of the three problem

variants, and the sizes of E1, E2, and E3 are polynomial in the input size of the problem. These sets

restrict the search space of the optimal solutions, and thus enable us to develop polynomial-time

algorithms. We also analyze the computational complexity of the special case with no minimum

headway constraint.

Some future directions on this research are of interest. First, the polynomial-time solvability

of our algorithms is based on the assumption that the number of customers, k, is fixed. Models

with this assumption are applicable to situations where the finished jobs are delivered to customers
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located at a small number of fixed locations, or situations where the travel time between the

production facility and a customer location has a fixed number of possibilities. In practice, it is

common for different jobs to belong to different customers, with each customer having his/her own

location. Thus, it would be worthwhile to develop efficient solution methods for the case where

k is arbitrary. Second, in our model we made an assumption that sufficient delivery vehicles are

available, and that jobs belonging to different customers cannot be delivered together. However, in

practice, there could be situations where the availability of delivery vehicles is the bottleneck of the

operation, while allowing more flexibility in the routing of the vehicles is important. Hence, it would

be useful to extend our analysis to the case where the number of vehicles is limited and vehicles

can make deliveries to multiple customers in each trip. Third, many other integrated production

and outbound distribution models in the literature incorporate features such as vehicle routing,

delivery due dates, multiple-machine production, etc. (see, e.g., Chen 2010). An extensive study

on rescheduling issues occurred in other integrated production and outbound distribution models

would be another interesting future research direction. Finally, note that in our model we have

considered the situation where the entire delivery service is shut down for a certain time period. For

systems with limited number of vehicles, there are situations where only a subset of delivery vehicles

is unavailable due to incidents such as vehicle breakdown and driver unavailability. Analyzing how

to reschedule production and delivery for these situations is also an important research direction.
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Supplementary Materials

Appendix

Proof of Lemma 1: Given any optimal solution of P0 where idle time exists between some consecu-

tive jobs in the production schedule, we can eliminate all such idle time by moving the jobs earlier

in the production schedule. This move is made without changing the delivery schedule, and the

objective value is unaffected. The resulting solution is an alternative optimal solution that satisfies

property (C1).

Suppose that this alternative optimal solution does not satisfy property (C2). Then, there exist

two jobs Jij and Jil in the same shipment such that Jij is processed before Jil, and that there exist

some job(s) belonging to a different shipment processed between Jij and Jil. We can construct an

alternative solution by moving job Jij to the position immediately before job Jil in the production

schedule (without inserting idle time between jobs). This move is made without changing the

delivery schedule, and the objective value is unaffected. By repeatedly making this change in the

production schedule, we obtain an alternative optimal solution that satisfies properties (C1) and

(C2).

Suppose that this alternative optimal solution does not satisfy property (C3). Then, there exist

two shipments with corresponding job subsets Bh and Bi, such that the jobs in Bh are processed

immediately before the jobs in Bi, and that the departure time of Bh is later than that of Bi. We

can construct an alternative solution by interchanging the processing of Bh and Bi in the production

schedule. This move is made without changing the delivery schedule, and the objective value is

unaffected. By repeatedly making this change in the production schedule, we obtain an alternative

optimal solution that satisfies properties (C1)–(C3).

Suppose that this alternative optimal solution does not satisfy property (C4). Then, there

exist two jobs Jij and Jik which belong to the same customer Ki, such that pij < pik, and that

Jik is processed before Jij in the production schedule. We can construct an alternative solution

by interchanging the processing of Jij and Jik in the production schedule (without inserting idle
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time between jobs). This move is made without changing the delivery schedule, and the objective

value is unaffected. By repeatedly making this change in the production schedule, we obtain an

alternative optimal solution that satisfies properties (C1)–(C4).

Suppose that this alternative optimal solution does not satisfy property (C5). Then, this solu-

tion contains a shipment, say the sth shipment, with a departure time which is neither equal to the

completion time of production of the last job in the sth shipment, nor equal to the departure time

of the (s− 1)st shipment plus δ (if s 6= 1). Let Cs and Es denote the production completion time

and departure time, respectively, of the sth shipment. Let Es−1 denote the departure time of the

(s−1)st shipment if s 6= 1, and let E0 = −∞. We can construct an alternative optimal solution by

reducing Es to max{Es−1 + δ, Cs}. By repeatedly applying this argument, we obtain an optimal

solution of problem P0 that satisfies properties (C1)–(C5).

Proof of Lemma 2: Consider any m = 1, 2, 3, and suppose Pm is feasible. Using the same argument

as in the proof of Lemma 1, it is easy to check that there exists an optimal solution σ∗ of problem

Pm which satisfies properties (C1)–(C3). Suppose that in problem Pm there exists a customer Ki

such that in solution σ∗ the jobs belonging to Ki are not processed by the machine in the same

sequence as in solution π∗. Then, there exist jobs Jij and Jil such that Jij is processed after Jil

in the production schedule of σ∗, but Jij is processed before Jil in the production schedule of π∗.

Property (C3) of solution π∗ implies that

Eij(π
∗) ≤ Eil(π

∗). (A1)

In solution σ∗, let Bi denote the job subset associated with the delivery shipment which includes Jil,

and B′
i denote the job subset associated with the delivery shipment which includes Jij . Consider a

new solution σ∗∗ of Pm obtained by the following steps: (i) interchange the positions of Jij and Jil

in the production schedule (without inserting idle time between jobs); (ii) if Bi = B′
i, then do not

change Bi and B′
i; and (iii) if Bi 6= B′

i, then let Bi ← (Bi\{Jil})∪{Jij} and B′
i ← (B′

i\{Jij})∪{Jil}.

Property (C4) of solution π∗ implies that pij ≤ pil. Thus, this new solution can be constructed

without changing the delivery schedule of the shipments. It is easy to see that solution σ∗∗ satisfies
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properties (C1)–(C3). Note that Eiu(σ∗∗) = Eiu(σ∗) for all u ∈ {1, 2, . . . , ni} \ {j, l}. In addition,

we have the following relationships between σ∗ and σ∗∗:

Eij(σ
∗) = Eil(σ

∗∗); (A2)

Eil(σ
∗) = Eij(σ

∗∗); (A3)

Eij(σ
∗∗) ≤ Eij(σ

∗); (A4)

Eil(σ
∗) ≤ Eil(σ

∗∗). (A5)

Next, we focus on problem P1. We let G(σ∗) denote the total contribution of jobs Jij and Jil

to the objective value Γ̃1(σ
∗) of solution σ∗, and let G(σ∗∗) denote the total contribution of jobs

Jij and Jil to the objective value Γ̃1(σ
∗∗) of solution σ∗∗, excluding their contributions to the total

delivery cost β
∑k

i=1 ri(σ)φi. That is,

G(σ∗) = αEij(σ
∗) + αEil(σ

∗) + γ|Eij(σ
∗)− Eij(π

∗)|+ γ|Eil(σ
∗)− Eil(π

∗)| (A6)

and

G(σ∗∗) = αEij(σ
∗∗) + αEil(σ

∗∗) + γ|Eij(σ
∗∗)− Eij(π

∗)|+ γ|Eil(σ
∗∗)−Eil(π

∗)|. (A7)

We will show that G(σ∗∗) ≤ G(σ∗).

From (A2), (A3), (A6), and (A7), we have

G(σ∗)−G(σ∗∗) = γ
[

|Eij(σ
∗)−Eij(π

∗)| − |Eij(σ
∗∗)−Eij(π

∗)|

+ |Eil(σ
∗)− Eil(π

∗)| − |Eil(σ
∗∗)−Eil(π

∗)|
]

. (A8)

We divide the analysis into three cases.

Case 1: Eij(σ
∗∗) ≥ Eij(π

∗). In this case, by (A2), (A3), and (A5),

Eij(σ
∗)− Eij(π

∗) = Eil(σ
∗∗)−Eij(π

∗) ≥ Eil(σ
∗)−Eij(π

∗) = Eij(σ
∗∗)− Eij(π

∗) ≥ 0,

which implies that

|Eij(σ
∗)−Eij(π

∗)|−|Eij(σ
∗∗)−Eij(π

∗)| = (Eij(σ
∗)−Eij(π

∗))−(Eij(σ
∗∗)−Eij(π

∗)) = Eij(σ
∗)−Eij(σ

∗∗).
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This, together with (A8), implies that

G(σ∗)−G(σ∗∗) = γ
[

(Eij(σ
∗)−Eij(σ

∗∗)) + |Eil(σ
∗)−Eil(π

∗)| − |Eil(σ
∗∗)− Eil(π

∗)|
]

.

If Eil(σ
∗∗) ≤ Eil(π

∗), then

G(σ∗)−G(σ∗∗) = γ
[

(Eij(σ
∗)− Eij(σ

∗∗)) + |Eil(σ
∗)−Eil(π

∗)| − (Eil(π
∗)−Eil(σ

∗∗))
]

≥ γ
[

(Eij(σ
∗)− Eij(σ

∗∗)) + (Eil(π
∗)−Eil(σ

∗))− (Eil(π
∗)−Eil(σ

∗∗))
]

= γ
[

Eij(σ
∗)− Eij(σ

∗∗) + Eil(σ
∗∗)−Eil(σ

∗)
]

≥ 0,

where the last inequality follows from (A4) and (A5). If Eil(σ
∗∗) > Eil(π

∗), then

G(σ∗)−G(σ∗∗) = γ
[

(Eij(σ
∗)− Eij(σ

∗∗)) + |Eil(σ
∗)−Eil(π

∗)| − (Eil(σ
∗∗)− Eil(π

∗))
]

≥ γ
[

(Eij(σ
∗)− Eij(σ

∗∗)) + (Eil(σ
∗)−Eil(π

∗))− (Eil(σ
∗∗)−Eil(π

∗))
]

= γ
[

Eij(σ
∗)− Eij(σ

∗∗) + Eil(σ
∗)−Eil(σ

∗∗)
]

= 0,

where the last equality follows from (A2) and (A3). Therefore, in Case 1, G(σ∗∗) ≤ G(σ∗).

Case 2: Eij(σ
∗∗) < Eij(π

∗) and Eil(σ
∗∗) ≥ Eil(π

∗). In this case, by (A1) and (A3), we have

Eil(π
∗)−Eil(σ

∗) ≥ Eij(π
∗)−Eij(σ

∗∗) > 0,

which implies that

|Eil(σ
∗)−Eil(π

∗)| ≥ |Eij(σ
∗∗)−Eij(π

∗)|. (A9)

By (A1) and (A2), we have

Eij(σ
∗)− Eij(π

∗) ≥ Eil(σ
∗∗)−Eil(π

∗) ≥ 0,

which implies that

|Eij(σ
∗)− Eij(π

∗)| ≥ |Eil(σ
∗∗)−Eil(π

∗)|. (A10)

From (A8), (A9), and (A10), we have G(σ∗)−G(σ∗∗) ≥ 0. Therefore, in Case 2, G(σ∗∗) ≤ G(σ∗).
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Case 3: Eij(σ
∗∗) < Eij(π

∗) and Eil(σ
∗∗) < Eil(π

∗). In this case, by (A1) and (A3), we have

Eil(π
∗)−Eil(σ

∗) ≥ Eij(π
∗)−Eij(σ

∗∗) > 0.

If Eij(σ
∗) ≥ Eij(π

∗), then equation (A8) becomes

G(σ∗)−G(σ∗∗)

= γ
[

(Eij(σ
∗)− Eij(π

∗))− (Eij(π
∗)−Eij(σ

∗∗)) + (Eil(π
∗)−Eil(σ

∗))− (Eil(π
∗)− Eil(σ

∗∗))
]

= γ
[

Eij(σ
∗) + Eij(σ

∗∗) + Eil(σ
∗∗)− 2Eij(π

∗)−Eil(σ
∗)

]

= γ
[

2Eij(σ
∗)− 2Eij(π

∗)
]

≥ 0,

where the third equality follows from (A2) and (A3). If Eij(σ
∗) < Eij(π

∗), then equation (A8)

becomes

G(σ∗)−G(σ∗∗)

= γ
[

(Eij(π
∗)− Eij(σ

∗))− (Eij(π
∗)−Eij(σ

∗∗)) + (Eil(π
∗)−Eil(σ

∗))− (Eil(π
∗)− Eil(σ

∗∗))
]

= γ
[

Eij(σ
∗∗) + Eil(σ

∗∗)−Eij(σ
∗)−Eil(σ

∗)
]

= 0,

where the last equality follows from (A2) and (A3). Therefore, in Case 3, G(σ∗∗) ≤ G(σ∗).

In all three cases, G(σ∗∗) ≤ G(σ∗), which implies that Γ̃1(σ
∗∗) ≤ Γ̃1(σ

∗). By repeatedly applying

this job interchange operation, we obtain an alternative optimal solution in which the jobs that

belong to the same customer are processed by the machine in the same SPT sequence as in π∗.

This alternative optimal solution of problem P1 also satisfies properties (C1)–(C3).

Next, we consider problem Pm for m = 2, 3. We will show that

max{|Eij(σ
∗)−Eij(π

∗)|, |Eil(σ
∗)−Eil(π

∗)|} ≥ max{|Eij(σ
∗∗)−Eij(π

∗)|, |Eil(σ
∗∗)−Eil(π

∗)|}. (A11)

We divide the analysis into two cases.

Case 1: Eij(π
∗) ≤ Eil(σ

∗). From (A3) and (A4), we have

Eij(σ
∗)− Eij(π

∗) ≥ Eij(σ
∗∗)−Eij(π

∗) = Eil(σ
∗)−Eij(π

∗) ≥ 0,
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which implies that |Eij(σ
∗)− Eij(π

∗)| ≥ |Eij(σ
∗∗)− Eij(π

∗)|. Thus,

max{|Eij(σ
∗)−Eij(π

∗)|, |Eil(σ
∗)− Eil(π

∗)|} ≥ |Eij(σ
∗∗)−Eij(π

∗)|. (A12)

From (A1), (A2), and (A5), we have

Eij(σ
∗)− Eij(π

∗) ≥ Eij(σ
∗)− Eil(π

∗) = Eil(σ
∗∗)−Eil(π

∗)

and

Eil(π
∗)−Eil(σ

∗) ≥ Eil(π
∗)− Eil(σ

∗∗).

If Eil(σ
∗∗) − Eil(π

∗) ≥ 0, then |Eij(σ
∗) − Eij(π

∗)| ≥ |Eil(σ
∗∗) − Eil(π

∗)|; otherwise, |Eil(σ
∗) −

Eil(π
∗)| ≥ |Eil(σ

∗∗)−Eil(π
∗)|. Hence,

max{|Eij(σ
∗)−Eij(π

∗)|, |Eil(σ
∗)−Eil(π

∗)|} ≥ |Eil(σ
∗∗)−Eil(π

∗)|. (A13)

By (A12) and (A13), inequality (A11) holds.

Case 2: Eij(π
∗) > Eil(σ

∗). From (A1), we have Eil(π
∗) − Eil(σ

∗) ≥ Eij(π
∗) − Eil(σ

∗) > 0.

From (A3), we have Eij(π
∗) − Eil(σ

∗) = Eij(π
∗) − Eij(σ

∗∗) > 0. Thus, |Eil(σ
∗) − Eil(π

∗)| ≥

|Eij(σ
∗∗)−Eij(π

∗)|. This implies that

max{|Eij(σ
∗)−Eij(π

∗)|, |Eil(σ
∗)− Eil(π

∗)|} ≥ |Eij(σ
∗∗)−Eij(π

∗)|. (A14)

From (A1), (A2), and (A5), we have

Eil(π
∗)− Eil(σ

∗) ≥ Eil(π
∗)−Eil(σ

∗∗)

and

Eij(σ
∗)− Eij(π

∗) = Eil(σ
∗∗)−Eij(π

∗) ≥ Eil(σ
∗∗)− Eil(π

∗).

If Eil(π
∗) − Eil(σ

∗∗) ≥ 0, then |Eil(π
∗) − Eil(σ

∗)| ≥ |Eil(π
∗) − Eil(σ

∗∗)|; otherwise, |Eij(σ
∗) −

Eij(π
∗)| ≥ |Eil(σ

∗∗)− Eil(π
∗)|. Hence,

max{|Eij(σ
∗)−Eij(π

∗)|, |Eil(σ
∗)−Eil(π

∗)|} ≥ |Eil(σ
∗∗)−Eil(π

∗)|. (A15)

By (A14) and (A15), inequality (A11) holds.
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In both cases, inequality (A11) holds. Thus, the job interchange operation described in steps

(i)–(iii) does not increase the maximum delivery time disruption. Clearly, this job interchange

operation does not affect the total cost of delivery
∑k

i=1 ri(σ)φi. By (A2) and (A3),

Eij(σ
∗) + Eil(σ

∗) = Eij(σ
∗∗) + Eil(σ

∗∗).

Thus, this job interchange operation does not affect the value of
∑k

i=1

∑ni

j=1 Eij(σ). Hence, for

problem P2, σ∗∗ satisfies constraint (2), and Γ̃2(σ
∗∗) = Γ̃2(σ

∗). For problem P3, we have Γ̃3(σ
∗∗) ≤

Γ̃3(σ
∗). By repeatedly applying this job interchange operation, we obtain an alternative optimal

solution in which the jobs that belong to the same customer are processed by the machine in

the same SPT sequence as in π∗. This alternative optimal solution of problem Pm also satisfies

properties (C1)–(C3).

Proof of Lemma 3: We refer to a group of ` delivery shipments as “consecutive shipments” if their

departure times are t, t + δ, . . . , t + (`− 1)δ for some t > 0. We say that this group of consecutive

shipments is a group of “maximal consecutive shipments” if neither t− δ nor t + `δ is a departure

time of one of the shipments in the solution.

Suppose there exists an optimal solution σ∗ of P1 that satisfies the properties in Lemma 2 but

contains a delivery shipment, say the sth shipment, with a departure time not equal to any of the

following values:

(i) T ;

(ii) one of the values in E0 minus yδ, for some y = 0, 1, . . . , n− 1; or

(iii) departure time of the (s− 1)st shipment plus δ (if s > 1).

Let r be the number of delivery shipments in solution σ∗. For ` = 1, 2, . . . , r, let B` be the job subset

associated with the `th delivery shipment, C` be the completion time of production of job subset

B`, and E` be the departure time of the `th delivery shipment. Let E0 = −∞ and Er+1 = +∞.

Then,

• Es > T ;

• Es 6= t− yδ for all t ∈ E0 and y = 0, 1, . . . , n− 1; and
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• Es > Es−1 + δ.

Consider the group of maximal consecutive shipments that the sth shipment belongs to. Let

Bs, Bs+1, . . . , Bŝ be the job subsets associated with these consecutive shipments, where 1 ≤ s ≤

ŝ ≤ r (note: the sth shipment is the first shipment in this group because Es > Es−1 + δ). Let Φ

denote the total delivery cost of these ŝ− s+1 shipments. Let H(σ∗) denote the total contribution

of these ŝ − s + 1 shipments to the objective value Γ̃1(σ
∗) of this solution. That is,

H(σ∗) = α

ŝ
∑

`=s

∑

Jij∈B`

Eij(σ
∗) + βΦ + γ

ŝ
∑

`=s

∑

Jij∈B`

|Eij(σ
∗)−Eij(π

∗)|

= α

ŝ
∑

`=s

|B`| · E` + βΦ + γ

ŝ
∑

`=s

∑

Jij∈B`

|E` −Eij(π
∗)|.

Because Es 6= t−yδ for all t ∈ E0 and y = 0, 1, . . . , n−1, we have Es, Es +δ, . . . , Es +(ŝ−s)δ /∈ E0.

Note that Eij(π
∗) ∈ E0 for all Jij ∈ J . Thus, E` 6= Eij(π

∗) for all ` = s, s + 1, . . . , ŝ and all

Jij ∈ B`. For ` = s, s + 1, . . . , ŝ, we partition set B` into subsets B′
` and B′′

` , where B′
` contains

jobs with departure times in solution π∗ being less than E`, and B′′
` contains jobs with departure

times in solution π∗ being greater than E`. Then,

H(σ∗) = α

ŝ
∑

`=s

|B`| ·E` + βΦ + γ

ŝ
∑

`=s

∑

Jij∈B′

`

(E` −Eij(π
∗)) + γ

ŝ
∑

`=s

∑

Jij∈B′′

`

(Eij(π
∗)−E`).

Let

ζ ′ =







min`=s,s+1,...,ŝ s.t.B′

`
6=∅

{

minJij∈B′

`
{E` −max{Eij(π

∗), C`}}
}

, if B′
s ∪ B′

s+1 ∪ · · · ∪ B′
ŝ 6= ∅;

+∞, if B′
s ∪ B′

s+1 ∪ · · · ∪ B′
ŝ = ∅;

and

ζ̂ ′ = min{ζ ′, Es − T, Es −Es−1 − δ}.

For ` = s, s+1, . . . , ŝ, since C` ∈ E0 and E` /∈ E0, we have E` > C`. Hence, E`−max{Eij(π
∗), C`} >

0 for all ` = s, s + 1, . . . , ŝ and all Jij ∈ B′
`. Therefore, ζ ′ > 0. In addition, because Es > T and

Es > Es−1 + δ, we have ζ̂ ′ > 0. Let

ζ ′′ =







min`=s,s+1,...,ŝ s.t. B′′

`
6=∅

{

minJij∈B′′

`
{Eij(π

∗)−E`}
}

, if B′′
s ∪ B′′

s+1 ∪ · · · ∪ B′′
ŝ 6= ∅;

+∞, if B′′
s ∪ B′′

s+1 ∪ · · · ∪ B′′
ŝ = ∅;
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and

ζ̂ ′′ = min{ζ ′′, Eŝ+1 −Eŝ − δ}.

It is easy to see that ζ ′′ > 0. Since Eŝ+1 > Eŝ + δ, we have ζ̂ ′′ > 0.

Suppose, to the contrary, that γ
∑ŝ

`=s(|B
′′
` | − |B

′
`|) > α

∑ŝ
`=s |B`|. Consider an alternative

solution σ of P1 obtained by increasing E` by ζ̂ ′′ for ` = s, s + 1, . . . , ŝ. Clearly, σ is a feasible

solution of P1. The total contribution of the shipments of Bs, Bs+1, . . . , Bŝ to the objective value

Γ̃1(σ) of this alternative solution is

H(σ) = α

ŝ
∑

`=s

|B`|·(E`+ζ̂ ′′)+βΦ+γ

ŝ
∑

`=s

∑

Jij∈B′

`

((E`+ζ̂ ′′)−Eij(π
∗))+γ

ŝ
∑

`=s

∑

Jij∈B′′

`

(Eij(π
∗)−(E`+ζ̂ ′′)).

Thus,

H(σ∗)−H(σ) = ζ̂ ′′

[

γ

ŝ
∑

`=s

(|B′′
` | − |B

′
`|)− α

ŝ
∑

`=s

|B`|

]

> 0.

This contradicts the optimality of solution σ∗. Hence, γ
∑ŝ

`=s(|B
′′
` | − |B

′
`|) ≤ α

∑ŝ
`=s |B`|.

Consider an alternative solution σ∗∗ of P1 obtained by decreasing E` by ζ̂ ′ for ` = s, s+1, . . . , ŝ.

It is easy to check that σ∗∗ is a feasible solution of P1 that satisfies the properties in Lemma 2.

The total contribution of the shipments of Bs, Bs+1, . . . , Bŝ to the objective value Γ̃1(σ
∗∗) of this

alternative solution is

H(σ∗∗) = α

ŝ
∑

`=s

|B`|·(E`−ζ̂ ′)+βΦ+γ

ŝ
∑

`=s

∑

Jij∈B′

`

((E`−ζ̂ ′)−Eij(π
∗))+γ

ŝ
∑

`=s

∑

Jij∈B′′

`

(Eij(π
∗)−(E`−ζ̂ ′)).

Thus,

H(σ∗)−H(σ∗∗) = ζ̂ ′

[

α
ŝ

∑

`=s

|B`|+ γ
ŝ

∑

`=s

(|B′
`| − |B

′′
` |)

]

≥ 0.

Hence, σ∗∗ is also an optimal solution of P1. In solution σ∗∗, the group of maximal consecu-

tive shipments that contains Bs, Bs+1, . . . , Bŝ are merged with the group of maximal consecutive

shipments that contains Bs−1 into a single group of maximal consecutive shipments (i.e., when

ζ̂ ′ = Es −Es−1 − δ), or the departure time of job subset Bs is equal to T (i.e., when ζ̂ ′ = Es − T ),

or the departure time of one of Bs, Bs+1, . . . , Bŝ is equal to a value in E0. By repeatedly applying

this argument to different groups of maximal consecutive shipments, we obtain an optimal solution

of problem P1 that satisfies the properties stated in Lemma 3.
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Proof of Lemma 4: Suppose there exists an optimal solution σ∗ of P2 that satisfies the properties

in Lemma 2 but contains a delivery shipment, say the sth shipment, with a departure time not

equal to any of the following values:

(i) T ;

(ii) the completion time of production of the sth shipment’s last job;

(iii) the departure time of the sth shipment’s last job in solution π∗ minus θ; or

(iv) the departure time of the (s− 1)st shipment plus δ (if s 6= 1).

Let Cs and Es be the production completion time and departure time, respectively, of the sth

shipment. Let Es−1 be the departure time of the (s − 1)st shipment if s 6= 1, and let E0 = −∞.

Let Ki be the customer that the sth shipment belongs to. Let Bs = {Jij1 , Jij2, . . . , Jiju} be the

job subset associated with the sth shipment, where jobs Jij1, Jij2 , . . . , Jiju are indexed in increasing

order of their completion times of production in solution π∗. Since solution π∗ satisfies property

(C3), we have Eij1(π
∗) ≤ Eij2(π

∗) ≤ · · · ≤ Eiju(π∗). Constraint (2) implies that Eijl
(π∗) − θ ≤

Es ≤ Eijl
(π∗) + θ, for l = 1, 2, . . . , u. Then,

• Es > T ;

• Es > Cs;

• Es > Eiju(π∗)− θ; and

• Es > Es−1 + δ.

Consider an alternative solution σ∗∗ of P2 obtained by decreasing Es to E ′
s, where E ′

s = max{T, Cs,

Eiju(π∗) − θ, Es−1 + δ}. Clearly, σ∗∗ satisfies the minimum headway constraint. Because E ′
s ≥

Eiju(π∗)− θ, we have

E ′
s ≥ Eijl

(π∗)− θ,

for l = 1, 2, . . . , u. Because E ′
s < Es and Es ≤ Eijl

(π∗) + θ, we have

E ′
s < Eijl

(π∗) + θ,

for l = 1, 2, . . . , u. Thus, σ∗∗ also satisfies constraint (2). The objective value of σ∗∗ is less than

the objective value of σ∗ by αu(Es −E ′
s) ≥ 0. Hence, σ∗∗ is also an optimal solution of P2. In the

solution σ∗∗, the departure time of the sth shipment is equal to T , Cs, Eiju(π∗)−θ, or Es−1 +δ. By
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repeatedly applying this argument to different shipments, we obtain an optimal solution of problem

P2 in which the departure time of each shipment is equal to one of the following values: (i) T ;

(ii) the completion time of production of the current shipment’s last job; (iii) the departure time

of the current shipment’s last job in solution π∗ minus θ; or (iv) the departure time of the previous

shipment plus δ (if the current shipment is not the first shipment). Note that the completion time

of production of the current shipment’s last job is an element of E0, and the departure time of the

current shipment’s last job in solution π∗ is also an element of E0. Therefore, this optimal solution

satisfies all the properties stated in Lemma 4.

Proof of Lemma 5: Suppose, to the contrary, that ∆max(σ
∗) /∈ S for every optimal solution σ∗ of

problem P3 that satisfies the properties in Lemma 2. Let σ∗∗ be such an optimal solution where the

sum of departure times of the shipments is the smallest. Let r be the number of delivery shipments

in solution σ∗∗, and let B1, B2, . . . , Br be the job subsets associated with these shipments. Let

B = {B1, B2, . . . , Br}. For ` = 1, 2, . . . , r, let

ε` = min
s∈S

{∣

∣

∣
max

Jij∈B`

{∆ij(σ
∗∗)} − s

∣

∣

∣

}

,

which is the amount that the `th shipment’s maximum delivery time disruption deviates from an

element of S. Since ∆max(σ
∗∗) /∈ S, at least one of ε1, ε2, . . . , εr is strictly positive. Let

ε = min
{

ε`

∣

∣ ` = 1, . . . , r such that ε` > 0
}

> 0.

Then, maxJij∈B`
{∆ij(σ

∗∗)} either equals an element of S or deviates from an element of S by at least

ε, for each ` = 1, 2, . . . , r. Note that E11(π
∗) =

E11(π∗)+E11(π∗)−0δ
2 ∈ E3 and |E11(π

∗)−E11(π
∗)| = 0.

Thus, 0 ∈ S. Hence, if maxJij∈B`
{∆ij(σ

∗∗)} /∈ S, then maxJij∈B`
{∆ij(σ

∗∗)} ≥ ε.

For ` = 1, 2, . . . , r, let B` = {Ji`u`
, Ji`,u`+1, . . . , Ji`v`

}, where Ji`j is processed by the machine

before Ji`,j+1 for j = u`, u` + 1, . . . , v` − 1. Let E` be the departure time of job subset B`; that is,

E` = Ei`u`
(σ∗∗) = Ei`,u`+1(σ

∗∗) = · · · = Ei`v`
(σ∗∗). Then,

max
Jij∈B`

{∆ij(σ
∗∗)} =







Ei`v`
(π∗)− E`, if E` ≤

1
2 [Ei`u`

(π∗) + Ei`v`
(π∗)];

E` − Ei`u`
(π∗), if E` > 1

2 [Ei`u`
(π∗) + Ei`v`

(π∗)].
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We partition B into three subsets B0, B1, and B2, where

B0 =
{

B`

∣

∣

∣
max

Jij∈B`

{∆ij(σ
∗∗)} ∈ S

}

,

B1 =
{

B`

∣

∣

∣

∣

max
Jij∈B`

{∆ij(σ
∗∗)} /∈ S and E` <

1

2

[

Ei`u`
(π∗) + Ei`v`

(π∗)
]

}

,

and

B2 =
{

B`

∣

∣

∣

∣

max
Jij∈B`

{∆ij(σ
∗∗)} /∈ S and E` >

1

2

[

Ei`u`
(π∗) + Ei`v`

(π∗)
]

}

.

Then, maxJij∈B`
{∆ij(σ

∗∗)} = Ei`v`
(π∗) − E` ≥ ε if B` ∈ B

1, and maxJij∈B`
{∆ij(σ

∗∗)} = E` −

Ei`u`
(π∗) ≥ ε if B` ∈ B

2.

Using the same terminology as in the proof of Lemma 3, we refer to a group of ` delivery

shipments as “consecutive shipments” if their departure times are t, t + δ, . . . , t+ (`− 1)δ for some

t > 0, and we say that this is a group of “maximal consecutive shipments” if neither t − δ nor

t + `δ is a departure time of one of the shipments in the solution. We consider another way of

partitioning set B, which partitions B according to the grouping of maximal consecutive shipments.

Specifically, we let µ be the number of groups of maximal consecutive shipments in solution σ∗∗. For

s = 1, 2, . . . , µ, let As = {Bs
1, B

s
2, . . . , B

s
λs
}, where λs = |As|, and Bs

h is the job subset associated

with the hth shipment in the sth group of maximal consecutive shipments. Then, job subsets

A1,A2, . . . ,Aµ form a partition of B. Note that the minimum departure time of the job subsets in

As+1 is greater than the maximum departure time of the job subsets inAs plus δ, for s = 1, . . . , µ−1.

For s = 1, 2, . . . , µ and h = 1, 2, . . . , λs, let Cs
h be the completion time of production of the last job

in Bs
h, and Es

h be the departure time of job subset Bs
h. Let λ0 = 0, E0

0 = −∞, and Eµ+1
1 = +∞.

Then, for s = 1, 2, . . . , µ + 1,

Es
1 > Es−1

λs−1
+ δ. (A16)

In the following, we show that solution σ∗∗ possesses the following four properties:

Property Π1: For s = 1, 2, . . . , µ, if As ∩ (B1 ∪B2) 6= ∅, then Es
h > max{T, Cs

h} for h = 1, 2, . . . , λs.

Property Π2: For s = 1, 2, . . . , µ and h = 1, 2, . . . , λs, if Bs
1, B

s
2, . . . , B

s
h−1 ∈ B

0 and Bs
h ∈ B

1 ∪ B2

then Bs
h ∈ B

1.
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Property Π3: For s = 1, 2, . . . , µ and h = 1, 2, . . . , λs, if Bs
1, B

s
2, . . . , B

s
h−1 ∈ B

0 and Bs
h ∈ B

1, then

maxJij∈Bs
h
{∆ij(σ

∗∗)} = ∆max(σ
∗∗).

Property Π4: For s = 1, 2, . . . , µ and h = 1, 2, . . . , λs, if As ∩ B1 6= ∅ and Bs
h ∈ B

2, then

maxJij∈Bs
h
{∆ij(σ

∗∗)} < ∆max(σ
∗∗).

To prove Property Π1, suppose, to the contrary, that there exist s = 1, 2, . . . , µ and h =

1, 2, . . . , λs such that As ∩ (B1 ∪ B2) 6= ∅ and Es
h = max{T, Cs

h}. Since As ∩ (B1 ∪ B2) 6= ∅, there

exists ω ∈ {1, 2, . . . , λs} such that Bs
ω ∈ B

1 ∪ B2. Because the shipments in As are consecutive

shipments and the difference in departure times between any two consecutive shipments is δ, we

have Es
ω = Es

h + (ω − h)δ = max{T, Cs
h}+ (ω − h)δ. Since Es

ω ≥ T , we have

Es
ω = max

{

T, max{T, Cs
h}+ (ω − h)δ

}

= max
{

T + max{ω − h, 0}δ, Cs
h + (ω − h)δ

}

. (A17)

Note that |ω − h| ≤ n − 1 and that Cs
h =

∑k
i=1

∑qi

j=1 pij for some qi = 0, 1, . . . , ni; i = 1, 2, . . . , k.

Thus, Cs
h + (ω − h)δ ∈ E3. In addition, T + max{ω − h, 0}δ ∈ E3. Hence, from (A17), Es

ω ∈ E3.

This implies that maxJij∈Bs
ω
{∆ij(σ

∗∗)} ∈ S, which contradicts that Bs
ω ∈ B

1 ∪ B2. Therefore, σ∗∗

satisfies Property Π1.

To prove Property Π2, consider any s = 1, 2, . . . , µ such that As ∩ (B1 ∪B2) 6= ∅. Let Bs
h be the

first job subset in As that belongs to B1 ∪ B2; that is, Bs
1, B

s
2, . . . , B

s
h−1 ∈ B

0 and Bs
h ∈ B

1 ∪ B2.

Suppose, to the contrary, that Bs
h ∈ B

2. Then,

max
Jij∈Bs

h

{∆ij(σ
∗∗)} = Es

h − min
Jij∈Bs

h

{Eij(π
∗)} ≥ ε. (A18)

Let

ϕ1 = min
{

ε, Es
1 −Es−1

λs−1
− δ, min

ω=1,...,h

{

Es
ω −max{T, Cs

ω}
}

}

.

By (A16), Es
1 − Es−1

λs−1
− δ > 0. By Property Π1, Es

ω > max{T, Cs
ω} for ω = 1, 2, . . . , h. Hence,

ϕ1 > 0. Consider a new solution σ1 obtained by decreasing the departure times of the job subsets

Bs
1, B

s
2, . . . , B

s
h by ϕ1. Since the new departure time of job subset Bs

1 is Es
1 − ϕ1 ≥ Es

1 − (Es
1 −

Es−1
λs−1
− δ) = Es−1

λs−1
+ δ, the new departure time of job subset Bs

1 differs from the departure time of

job subset Bs−1
λs−1

by at least δ. Thus, the new solution σ1 is feasible. In addition, σ1 satisfies the

properties in Lemma 2.
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Decreasing the departure times of Bs
1, B

s
2, . . . , B

s
h reduces the value of

∑k
i=1

∑ni

j=1 Eij(σ
∗∗) by

∑h
ω=1 |B

s
ω| · ϕ1. In the following, we show that decreasing the departure times of Bs

1, B
s
2, . . . , B

s
h

does not increase the maximum delivery time disruption ∆max(σ
∗∗). First, consider the job

subsets Bs
1, B

s
2, . . . , B

s
h−1. Since Bs

1, B
s
2, . . . , B

s
h−1 ∈ B

0, we have maxJij∈Bs
ω
{∆ij(σ

∗∗)} ∈ S for

ω = 1, 2, . . . , h − 1. Since ∆max(σ
∗∗) deviates from each element of S by at least ε, we have

maxJij∈Bs
ω
{∆ij(σ

∗∗)} ≤ ∆max(σ
∗∗) − ε for ω = 1, 2, . . . , h− 1. Hence, in the new solution σ1, the

maximum delivery time disruption of the job subsets Bs
1, B

s
2, . . . , B

s
h−1 is at most ∆max(σ

∗∗)− ε +

ϕ1 ≤ ∆max(σ
∗∗). Next, consider the job subset Bs

h. By (A18), when Es
h decreases by ϕ1, the

maximum delivery time disruption of the job subset Bs
h also decreases by ϕ1. Since the departure

times of the other job subsets are unaffected by the decrease in departure times of Bs
1, B

s
2, . . . , B

s
h,

we conclude that the maximum delivery time disruption of solution σ1 (i.e., ∆max(σ1)) is no greater

than that of solution σ∗∗ (i.e., ∆max(σ
∗∗)). Summarizing the above discussion, we have

Γ̃3(σ1) ≤ Γ̃3(σ
∗∗)− α

h
∑

ω=1

|Bs
ω| · ϕ1 ≤ Γ̃3(σ

∗∗).

Thus, σ1 is also an optimal solution. However, the sum of departure times of the shipments

in solution σ1 is smaller than that in solution σ∗∗. This contradicts that the fact that σ∗∗ is

an optimal solution which satisfies the properties in Lemma 2 with the smallest total shipment

departure times. Hence, Bs
h ∈ B

1. Therefore, σ∗∗ satisfies Property Π2.

To prove Property Π3, consider any s = 1, 2, . . . , µ and h = 1, 2, . . . , λs such that Bs
1, B

s
2, . . . , B

s
h−1

∈ B0 and Bs
h ∈ B

1. Since Bs
h ∈ B

1, we have

max
Jij∈Bs

h

{∆ij(σ
∗∗)} = max

Jij∈Bs
h

{Eij(π
∗)} − Es

h ≥ ε. (A19)

Suppose, to the contrary, that maxJij∈Bs
h
{∆ij(σ

∗∗)} < ∆max(σ
∗∗). Then, let

ϕ2 = min
{

ε, ∆max(σ
∗∗)− max

Jij∈Bs
h

{∆ij(σ
∗∗)}, Es

1 −Es−1
λs−1
− δ, min

ω=1,...,h

{

Es
ω −max{T, Cs

ω}
}

}

.

By (A16), Es
1 − Es−1

λs−1
− δ > 0. By Property Π1, Es

ω > max{T, Cs
ω} for ω = 1, 2, . . . , h. Hence,

ϕ2 > 0. Consider a new solution σ2 obtained by decreasing the departure times of the job subsets

Bs
1, B

s
2, . . . , B

s
h by ϕ2. Since the new departure time of job subset Bs

1 is Es
1 − ϕ2 ≥ Es

1 − (Es
1 −

Es−1
λs−1
− δ) = Es−1

λs−1
+ δ, the new departure time of job subset Bs

1 differs from the departure time of
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job subset Bs−1
λs−1

by at least δ. Thus, the new solution σ2 is feasible. In addition, σ2 satisfies the

properties in Lemma 2.

Decreasing the departure times of Bs
1, B

s
2, . . . , B

s
h reduces the value of

∑k
i=1

∑ni

j=1 Eij(σ
∗∗) by

∑h
ω=1 |B

s
ω| · ϕ2. In the following, we show that decreasing the departure times of Bs

1, B
s
2, . . . , B

s
h

does not increase the maximum delivery time disruption ∆max(σ
∗∗). First, consider the job

subsets Bs
1, B

s
2, . . . , B

s
h−1. Since Bs

1, B
s
2, . . . , B

s
h−1 ∈ B

0, we have maxJij∈Bs
ω
{∆ij(σ

∗∗)} ∈ S for

ω = 1, 2, . . . , h − 1. Since ∆max(σ
∗∗) deviates from each element of S by at least ε, we have

maxJij∈Bs
ω
{∆ij(σ

∗∗)} ≤ ∆max(σ
∗∗) − ε for ω = 1, 2, . . . , h − 1. Hence, in the new solution σ2,

the maximum delivery time disruption of the job subsets Bs
1, B

s
2, . . . , B

s
h−1 is at most ∆max(σ

∗∗)−

ε + ϕ2 ≤ ∆max(σ
∗∗). Next, consider the job subset Bs

h. By (A19), when Es
h decreases by ϕ2,

the maximum delivery time disruption of the job subset Bs
h increases by ϕ2. Because ϕ2 ≤

∆max(σ
∗∗) − maxJij∈Bs

h
{∆ij(σ

∗∗)}, the maximum delivery time disruption of Bs
h in solution σ2

is no greater than ∆max(σ
∗∗). Since the departure times of the other job subsets are unaffected by

the decrease in departure times of Bs
1, B

s
2, . . . , B

s
h, we conclude that the maximum delivery time

disruption of solution σ2 (i.e., ∆max(σ2)) is no greater than that of solution σ∗∗ (i.e., ∆max(σ
∗∗)).

Summarizing the above discussion, we have

Γ̃3(σ2) ≤ Γ̃3(σ
∗∗)− α

h
∑

ω=1

|Bs
ω| · ϕ2 ≤ Γ̃3(σ

∗∗).

Thus, σ2 is also an optimal solution. However, the sum of departure times of the shipments

in solution σ2 is smaller than that in solution σ∗∗. This contradicts that the fact that σ∗∗ is

an optimal solution which satisfies the properties in Lemma 2 with the smallest total shipment

departure times. Hence, maxJij∈Bs
h
{∆ij(σ

∗∗)} = ∆max(σ
∗∗). Therefore, σ∗∗ satisfies Property Π3.

To prove Property Π4, consider any s = 1, 2, . . . , µ and h = 1, 2, . . . , λs such that As ∩ B1 6= ∅

and Bs
h ∈ B

2. Since Bs
h ∈ B

2, we have

max
Jij∈Bs

h

{∆ij(σ
∗∗)} = Es

h − min
Jij∈Bs

h

{Eij(π
∗)}. (A20)

Let Bs
ω be the first job subset in As which is not in B0. By Property Π2, Bs

ω ∈ B
1. Hence,

max
Jij∈Bs

ω

{∆ij(σ
∗∗)} = max

Jij∈Bs
ω

{Eij(π
∗)} −Es

ω.
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By Property Π3, maxJij∈Bs
ω
{∆ij(σ

∗∗)} = ∆max(σ
∗∗). Hence,

∆max(σ
∗∗) = max

Jij∈Bs
ω

{Eij(π
∗)} − Es

ω. (A21)

Note that ω < h and that Bs
ω , Bs

ω+1, . . . , B
s
h are job subsets associated with consecutive shipments.

Thus, Es
h = Es

ω + (h− ω)δ, and equation (A20) can be rewritten as

max
Jij∈Bs

h

{∆ij(σ
∗∗)} = Es

ω + (h− ω)δ − min
Jij∈Bs

h

{Eij(π
∗)}. (A22)

Suppose, to the contrary, that maxJij∈Bs
h
{∆ij(σ

∗∗)} = ∆max(σ
∗∗). Then, from (A21),

max
Jij∈Bs

h

{∆ij(σ
∗∗)} = max

Jij∈Bs
ω

{Eij(π
∗)} −Es

ω. (A23)

From (A22) and (A23),

Es
ω + (h− ω)δ − min

Jij∈Bs
h

{Eij(π
∗)} = max

Jij∈Bs
ω

{Eij(π
∗)} − Es

ω,

which implies that

Es
ω =

minJij∈Bs
ω
{Eij(π

∗)}+ maxJij∈Bs
h
{Eij(π

∗)} − (h− ω)δ

2
∈ E3.

Hence, maxJij∈Bs
ω
{∆ij(σ

∗∗)} ∈ S, which contradicts that Bs
ω is not in B0. Therefore, σ∗∗ satisfies

Property Π4.

Denote

C =
⋃

s∈{1,...,µ} s.t.As∩B1 6=∅

As.

Note that any job subset in B1 ∪ B2 must belong to As for some s = 1, 2, . . . , µ. By Property Π2,

the first job subset in As that belongs to B1∪B2 must be an element of B1. Thus, any job subset in

B1 ∪B2 must belong to As for some s = 1, 2, . . . , µ such that As ∩B1 6= ∅. Because ∆max(σ
∗∗) /∈ S,

we have B1 ∪B2 6= ∅. Hence, there exists s ∈ {1, 2, . . . , µ} such that As ∩B1 6= ∅. This implies that

C 6= ∅. We divide the analysis into two cases.

Case 1: α
∑

B`∈C
|B`| ≥ γ. Let

η1 = min
s∈{1,...,µ} s.t.As∩B1 6=∅

min
{

ε, Es
1 −Es−1

λs−1
− δ, min

h=1,...,λs

{

Es
h −max{Cs

h, T}
}

}

.
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Consider any s ∈ {1, 2, . . . , µ} such that As ∩ B1 6= ∅. By (A16), Es
1 −Es−1

λs−1
− δ > 0. By Property

Π1, Es
h −max{Cs

h, T} > 0 for any h = 1, 2, . . . , λs. Hence, η1 > 0.

Consider a solution σ3 obtained by decreasing the departure times of the job subsets in C by η1.

Note that in solution σ∗∗ the departure time of a job subset Bs
1 that belongs to C is at least δ + η1

time units larger than the departure time of job subset Bs−1
λs−1

(if s 6= 1). Thus, any two consecutive

shipments in the new solution σ3 are at least δ time units apart. Note also that the departure time

of each job subset Bs
h in σ3 is at least max{Cs

h, T}. Hence, σ3 is a feasible solution of problem

P3. In addition, σ3 satisfies the properties in Lemma 2. Decreasing the departure times of the job

subsets in C by η1 reduces the value of
∑k

i=1

∑ni

j=1 Eij(σ
∗∗) by

∑

B`∈C
|B`| · η1 and increases the

maximum delivery time disruption ∆max(σ
∗∗) by at most η1. Thus,

Γ̃3(σ3) ≤ Γ̃3(σ
∗∗)− α

∑

B`∈C

|B`| · η1 + γη1 ≤ Γ̃3(σ
∗∗).

Therefore, σ3 is also an optimal solution. However, the sum of departure times of the shipments in

solution σ3 is smaller than that in solution σ∗∗. This contradicts that the fact that σ∗∗ is an optimal

solution which satisfies the properties in Lemma 2 with the smallest total shipment departure times.

Case 2: α
∑

B`∈C
|B`| < γ. Let

η2 = min
s∈{1,...,µ} s.t.As∩B1 6=∅

min

{

ε

2
, Es+1

1 −Es
λs
−δ,

1

2
min

h∈{1,...,λs} s.t.Bs
h
∈B2

{

∆max(σ
∗∗)− max

Jij∈Bs
h

{∆ij(σ
∗∗)}

}

}

,

where minh∈{1,...,λs} s.t.Bs
h
∈B2{∆max(σ

∗∗) −maxJij∈Bs
h
{∆ij(σ

∗∗)}} = +∞ when As ∩ B2 = ∅. Con-

sider any s ∈ {1, 2, . . . , µ} such that As ∩B1 6= ∅. By (A16), Es+1
1 −Es

λs
− δ > 0. By Property Π4,

∆max(σ
∗∗)−maxJij∈Bs

h
{∆ij(σ

∗∗)} > 0 for any h ∈ {1, 2, . . . , λs} such that Bs
h ∈ B

2. Hence, η2 > 0.

Consider a solution σ4 obtained by increasing the departure times of the job subsets in C by

η2. Note that in solution σ∗∗ the departure time of a job subset Bs
λs

that belongs to C is at

least δ + η2 time units smaller than the departure time of job subset Bs+1
1 (if s 6= µ). Thus,

any two consecutive shipments in the new solution σ4 are at least δ time units apart. Hence, σ4

is a feasible solution of problem P3. In the following, we show that the maximum delivery time

disruption of solution σ4 is at most ∆max(σ
∗∗) − η2. First, we consider shipments of those job

subsets in B0. Note that in solution σ∗∗ the maximum delivery time disruption of each job subset
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B` in B0 is at most ∆max(σ
∗∗)− ε (because maxJij∈B`

{∆ij(σ
∗∗)} ∈ S and ∆max(σ

∗∗) deviates from

an element of S by at least ε). Thus, in solution σ4, the maximum delivery time disruption of

each of the job subsets in B0 is at most ∆max(σ
∗∗) − ε + η2 ≤ ∆max(σ

∗∗) − η2 (because η2 ≤
ε
2 ).

Next, we consider shipments of those job subsets in B1. Since B1 ⊆ C, the departure time of each

job subset in B1 is increased by η2. Since maxJij∈B`
{∆ij(σ

∗∗)} = Ei`v`
(π∗) − E` ≥ ε for each

B` ∈ B
1, the maximum delivery time disruption of each of the job subsets in B1 decreases by

η2 when we increase their departure times by η2. Hence, in solution σ4, the maximum delivery

time disruption of each of the job subsets in B1 is at most ∆max(σ
∗∗) − η2. Finally, we consider

shipments of those job subsets in B2. Because B2 ⊆ C, the departure time of each job subset

in B2 is increased by η2. The maximum delivery time disruption of each of the job subsets in B2

increases by no more than η2 when we increase their departure times by η2. Thus, in solution σ4, the

maximum delivery time disruption of each job subset B` ∈ B
2 is at most maxJij∈B`

{∆ij(σ
∗∗)}+η2 =

∆max(σ
∗∗) + η2 − [∆max(σ

∗∗) − maxJij∈B`
{∆ij(σ

∗∗)}] ≤ ∆max(σ
∗∗) + η2 − 2η2 ≤ ∆max(σ

∗∗) − η2.

Summarizing the above discussion, we have ∆max(σ4) ≤ ∆max(σ
∗∗)− η2. Therefore,

Γ̃3(σ4) ≤ Γ̃3(σ
∗∗) + α

∑

B`∈C

|B`| · η2 − γη2 < Γ̃3(σ
∗∗).

This contradicts that σ∗∗ is an optimal solution.

Combining Cases 1 and 2, we conclude that ∆max(σ
∗) ∈ S for some optimal solution σ∗.
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