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Stress Testing Mortgage Loan Default 

 

Zheqi Wang*, Jonathan Crook, Galina Andreeva 

 

Credit Research Centre, University of Edinburgh Business School, 29 Buccleuch Place, 

Edinburgh EH8 9JS, UK 

 

Abstract: We propose a new stress testing method to model coefficient uncertainty in addition 

to macroeconomic stress. Based on U.S. mortgage loan data, we model the probability of default 

at account level using discrete time hazard analysis. We employ both the frequentist and 

Bayesian methods in parameter estimation and default rate (DR) stress testing. By applying the 

Bayesian parameter posterior distribution, which includes all ranges of possible parameter 

estimates, obtained in the Bayesian approach to simulating the DR distribution, we reduce the 

estimation risk coming from employing point estimates in stress testing. Since estimation risk, a 

commonly neglected source of risk, is addressed in our method, we obtain more prudential 

forecasts of credit losses. We find that the simulated DR distribution obtained using the Bayesian 

approach with the parameter posterior distribution has a standard deviation 10.7 times as large 

as that using the frequentist approach with parameter mean estimates. Moreover, the 99% 

values at risk (VaR) using the Bayesian posterior distribution approach is around 6.5 times the 

VaR at the same probability level using the point estimate approach. 
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1. Introduction  

 

Stress testing is an important operational research tool to assess bank risk levels and to provide 

a basis to assist decision making by financial institutions and regulators (Breeden, 2016; Ju, Jeon, 

& Sohn, 2015; Schechtman & Gaglianone, 2012). Stress tests are designed to measure how 

sensitive risk exposures are to external or internal shocks to a financial system, an individual 

financial institution, a portfolio or an account (Misina, Tessier, & Dey, 2006). Based on stress 

testing results, regulators can assess if the financial system is stable enough to tolerate extreme 

but plausible economic conditions. Banks can decide how much capital they should keep to 

protect depositors in case such conditions occur. In practice, the financial sector assessment 

programmes (FSAPs) of the IMF and World Bank, as well as the financial authorities of various 

countries, regularly apply stress testing on financial institutions to assess the stability of the 

financial system (Schuermann, 2014; Sorge & Virolainen, 2006).  

 

The focus of stress testing is largely on credit risk which is the most significant risk in banking 

systems (Sorge & Virolainen, 2006). The credit risk stress testing methods in the literature can 

be summarized as a three-step procedure (Borio, Drehmann, & Tsatsaronis, 2014; Kapinos, 

Martin, & Mitnik, 2018). First, empirical models exploring the relationship between an indicator 

of bank credit risk and macroeconomic variables are built and model coefficients estimated. 

Many papers (Kanas & Molyneux, 2018; Schechtman & Gaglianone, 2012; Vazquez, Tabak, & 

Souto, 2012) perform macro stress tests with aggregate data at the system level or with data of 

groups of financial institutions. Some (Bangia, Diebold, Kronimus, Schagen, & Schuermann, 2002; 

Bellotti & Crook, 2013, 2014; Breeden, 2016; Ju et al., 2015; Pesaran, Schuermann, Treutler, & 

Weiner, 2006) implement micro stress testing methods with granular data at an individual 

account, portfolio or institution level. Studies find that increases in output growth tend to reduce 

credit risk (Bikker & Hu, 2002; Laeven & Majnoni, 2003; Sorge & Virolainen, 2006), whereas rises 

in interest rate or unemployment tend to increase credit risk (Bellotti & Crook, 2013; Bikker & 

Hu, 2002; Pesaran et al., 2006). In the second step, stress scenarios for the macroeconomic 

variables are constructed on a historical (Sorge & Virolainen, 2006; Bellotti & Crook, 2013, 2014) 

or hypothetical (Jokivuolle & Viren, 2013; Tsukahara, Kimura, Sobreiro, & Zambrano, 2016) basis 

using distribution simulation methods (Bellotti & Crook, 2013, 2014; Kanas & Molyneux, 2018) 

or point prediction methods (Breeden, 2016; Busch, Koziol, & Mitrovic, 2018). The third step is 

to apply the stress scenarios of the macroeconomic variables to the empirical model to measure 

the extent of impact they have on the credit risk indicator of interest, such as the probability of 

default. Previous research has found that credit losses under stress scenarios with shocks from 
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macroeconomic variables are higher than those under baseline scenarios (Bellotti & Crook, 2013, 

2014; Bikker & Hu, 2002; Jokivuolle & Viren, 2013; Laeven & Majnoni, 2003; Sorge & Virolainen, 

2006). For example, Bellotti and Crook (2013) found that in the worst 1% economic scenarios, 

the default rate is 1.73 times the median using account level credit card data. Rösch and Scheule 

(2004) found the 99% Value at Risk to be between 1.50 and 8.32 times the mean for real estate 

loans based on aggregate data.   

 

Estimation risk and model risk have been recognised in the financial risk management literature. 

For instance, Escanciano and Olmo (2010) take into account estimation risk when backtesting 

market risk models so that how appropriate and conservative those models are can be better 

assessed. Gourieroux and Zakoïan (2013) argue that using an estimate based on a sample to 

approximate a true parameter is asymptotically biased and would cause VaR underestimation. 

Therefore they propose to substitute an adjusted estimate to the true parameter which would 

result in larger estimates of VaR. Some papers address estimation risk and model risk in credit 

risk stress testing. Philippon, Pessarossi, and Camara (2017) provide the first assessment method 

for the stress tests in the European Union which can be seen as an effort to detect model risks 

in existing stress testing models. In general, they find no evidence of biases in scenario building 

and loss forecasting. Jacobs, Karagozoglu, and Sensenbrenner (2015) use a Bayesian approach to 

address estimation risk in stress testing in the sense that they use informative priors to include 

expert knowledge. However, the importance of estimation risk has not been fully addressed in 

the credit risk stress testing literature. Although parameter estimation risk is gaining increasing 

attention, none of the papers introduces this type of uncertainty as a source of stress scenario 

input into the stress testing procedure as they do the risk of macroeconomic shocks. The majority 

of the literature on credit risk stress testing uses the frequentist estimation approach in the first 

step of the three-step procedure to obtain model parameter estimates. Such fixed scalars are 

used in the simulation of the loss distribution. However, there are estimation errors inherent in 

coefficient estimates. In stress testing practice in the literature, this estimation risk is ignored 

since only the mean estimates are substituted into the DR simulations in stress testing. For 

papers that do consider estimation risk in their modelling (Escanciano & Olmo, 2010; Gourieroux 

& Zakoïan, 2013), this is still the case. Some papers use a Bayesian method for stress testing 

(Jacobs et al., 2015; Louzis, 2017; Petropoulos et al., 2018). However, their stress test approaches 

still employ Bayesian coefficient point estimates without addressing all of the range of possible 

coefficient estimates.  

 

In practice, although banks seemed well capitalised based on regulatory capital requirements, 
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during the financial crisis many banks still had insufficient capital which led to their failure or 

near-failure (Schuermann, 2014). In response to the financial crisis, the U.S. government 

authorised $475 billion to purchase equity and toxic assets from banks to improve the solvency 

and liquidity of these banks in case of a possible total collapse of the U.S. financial system. For 

instance, around $200 billion was spent in purchasing preferred stock and equity warrant from 

hundreds of banks through the Capital Purchase Program. Purchasing illiquid mortgage-backed 

securities and assisting residential mortgage loan foreclosures cost more than $65 billion. 

Around $70 billion was spent in stock purchase of the American International Group, and $40 

billion in that of Citigroup and Bank of America. In response to the financial crisis, the UK 

government announced a bank rescue package of £500 billion to restore confidence in and 

stabilise the British banking system. £50 billion was made available to recapitalise the banks 

through common and preferred stocks purchase. The government invested in the banks short of 

capital, making them partly nationalised. For instance, the Royal Bank of Scotland raised £20 

billion capital, and Lloyds banking group £17 billion through the Bank Recapitalisation Fund.  

 

Inadequate bank capital was attributed to many factors, such as insufficient minimum capital 

ratio requirements, the definition of capital being too wide, excessive leverage, procyclical 

amplification of financial shocks, insufficient liquidity requirements, etc. (BCBS, 2011). We 

consider another reason could be the neglect of uncertainty in the regulatory and bank internal 

risk models in use to assess the potential loss. For instance, the Basel accords require regulatory 

capital to cover credit risk, operational risk and market risk, etc., but did not include estimation 

risk which is the uncertainty of the coefficient estimates in the risk models. This type of risk may 

be present when modelling all types of risks that are required of the banks. We consider that 

incorporating the coefficient estimation risk in stress testing may increase perceived risk and 

provide more prudential predictions of losses and required capital, therefore helping financial 

institutions make better and safer capital planning decisions. 

 

The contribution this paper makes to the operational research literature is to propose that by 

using a Bayesian approach and a Bayesian coefficient posterior distribution in stress testing, we 

take into account parameter uncertainty and reduce risk underestimation. That is, a more 

prudential amount of capital that a bank would need in order to maintain a given risk to protect 

depositors is estimated than with conventional methods. In Bayesian econometric theory, both 

parameters and explanatory variables are random variables instead of scalars and variables 

respectively, as in the frequentist approach. When doing Bayesian stress testing and simulating 

the estimated default rate distribution, we not only take random draws from the historical 

https://en.wikipedia.org/wiki/Pound_sterling
https://en.wikipedia.org/wiki/Pound_sterling
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scenarios of the macroeconomic variables but also simulate from the coefficient posterior to 

take into account other possible coefficient estimates in the coefficient posterior distribution. 

Therefore by employing Bayesian simulation of coefficients in stress testing, we model the 

uncertainty of coefficients thus reducing credit risk underestimation that arises from neglecting 

estimation risk. Moreover, since the number of draws taken from different regions of the 

posterior is proportionate to the posterior probability of these regions, when we include the less 

likely coefficient estimates from the posterior distribution, we also take their corresponding low 

probability into account. Therefore this stress testing method also has the benefit that it avoids 

risk overestimation. 

 

This paper estimates and stress tests the probability of default at the micro/account level using 

a dataset of U.S. mortgage loans. The distribution approach is used to form the simulated default 

rate (DR) distribution and to obtain Value at Risk (VaR) at different percentiles. A discrete time 

hazard model is employed to analyze the relationship between default behaviour and 

macroeconomic as well as account level covariates, and to make forecasts for the probability of 

default. We use both the frequentist and Bayesian methods in estimation and stress testing. A 

Bayesian approach is used in order to simulate the posterior distribution of the model 

coefficients. We employ non-informative priors so that the differences between the simulated 

DR distributions using the frequentist and Bayesian approaches in the stress testing stage do not 

come from subjectivity introduced in the estimation stage. The coefficient posterior draws 

obtained in the Bayesian approach are subsequently applied to simulate the Bayesian estimated 

DR distribution. The Bayesian simulated DR distribution is then compared with the simulated DR 

distribution obtained using a frequentist approach with coefficient point estimates. In detail our 

method involves: 1) modelling the probability of default of mortgage loans and estimating the 

relationship between the probability of default and macro and micro predictors using both 

frequentist and Bayesian methods; 2) stress testing the impact of rare but plausible macro events 

as well as coefficient uncertainty on default rate by using historical scenarios of macroeconomic 

variables, the Bayesian coefficient posterior distribution, and simulated error terms, to simulate 

the Bayesian estimated DR distribution; 3) comparing the Bayesian DR distribution using a 

posterior distribution with the frequentist DR distribution using coefficient point estimates and 

computing the VaRs accordingly.  

 

We find that the estimation and forecast results are similar using a frequentist method and a 

Bayesian method with non-informative priors. But in stress testing, the 95% and 99% VaRs of the 

simulated DR distribution obtained using a Bayesian approach with a coefficient posterior 
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distribution are 3.7 and 6.5 times as large as the VaRs at the same probability levels respectively 

using the frequentist approach with coefficient mean estimates. The expected monetary values 

of loss estimated based on the 99% VaRs show that neglecting coefficient uncertainty in stress 

testing may considerably underestimate credit losses and the capital needed by a bank.  

 

The structure of this paper is as follows. Section 2 outlines the discrete time hazard model 

employed to estimate the probability of default and defines the estimation risk and a Bayesian 

approach that can be used to address it. Section 3 describes the stress testing models and 

procedures using the frequentist and Bayesian approaches. Section 4 describes the data and 

variables used in this research. Section 5 presents the estimation, prediction, performance, and 

stress testing results. Section 6 discusses the implications of this paper and ideas for future 

research. Section 7 provides a summary of the main findings and concludes.  

 

2. Methodology 

 

2.1 Discrete time hazard model, default rate and expected loss 

 

Discrete time hazard model 

 

To estimate probability of default, we use a discrete time hazard model, which is a logistic 

regression model using panel data (Belloti & Crook, 2013): 

 

, 3 1 2 , 3 3 4log it( ) ' ' ' ( ) 'i t t i i tp α − −= + + + +z w u g tβ β β β                                                          (1) 

 

,i tp  denotes the probability of default for account i   at the duration time t ; 3t−z  denotes a 

vector of macroeconomic variables lagged three months; iw  denotes a vector of application 

variables for account i ; , 3i t−u  denotes a vector of behavioural variables lagged three months for 

account i ; ( )g t  denotes functions of loan duration time.  

 

We arrange the data such that the observations after the first default for any account are set to 

missing values. This ensures that the econometric model is parameterised using data up until 

the first default, which is what is required for the single event hazard distribution (See Singer & 



  

7 
 

Willett, 1993). Functions of duration are included as explanatory variables. In this way, our model 

is a discrete time survival model with the event of interest being loan default (Bellotti & Crook 

2013). Using an appropriate estimation method, and with the accounts’ defaults and covariates 

information in the logistic model, we can predict the probability of default for each account at 

duration time t  , and how much impact each explanatory variable has on the logit. Maximum 

likelihood estimation is used in the frequentist approach. The random walk chain Metropolis-

Hastings algorithm is used in the Bayesian approach. Non-informative priors are employed in the 

Bayesian method. For details, see Koop, Poirier, and Tobias (2007).  

 

Survival probability 

 

The survival probability to a duration time period can be computed from the probability of 

default at each time period. The predicted survival probability at duration time t q=   for 

account i   is the product of the probability of account i   not defaulting in each of the time 

periods until q :  

, ,
1

ˆ (1 )
q

i q i t
t

S p
=

= −∏                                                                                                                                     (2) 

The cumulative probability of default is the complement of the survival function during each 

time period. It provides the probability of default at any time within the duration of q  time 

periods: 

, ,
ˆˆ 1i q i qH S= −                                                                                                                                              (3) 

 

The predicted and observed default rate at the aggregate level  

 

Suppose ct  denotes calendar time. 
iat  denotes an account’s opening time. , ic ai t td −  denotes 

default of account i  at calendar time ct . , ic ai t tp −  denotes the probability of default for account 

i  at calendar time ct . n  denotes the number of accounts. Then the default rate at calendar 

time ct   is computed as the ratio of the number of defaults at calendar time ct   divided by the 

total number of accounts at risk at that time: 

,
1

1
c i

t c a

n

i t t
i

dR
n −

=
= ∑                                                                                                                                    (4) 
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The predicted probability of default at calendar time ct  at the aggregate level is: 

,
1

1
c i

t c a

n

i t t
i

P p
n −

=
= ∑                                                                                                                                     (5) 

 

The expected loss (EL) of an account is calculated as the product of the probability of default 

(PD), exposure at default (EAD) and loss given default (LGD): 

 

EL PD EAD LGD= × ×                                                                                                                         (6)                                                                                                      

 

2.2 Coefficient uncertainty and Bayesian stress testing  

 

Frequentist methodology 

 

In the frequentist approach, data is repeatable and random while parameters are fixed. The 

frequentist approach assumes the parameters from a population form a vector of scalars,θ . The 

estimator θ̂  is a function of the data, which is a repeated sample from a population. As the 

sample size increases, an unbiased estimator converges to the true parameter ˆ →θ θ . Therefore 

the coefficient estimate, which is the expectation of the unbiased estimator, tends to the true 

parameter ˆ( )E =θ θ . In reality, the sample size is finite; and a difference between the estimate 

and the true parameter exists. Estimation risk arises but is ignored in stress testing because 

coefficient estimation standard errors are ignored.  

 

Bayesian methodology 

 

In the Bayesian approach, the data, which is the observed sample, is fixed, while parameters are 

random. The Bayesian approach treats the parameters as random variables that have their own 

distributions since in the Bayesian approach anything uncertain can be expressed using 

probability (Koop et al., 2007). Suppose y  and θ   are the data and a vector of parameters 

respectively. Based on Bayes’ rule, the posterior distribution ( | )f yθ   is proportional to the 

product of the prior distribution ( )f θ  and the likelihood distribution ( | )f y θ : 
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( | ) ( )( | ) ( | ) ( )

( )
f ff f f

f
= ∝

yy y
y

θ θθ θ θ                                                                                

 

To obtain coefficient estimates in the Bayesian approach, instead of random sampling from data 

as in the frequentist approach, the Bayesian method involves random sampling from the 

parameter posterior distribution. Each region within the posterior distribution has a probability. 

Therefore unlike the frequentist approach which assumes there is a true parameter with 

certainty, in the Bayesian approach no coefficient estimate is the right or wrong one. The more 

likely parameter regions have higher probabilities while the unlikely ones have lower 

probabilities.   

 

Bayesian stress testing 

 

In our Bayesian stress testing application that addresses the estimation risk of coefficient 

uncertainty, we use the Bayesian parameter variables θ   as opposed to the frequentist point 

estimates ˆ( )E θ . We randomly sample from the posterior distribution of the parameters, and 

apply these random draws to stress testing to avoid the estimation risk that arises from omitting 

the differences between the draws, as well as the different probabilities of different regions in 

the posterior distribution. In other words, with our Bayesian approach in the stress testing 

application, the simulated value of a dependent variable jy  for each observation j  using the 

kth  draw is: 

 

, ,'j k j k j ky ε= +x θ , in which 1,2,...,k K=  .                                                                                       (7) 

 

In contrast, with the frequentist stress testing method using coefficient mean estimates it is:  

 

ˆ' ( )j j jy E ε= +x θ                                                                                                                                      (8) 

 

To compare with frequentist stress testing using coefficient mean estimates, we also carry out 

Bayesian stress testing using Bayesian coefficient posterior mean estimates:  

 

' ( | )j j jy E ε= +x yθ                                                                                                                              (9) 
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3. Stress testing 

 

3.1 Stress testing model 

 

Our stress testing method is a combination of posterior simulation of coefficients, simple random 

sampling of historical macroeconomic scenarios, and Monte Carlo simulation of the error terms. 

Consider the latent variable interpretation of the logistic regression over the time period that 

stress testing is applied to:  

 

*
, ,

* '
, , , , , ,( 0)

ss s sj i tj i t j i t j i td I y ε= + >= x β                                                                                              (10) 

 

in which  

 

i  denotes the ith  account. 1,2,...,i n= . 

j  denotes the jth  macroeconomic scenario. 1,2,...,j l= . 

, , sj i tx   denotes a vector of covariates including macroeconomic covariates that take their 

historical values, account application variables iw , account behavioural variables , 3s aii t t− −u  and 

duration functions ( )
is at t−g , in which st  is the calender time stress testing is applied to, and 

iat  is the calendar time of the opening of account i  .  

*
, , sj i ty  denotes the simulated value of the latent variable in the logistic regression for account i  

in scenario j  at calendar time st .   

*
, , sj i td  denotes the simulated default behavior for account i  in scenario j  at calendar time st . 

*
, , sj i td takes the value 1 when an event occurs and 0 when it does not occur:  

 

*
, ,*

, ,
1 0

0
s

s

j i t
j i t else

yd
 >= 


. 

 

Application variables iw , account behavioural variables , 3s aii t t− −u  and duration functions 

( )
is at t−g  can all be considered account specific variables. Suppose we represent the vector 
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, , sj i tx  as follows. , ,
,

s
s

j
j i t

i t

 
=  
 

m
x

a
 , in which jm  denotes the values of macroeconomic variables 

for scenario j . jm  represents the observed values of the macroeconomic variables in a random 

month in history before st . , si ta denotes the values of the account-specific variables for account 

i  at the time period stress testing is applied to. , si ta includes account application variables iw , 

account behavioural variables , 3s aii t t− −u  and duration functions ( )
is at t−g  at calendar time st  .  

( )mβ  denotes a 1 1v ×  column vector of parameter mean estimates for the constant and the 

macroeconomic variables using frequentist estimation. In this paper, 1 10v = . ( )aβ  denotes a 

2 1v ×  column vector of coefficient mean estimates for account specific variables using 

frequentist estimation. In this paper, 2 7v = . ( )mb  is a 1 1v ×  column vector of Bayesian 

posterior mean estimates for the constant and the coefficients for the macroeconomic variables. 

( )ab  is a 2 1v ×  column vector of Bayesian posterior mean estimates for the coefficients for the 

account-specific variables. k  denotes the kth  draw from the K  number of random draws 

from the posterior distribution. ( )m
kb  denotes a 1 1v ×  column vector of the kth  draw from the 

Bayesian posterior distribution for the constant and the coefficients for the macroeconomic 

variables. Then Eq. (10) is further written as follows. 

 

(1) Stress testing using the frequentist and Bayesian coefficient mean estimates 

 

Frequentist: 

 

* ( ) ( )
, ,

* ' '
, , , , ,( 0)

s

m a
s s sj i tj i t j i t j i td I y ε= + + >= m aβ β                                                                   (11) 

 

Bayesian: 

 

* ( ) ( )
, ,

* ' '
, , , , ,( 0)

s

m a
s s sj i tj i t j i t j i td I y ε= + + >= m b a b                                                                      (12) 

 

(2) Bayesian stress testing using the Bayesian coefficient posterior distribution:  

 

* ( ) ( )
, , ,

* ' '
,, , , , , , 1, 2,...,( 0),

s

m a
k ss sj k i t j i tj k i t j k i t Kd I y kε == + + >= m b a b                               (13) 
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The simulated default rates using the mean estimates and posterior distribution approaches: 

 

1) The simulated default rate at st   in scenario j   using the frequentist and Bayesian 

coefficient mean estimates is:  

 

*
, , ,

1

1ˆ
s s

n

j t j i t
i

R d
n =

= ∑                                                                                                                                   (14) 

 

There are l  scenarios in total. 

 

2) In the Bayesian posterior distribution approach, the simulated default rate at st   in 

scenario ,j k , which is in the jth  macroeconomic scenario and using the kth  Bayesian 

coefficient draw, is: 

 

 *
, , , , ,

1

1ˆ
s s

n

j k t j k i t
i

R d
n =

= ∑                                                                                                                           (15) 

 

There are l K∗  scenarios in total.  

 

3.2 Stress testing procedure 

 

The stress testing procedure we propose is as follows: 

 

1. Estimate the discrete hazard model Eq. (1) based on the training sample using the 

frequentist and Bayesian approaches and obtain the frequentist and Bayesian 

coefficient mean estimates as well as the Bayesian posterior draws.  

2. Choose a time period in the test sample for stress testing to apply to, which in our 

case is the end of the test sample time period October 2017. Simulate the 

default/non-default events of all the accounts alive during the stress testing period 

in each scenario in both frequentist and Bayesian frameworks by sampling from 

historical macroeconomic scenarios, posterior distribution (in the Bayesian posterior 

distribution approach) and error terms. The simulated default event of account i  in 

scenario j  for the point estimate approach is based on Eq. (11) – Eq. (12). The 
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simulated default event of account i   in scenario ,j k  for the Bayesian posterior 

distribution approach is based on Eq. (13). Next, calculate the simulated default 

rates across the accounts in each scenario. The simulated default rate in scenario j  

using the coefficient mean estimate approach is calculated based on Eq. (14). The 

simulated default rate in scenario ,j k  using the coefficient distribution approach is 

calculated based on Eq. (15).       

3. Build the frequentist and Bayesian distributions of simulated default rates and 

compute the VaRs at different probability levels. 

 

The panel data of the macroeconomic variables is arranged as a matrix, 
1v T×M  , of 1v  

macroeconomic variables and T   time periods1 . In order to keep the dependence structure 

between the macroeconomic variables, we draw the historical values of all the macroeconomic 

variables simultaneously as opposed to sampling historical values of each variable individually. 

To give more details, we draw l  simple random samples2 with replacement of the columns3 of 

1v T×M . Each draw represents a macroeconomic scenario jm . All the l  scenarios form a matrix 

of macro scenarios 
1v l×M  . The values of the 2v   number of account level variables for the n   

accounts alive at stress testing time st  is 
2v n×A . 

 

In the Bayesian posterior distribution approach, we take K  number of draws for the constant 

and macroeconomic coefficients from the posterior distribution, thus forming a matrix of 1v  

number of parameters and each having K  draws: 
1

( )
v K

m
×

Β . For coefficients for the 2v  number of 

account level variables, we use their posterior mean estimates: 
12

( )
v

a
×

b .   

 

Since there are three components, which are the macroeconomic component ( )' m
jm β  (or 

( )' m
jm b , ( )' m

kjm b ), the account level component ( )'
, s

a
i ta β  (or ( )'

, s

a
i ta b ), and the error term 

component , , sj i tε  (or , , , sj k i tε ) in the latent variable *
, , sj i ty  (or *

, , , sj k i ty ) for each account in each 

                                                           
1 T  equals the number of months in our macroeconomic data before st . The first row of 

1v T×M is a 

vector of 1  . 
2 l can be larger or smaller or equal to T , and in our case is larger. 
3 Each column represents the values of the macroeconomic variables in a same month.  
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scenario in Eqs. (11) – (13), to build the simulated default behaviours *
, , sj i td  and *

, , , sj k i td  in Eqs. 

(11) – (13), we first build the three components in *
, , sj i ty  and *

, , , sj k i ty   for all accounts in all 

scenarios. In the rest of this section, we use the Bayesian posterior distribution approach as an 

example to illustrate our stress testing procedure. The details for the frequentist point estimate 

approach are given in Appendix A.  

 

Stress testing procedure for the Bayesian posterior distribution approach:  

 

The macroeconomic component is: 
1 1

( )( )
v Kl K v l
m
×× ×=Μ 'M B  with each scalar in l K×Μ  being ,m j k  

  

Convert the macroeconomic component matrix l K×Μ  into a macroeconomic component vector 

1lK×M   with each scalar being ,m j k : 
1

1,1

,

, ( ) 1

m

m

m

lK j k

l K lK

×

×

 
 
 
 =
 
 
 
 

M





. In Bayesian stress testing, the 

coefficient draws also contribute to scenario building. Therefore instead of l  scenarios, we have 

l K×  scenarios in total using the Bayesian posterior distribution method. 

 

The account level component is: 
2 2 11

( )( )
vn v n
a
×× ×Α '= A b  with each scalar in 1n×Α  being a i   

 

The error term component is: take l K n× ×  draws from a standard logistic distribution: ( ) 1lKn ×ε   

 

Repeat each scalar of the macroeconomic component vector 1lK×M  by n  times, and we obtain: 
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









, in which , ,1 , , ,m m mj k j k n j k= = = .  

 

Repeat the account level component 1n×Α   as a whole lK   times, and we obtain: 

1

1,1,1

,1,1

1, ,

, ,

1, ,

, , ( ) 1

a

a

a

a

a

a

lKn

n

j k

n j k

l K

n l K lKn

×

×

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 











Α , in which 
1,1,1 1, , 1, ,

1

,1,1 , , , ,1 11

a a a
... ...

a a a

j k l K

n

n n j k n l Kn nn

×

× ××

    
    = = = = =    

        

   Α .  

 

Then add 1lKn×M , 1lKn×Α , and ( ) 1lKn ×ε   together. The intuition is that all the n   accounts in the 

stress testing time period st  face lK  number of potential parallel scenarios, and each one of the 

lK   scenarios should have all the n   accounts. Specifically, consider n   accounts, l  

macroeconomic scenarios and K  draws from the posterior distribution. The full results of the 

right-hand side of the latent logistic function for all the accounts in all scenarios are: 
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Each scalar in vector (e) in Eq. (16) represents the simulated value of the latent variable for an 

account in a scenario. For instance, *
, , , sj k n ty  represents the simulated latent variable for account 

n   in macroeconomic scenario j   using the k  th draw from the Bayesian posterior at stress 

testing time st  . Divide vector (e) equally into lK   sections, one for each scenario, with each 

section having n  scalars. Rearrange vector (e) into a new matrix with the number of rows being 

the number of accounts n , and the number of columns being the number of scenarios lK . That 

is, put the first n  scalars from vector (e) into the first column of the new matrix, the next n  

scalars into the second column, the jk th n  scalars into the jk th column, so on until the last n  

scalars from vector (e) are put into the last column of the new matrix. In this way, each column 

of the new matrix has the simulated values of the latent variable for all the accounts in the same 

scenario, and all columns represent all the lK  scenarios:  

 

* * *
1,1,1, , ,1, , ,1,

* * *
1,1, , , , , , , ,

s s s

s s s

t j k t l K t

n t j k n t l K n t

y y y

y y y

 
 
 
 
  
 

 

    

 

                                                                                            (17) 

 

Based on Eq. (13), compare the simulated scalars in Eq. (17) with 0 and decide whether each of 

the n  accounts is predicted to default or not to default in each scenario:  
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                                                                                            (18)  

 

Subsequently, based on Eq. (15), the simulated default rate in each of the lK  scenarios can be 

computed by averaging over the simulated default behaviours of all the n   accounts in each 

column in Eq. (18), and obtain the simulated default rates in all lK   scenarios: 

( )1,1, , , , ,
ˆ ˆ ˆ

s s st j k t l K tR R R  . 

 

Once we have the simulated default rates ,
ˆ

sj tR  and , ,
ˆ

sj k tR  in all the l  and lK  scenarios using 

the frequentist and Bayesian approaches, we use these simulated default rates to form the 

empirical simulated default rate distributions and obtain the VaRs. 

 

3. Data and Variables 

 

4.1 Data 

 

The data we use to illustrate our methods are from the Freddie Mac single-family loan level 

dataset4. The loans are fully amortizing long term fixed rate mortgages. We use the mortgage 

accounts that originated during the 12 months in 2014 as a training sample. We use accounts 

originated during the 12 months in 2015 as a test sample. For the training sample, we take 

December 2016 as the observation date. For the test sample, we take October 2017 as the 

observation date. For each year we use a random sample of 50000 loans. We consider an account 

is in default if it has in its payment history record no less than 60 days delinquency. Table 1 shows 

the number of accounts and defaults in each sample cross-sectionally.  

 

Table 1  

Training and test samples 

 Train (2014) Test  (2015) 
Number of accounts 50000 50000 

Defaults of accounts 415 295 

                                                           
4 Dataset url: http://www.freddiemac.com/research/datasets/sf_loanlevel_dataset.page 
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4.2 Variables 

 

For our discrete time hazard model, the event of interest is default with the event indicator being 

1 (default) and the non-event being 0 (non-default).  

 

Table 2 gives a full list of the explanatory variables for this research. We include macroeconomic 

variables and application as well as behavioural variables of the accounts. To avoid trends, the 

macroeconomic variables are first differenced. To enable prediction and to avoid endogeneity, 

macroeconomic variables and behavioural variables are lagged 3 months.   

 

Table 2  

Full list of explanatory variables 

Group Variable name Definition 
Macroeconomic d_l_tbill_3m  Three months treasury bill interest rate 

 d_l_unemployment_rate Unemployment rate 

 d_l_CPI Consumer price index 

 d_l_consumer_confidence  Consumer confidence 

 d_l_retail_sales  Log of retail sales 

 d_l_personal_earnings Log of personal earnings 

 d_l_IPI Industrial production index 

 d_l_dowjones_index Dow Jones stock price index 

 d_l_CS_houseprice_index House price index 

Application original_debt_to_income_ratio The sum of monthly debt/sum of monthly 
income calculated at loan origination 

 original_loan_to_value Original loan amount / appraised loan value 
or purchase price 

Behavioural l_current_actual_upb Log of the current unpaid balance of the 
mortgage 

 l_current_interest_rate Current interest rate 

 l_remaining_months The remaining months from the loan term 
in the mortgage note 

Duration loan_age The duration of the loan since its origination 

 loan_age_sq The squared term of loan age 

Source: Freddie Mac database for account specific variables, Datastream for macroeconomic 

variables 
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5. Results 

 

5.1 Estimation results for the discrete time hazard model  

 

We estimate models on the training sample using a frequentist approach and a Bayesian 

approach. Table 3 illustrates the estimation results. 
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Table 3  

Estimation Results using the frequentist approach and the Bayesian approach with non-

informative priors  

 Training sample: accounts originated during 2014 with 
December 2016 as the observation date 

Variables 
(Macro and behavioural 

variables are lagged 3 months) 

Frequentist  Estimate 
(std.error) 

Bayesian Posterior mean 
(std.dev) 

Intercept -14.7275682 *** 
(1.2980562) 

-14.758733 
(1.2752167) 

d_l_tbill_3m  0.2126658 
(0.9666853) 

0.195955 
(0.9538694) 

d_l_unemployment_rate -0.2944642 
(0.4911965) 

-0.319338 
(0.5026099) 

d_l_CPI -0.0446704 
(0.1540015) 

-0.047746 
(0.1548964) 

d_l_consumer_confidence  0.0079945 
(0.0144115) 

0.008596 
(0.0145325) 

d_l_retail_sales  23.0846659 * 
(13.8015895) 

23.398211 
(14.0626727) 

d_l_personal_earnings 24.9354680 
(38.1177126) 

24.469273 
(37.9106425) 

d_l_IPI 0.1759931 
(0.1345957) 

0.182078 
(0.1334646) 

d_l_dowjones_index 1.7978390 
(2.0682810) 

1.888173 
(2.0835078) 

d_l_CS_houseprice_index 0.6831190 *** 
(0.2085248) 

0.679918 
(0.2080482) 

original_debt_to_income_ratio 0.0346552 *** 
(0.0061243) 

0.035027 
(0.0060389) 

original_loan_to_value 0.0044147 
(0.0034320) 

0.004576 
(0.0034240) 

l_current_actual_upb -0.1502279 ** 
(0.0876762) 

-0.151780 
(0.0859478) 

l_current_interest_rate 1.5111287 *** 
(0.1570621) 

1.505791 
(0.1572061) 

l_remaining_months -0.0031977 *** 
(0.0011235) 

-0.003141 
(0.0011293) 

loan_age 0.0837527 ** 
(0.0346547) 

0.085288 
(0.0347888) 

loan_age_sq -0.0017150 ** 
(0.0009199) 

-0.001753 
(0.0009265) 

 Log likelihood = -3579.424 
Prob > chi2 = 0.0000 

Number of draws in 
MCMC  = 100000  
Burn-in = 200000 

 

The estimation results of the frequentist and Bayesian noninformative methods are very similar 

since both are based on information contained in the data entirely. In the frequentist approach, 
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the effects of accounts’ individual interest rate and debt to income ratio are significantly positive 

which is consistent with the expectation that the higher the interest rate and the amount of debt 

compared to borrowers’ income the more likely a borrower is to default. Among the 

macroeconomic covariates, the house price index and the retail sales have a significantly positive 

impact on default probability also as expected. Loan duration and its squared term have positive 

and negative signs respectively showing that the default probability is nonlinear over time. The 

ratios of posterior means to posterior standard deviations show the variables that have an 

important impact on default rates in the Bayesian approach are similar to those in the frequentist 

approach. The coefficient signs of these variables in the Bayesian framework are the same as 

those in the frequentist framework. Based on the Bayesian coefficients convergence diagnostics, 

the Markov chain converges successfully, and the Bayesian estimation is reliable. 

 

5.2 Prediction results using frequentist and Bayesian methods 

 

The predicted and observed default rates are calculated based on Eqs. (4) and (5). Fig. 1. and Fig. 

2. show that the default rates in the training and test samples are well predicted using both the 

frequentist and Bayesian methods. The default rate predictions follow the trend and fluctuation 

of the observed default rate along the time periods. 

 

 

Fig. 1. Predicted and observed DR in the training and test samples using a frequentist approach 
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Fig. 2. Predicted and observed DR in the training and test samples using a Bayesian approach  

 

Table 4 presents the mean absolute difference between the predicted and observed default rates 

in the training and test samples using the frequentist and Bayesian approaches. The default rate 

predictions are close to the observed default rates on average with the mean absolute difference 

in the two samples using the two approaches being approximately 0.000095.  

 

Table 4  

Mean absolute difference between the estimated and observed default rates 

Measure Sample Frequentist Bayesian 

Mean absolute difference Train 0.0000984 0.0000993 
Test 0.0000928 0.0000923 

 

5.3 Performance results using the frequentist and Bayesian methods 

 

Table 5 shows the performance results on the training and test samples using the frequentist 

and Bayesian methods in the duration of the first 12 months since each account’s opening based 

on Eq. (3). 

 

Table 5  

Performance results in the duration of the first 12 months 

  Performance measures 
Approach Sample H GINI AUC AUCH K-S  
Frequentist Train 0.1122979  0.3965329  0.6982665  0.7068052  0.3230177 
 Test 0.1047113  0.3407828  0.6703914  0.6856272  0.2827534 
Bayesian Train 0.1119204 0.3965452 0.6982726 0.7067148 0.3222444 
 Test 0.1042898 0.3405327 0.6702664 0.6852344 0.2839313 
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The AUC and AUCH measures based on the training sample are around 70% whereas the AUC 

and AUCH measures based on the test sample are around 68%. The GINI coefficients based on 

the training sample are around 40% whereas those based on the test sample are about 34%. The 

H measure results based on the training sample is about 11% whereas that on the test sample is 

a little above 10%. The performance results show good predictive accuracy of the models.  

 

5.4 Stress testing results using the frequentist and Bayesian methods 

 

We have carried out stress testing in 3 ways using frequentist coefficient mean estimates, 

Bayesian coefficient mean estimates, and the Bayesian coefficient posterior distribution. We 

ensure that there are equal numbers of scenarios using all three methods. In the frequentist and 

Bayesian stress tests using coefficient mean estimates, we take 22500 random draws with 

replacement from past economic scenarios between Jan 1999 to Sept 2017. In the Bayesian 

stress test, using the posterior distribution and taking both macroeconomic risk and estimation 

risk into consideration, for computational efficiency, we take each economic scenario between 

Jan 1999 to Sept 2017 once (225 observations altogether). The values of the macroeconomic 

variables in each time period are drawn simultaneously.  

 

In the Bayesian stress test using the posterior distribution approach, we take 100 random draws 

from the posterior distribution. That is, each of the 225 vectors of macroeconomic values is 

combined with 100 draws from the posterior distribution. Each draw forming the Bayesian 

posterior distribution includes all the coefficients. We take each draw of the coefficients 

simultaneously as opposed to sampling from the marginal posterior distribution of each 

coefficient individually. For the coefficients for the macroeconomic variables and the constant, 

values in the posterior random draws are used. For the coefficients for the account specific 

variables, Bayesian coefficient mean estimates are used.  

 

Stress testing is performed on the test sample. For computational efficiency, we take a random 

sample of 50% of the accounts in the test sample. We then use all the accounts in this sample 

that live to the time period upon which stress testing is performed. The time period that stress 

testing is performed upon is October 2017 which is the observation date of the test sample.  

 

To avoid sampling bias, we apply bootstrapping for stress testing computations. For each one of 

three approaches (i.e. the frequentist mean estimate approach, the Bayesian mean estimate 

approach, and the Bayesian posterior distribution approach), the stress testing procedure is 
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repeated 100 times, each with random simulations for the samplings of macroeconomic 

scenarios, the Bayesian coefficient posterior distribution (when using the posterior distribution 

approach) and the error terms. We then collect all the estimated default rates obtained in the 

100 computations to build the empirical simulated default rate distribution for each of the three 

stress testing methods.    

 

5.4.1 Stress testing results 

 

Table 6 presents a comparison of different VaRs, means and standard deviations of the 

simulated default rate distributions using the frequentist and Bayesian approaches as well as 

the observed default rate in October 2017. 

 

Table 6  

Statistics of the simulated default rate distributions using frequentist mean estimates, Bayesian 

mean estimates, and random samples from the Bayesian posterior distribution and the observed 

default rate in the test sample in October 2017 

                                            Approaches 
Statistics of DR distributions 

Frequentist 
mean estimates 

Bayesian mean 
estimates  

Bayesian posterior 
distribution  

Mean of simulated DR distribution 0.000319 0.000314 0.000784 
St.d of simulated DR distribution 0.000270 0.000267 0.002887 
95% VaR of simulated DR distribution 0.000782 0.000782 0.002884 
99% VaR of simulated DR distribution 0.001320 0.001271 0.008554 
Observed DR in October 2017 in the test 
sample 

 0.000565  

 

Using the frequentist mean estimates approach, the mean of the simulated DR distribution is 

lower than the observed default rate. The standard deviation of the distribution is approximately 

0.00027. The 95% and 99% VaRs of the DR distribution are about 0.0008 and 0.0013 respectively. 

Both are larger than the observed default rate. In other words, the stress testing succeeds in 

yielding VaRs above the observed default rate if we use the frequentist approach without 

considering estimation risk. The statistics for the simulated DR distribution using Bayesian mean 

estimates give the same conclusions since firstly both estimation methods rely fully on 

information contained in the data and secondly, both stress testing methods only consider 

macroeconomic scenarios without considering estimation risk. 

 

For the simulated DR distribution using the Bayesian approach with random draws from the 

Bayesian posterior, the distribution mean is about 0.00078, much larger than the simulated DR 
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distribution mean using the frequentist or Bayesian coefficient mean estimates. The 95% and 

99% VaRs are about 0.0029 and 0.0086 respectively. The standard deviation of the distribution 

is approximately 0.0029, much higher than that of the simulated DR distribution using the 

frequentist or Bayesian coefficient mean estimates. In this approach, the mean, 95% and 99% 

VaRs of the simulated DR distribution all successfully exceed the observed default rate when we 

use random draws from the Bayesian posterior distribution with both macroeconomic scenarios 

and the estimation risk taken into account. Notice, the 99% VaR obtained using this stress testing 

method is very close to the observed default rates during the 07/08 financial crisis. For instance, 

the observed default rate for accounts originated in 2007 with December 2009 as the 

observation date is 0.008485 at the observation time, based on a random sample of 50000 

accounts from the same database. 

 

In summary, the observed default rate in the stress testing period is within the 95% and 99% 

VaRs both using coefficient mean estimates methods and the Bayesian posterior distribution 

method. The stress testing results show that statistics such as the VaRs and the standard 

deviation of the simulated DR distribution increase as estimation risk is introduced.     

 

We propose the following way to measure the relative sizes of macroeconomic stress and 

estimation risk. The distribution mean of the frequentist simulated DR distribution using 

coefficient mean estimates represents the expected default rate under normal macroeconomic 

circumstances with neither macroeconomic stress nor estimation risk considered. We use this 

value as a benchmark to measure macroeconomic stress and estimation risk. The 99% VaR of the 

frequentist simulated DR distribution represents the simulated default rate in stressed 

macroeconomic conditions but without considering coefficient uncertainty. The 99% VaR of the 

Bayesian simulated DR distribution using the coefficient posterior distribution approach is the 

simulated default rate both in stressed macroeconomic circumstances and with coefficient 

uncertainty addressed. Therefore the unexpected loss that comes from macroeconomic stress 

can be quantified in the traditional way by comparing the distribution mean (0.0003) and the 

99% VaR (0.0013) of the frequentist DR distribution. Furthermore, a combination of the stress 

from macroeconomic stress and the coefficient uncertainty can be quantified by comparing the 

mean (0.0003) of the frequentist simulated DR distribution, which is the expected default rate in 

tranquil economic circumstances and without estimation risk, and the 99% VaR (0.0086) of the 

Bayesian simulated DR distribution that uses the coefficient posterior distribution approach, 

which both addresses macroeconomic stress and estimation risk. In other words, the size of 

macroeconomic stress is approximately 0.001 (=0.001320-0.000319) measured in simulated 
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default rate. The size of a combination of macroeconomic stress and the coefficient uncertainty 

is around 0.0082 (=0.008554-0.000319) measured in simulated default rate. Therefore, 

estimation risk contributes much higher than macroeconomic stress to the simulated default 

rate.   

 

5.4.2 Stress testing results comparison  

 

Fig. 3. compares the simulated DR distributions between using the frequentist and Bayesian 

point estimate approaches. The simulated DR distributions using frequentist and Bayesian 

coefficient mean estimates are almost identical since the coefficient estimates are very similar 

between the frequentist and non-informative Bayesian approaches.  

 
Fig. 3. Histograms of the simulated default rate distributions using frequentist and Bayesian 

coefficient mean estimates  

 

Fig. 4. compares the simulated DR distributions between using the frequentist point estimate 

approach and the Bayesian posterior distribution approach. Fig. 5. Shows the tails of the two 

distributions. It can be seen from the two figures that the simulated DR distribution has a fatter 

and longer tail when using the Bayesian posterior distribution approach compared to when using 

the mean estimate approach. At midrange default rates, the simulated DR distribution has 

higher frequencies using the mean estimate approach than when using the Bayesian distribution 

approach. At other default rates, the reverse is true.   
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Fig. 4. Histograms of simulated default rate distributions using frequentist coefficient mean 

estimates and the Bayesian coefficient posterior distribution 

 
Fig. 5. Tails of the simulated default rate distributions using frequentist coefficient mean 

estimates and the Bayesian coefficient posterior distribution 

 

Since for the Bayesian posterior distribution approach there are two sources of variation, that is 

from both the macroeconomic variables and coefficient variables instead of just from the 

macroeconomic variables alone, the measurements of variation such as the standard deviation 

and variance are larger.  
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In the literature, when macroeconomic shocks such as decreases in GDP and increases in interest 

rates are introduced, the simulated default rates increase (Sorge & Virolainen 2006; Jokivuolle 

& Viren 2013). Similarly, when introducing estimation risk into stress testing, we expect the 

simulated default rate of a scenario to increase further.  

 

In the Bayesian posterior distribution approach, higher estimation risk is taken into account 

which results in higher simulated default rates in scenarios that use draws from areas of the 

posterior distribution that are far away from the coefficient mean estimates, such as the tails, 

causing the simulated DR distribution to have higher VaRs compared to using the coefficient 

mean estimates approach.   

 

Table 7 shows the monetary values of credit loss based on the 99% VaRs for an average account 

in October 2017. For PD, we use the 99% VaRs of the simulated DR distributions. We assume the 

EAD of an account is the average current unpaid balance among accounts originated in 2015, 

which is the population data from which the test sample is taken, and alive in October 2017. We 

assume the fraction of EAD that is not recovered is 100%.  

 

Table 7  

Estimated Monetary values for the 99% VaRs at the observation date based on stress tests using 

coefficient mean estimates approaches and the Bayesian posterior distribution approach for an 

average account  

EAD (Average current unpaid balance in 201710)  $ 204115.5 
The monetary value for 99% VaR (frequentist coefficient mean estimates approach) $ 269.4 
The monetary value for 99% VaR (Bayesian coefficient mean estimates approach) $ 259.4 
The monetary value for 99% VaR (Bayesian posterior distribution approach) $ 1746.0 

 

The estimated monetary value of the 99% VaR for an account on average is about $ 264 when 

ignoring estimation risk. The loss is around $ 1746 when estimation risk is included in stress 

testing. Considering there were 1.065 million accounts that were both originated in 2015 and 

alive in October 2017 in the Freddie Mac dataset population, it is clear that when the stress 

testing exercises only address macroeconomic shocks and ignore estimation uncertainty, they 

underestimate credit loss considerably.  

 

6. Implications and future research 

 

Stress testing is an area of considerable interest for academics, industry practitioners, and 
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regulators, especially after the 2008 financial crisis. One gap in the stress testing literature is 

that papers only employ model coefficient point estimates thus neglecting the estimation error 

surrounding the point estimates. Therefore, the objective of this paper has been to include 

coefficient estimation risk in stress testing modelling. To reduce coefficient estimation risk in 

stress testing exercises, we contribute a new stress testing method which employs the Bayesian 

coefficient posterior distribution instead of point estimate values as the source of coefficients. 

Since only the mean estimates are used in the conventional stress testing methods, the 

estimation errors of the coefficient estimates are not addressed. In contrast, in our method we 

include full ranges of possible values of the coefficients through the use of the coefficient 

posterior distribution, hence incorporating estimation errors. As an additional source of risk, i.e. 

estimation risk, in addition to macroeconomic stress, is incorporated into stress testing, we can 

obtain more conservative estimates of the predicted loss compared to when only shocks to 

macroeconomic covariates are addressed. 

 

This research gives policy implications for practitioners and regulators. This work gives one 

additional and possible reason that banks did not have sufficient capital during the financial crisis: 

the stress testing models in use did not address estimation uncertainty. Moreover, this work not 

only points out the problem but also provides a stress testing model that includes estimation 

risk and provides more conservative estimates of credit loss and required capital. It strongly 

suggests that it is essential to address estimation risk in stress testing since neglecting it could 

considerably underestimate credit loss. Our work also provides new insight into the application 

of the Bayesian approach for stress testing. Since in the Bayesian approach model coefficients 

are treated as random variables instead of fixed values, with the use of a Bayesian approach, we 

accommodate uncertainty in coefficient estimates in the stress testing model apart from 

uncertainty in covariate values. This work shows that it is important to take more types of 

uncertainty into account in stress tests as higher losses are predicted and more capital is 

required using this method. Since more capital can absorb more loss, banks and depositors can, 

therefore, be safer against stress.   

 

In this research we focus on the effect of coefficient estimation uncertainty on stress testing. 

That is, we concentrate on the relationship between the model coefficients and the loss 

distribution. To include more types of uncertainty, other than estimation risk, into the stress 

testing method could be an interesting direction for future research. For instance, we may 

consider the influence of additional useful information, model selection, and variable 

combination on stress testing.  
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To give more details, one potential direction of future research is to use informative priors in 

stress testing to study the impact of additional useful information on stress tests. In our research 

we single out the influence of estimation risk while controlling for other influences on the 

simulated distributions. One potential development is to use informative priors on top of 

including estimation risk to study their combined influence on stress testing results. Another 

potential topic of future research could be the effect of model variable selection uncertainty on 

stress testing. In this paper, we use logistic regression as our stress testing model. The possibility 

of using our stress testing methodology, which includes estimation uncertainty risk, but applied 

to other models, such as machine learning classifiers, could also be explored.  

 

7. Conclusions 

 

Credit risk stress testing is a topic that attracts a growing research interest in the operational 

research literature. Our paper contributes to the literature in that we introduce estimation risk 

into stress testing to reduce credit risk underestimation. We demonstrate how a Bayesian 

approach and the Bayesian coefficient posterior distribution can be employed in stress testing 

to account for the potential credit risk underestimation induced by ignoring parameter 

uncertainty and estimation risk.  In the stress testing application, we model both macroeconomic 

stress and coefficient uncertainty. We apply the Bayesian coefficient posterior distribution 

instead of coefficient point estimates to the stress test model to include various possible 

coefficient values and their corresponding probabilities. 

 

In this paper, we use discrete time hazard analysis to model credit default risk over time based 

on U.S. mortgage loan data. We employ maximum likelihood estimation and the Metropolis-

Hasting algorithm respectively for the frequentist and Bayesian approaches. In the Bayesian PD 

modelling and coefficient estimation, we use Bayesian non-informative priors to ensure the 

coefficient point estimate results are essentially the same between the frequentist and Bayesian 

methods, so that the differences in the stress testing results between using posterior distribution 

and point estimates are mainly due to the accommodation of estimation risk.  

 

In the stress testing step, our Bayesian framework not only takes random draws from the 

historical scenarios of the macroeconomic variables but also considers estimation risk by 

simulating from the Bayesian coefficient posterior distribution. By employing Bayesian 

simulation of coefficients in stress testing, we model the uncertainty of coefficients thus 
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providing more conservative estimates of credit risk by addressing the estimation variation. 

Furthermore, since the number of draws from different areas of the posterior is proportionate 

to the posterior probability of these areas, when we include the less likely coefficient estimates 

from the posterior distribution, we also take into consideration their corresponding low 

probability thus avoiding unnecessarily putting high weight on unlikely estimates. 

 

Our main finding is that with the Bayesian stress testing approach using the posterior distribution, 

we obtain a broader simulated default rate distribution with higher VaRs and larger variance 

compared to stress testing approaches using coefficient mean estimates. The simulated DR 

distribution obtained using the Bayesian posterior distribution approach has a standard 

deviation 10.7 times as large as that using the parameter mean estimates approach. Moreover, 

the 95% and 99% VaRs of the estimated DR distribution using the Bayesian posterior distribution 

approach are around 3.7 and 6.5 times the 95% and 99% VaRs using the point estimate approach. 

The credit loss computed when estimation risk is included is much higher, around 6.5 times as 

much as the credit loss when estimation risk is ignored.  

 

The results show that if the financial institutions use the traditional stress testing methods 

without addressing coefficient uncertainty, they could substantially underestimate default rates, 

and credit loss levels. Therefore it is essential for financial institutions and regulators to include 

estimation risk in their stress testing applications so that they do not underestimate credit risk 

and so that the amount of capital they keep accordingly does not fall short of the credit loss.  
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Appendix A. Stress testing procedure for the Mean estimate approach:  

 

We use the frequentist mean estimate approach to illustrate in this section. The stress testing 

process is very similar using the Bayesian mean estimate approach. 

 

The macroeconomic component is: 
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The error term component is: n l×  draws from a standard logistic distribution: ( ) 1ln ×ε  . 
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Repeat the account level component 1n×Α  as a whole l  times, and we obtain: 
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Then add 1ln×Μ , 1ln×Α , ( ) 1ln ×ε together. The intuition is that each one of the n  accounts in the 

stress testing time period st  faces l  number of potential parallel scenarios, and each one of the

l   scenarios should have all the  n   accounts. Specifically, consider n    accounts and l    macro 

scenarios. The full results of the right-hand side of the latent logistic function for all the accounts 

in all the scenarios are: 
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Each scalar in vector (a) in Eq. (A.1) represents the simulated value of the latent variable for an 
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account in a scenario. For instance, *
, , sj n ty  represents the simulated latent variable for account 

n  in scenario j at stress testing time st .  Divide vector (a) equally into l  sections, one for each 

scenario, with each section having n  scalars. Rearrange vector (a) into a new matrix with the 

number of rows being the number of accounts n , and the number of columns being the number 

of scenarios l . That is, put the first n  scalars from vector (a) into the first column, the next n  

scalars into the second column, the j th n  scalars into the j th column, so on until the last n  

scalars from vector (a) are put into the last column of the new matrix. In this way, each column 

of the new matrix has the simulated values of the latent variable for all the accounts in the same 

scenario, and all columns represent all the l  scenarios:  
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Based on Eq. (11), compare the simulated scalars in Eq. (A.2) with 0 and decide whether each of 

the n accounts is predicted to default or not to default in each scenario:  

 

* * *
1,1, ,1, ,1,

* * *
, ,1, , , ,

s s s

ss s

t j t l t

j n tn t l n t

d d d

d d d

 
 
 
 
 
 

 

    

 

                                                                                                  (A.3) 

 

Subsequently, based on Eq. (14), the simulated default rate in each of the l  scenarios can be 

computed by averaging over the simulated default behaviours of all the n   accounts in each 

column in Eq. (A.3), and obtain the simulated default rates in all l   scenarios: 
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Appendix B. Robustness checks 
 
We use uniform priors in this research. For robustness check, we also employ non-informative 

priors under a multivariate normal distribution. We set the prior mean for each coefficient to 0. 

The prior precision for each coefficient is set to 910− . As both methods employ non-informative 

prior and rely fully on the data, we obtain almost identical estimation results (at 6th decimal place) 

using the two prior distributions, as shown in Table B.1. 
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Table B.1  

Estimation Results using the Bayesian approach with non-informative uniform and normal 

priors  

 Training sample: accounts originated during 2014 with 
December 2016 as the observation date 

Variables 
(Macro and behavioural 

variables are lagged 3 months) 

Uniform Prior distribution Normal prior distribution 

Posterior mean 
(std.dev) 

Posterior mean 
(std.dev) 

Intercept -14.758733 
(1.2752167) 

-14.758733 
(1.2752167) 

d_l_tbill_3m  0.195955 
(0.9538694) 

0.195955 
(0.9538693) 

d_l_unemployment_rate -0.319338 
(0.5026099) 

-0.319338 
(0.5026099) 

d_l_CPI -0.047746 
(0.1548964) 

-0.047746 
(0.1548964) 

d_l_consumer_confidence  0.008596 
(0.0145325) 

0.008596 
(0.0145325) 

d_l_retail_sales  23.398211 
(14.0626727) 

23.398211 
(14.0626700) 

d_l_personal_earnings 24.469273 
(37.9106425) 

24.469274 
(37.9106147) 

d_l_IPI 0.182078 
(0.1334646) 

0.182078 
(0.1334646) 

d_l_dowjones_index 1.888173 
(2.0835078) 

1.888173 
(2.0835078) 

d_l_CS_houseprice_index 0.679918 
(0.2080482) 

0.679918 
(0.2080481) 

original_debt_to_income_ratio 0.035027 
(0.0060389) 

0.035027 
(0.0060389) 

original_loan_to_value 0.004576 
(0.0034240) 

0.004576 
(0.0034240) 

l_current_actual_upb -0.151780 
(0.0859478) 

-0.151780 
(0.0859478) 

l_current_interest_rate 1.505791 
(0.1572061) 

1.505791 
(0.1572061) 

l_remaining_months -0.003141 
(0.0011293) 

-0.003141 
(0.0011293) 

loan_age 0.085288 
(0.0347888) 

0.085288 
(0.0347888) 

loan_age_sq -0.001753 
(0.0009265) 

-0.001753 
(0.0009265) 

 Number of draws in MCMC  
= 100000 Burn-in = 200000 

Number of draws in MCMC  
= 100000  

Burn-in = 200000 
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Table B.2 presents the Bayesian coefficients convergence diagnostics for the Bayesian 

estimations using the uniform and normal prior distributions. Initial draws from the first half of 

the MCMC are compared with draws from the second half. The z-scores for the coefficients are 

within the [-2, 2] range. Based on the Geweke diagnostics of convergence results, the Markov 

chains converge well.  

 

Table B.2 
Bayesian coefficients convergence diagnostics 

Geweke diagnostic of convergence z-scores 
 Uniform prior Normal prior 
Intercept 1.08196  1.08196 
d_l_tbill_3m -1.11816                       -1.11816 
d_l_unemployment_rate -0.70955 -0.70955 
d_l_CPI 0.87389    0.87389 
d_l_consumer_confidence -0.01717                       -0.01717 
d_l_retail_sales -0.80482 -0.80482 
d_l_personal_earnings -1.09172                      -1.09172 
d_l_IPI -0.20158                       -0.20158 
d_l_dowjones_index -0.82063 -0.82063 
d_l_CS_houseprice_index -1.91440                        -1.91440 
original_debt_to_income_ratio 0.94838                        0.94838 
original_loan_to_value 0.96615 0.96615 
l_current_actual_upb -0.63741                       -0.63741 
l_current_interest_rate -1.12304                        -1.12304 
l_remaining_months 0.63890 0.63890 
loan_age -0.51490                        -0.51490 
loan_age_sq 0.32803 0.32803 
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Appendix C. Simulating from each macroeconomic coefficient individually as opposed to 
simulating from all macroeconomic coefficients simultaneously   
 

In our stress testing exercise using the posterior distribution approach we simulate from all the 

macroeconomic coefficients simultaneously and also simulate from the macroeconomic 

variables. We now simulate from each macroeconomic coefficient individually while holding the 

rest of the macroeconomic coefficients at their Bayesian posterior mean estimates to 

disentangle the coefficient uncertainty effect of each parameter from the others. The 

macroeconomic variables are held at their mean values between Jan 1999 to Sept 2017 to 

disentangle the coefficient uncertainty effect of each coefficient from the uncertainty over the 

values of the macroeconomic variable itself. We take 100 draws from the marginal posterior 

distribution of each of the macroeconomic coefficients. The stress testing exercises are repeated 

100 times each with random simulations for the coefficients and the error terms. The stress tests 

are applied to all the accounts in the test sample alive at the stress testing time period Oct 2017. 

Table. C.1 shows the VaRs and max percentiles of the simulated default rate distributions as well 

as the predicted number of defaults that the VaR results are based on. Individually, no 

coefficients show considerably and consistently dominant effect of coefficient uncertainty on 

VaRs compared other coefficients.  

 

Table C.1 VaRs of the estimated DR distributions when individually simulating from each of 

the macroeconomic coefficients and the corresponding numbers of predicted defaults   

 VaR 99% # predicted 

defaults at 

VaR 99% 

VaR 

99.9% 

# predicted 

defaults at 

VaR 99.9% 

100th 

percentile 

# predicted 

defaults at 

100th 

percentile 

interest rate 0.000415 17 0.000513 21 0.000562 23 

unemployment rate 0.000440 18 0.000489 20 0.000538 22 

CPI 0.000440 18 0.000489 20 0.000587 24 

consumer confidence 0.000415 17 0.000489 20 0.000635 26 

retail sales 0.000440 18 0.000513 21 0.000587 24 

personal earnings 0.000464 19 0.000538 22 0.000587 24 

IPI 0.000415 17 0.000513 21 0.000587 24 

stock price index 0.000415 17 0.000513 21 0.000611 25 

house price index 0.000440 18 0.000513 21 0.000562 23 

 

 


