
 Page 1 of 1 

FedUni ResearchOnline 
https://researchonline.federation.edu.au 
Copyright Notice 

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Joki, K., Bagirov, A. M., Karmitsa, N., Mäkelä, M. M., & Taheri, S. (2020). Clusterwise 
support vector linear regression. European Journal of Operational Research, 287(1), 
19–35.  

Which has been published in final form at: 
https://doi.org/10.1016/j.ejor.2020.04.032 

CRICOS 00103D RTO 4909  

http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/173348

https://researchonline.federation.edu.au/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ejor.2020.04.032
http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/173348


Clusterwise support vector linear regression

Kaisa Jokia,∗, Adil M. Bagirovb, Napsu Karmitsaa, Marko M. Mäkeläa, Sona
Taherib

aDepartment of Mathematics and Statistics, University of Turku, FI-20014 Turku, Finland
bSchool of Science, Engineering and Information Technology, Federation University

Australia, University Drive, Mount Helen, PO Box 663, Ballarat, VIC 3353, Australia

Abstract

In clusterwise linear regression (CLR), the aim is to simultaneously partition

data into a given number of clusters and to find regression coefficients for each

cluster. In this paper, we propose a novel approach to model and solve the

CLR problem. The main idea is to utilize the support vector machine (SVM)

approach to model the CLR problem by using the SVM for regression to approx-

imate each cluster. This new formulation of the CLR problem is represented as

an unconstrained nonsmooth optimization problem, where we minimize a differ-

ence of two convex (DC) functions. To solve this problem, a method based on

the combination of the incremental algorithm and the double bundle method for

DC optimization is designed. Numerical experiments are performed to validate

the reliability of the new formulation for CLR and the efficiency of the proposed

method. The results show that the SVM approach is suitable for solving CLR

problems, especially, when there are outliers in data.

Keywords: Data mining, Nonsmooth optimization, Clusterwise linear

regression, DC optimization, Bundle methods

1. Introduction

Clusterwise linear regression (CLR) is a technique for fitting multiple hyper-

planes to mutually exclusive subsets of observations of a data set (Späth, 1979).

It is a combination of two techniques: clustering and regression. Applications

∗Corresponding author
Email addresses: kaisa.joki@utu.fi (Kaisa Joki), a.bagirov@federation.edu.au (Adil

M. Bagirov), napsu@karmitsa.fi (Napsu Karmitsa), makela@utu.fi (Marko M. Mäkelä),
s.taheri@federation.edu.au (Sona Taheri)

Preprint submitted to European Journal of Operational Research October 18, 2020



of CLR include, for example, the consumer benefit segmentation (Wedel and

Kistemaker, 1989), market segmentation (Preda and Saporta, 2005), modeling

of the metal inert gas welding process (Ganjigatti et al., 2007), rainfall predic-

tion (Bagirov et al., 2017) and PM10 prediction (Poggi and Portier, 2005).

To date, various models of the CLR problem have been proposed and differ-

ent algorithms have been developed based on them. A nonlinear programming

formulation of the CLR problem is proposed in Lau et al. (1999). In this model

the objective function is nonconvex quadratic and all variables are continuous.

The number of variables depends on the number of linear functions, input vari-

ables and data points in a data set and, thus, becomes prohibitively large in

large data sets.

A mixed-integer linear programming formulation for the CLR problem with

the sum of the absolute error as the objective is introduced in Bertsimas and

Shioda (2007). In this approach, the data set is first divided into a small number

of clusters, and a mixed-integer programming algorithm is applied to approxi-

mate them. In this model the number of variables depends on the number of

linear functions, input variables and data points in a data set and, therefore, it

contains a large number of binary variables in large data sets.

A mixed logical-quadratic programming formulation of CLR is presented in

Carbonneau et al. (2011). An approach based on a quadratic mixed-integer

program and a set partition formulation is proposed to model CLR by Park

et al. (2017). A model based on the combination of fuzzy clustering and fuzzy

regression is considered in D’Urso et al. (2010). In addition, several mixture

models have been developed for CLR problems in DeSarbo and Cron (1988);

Garćıa-Escudero et al. (2010).

A nonsmooth optimization model is developed in Bagirov et al. (2013) and

a nonsmooth difference of convex (DC) optimization model is introduced in

Bagirov and Ugon (2018). These models contain only continuous variables.

In addition, the number of variables depends only on the number of linear

functions and the number of input variables. Therefore, the number of variables

is significantly less than that in models based on nonlinear programming, mixed-

integer linear and quadratic mixed-integer programming techniques.

Algorithms for solving the CLR problem include also those which are ex-

2



tensions of clustering algorithms such as the k-means (Späth, 1979) and the

expectation-maximization algorithms (EM) (Gaffney and Smyth, 1999) and

those based on the nonlinear programming (Lau et al., 1999), the mixed integer

linear programming (Bertsimas and Shioda, 2007), the mixed integer nonlinear

programming (Carbonneau et al., 2012; DeSarbo et al., 1989), nonsmooth opti-

mization (Bagirov et al., 2013, 2015a,b; Bagirov and Ugon, 2018) and mixture

models (DeSarbo and Cron, 1988; Garćıa-Escudero et al., 2010).

In this paper, a new approach for modelling and solving CLR problems is

proposed using support vector machines (SVM) for regression (Collobert and

Bengio, 2001; Smola and Schölkopf, 2004). By applying the SVM formulation

for regression, the CLR problem is modelled as a constrained nonsmooth op-

timization problem. Then using the penalty function this problem is replaced

by an unconstrained nonsmooth optimization problem, where the regression er-

rors are defined using the L1-risk and small perturbations from hyperplanes

are tolerated without penalty. This model differs from the typical nonsmooth

nonconvex formulation of CLR, where regression errors are defined using the

L2-risk and all deviations are penalized. In particular, the model and the solu-

tion approach are different from those given in Bagirov and Ugon (2018). First,

in this paper we use L1-risk whereas in Bagirov and Ugon (2018) the L2-risk

is applied. Second, the objective function in the new model is piecewise linear

while it is piecewise quadratic in the model proposed in (Bagirov and Ugon,

2018).

To solve the CLR problem using its new formulation, we design an algorithm

based on the combination of the incremental algorithm and the bundle-type

method. Since the objective function in this formulation is represented as a dif-

ference of two convex (DC) functions, the proposed algorithm uses the double

bundle method (DBDC) (Joki et al., 2018) developed for nonsmooth DC opti-

mization. This enables us to utilize the DC structure. However, the DBDC is

a local method. Therefore, to improve the quality of the obtained solution, the

DBDC is combined with an incremental approach introduced in Bagirov et al.

(2013). The incremental approach allows us to generate starting points which

are rough estimates of the solution of the CLR problem. This way we are able

to design a more accurate algorithm for solving the nonconvex CLR problem.

3



In addition, solutions to the intermediate CLR problems with a smaller number

of hyperplanes are obtained as the by-products from the incremental approach.

The proposed algorithm is tested using some synthetic and real-world data sets

for regression to validate the adequacy of the new SVM based formulation for

the CLR problem.

The rest of the paper is organized as follows. Section 2 provides some pre-

liminaries. The SVM reformulations of the CLR and auxiliary CLR problems

are given in Section 3. Section 4 presents the new method DBDC-CSVLR. Nu-

merical results are reported in Section 5 and Section 6 contains some concluding

remarks.

2. Preliminaries

We start with some definitions and results from nonsmooth analysis and DC

optimization. For more details we refer to Bagirov et al. (2014); Clarke (1983);

Horst and Thoai (1999); Le Thi and Pham Dinh (2005); Pham Dinh and Le Thi

(1997); Strekalovsky (2015); Tuy (1998).

We denote by Rn the n-dimensional Euclidean space. The inner product is

denoted by uTv =
∑n
i=1 uivi, u,v ∈ Rn and the associated norm by ‖u‖ =

(uTu)1/2. The set B(x; ε) = {y ∈ Rn | ‖y − x‖ < ε} is the open ball centered

at x with the radius ε > 0. The notation “conv” is used for a convex hull of a

set and “cl ” for a closure of a set.

Let f : Rn → R be a convex function. Its subdifferential at x ∈ Rn is given

by (Rockafellar, 1970)

∂cf(x) =
{
ξ ∈ Rn| f(y)− f(x) ≥ ξT (y − x) for all y ∈ Rn

}

being a nonempty, convex and compact set. For convex functions, we have some

useful subdifferential calculus rules. The following lemma presents two of them

(for proofs see, e.g., Bagirov et al. (2014)).

Lemma 2.1. Let functions fi : Rn → R for i = 1, . . . , k be convex. Then

4



(i) the function g(x) =
∑k
i=1 fi(x) is convex and its subdifferential is

∂cg(x) =

k∑

i=1

∂cfi(x);

(ii) the function h(x) = max{ fi(x) | i = 1, . . . , k} is convex and its subdif-

ferential is

∂ch(x) = conv{ ∂cfi(x) | i ∈ I(x)},

where I(x) = { i ∈ {1, . . . , k} | fi(x) = h(x)}.

A function f : Rn → R is called locally Lipschitz on Rn if for any bounded

subset X ⊂ Rn there exists L > 0 such that

|f(x)− f(y)| ≤ L‖x− y‖ for all x,y ∈ X.

For a locally Lipschitz function f , the generalized directional derivative at a

point x ∈ Rn with respect to a direction d ∈ Rn is (Clarke, 1983)

f◦(x;d) = lim sup
y→x,α↓0

f(y + αd)− f(y)

α
,

and the generalized subdifferential ∂f(x) at x ∈ Rn is defined as

∂f(x) =
{
ξ ∈ Rn | f◦(x;d) ≥ ξTd for all d ∈ Rn

}
.

Each vector ξ ∈ ∂f(x) is called a subgradient. Since ∂f(x) = ∂cf(x), x ∈ Rn

holds for convex functions (Clarke, 1983) we will use the notation ∂f also for

subdifferentials of convex functions.

The Goldstein ε-subdifferential of a locally Lipschitz function f with ε ≥ 0

at a point x ∈ Rn is (Mäkelä and Neittaanmäki, 1992)

∂Gε f(x) = cl conv{ ∂f(y) |y ∈ B(x; ε)}.

This subdifferential is an extension of ∂f(x) since ∂f(x) ⊆ ∂Gε f(x) for all ε ≥ 0

and ∂G0 f(x) = ∂f(x).

5



Definition 2.2. A function f : Rn → R is called DC if it can be represented

as a difference of two convex functions f1, f2 : Rn → R in the form

f(x) = f1(x)− f2(x).

Here, f1 − f2 is a DC decomposition of f and convex functions f1 and f2 are

called DC components. DC functions are locally Lipschitz and typically noncon-

vex. If f is nonsmooth, then at least one of the DC components is nonsmooth.

In addition, DC functions preserve the DC structure under some simple opera-

tions frequently used in optimization as the following lemma demonstrates.

Lemma 2.3. (Tuy, 1998) Let fi = f1i − f2i for i = 1, . . . , k be DC functions.

Then

(i) g(x) = min{ fi(x) | i = 1, . . . , k} is a DC function and its DC decom-

position g = g1 − g2 can be written with the DC components

g1(x) =

k∑

i=1

f1i (x) and

g2(x) = max
i=1,...,k

{
f2i (x) +

k∑

j=1,j 6=i
f1j (x)

}
;

(ii) h(x) = max{ fi(x) | i = 1, . . . , k} is a DC function and its DC decom-

position h = h1 − h2 can be written with the DC components

h1(x) = max
i=1,...,k

{
f1i (x) +

k∑

j=1,j 6=i
f2j (x)

}
and

h2(x) =

k∑

i=1

f2i (x).

An unconstrained DC programming problem is formulated as





min f(x) = f1(x)− f2(x)

s. t. x ∈ Rn.
(1)

For a point x∗ ∈ Rn to be a local minimizer of the problem (1), it is nec-

essary that ∂f2(x∗) ⊆ ∂f1(x∗). Points satisfying this condition are called

6



inf-stationary. This condition is not always easy to check as it requires the

calculation of the whole subdifferentials. Therefore, in most algorithms the

following weaker necessary conditions are used:

0 ∈ ∂f(x∗) (Clarke stationarity)

and

∂f1(x∗) ∩ ∂f2(x∗) 6= ∅ (criticality).

It is known that any Clarke stationary point is also critical. However, the

opposite claim is not always true (Joki et al., 2018).

3. SVM based clusterwise linear regression

In this section, we introduce a new model of the clusterwise linear regression

(CLR) problem by applying the support vector machine (SVM) approach for

regression. This differs from the SVM for general regression problems since we

consider the estimation of several regression functions instead of only one. The

new SVM based formulation of CLR enables us to ignore small perturbations

and this makes it different from the typical nonsmooth nonconvex CLR formu-

lation. In addition, we use the L1-risk to compute regression errors whereas the

existing CLR formulations mostly apply the L2-risk. With this selection our

model is less sensitive to outliers.

The new formulation of the CLR problem is called CSVLR (Clusterwise

Support Vector Linear Regression). Furthermore, we introduce the auxiliary

CSVLR problem used to find starting points which are rough estimates of the

solution of the original CSVLR problem. The SVM for general regression prob-

lems with one linear function is discussed in Collobert and Bengio (2001); Smola

and Schölkopf (2004).

Suppose that we are given a finite data set

A = {(ai, bi) ∈ Rn × R | i = 1, . . . ,m},

where ai is an input and bi is its output. The aim of the CLR is twofold: the

7



data set A is partitioned into k clusters and at the same time each cluster is

approximated by one linear function. To achieve this goal, we need to optimize

the overall fit. It is worth noting that the number of clusters k needs to be

defined by the user before solving the CLR problem.

In what follows, let Aj for j = 1, . . . , k be nonempty clusters such that

Aj
⋂
Al = ∅, j, l = 1, . . . , k, l 6= j and A =

k⋃

j=1

Aj ,

and {xj , yj} be linear regression coefficients computed using solely data points

from the cluster Aj , j = 1, . . . , k. For a given data point (ai, bi) ∈ A and a

coefficient {xj , yj} the general form of the regression error can be defined as

(
(xj)Tai + yj − bi

)p
for p ≥ 1.

By selecting p = 1 we get the L1-risk. In the case of p = 2, the regression error

is defined using the L2-risk.

3.1. SVM approach to linear regression

We start with the brief description of the SVM approach for linear regression,

where the aim is to approximate the given data set A using one hyperplane f

(linear function) with a precision ε > 0. The parameter ε is fixed by the user

and it typically depends on data. In ε-SVM linear regression we define the

function f as follows (Collobert and Bengio, 2001; Smola and Schölkopf, 2004)

f(a) = xTa+ y,

and try to determine the regression coefficients x ∈ Rn and y ∈ R in such a way

that for each point (ai, bi) ∈ A the deviation between f(ai) and the actually

obtained target bi is at most ε. Moreover, the function f is required to be as

flat as possible meaning that the smaller the norm of x is the better. With

this requirement we can reduce the complexity of the regression problem when

there are large number of input variables. In addition, the flatness condition

guarantees that the problem has a unique solution.

The SVM for regression can be formulated as the following nonsmooth con-

8



vex optimization problem





min 1
2‖x‖2

s. t. |xTai + y − bi| ≤ ε, i = 1, . . . ,m

x ∈ Rn, y ∈ R.

(2)

The existence of a solution for the problem (2) requires the existence of the hy-

perplane f approximating all points (ai, bi) ∈ A with the precision ε. Since this

requirement is not always possible to fulfill in practice it is often more convenient

to relax the constraints to achieve feasibility. By introducing a regularization

parameter C > 0 and applying the penalty function approach, the problem (2)

can be reformulated as an unconstrained convex nonsmooth optimization prob-

lem





min 1
2‖x‖2 + C

m∑
i=1

max
{

0,
∣∣xTai + y − bi

∣∣− ε
}

s. t. x ∈ Rn, y ∈ R.
(3)

This formulation gives us more “freedom” in the solution process since all points

x ∈ Rn, y ∈ R are feasible. In practice, most data sets contain some noise and,

due to this, it is worthwhile to allow small perturbations from the hyperplanes.

3.2. Nonsmooth formulation of CLR

In CLR, we want to approximate the data set A using k hyperplanes denoted

by {x1, y1}, . . . , {xk, yk} where xi ∈ Rn, yi ∈ R. The nonsmooth formulation

of CLR is typically modelled with the piecewise quadratic fit function (Bagirov

et al. (2013, 2015a); Karmitsa et al. (2016)) and has the form





min F̂k(x,y) =
m∑
i=1

min
j=1,...,k

{
((xj)Tai + yj − bi)2

}

s. t. x ∈ Rnk, y ∈ Rk,
(4)

which in the following is called PQ-CLR (Piecewise Quadratic CLR model). It

is worth noting that the model is nonconvex when k > 1 and utilizes the L2-risk

to determine regression errors. It is also possible to replace the L2-risk with

the L1-riskin (4). However, with the L2-risk the regression error is smooth and

9



the objective function has better (sub)differentiability properties than with the

L1-risk. For these reasons, the PQ-CLR problem is considered to be easier and

simpler to solve than its variation with the L1-risk, although with the L1-riskthe

problem (4) is significantly less sensitive to outliers.

3.3. Formulation of CSVLR problem

In CSVLR, we are looking for k hyperplanes to approximate the data set

A with a precision ε > 0. The regression coefficients of these hyperplanes are

denoted by {x1, y1}, . . . , {xk, yk} where xi ∈ Rn, yi ∈ R and, in what follows,

the vectors x = (x1,x2, . . . ,xk)T ∈ Rnk and y = (y1, y2, . . . , yk)T ∈ Rk are the

combined representation of these coefficients. Moreover, a point (ai, bi) ∈ A is

associated with the hyperplane providing the smallest regression error. In the

spirit of (2), the CSVLR problem can be formulated as follows





min 1
2

k∑
j=1

‖xj‖2

s. t. min
j=1,...,k

∣∣(xj)Tai + yj − bi
∣∣ ≤ ε, i = 1, . . . ,m

x ∈ Rnk, y ∈ Rk.

By utilizing the same strategy as in Subsection 3.1, we are able to write the

unconstrained nonsmooth version of the CSVLR problem as





min Fk(x,y)

s. t. x ∈ Rnk, y ∈ Rk
(5)

with the objective function

Fk(x,y) =
1

2

k∑

j=1

‖xj‖2 + C

m∑

i=1

max {0, ψi(x,y)} ,

where

ψi(x,y) = min
j=1,...,k

∣∣(xj)Tai + yj − bi
∣∣− ε, i = 1, . . . ,m. (6)

It is worth noting that unlike (3) the problem (5) is nonconvex for k > 1 since

functions ψi are nonconvex. In addition, the flatness of hyperplanes is expressed

10



as the sum of the squared norms of coefficients xj .

As mentioned in Subsection 3.1 flatness of a linear function is used to reduce

the complexity of the problem when there are a large number of input variables.

Usually, in SVM for regression the large number of variables appears when ker-

nels are applied. Since we do not apply any kernels the number of variables

is not large and therefore, flatness of coefficients xj is not required. Further-

more, for the nonconvex problem (5) the flatness condition cannot guarantee the

uniqueness of the solution. For these reasons, we remove the quadratic terms

from the function Fk and rewrite the problem (5) as





min Fk(x,y) =
m∑
i=1

max {0, ψi(x,y)}

s. t. x ∈ Rnk, y ∈ Rk.
(7)

Note that the objective function in (7) is not subdifferentially regular and, there-

fore, the calculation of its subgradients is not always an easy task. However,

the objective Fk is a DC function and subgradients of its DC components can

be efficiently calculated.

Next, we give a DC representation for the function Fk. To simplify the

notations, we denote by

ei(x
j , yj) =

∣∣(xj)Tai + yj − bi
∣∣

the error of the point (ai, bi) ∈ A from the hyperplane with the regression

coefficients {xj , yj}.

Proposition 3.1. The function Fk defined in (7) is DC and its DC decompo-

sition is

Fk(x,y) = F 1
k (x,y)− F 2

k (x,y),

where the DC components are

F 1
k (x,y) =

m∑

i=1

max

{
k∑

j=1

ei(x
j , yj), max

j=1,...,k

k∑

t=1,t6=j
ei(x

t, yt) + ε

}

11



and

F 2
k (x,y) =

m∑

i=1

(
max

j=1,...,k

k∑

t=1,t6=j
ei(x

t, yt) + ε

)
.

Proof. Consider the function ψi(x,y) for i = 1, . . . ,m defined in (6). The first

term in this function is a minimum of convex piecewise linear functions and,

thus, it is of the form presented in the case (i) of Lemma 2.3. Since the function

ei is convex we get

ψi(x,y) = ψ1
i (x,y)− ψ2

i (x,y)

with the DC components

ψ1
i (x,y) =

k∑

j=1

ei(x
j , yj) and

ψ2
i (x,y) = max

j=1,...,k

k∑

t=1,t6=j
ei(x

t, yt) + ε.

Both functions ψ1
i and ψ2

i are piecewise linear and convex since ψ1
i is a sum

of convex piecewise linear functions and ψ2
i is a maximum of convex piecewise

linear functions.

Next, consider the function

ϕi(x,y) = max {0, ψi(x,y)} for i = 1, . . . ,m,

which can be represented as a difference of convex functions ϕ1
i and ϕ2

i by

utilizing the case (ii) of Lemma 2.3:

ϕi(x,y) = ϕ1
i (x,y)− ϕ2

i (x,y),

where

ϕ1
i (x,y) = max

{
ψ1
i (x,y), ψ2

i (x,y)
}

and

ϕ2
i (x,y) = ψ2

i (x,y).

12



Thus, the function Fk can be rewritten as

Fk(x,y) =

m∑

i=1

ϕi(x,y),

and its DC representation is

Fk(x,y) = F 1
k (x,y)− F 2

k (x,y)

with the DC components

F 1
k (x,y) =

m∑

i=1

ϕ1
i (x,y) and

F 2
k (x,y) =

m∑

i=1

ϕ2
i (x,y).

This completes the proof.

Note that a DC function has an infinite number of different DC decompo-

sitions and the DC decomposition of the function Fk presented in Proposition

3.1 is only one option from the set of possible representations. For example, an-

other DC decomposition is presented in Joki et al. (2017b), where the authors

show using some preliminary testing that there is no real difference between the

results obtained by that DC decomposition and the one given in Proposition 3.1.

3.4. Auxiliary CSVLR problem

The problem (7) is nonconvex and it may have many local solutions. The

success of local search methods in finding high quality solutions to this problem

strongly depends on the choice of starting points. Therefore, it is imperative to

use a special procedure to generate such points.

In order to design such a procedure, we apply an incremental approach.

This approach is similar to that introduced in Bagirov et al. (2013), but instead

of CLR problems, it is designed for CSVLR problems. The basic idea in the

incremental approach is that the solution for the CSVLR problem with k − 1

hyperplanes can be used to derive good starting points for the CSVLR problem

with k hyperplanes. The concept of the auxiliary problem has a central role in

the incremental approach.

13



Let (x1, y1,x
2, y2, . . . ,x

k−1, yk−1) be the (global) solution to the CSVLR

problem (7) with k − 1 hyperplanes. The regression error of the data point

(ai, bi) ∈ A is denoted by

rik−1 = max
{

0, min
j=1,...,k−1

ei(x
j , yj)− ε

}
.

The kth auxiliary CSVLR problem is





min F̄k(u, v)

s. t. u ∈ Rn, v ∈ R
(8)

with the objective function

F̄k(u, v) =

m∑

i=1

min
{
rik−1, φi(u, v)

}
, (9)

where

φi(u, v) = max
{

0, ei(u, v)− ε
}
.

Notice that if rik−1 = 0 for (ai, bi) ∈ A, then this point (ai, bi) can be omitted

from the problem (8). Thus, the only interesting points in the auxiliary problem

are those for which rik−1 > 0. In addition, the auxiliary CSVLR problem (8) is

much easier and less time-consuming to solve than the original CSVLR problem

(7) due to the less number of variables.

Next, we show that F̄k is a DC function.

Proposition 3.2. Let F̄k be the function defined in (9). Then F̄k is a DC

function and its DC decomposition can be written in the form

F̄k(u, v) = F̄ 1
k (u, v)− F̄ 2

k (u, v),

14



where the DC components are

F̄ 1
k (u, v) =

m∑

i=1

(
rik−1 + φi(u, v)

)
and

F̄ 2
k (u, v) =

m∑

i=1

max
{
rik−1, φi(u, v)

}
.

Proof. The DC decomposition is obtained by noticing that in (9) the term

min{rik−1, φi(u, v)} is a minimum of convex functions. Thus, we can apply

the case (i) of Lemma 2.3. This directly yields the result.

4. Double bundle method for CSVLR problems

In this section, we present a modified double bundle method

(DBDC-CSVLR) to solve CSVLR problems. The main idea in the new

DBDC-CSVLR method is to combine the best features of the double bundle

method (DBDC) (Joki et al., 2018) and the incremental algorithm (Bagirov

et al., 2013) using the CSVLR formulation. The DBDC is a local search method

for nonsmooth DC optimization utilizing explicitly a DC decomposition of the

objective function to take advantage of both the convexity and the concavity of

the objective. This way the nonconvex cutting plane model represents the be-

haviour of the nonconvex objective better than a convex model. Moreover, the

DBDC is applied to solve the CSVLR problem (7) and the auxiliary CSVLR

problem (8) at each iteration of the incremental algorithm. A more detailed

description of the algorithms follows.

4.1. DBDC

For simplicity, we describe the DBDC for a DC function f defined on the

n-dimensional space Rn. The DC representation of a function f = f1 − f2

has a central role in the method. We assume that at each point x ∈ Rn we

can evaluate the values of the DC components f1(x) and f2(x) as well as

arbitrary subgradients ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x), respectively. Note that

this assumption is trivially satisfied for both the CSVLR and the auxiliary

CSVLR problems.

The main idea is to treat the DC components f1 and f2 separately in the

model construction. Therefore, we also form separate approximations of the

15



Initialization:
x ∈ Rn, ξ1 ∈ ∂f1(x), ξ2 ∈ ∂f2(x),

B1 =
{

(x, f1(x), ξ1)
}

, B2 =
{

(x, f2(x), ξ2)
}

and the stopping tolerance δ ∈ (0, 1)

Criticality condition:
‖ξ1 − ξ2‖ < δ ?

Search direction:
Determine dt by

solving problem (10)

Execute
Escape

procedure
to obtain

a point x+

Does x differ from a
point x+ obtained ?

New point:
Set y = x+.

STOP with
x as the

final solution

‖dt‖ < δ ?

Is the descent in f
sufficient ?

Null step:
Either decrease t

or
update the bundle
B1 and also B2
when needed.

New point:
Set y = x+dt.

Serious step:
Set x = y and calculate ξ1 ∈ ∂f1(x)
and ξ2 ∈ ∂f2(x). Update B1 and B2.

No

Yes

Yes

No

YesNo

No

Yes

Figure 1: DBDC

subdifferentials of these components. This is done by collecting subgradient

information from the previous iterations into two bundles, which are represented

as

Bi = {(yj , f i(yj), ξij) | j ∈ Ji} for i = 1, 2,

where yj ∈ Rn is an auxiliary point, ξij ∈ ∂f i(yj) and Ji is a nonempty set of

indices. With this information we construct a convex cutting plane model

f̂ i(x) = max
j∈Ji

{
f i(yj) + (ξij)

T (x− yj)
}

for the DC component f i, i = 1, 2. This model is the one used in convex bundle

methods (Kiwiel, 1990; Mäkelä, 2002; Schramm and Zowe, 1992).

The overall approximation of f is obtained by combining the separate models

16



of the DC components. Thus, the nonconvex cutting plane model of f is

f̂(x) = f̂1(x)− f̂2(x)

and, due to its structure, it takes into account both the convex and the concave

behaviour of f .

To determine the search direction dt ∈ Rn at the current iteration point

xk ∈ Rn, we need to globally solve the following nonsmooth DC minimization

problem





min f̂(xk + d) + 1
2t‖d‖2

s. t. d ∈ Rn.
(10)

The quadratic term in this problem is a stabilizing term and the parameter

t > 0 is the proximity measure used in most bundle methods. Due to the

nonconvexity of the problem (10), the challenge is to find the global solution.

However, the objective in this problem has a special DC structure and, thus,

the global solution can be obtained quite easily by using an approach presented

in Le Thi and Pham Dinh (1997, 2005) and utilized in Joki et al. (2017a).

When the direction dt is found, characteristic to bundle methods is to decide

whether to execute a serious step or a null step. In order to take a serious step,

the following descent condition

f(xk + dt)− f(xk) ≤ m̂
(
f̂(xk + dt)− f(xk)

)
(11)

needs to be satisfied, where m̂ ∈ (0, 1) is the descent parameter and f̂(xk +

dt)− f(xk) < 0 is the predicted descent. This guarantees that the value of the

objective f decreases sufficiently and, thus, we can update the iteration point

xk+1 = xk + dt. If the condition (11) does not hold, then the current model is

not accurate enough and we need to execute a null step. In this step, the aim

is to improve the model by adjusting the proximity measure t or updating the

bundles and, therefore, we set xk+1 = xk.

The sequence of serious and null steps is executed until a stopping criterion

is satisfied. This requires that either the current iteration point xk is critical

17



satisfying ‖ξ1− ξ2‖ < δ or ‖dt‖ < δ, where δ > 0 is the stopping tolerance used

in the algorithm. After finding such a point we execute the escape procedure

(Joki et al., 2018) and it generates a new point x+. If x+ is the same as the

current iteration point xk, then Clarke stationarity of the point xk is ensured

and the algorithm terminates. Otherwise, a solution candidate xk is not Clarke

stationary. In this case, the escape procedure generates a descent direction and

we apply the DBDC starting from a better point x+.

The basic structure of the DBDC is presented in Figure 1. Suitable starting

points for the algorithm are obtained by utilizing the incremental algorithm

presented in the next subsection.

Before recalling the convergence results of the DBDC, we state the following

assumptions:

A1 The set F0 = {x ∈ Rn | f(x) ≤ f(x0)} is compact for a starting point

x0 ∈ Rn.

A2 The subdifferentials ∂f1(x) and ∂f2(x) are polytopes at each x ∈ Rn.

These assumptions are trivially satisfied for both the CSVLR and the auxiliary

CSVLR problems.

Lemma 4.1. (Joki et al., 2018) Let the assumptions A1 and A2 be valid.

During the DBDC, the execution of the escape procedure stops after a finite

number of iterations.

Theorem 4.2. (Joki et al., 2018) Let the assumptions A1 and A2 be valid. For

any ε̃ > 0 and δ > 0, the DBDC terminates after a finite number of iterations

at a point x∗ satisfying the approximate Clarke stationarity condition

‖ξ∗‖ ≤ δ with ξ∗ ∈ ∂Gε̃ f(x∗).

4.2. Incremental algorithm

Next, we introduce the incremental algorithm based on the method pre-

sented in Bagirov et al. (2013), but instead of CLR problems, it is modified to

CSVLR problems. The incremental algorithm starts with the calculation of one

hyperplane approximating the whole data and gradually adds one hyperplane

18



Initialization:

Compute the linear regression
coefficients (x1, y1) ∈ Rn × R
for the whole set A. Set l = 1.

Set l = l + 1.
Stopping condition:

l > k ?

Initialization of auxiliary
CSVLR problem:

Using the solution of the CSVLR
problem for l − 1 hyperplanes

define the set S1 of starting points
for the lth auxiliary problem (8).

Auxiliary CSVLR problem:

Apply the DBDC to solve problem
(8) starting from x = (u, v)T

for each (u, v) ∈ S1. From
those solutions form the set S2

of starting points for the CSVLR
problem (7) with l hyperplanes.

CSVLR problem:

Apply the DBDC to solve
problem (7) starting from

x = (x1, y1, . . . ,x
l−1, yl−1, ū, v̄)T

for each (ū, v̄) ∈ S2. The solutions
obtained constitute the set S3.

Solution for CSVLR
problem with l hyperplanes:

Choose the best solution from
the set S3 and denote it by

(x̂1, ŷ1, . . . , x̂
l, ŷl). Set xi = x̂i

and yi = ŷi for i = 1, . . . , l.

STOP

Yes

No

Figure 2: DBDC-CSVLR method combining the incremental algorithm and the DBDC

at each iteration until the required number of hyperplanes is calculated. During

each iteration this method also utilizes the auxiliary problem (8) to generate

a set of starting points for the CSVLR problem (7). Note that the auxiliary

problem is much easier and less time-consuming to solve than (7).

Since the new DBDC-CSVLR method is based on the DBDC and the incre-

mental algorithm it constructs clusters as well as linear functions approximating

them incrementally. This means that the DBDC-CSVLR method do not solve

just the CSVLR problem with k hyperplanes, but yields as the by-product so-

lutions for each CSVLR problem with a smaller number of hyperplanes.

The detailed description of the DBDC-CSVLR method is presented in Figure

2, where S1 denotes the set of starting points used at the initialization step for

19



solving the auxiliary CSVLR problem. This set is selected to be quite large

whereas the set S2, used to solve the CSVLR problem, is typically much smaller

and contains only the best points obtained by using S1. In addition, we denote

by S3 the set consisting of the solutions for the CSVLR problem (7). The

detailed description of the sets S1, S2 and S3 is given in Bagirov et al. (2013).

5. Numerical results

The aim of this section is threefold. First, using some synthetic data sets we

study sensitivity of the CSVLR problem (7) to outliers. Since CLR is typically

modelled utilizing the piecewise quadratic fit function we compare the results

of the CSVLR problem with the ones obtained for the PQ-CLR problem (4).

This helps us to have a better understanding about differences between the

use of the L1-riskand the L2-risk in CLR. To solve the PQ-CLR model (4) we

use the LMBM-CLR method (Karmitsa et al., 2016) which is a combination of

the limited memory bundle method (Haarala et al., 2004, 2007) for large-scale

nonsmooth optimization and the incremental algorithm (Bagirov et al., 2013).

The second aim is to demonstrate the generalization ability of the proposed

DBDC-CSVLR algorithm using some real-world data sets. Finally, we compare

the DBDC-CSVLR algorithm with the multi-start exchange algorithm (MS-EA)

(Späth, 1979), the expectation maximization algorithm (EM) (Dempster et al.,

1977) and the DC-CLR algorithm (Bagirov and Taheri, 2017) using real-world

data sets. All of these solvers utilize the L1-riskto define regression errors in the

CLR problem.

The codes DBDC-CSVLR, LMBM-CLR, MS-EA and DC-CLR are implemented in

Fortran 95 and compiled by using gfortran, the GNU Fortran compiler. In

addition, the subroutine PLQDF1 (Lukšan, 1984) is used in DBDC-CSVLR to solve

the problem (10). The code EM is implemented in R by using the flexmix package

(Grün and Leisch, 2008). Tests are performed on an Intelr Core� i5-2400

CPU (3.10GHz) running on Windows 10. Fortran source code of DBDC-CSVLR

including LMBM-CLR can be downloaded from http://napsu.karmitsa.fi/svmclr/.

Note that the stopping tolerance parameter δ in the DBDC-CSVLR method

depends on the number of variables. The smaller the number of variables is, the

tighter is the value of this parameter. Since the auxiliary problem (8) has less

20



number of variables than the problem (7) we are able to solve it more accurately.

Therefore, we select a smaller stopping tolerance for the problem (8) than for

the problem (7). That is we select this parameter as

δ =





10−3, for the CSVLR problem (7)

10−4, for the auxiliary CSVLR problem (8).

This selection also allows us to compute starting points which are close to the

solutions of the problem (7). The size of B1 is set to 50. For B2 the size is one for

the problem (8) and 3 otherwise. In the escape procedure, we use a bundle with

the size 100. The descent parameter m̂ is set to 0.2. For the other parameters,

we apply the default values, but we set the value 1011 for the increase parameter

(see Joki et al. (2018) for details).

To simplify the selection of ε during the execution of DBDC-CSVLR, we first

normalize input and output variables in a data set so that they have zero mean

value with the standard deviation one. Due to this, in normalized data ε can be

seen as some sort of a “percent” coverage around a hyperplane meaning that,

for example, ε = 0.05 covers roughly 5 % of the output values. Therefore, in

the following the parameter ε is selected for the normalized data and not for

the original one.

We use default values for parameters of LMBM-CLR and DC-CLR (Karmitsa

et al., 2016; Bagirov and Taheri, 2017) and in MS-EA the simple randomized

multistart scheme is applied to obtain starting points. Furthermore, in EM pa-

rameters are the default ones given in the flexmix package. In addition, we

denote by k the number of hyperplanes (or clusters), by m the number of data

points and by n the number of input variables.

5.1. Model construction and effect of outliers

In this subsection, using six simple synthetic data sets, we analyse sensitivity

of the CSVLR problem (7) to outliers and demonstrate the difference between

the L1-risk and the L2-risk. The first three data sets are generated using known

hyperplanes and the rest are generated clusterwise. In addition, all the data

sets include some outliers and have one input and one output variable to allow

visualization of results. The number of data points ranges from 100 to 1420.

21



The description of the data sets is given in Table 1.

Table 1: The description of the synthetic data sets

Data set m
Two Lines 100
Three Lines 999
Four Lines 1100
Clusters 1 190
Clusters 2 1420
Clusters 3 1320

2 4 6 8 10

5

10

15

20

25

30

35

a) The solution for ε = 0.0

2 4 6 8 10

5

10

15

20

25

30

35

b) The solution for ε = 0.05

2 4 6 8 10

5

10

15

20

25

30

35

c) The solution for ε = 0.25

2 4 6 8 10

5

10

15

20

25

30

35

d) The solution for ε = 0.5

Figure 3: Results for Two Lines data set with DBDC-CSVLR, k = 2 and different values of the
parameter ε

Let us first discuss the impact of the value of the parameter ε on the perfor-

mance of DBDC-CSVLR. Two lines data set set is used for this purpose. This data

set is generated using two known lines by adding some random noise and two

distinct outliers. The results are given in Figure 3. We can see that there is no

difference between the solution for ε = 0.05 and that of for ε = 0.0. Moreover,

in both cases obtained hyperplanes describe data correctly. However, when the

parameter ε increases the influence of outliers increases as well. Therefore, the

parameter ε should not be taken too large since this can completely distort the

22



solution as demonstrated in Figure 3 for ε = 0.5. The fact that the solution for

ε = 0.05 is not affected by outliers justifies the use of small positive values for

ε. Therefore, in the rest of this subsection we set ε = 0.05.

The solution for Two Lines data set with LMBM-CLR and k = 2 is presented

in Figure 4. We can see that in this case the solution is considerably affected

by outliers. This means that the use of the PQ-CLR model (4) does not lead

to finding of correct hyperplanes since two outliers distort the solution. Thus,

in this example the CSVLR model (7) is more robust to outliers than (4).

2 4 6 8 10

5

10

15

20

25

30

35

Figure 4: Result for Two Lines data set with LMBM-CLR and k = 2

20 40 60 80 100

-200

-100

100

200

a) The CSVLR model (7)

20 40 60 80 100

-200

-100

100

200

b) The PQ-CLR model (4)

Figure 5: Results for Three Lines data set with k = 3

The results for Three Lines data set with both the new model (7) and the

PQ-CLR model (4) are presented in Figure 5. This data set is generated using

three different lines by adding some noise and outliers. The results show that

LMBM-CLR based on the PQ-CLR model finds two out of three lines and the

third line approximates the outliers. However, DBDC-CSVLR is able to distinguish

correctly all the hyperplanes from the outliers. Thus, this example also confirms

that the new model has ability to distinguish outliers.

Figure 6 illustrates the progress of DBDC-CSVLR in Four lines data set with

23



1 2 3 4 5 6 7

5

10

15

20

25

30

1 2 3 4 5 6 7

5

10

15

20

25

30

1 2 3 4 5 6 7

5

10

15

20

25

30

1 2 3 4 5 6 7

5

10

15

20

25

30

Figure 6: Progress of DBDC-CSVLR in Four Lines data set with k = 4

1 2 3 4 5 6 7

5

10

15

20

25

30

Figure 7: Result for Four Lines data set with the PQ-CLR model (4) and k = 4

k = 4. Note that we include all intermediate (or by-product) solutions (k =

1, 2, 3 and 4) obtained with DBDC-CSVLR for this data set. Similar to the previous

example, this data set is generated using four known hyperplanes and adding

some random noise and outliers. Results for this data set show that the number

of hyperplanes should be chosen carefully since it affects the final result and how

well it describes data. However, in this example even in the cases k = 2 and

k = 3, the use of the CSVLR model allows to correctly identify two hyperplanes.

The solution for Four Lines data set with the PQ-CLR model (4) and k = 4

is presented in Figure 7. This example shows that the algorithm based on the

PQ-CLR model, in general, fails when data points cover the space almost evenly.

Here, two hyperplanes are placed quite correctly and they affect the positioning

24



of the other two hyperplanes, which are just placed to cover the area of data

evenly.

2 4 6 8 10

5

10

15

2 4 6 8 10

5

10

15

Figure 8: Progress of DBDC-CSVLR in Clusters 1 data set with k = 3

2 4 6 8 10

5

10

15

2 4 6 8 10

5

10

15

Figure 9: Progress of LMBM-CLR in Clusters 1 data set with k = 3

50 100 150

100

200

300

a) The CSVLR model (7)

50 100 150

100

200

300

b) The PQ-CLR model (4)

Figure 10: Results for Clusters 2 data set with k = 6

Next, we consider Clusters 1 data set, where there are four clusters with

some outliers. The solutions to the problems (7) and (4) are presented in Fig-

ures 8 and 9, respectively. In the case k = 2, LMBM-CLR produces an inaccurate

solution since one hyperplane is positioned between clusters and fails to provide

an accurate approximation of clusters. However, DBDC-CSVLR finds more accu-

25



rate solution in the case k = 2 since hyperplanes provide an approximation for

two clusters. Moreover, in the case k = 3 the solution obtained by DBDC-CSVLR

describes data almost correctly, whereas LMBM-CLR provides a solution where

one hyperplane only approximates the outliers.

The results for the largest data set, Clusters 2 are presented in Figure 10.

This data contains six clusters and the vertical cluster on the left is difficult to

separate since it can be approximated with the hyperplanes of other clusters. In

general, the vertical clusters are very difficult to be identified in regression prob-

lems since the slope of a hyperplane in regression cannot be infinity. DBDC-CSVLR

is able to find correctly four out of six hyperplanes. Since the vertical cluster is

covered with three different hyperplanes this affects the final solution and the

algorithm fails to find an approximation for one horizontal cluster. Results for

this data set show that LMBM-CLR based on the model (4) is sensitive to vertical

clusters. Thus, the horizontal clusters are presented in the solution, but the

structure of the other clusters is not captured.

50 100 150

100

200

300

400

a) The CSVLR model (7)

50 100 150

100

200

300

400

b) The PQ-CLR model (4)

Figure 11: Results for Clusters 3 data set with k = 5

In Figure 11, we illustrate the solutions for Clusters 3 data set obtained by

DBDC-CSVLR and LMBM-CLR. This data set resembles Clusters 2 data set, but

the scale of the output is a little bit different and it does not contain a vertical

cluster. The solutions obtained with DBDC-CSVLR and LMBM-CLR are nearly the

same and approximate most of data accurately even though one hyperplane

in both solutions only approximates the outliers. In addition, by comparing

Figures 10 and 11 we notice that the absence of the vertical cluster can improve

the solution considerably since both algorithms are not able to detect this kind

of clusters. It is also worth noting that in DBDC-CSVLR by decreasing the value of

26



the parameter ε we are able to improve the solution, since the smaller ε makes it

possible to separate the two narrow clusters close to each other at the bottom.

For example, the solution obtained with ε = 0.02 is presented in Figure 12 and

it detects correctly all clusters.

50 100 150

100

200

300

400

Figure 12: Result for Clusters 3 data set with DBDC-CSVLR, k = 5 and ε = 0.02

5.2. Generalization ability

In this subsection, we study the generalization ability of the DBDC-CSVLR

method using some real-world data sets. These data sets are divided into two

parts: a training set and a test set. These sets are chosen randomly such a way

that 90 % of points in a data set forms the training set and the rest 10 % of

them forms the test set. We repeat this procedure ten times for each data set,

that is we use the ten-fold cross validation.

The brief description of the real-world data sets is presented in Table 2. The

detailed description can be found in Dua and Graff (2019) and the references

given in Table 2. All the data sets have only numeric input variables, whose

numbers range from 4 to 11, and one numeric output variable. The number of

data points in these data sets ranges from 1030 to 45730. In addition, the data

sets contain no missing values.

In each data set, hyperplanes are first found by the DBDC-CSVLR algorithm

using the training set with the selection k = 10 (k = 6 in Red wine quality data

set) whereas the results for the smaller k are the by-products obtained from

the incremental algorithm. Once hyperplanes are obtained they are tested on

the test set. In order to estimate the performance of this algorithm, we use the

27



Table 2: The brief description of the real-world data sets

Data set m n Reference

Concrete compressive strength 1030 8 Yeh (1998)
Airfoil self-noise 1503 5 Dua and Graff (2019)
Red wine quality 1599 11 Cortez et al. (2009)
Combined cycle power plant 9568 4 Kaya et al. (2012); Tüfekci (2014)
Physicochemical properties 45730 9 Dua and Graff (2019)
of protein tertiary structure

Root Mean Square Error (RMSE)

RMSE =

(
1

|I|
∑

i∈I
(b̄i − bi)2

)1/2

,

where I is the index set of a training or a test set, |I| is the cardinality of I, bi is

the actual observed output value for a point with i ∈ I and b̄i is the estimated

output value for a point with i ∈ I obtained by using the closest hyperplane of

the adjusted ones. We calculate RMSE for both training and test sets. Since

we apply the ten-fold cross validation we report the average RMSE values in

Tables 3–7. The closer the RMSE values of training and test sets are, the better

the generalization ability is. Due to the normalization of data, we use for the

parameter ε the values 0.0, 0.01 and 0.05 in the normalized data sets. However,

this does not affect the obtained RMSE values since they do not depend on ε.

Furthermore, in Tables 3–7, we report the CPU time required by the

DBDC-CSVLR method in the training phase. Due to the ten-fold cross val-

idation, CPU is the average computation time in seconds over k. Note also

that the difference in CPU between two consecutive k values is how much more

time is required in average to adjust one more hyperplane to the solution. Thus

CPU time, for example, for k = 10 contains also the computational time to

solve each smaller CSVLR problem with k = 1, . . . , 9, since they are obtained

as a by-product with the DBDC-CSVLR algorithm.

From Tables 3–7 we see that for each ε the average RMSE values for training

and test sets are quite similar meaning that the DBDC-CSVLR method has a

good generalization ability. The only exception is Concrete compressive strength

data set where the differences are slightly larger. In addition, we notice that the

28



Table 3: Average RMSE values for Concrete compressive strength data set

ε = 0.0 ε = 0.01 ε = 0.05

k Training Test CPU Training Test CPU Training Test CPU

1 10.7509 12.3205 0.04 10.7424 12.3382 0.04 10.6951 12.1051 0.04
2 5.7553 6.6335 10.71 5.7943 6.6790 13.04 5.7813 6.6312 8.57
3 3.9375 5.1470 37.94 3.9519 5.1769 37.56 3.8876 4.6621 27.70
4 3.0352 4.3873 81.39 3.0357 3.9117 70.75 2.9851 3.7071 49.83
5 2.5152 3.8583 119.97 2.5467 3.4633 105.61 2.4792 3.2845 62.04
6 2.1175 3.3825 184.95 2.1097 3.2133 147.19 2.0174 2.9492 69.04
7 1.8118 3.0971 258.53 1.7931 3.0047 207.41 1.7223 2.7115 82.90
8 1.5221 2.9675 342.50 1.5380 2.8168 258.68 1.4789 2.4923 97.94
9 1.3403 2.8294 428.05 1.3259 2.6374 314.11 1.2998 2.3410 117.09
10 1.1825 2.5772 555.13 1.1826 2.4921 370.32 1.1550 2.1488 150.99

Table 4: Average RMSE values for Airfoil self-noise data set

ε = 0.0 ε = 0.01 ε = 0.05

k Training Test CPU Training Test CPU Training Test CPU

1 4.8680 4.9371 0.02 4.8674 4.9345 0.02 4.8299 4.8831 0.03
2 2.8704 3.2597 11.93 2.8712 3.2241 13.68 2.8102 3.1541 4.50
3 2.0372 2.4475 22.57 2.0312 2.3682 29.67 2.0238 2.3862 21.29
4 1.6433 1.9784 42.65 1.6467 1.9369 51.24 1.6115 1.9780 42.74
5 1.3575 1.7148 70.88 1.3469 1.6940 78.66 1.3537 1.7709 53.97
6 1.1843 1.5838 103.81 1.1538 1.5351 114.08 1.2060 1.4662 59.70
7 1.0196 1.4701 148.67 0.9975 1.3547 132.32 1.1005 1.3204 67.01
8 0.8804 1.2777 195.59 0.8630 1.2330 157.77 1.0305 1.1932 69.44
9 0.8040 1.1975 243.42 0.7800 1.1806 174.68 0.9531 1.1021 72.75
10 0.7141 1.1650 303.40 0.6894 1.1537 199.98 0.9002 1.0579 73.94

Table 5: Average RMSE values for Red wine quality data set

ε = 0.0 ε = 0.01 ε = 0.05

k Training Test CPU Training Test CPU Training Test CPU

1 0.6523 0.6640 0.08 0.6523 0.6643 0.10 0.6491 0.6638 0.10
2 0.4768 0.4665 21.43 0.4531 0.4630 33.48 0.4029 0.4323 14.61
3 0.2633 0.2565 21.49 0.2588 0.2522 45.16 0.2611 0.2676 32.19
4 0.1322 0.1229 21.63 0.1287 0.1314 45.40 0.1504 0.1601 35.57
5 0.0789 0.0600 21.87 0.0764 0.0748 46.71 0.1123 0.1192 37.97
6 0.0000 0.0000 22.03 0.0173 0.0211 50.60 0.0904 0.0980 40.81

use of the small positive values of the parameter ε gives almost always smaller

RMSE values than ε = 0.0. Furthermore, in most cases a larger value of ε often

reduces the computational time. Note also that Red wine quality data set can

be exactly represented by six linear functions. This may be one reason why

any positive value of ε increases the computational time. All in all, the results

clearly demonstrate that the use of the CSVLR model leads to algorithms with

29



Table 6: Average RMSE values for Combined cycle power plant data set

ε = 0.0 ε = 0.01 ε = 0.05

k Training Test CPU Training Test CPU Training Test CPU

1 4.5733 4.5735 0.19 4.5687 4.5687 0.20 4.5837 4.5844 0.19
2 2.7699 2.7686 21.28 2.7504 2.7492 12.44 4.0139 4.0180 2.36
3 2.1510 2.1471 51.82 2.0906 2.0846 23.44 3.8703 3.9152 10.57
4 1.7628 1.7538 103.95 1.7080 1.7036 157.51 3.6779 3.7081 24.25
5 1.5565 1.5403 225.80 1.4878 1.4418 217.65 3.6078 3.6368 26.13
6 1.4263 1.4075 310.93 1.2567 1.2787 284.65 3.1809 3.2152 27.45
7 1.3392 1.3192 400.54 1.0756 1.1278 353.45 2.8871 2.9136 30.86
8 1.2270 1.2041 540.79 0.9789 1.0233 394.02 2.3004 2.3189 34.60
9 1.1365 1.1071 713.80 0.9073 0.9606 448.18 1.8068 1.8383 38.59
10 1.0959 1.0659 898.28 0.8523 0.9174 493.30 1.6957 1.7294 42.90

Table 7: Average RMSE values for Physicochemical properties of protein tertiary structure
data set

ε = 0.0 ε = 0.01 ε = 0.05

k Training Test CPU Training Test CPU Training Test CPU

1 5.3033 5.3068 6.14 5.3031 5.3067 6.18 5.3017 5.3050 6.32
2 2.2095 2.2105 57.22 2.2094 2.2103 61.13 2.2051 2.2062 62.79
3 1.5724 1.5783 265.96 1.5714 1.5794 275.07 1.5641 1.5698 288.70
4 1.2128 1.2189 517.15 1.2134 1.2171 536.73 1.2073 1.2114 561.32
5 0.9819 0.9866 852.15 0.9825 0.9870 880.92 0.9749 0.9806 910.95
6 0.8655 0.8705 1269.34 0.8653 0.8702 1304.49 0.8372 0.8431 1325.47
7 0.7214 0.7263 1755.65 0.7190 0.7234 1811.24 0.7144 0.7179 1861.81
8 0.6584 0.6628 2371.80 0.6558 0.6587 2422.92 0.6285 0.6315 2467.94
9 0.5867 0.5916 3037.26 0.5783 0.5831 3130.61 0.5685 0.5730 3223.65
10 0.5315 0.5371 3791.48 0.5279 0.5339 3904.30 0.5121 0.5163 4035.21

a good generalization ability when the parameter ε > 0 is small (e.g., 0.01 or

0.05). Larger values of ε may reduce the computational time even more, but at

the same time lead to the loss of accuracy.

5.3. Comparison with other solvers

In this subsection, DBDC-CSVLR is compared with MS-EA, EM and DC-CLR.

All of these algorithms solve CLR problems where the regression error is de-

fined using the L1-risk. However, the objective functions in these problems are

different and, therefore, we cannot directly compare obtained solutions using

the objective function values. Instead we use three performance measures to

compare different solvers.

The comparisons are done in the real-world data sets presented in Table 2.

To compare the results we use, for example, the Nash-Sutcliffe Coefficient of

Efficiency (CE) and the Pearson correlation coefficient (r) calculated with the

30



formulas

CE = 1−
(∑m

i=1(bi − b̄i)2∑m
i=1(bi − b0)2

)
and

r =

∑m
i=1(bi − b0)(b̄i − b̄0)

√∑m
i=1(bi − b0)2

√∑m
i=1(b̄i − b̄0)2

,

where bi is the observed output value and b̄i is the estimated output value

obtained by using the closest hyperplane of the adjusted ones whereas b0 and

b̄0 are the means of the observed and the estimated output values, respectively.

The measure CE ranges from −∞ to 1 and the value CE = 1 means a perfect

prediction. On the other hand, the measure r ranges from −1 to 1 and a

linear equation describes the relationship between observed and estimated values

perfectly if r = 1. Therefore, the closer these measures are to one, the better

the result of a method is.

In addition, we use the well-known adjusted Rand index (ARI) (Hubert and

Arabie, 1985) to compare the CLR results produced by different algorithms.

Since the true clusters (or regression functions) of the real-world data are not

known, we use the results of the proposed algorithm DBDC-CSVLR as a bench-

mark. Note that the aim here is not to judge which method gives the best or

correct clustering (for that we should know the correct clustering) but to com-

pare the results obtained with different algorithms.

Results for the CE and r values are shown in Figures 13–17, where we present

separately for each data set the obtained values of the measures CE and r when

the number of the hyperplanes is increased. To highlight the differences between

the solvers, we have not included the results with one hyperplane (k = 1), since

in this case all the solvers yielded nearly the same values for CE and r in each

data set. From Figures 13–17 we can conclude that the solver DBDC-CSVLR has

the best performance in each data set even though MS-EA behaves often quite

similarly.

We used the function rand index in McComb (2020) to compute ARI.

Table 8 shows the values of ARI with different number of clusters.The value of ARI equal to 1 indicates the identical clustering. Thus, obviously the ARI of our new method is 1. From Table 8 we see that MS-EA gives the most similar results to our new method in all data sets while results obtained by EM and DC-CLR are very different but in Red Wine Quality data with k ≥ 4. The similar results in this data set are caused by the fact that Red Wine Quality data can be represented exactly with 6 hyperplanes and all the methods find these hyperplanes (with some accuracy).

31



a) The measure CE b) The measure r

Figure 13: Results in Concrete compressive strength data set

a) The measure CE b) The measure r

Figure 14: Results in Airfoil self-noise data set

a) The measure CE b) The measure r

Figure 15: Results in Red wine quality data set

6. Conclusions

In this paper, we have introduced a new clusterwise support vector linear

regression (CSVLR) model of the clusterwise linear regression (CLR) problem.

The novelty in the formulation is that the support vector machine (SVM) ap-

proach is incorporated into the CLR problem. The new model enables us

to tolerate perturbations from hyperplanes if they are smaller than the user

specified tolerance ε > 0. The CSVLR problem is presented as a difference of

32



a) The measure CE b) The measure r

Figure 16: Results in Combined cycle power plant data set

a) The measure CE b) The measure r

Figure 17: Results in Physicochemical properties of protein tertiary structure data set

Table 8: Adjusted Rand indices in real-world data.

Concrete compressive strength Airfoil self-noise

k DBDC-CSVLR MS-EA EM DC-CLR DBDC-CSVLR MS-EA EM DC-CLR

2 1.0000 0.9349 0.4772 0.0555 1.0000 0.9894 0.1309 0.1644
3 1.0000 0.2283 0.1766 0.1450 1.0000 0.9796 0.0628 0.4796
4 1.0000 0.4667 0.2213 0.1866 1.0000 0.3122 0.0914 0.2986
5 1.0000 0.1503 0.1168 0.1453 1.0000 0.2090 0.1468 0.3580
6 1.0000 0.1126 0.0730 0.1327 1.0000 0.1507 0.0614 0.2674

Red wine quality Combined cycle power plant

k DBDC-CSVLR MS-EA EM DC-CLR DBDC-CSVLR MS-EA EM DC-CLR

2 1.0000 1.0000 0.0437 0.3083 1.0000 0.9842 0.0040 0.7715
3 1.0000 1.0000 0.0538 0.6727 1.0000 0.8646 0.0277 0.6367
4 1.0000 1.0000 0.9734 0.9235 1.0000 0.5577 0.1076 0.4601
5 1.0000 0.9976 0.9799 0.9723 1.0000 0.5167 0.1055 0.3928
6 1.0000 0.9995 0.9748 0.9833 1.0000 0.4586 0.1512 0.3211

Protein tertiary structure

k DBDC-CSVLR MS-EA EM DC-CLR

2 1.0000 0.9976 0.8052 0.6627
3 1.0000 0.9057 0.8876 0.6997
4 1.0000 0.8874 0.6004 0.6336
5 1.0000 0.8859 0.4801 0.5238
6 1.0000 0.7473 0.5390 0.4270

33



convex (DC) functions in order to capture both the convexity and the concavity

of the objective function. In addition, we have proposed a new DBDC-CSVLR

algorithm to solve the CSVLR problem. The proposed algorithm combines the

double bundle method (DBDC) for nonsmooth DC optimization with the incre-

mental algorithm. This combination enables us to find high quality solutions

since they are constructed incrementally by solving the CSVLR problems and

the auxiliary CSVLR problems with the DBDC method. In addition, by solv-

ing the CSVLR problem with the DBDC-CSVLR algorithm for k hyperplanes

we obtain the by-product solutions for CSVLR problem with all smaller number

of hyperplanes.

To validate the usefulness of the CSVLR formulation, we have tested the

DBDC-CSVLR algorithm using six synthetic data sets. Three of these data

sets are generated using known linear functions and three others using known

clusters. Such a choice of data sets allows us to demonstrate the ability of the

proposed algorithm in identifying linear functions for data sets with different

structures. Numerical results show that the DBDC-CSVLR algorithm is effi-

cient and robust to solve the CLR problems since in most cases it finds solutions

describing data accurately. The comparison with the frequently used piecewise

quadratic fit function also supports this conclusion as the CSVLR model out-

performs the model based on this fit function in most synthetic data sets used in

numerical experiments. In addition, the CSVLR model is able to tolerate out-

liers. This is an important feature since outliers are common in most real-world

data sets and they can easily distort the solution.

We have also studied the generalization ability of the DBDC-CSVLR algo-

rithm using five real-world data sets, three values of the tolerance ε for per-

turbations from hyperplanes and the performance measure RMSE. The results

demonstrate that for all three values of ε the RMSE measures are similar in both

training and test sets except in one data set. Furthermore, the performance of

the proposed algorithm with a small ε > 0 is better than when ε = 0.0 which

justifies the use of the SVM formulation of the CLR problem.

In addition, the new DBDC-CSVLR algorithm has been compared with three

other regression methods utilizing L1-riskto solve CLR problems. The compar-

isons have been performed in five real-world data sets and the results show that

34



in each data set the DBDC-CSVLR algorithm has the best performance among

all solvers.

To conclude, the numerical results show that the new DBDC-CSVLR al-

gorithm has a good performance and the generalization ability. Nevertheless,

there are still some problems and open questions. The proposed algorithm is

not able to identify the so-called “vertical” clusters. Second, it is not clear

how efficient the DBDC-CSVLR algorithm is as a prediction tool. Moreover,

the applicability of this algorithm for solving large-scale CLR problems or for

supervised classification is not considered. These will be the subjects of future

research.

Acknowledgments

We thank anonymous referees for their valuable comments and suggestions,

which helped us to improve the paper. This work was funded by the Matti Pro-

gramme of the University of Turku Graduate School UTUGS, the University of

Turku, the Academy of Finland (Project No. 289500, 294002 and 319274) and

the Australian Government through the Australian Research Council’s Discov-

ery Projects funding scheme (Project No. DP190100580).

References

Bagirov, A.M., Karmitsa, N. & Mäkelä, M.M. (2014). Introduction to Nonsmooth Optimiza-

tion: Theory, Practice and Software. Springer, Cham, Heidelberg.

Bagirov, A.M., Mahmood, A. & Barton, A. (2017). Prediction of monthly rainfall in Victoria,

Australia: Clusterwise linear regression approach. Atmospheric Research, 188 (15), 20–29.

Bagirov, A.M. and Taheri, S. (2017). DC programming algorithm for clusterwise linear L1

regression. Journal of the Operations Research Society of China, 5 (2), 233–256.

Bagirov, A.M. and Ugon, J. (2018). Nonsmooth DC programming approach to clusterwise lin-

ear regression: optimality conditions and algorithms. Optimization Methods and Software,

33 (1), 194–219.

Bagirov, A.M., Ugon, J. & Mirzayeva, H. (2013). Nonsmooth nonconvex optimization ap-

proach to clusterwise linear regression problems. European Journal of Operational Research,

229 (1), 132–142.

Bagirov, A.M., Ugon, J. & Mirzayeva, H. (2015a). An algorithm for clusterwise linear regres-

sion based on smoothing techniques. Optimization Letters, 9 (2), 375–390.

35



Bagirov, A.M., Ugon, J. & Mirzayeva, H. (2015b). Nonsmooth optimization algorithm for

solving clusterwise linear regression problems. Journal of Optimization Theory and Appli-

cations, 164 (3), 755–780.

Bertsimas, D. & Shioda, R. (2007). Classification and regression via integer optimization.

Operations Research, 55 (2), 252–271.

Carbonneau, R.A., Caporossi, G. & Hansen, P. (2011). Globally optimal clusterwise regres-

sion by mixed logical-quadratic programming. European Journal of Operational Research,

212 (1), 213–222.

Carbonneau, R.A., Caporossi, G. & Hansen, P. (2012). Extensions to the repetitive branch

and bound algorithm for globally optimal clusterwise regression. Computers & Operations

Research, 39 (11), 2748–2762.

Clarke, F.H. (1983). Optimization and Nonsmooth Analysis. Wiley-Interscience, New York.

Collobert, R. & Bengio, S. (2001). SVMTorch: Support vector machines for large-scale regres-

sion problems. Journal of Machine Learning Research, 1, 143–160

Cortez, P., Cerdeira, A., Almeida, F., Matos, T. & Reis, J. (2009). Modeling wine preferences

by data mining from physicochemical properties. Decision Support Systems, 47 (4), 547–

553. Data set available in UCI machine learning repository http://archive.ics.uci.edu/

ml (June 11th, 2016)

Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodolog-

ical), 39 (1), 1–38.

DeSarbo, W.S. & Cron, W.L. (1988). A maximum likelihood methodology for clusterwise

linear regression. Journal of Classification, 5 (2), 249–282.

DeSarbo, W.S., Oliver, R.L. & Rangaswamy, A. (1989). A simulated annealing methodology

for clusterwise linear regression. Psychometrika, 54 (4), 707–736.

Dua, D. & Graff, C. (2019). UCI machine learning repository. Available in web page http:

//archive.ics.uci.edu/ml, University of California, Irvine, School of Information and

Computer Sciences. (April 8th, 2016)

D’Urso, P., Massari, R. & Santoro, A. (2010). A class of fuzzy clusterwise regression models.

Information Sciences, 180 (24), 4737–4762.

Gaffney, S. & Smyth, P. (1999). Trajectory clustering using mixtures of regression models. In

Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 63–72.

Ganjigatti, J., Pratihar, D.K. & Choudhury, A.R. (2007). Global versus cluster-wise regression

analyses for prediction of bead geometry in MIG welding process. Journal of Materials

Processing Technology, 189 (1–3), 352–366.

36

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Garc̀ıa-Escudero, L.A., Gordaliza, A., Mayo-Iscar, A. & San Martin, R. (2010). Robust clus-

terwise linear regression through trimming. Computational Statistics & Data Analysis,

54 (12), 3057–3069.

Grün, B. & Leisch, F. (2008). FlexMix version 2: Finite mixtures with concomitant variables

and varying and constant parameters. Journal of Statistical Software, 28 (4), 1–35.

Haarala, M., Miettinen, K. & Mäkelä, M.M. (2004). New limited memory bundle method for

large-scale nonsmooth optimization. Optimization Methods and Software, 19 (6), 673–692.

Haarala, N., Miettinen, K. & Mäkelä, M.M. (2007). Globally convergent limited memory bun-

dle method for large-scale nonsmooth optimization. Mathematical Programming, 109 (1),

181–205.

Horst, R. & Thoai, N.V. (1999). DC programming: Overview. Journal of Optimization Theory

and Applications, 103 (1), 1–43.

Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of Classification,2, 193–218.

Joki, K., Bagirov, A.M., Karmitsa, N. & Mäkelä, M.M. (2017a). A proximal bundle method

for nonsmooth DC optimization utilizing nonconvex cutting planes. Journal of Global Op-

timization, 68 (3), 501–535.

Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M. & Taheri, S. (2017b). New bundle

method for clusterwise linear regression utilizing support vector machines. TUCS Technical

Report No 1190, Turku Centre for Computer Science, Turku.

Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M. & Taheri, S. (2018). Double bundle

method for finding Clarke stationary points in nonsmooth DC programming. SIAM Journal

on Optimization, 28 (2), 1892–1919.

Karmitsa, N., Bagirov, A.M. & Taheri, S. (2016). Limited memory bundle method for solving

large clusterwise linear regression problems. TUCS Technical Report No 1172, Turku Centre

for Computer Science, Turku.

Kaya, H., Tüfekci, P. & Gürgen, S.F. (2012). Local and global learning methods for predicting

power of a combined gas & steam turbine. Proceedings of the International Conference on

Emerging Trends in Computer and Electronics Engineering ICETCEE 2012, pp. 13–18,

March, Dubai. Data set available in UCI machine learning repository http://archive.

ics.uci.edu/ml (June 11th, 2016)

Kiwiel, K.C. (1990). Proximity control in bundle methods for convex nondifferentiable mini-

mization. Mathematical Programming, 46 (1–3), 105–122.

Lau, K., Leung, P. & Tse, K. (1999). A mathematical programming approach to clusterwise

regression model and its extensions. European Journal of Operational Research, 116 (3),

640–652.

37

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Le Thi, H.A. & Pham Dinh, T. (1997). Solving a class of linearly constrained indefinite

quadratic problems by D.C. algorithms. Journal of Global Optimization, 11 (3), 253–285.

Le Thi, H.A. & Pham Dinh, T. (2005). The DC (difference of convex functions) programming

and DCA revisited with DC models of real world nonconvex optimization problems. Annals

of Operations Research, 133 (1–4), 23–46.

Lukšan, L. (1984). Dual method for solving a special problem of quadratic programming as a

subproblem at linearly constrained nonlinear minmax approximation. Kybernetika, 20 (6),

445–457.

McComb, C. (2020). Adjusted Rand Index. GitHub.https://www.github.com/cmccomb/rand_

index Accessed 23 December 2019.

Mäkelä, M.M. (2002). Survey of bundle methods for nonsmooth optimization. Optimization

Methods and Software, 17 (1), 1–29.

Mäkelä, M.M. & Neittaanmäki, P. (1992). Nonsmooth Optimization: Analysis and Algorithms

with Applications to Optimal Control. World Scientific Publishing Co., Singapore.

Park, Y.W., Jiang, Y., Klabjan, D. & Williams, L. (2017). Algorithms for generalized clus-

terwise linear regression. INFORMS Journal on Computing, 29 (2), 301–317.

Pham Dinh, T. & Le Thi, H.A. (1997). Convex analysis approach to D.C. programming:

Theory, algorithms and applications. Acta Mathematica Vietnamica, 22 (1), 289–355.

Poggi, J.-M. & Portier, B. (2011). PM10 forecasting using clusterwise regression. Atmospheric

Environment, 45 (38), 7005–7014.

Preda, C. & Saporta, G. (2005). Clusterwise PLS regression on a stochastic process. Compu-

tational Statistics & Data Analysis, 49 (1), 99–108.

Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press, Princeton, New Jersey.

Schramm, H. & Zowe, J. (1992). A version of the bundle idea for minimizing a nonsmooth

function: Conceptual idea, convergence analysis, numerical results. SIAM Journal on Op-

timization, 2 (1), 121–152.

Smola, A. J. & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and

Computing, 14 (3), 199–222.

Späth, H. (1979). Algorithm 39: Clusterwise linear regression. Computing, 22 (4), 367–373.

Späth, H. (1986). Clusterwise linear least absolute deviations regression. Computing, 37 (4),

371–378.

Strekalovsky, A.S. (2015). On local search in d.c. optimization problems. Applied Mathematics

and Computation, 255, 73–83.

38

https://www.github.com/cmccomb/rand_index
https://www.github.com/cmccomb/rand_index


Tuy, H. (1998). Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dor-

drecht.

Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated com-

bined cycle power plant using machine learning methods. International Journal of Elec-

trical Power & Energy Systems, 60, 126–140. Data set available in UCI machine learning

repository http://archive.ics.uci.edu/ml (June 11th, 2016)

Wedel, M. & Kistemaker, C. (1989). Consumer benefit segmentation using clusterwise linear

regression. International Journal of Research in Marketing, 6 (1), 45–59.

Yeh, I. (1998). Modeling of strength of high performance concrete using artificial neural net-

works. Cement and Concrete Research, 28 (12), 1797–1808. Data set available in UCI ma-

chine learning repository http://archive.ics.uci.edu/ml (June 11th, 2016)

39

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Clusterwise support vector Copyright
	FedUni ResearchOnline
	https://researchonline.federation.edu.au


	Clusterwise support vector
	Introduction
	Preliminaries
	SVM based clusterwise linear regression
	SVM approach to linear regression
	Nonsmooth formulation of CLR
	Formulation of CSVLR problem
	Auxiliary CSVLR problem

	Double bundle method for CSVLR problems
	DBDC
	Incremental algorithm

	Numerical results
	Model construction and effect of outliers
	Generalization ability
	Comparison with other solvers

	Conclusions


