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Abstract

Organization in electricity markets is evolving from centralized pool-based to decentralized peer-

to-peer structures. Within this decentralized framework, agents are expected to negotiate their

energy procurement individually while preserving their privacy. Since distributed power genera-

tion is mostly based on non-dispatchable energy resources with zero marginal cost, any proposed

decentralized negotiation mechanism needs to account for uncertainties. When operating uncertain

assets, decision makers are affected by subjective attitudes towards uncertain payoffs, impacting

not only their energy procurement but also the whole market equilibrium. We propose a new

definition of fairness in risky environments and show that, in decentralized electricity markets,

heterogeneous risk aversion of participants compromises fairness of the resulting market payments.

Consequently, we introduce financial contracts as risk hedging mechanisms and evaluate their im-

pact on market equilibrium and payments. We show that by trading financial products, fairness is

restored.

Keywords: OR in Energy, Decentralized Electricity Markets, Decision-making Under

Uncertainties, Risk Hedging, Fairness.

1. Introduction

The ongoing decentralization of electricity generation and the increasing engagement of end-

users in their energy procurement calls for a redesign of the electricity market structure. Currently,

the hierarchical structure of electricity markets limits small-size producers or flexible consumers
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to further invest in Distributed Energy Resources (DERs) and optimize their energy procurement.

To accommodate for the ongoing transformation of the energy sector, a new branch of literature

has recently proposed innovative designs for decentralized electricity markets [25]. Some of these

market constructs do not largely differ from existing concepts, such as virtual power plants and

aggregators. However, the role of prosumers in decentralized electricity markets is fundamentally

different. By actively negotiating their energy procurement, end-users can trade energy according

to their preferences, for instance on type of energy or on trading partners, instead of being scheduled

or controlled by a profit-seeking external entity.

Large uncertainties on electricity prices and available renewable generation make risk manage-

ment a fundamental decision-making problem. A large branch of literature exists addressing this

challenge in electricity markets, for instance by means of multistage stochastic bidding strategies

[27], flexibility activation [7] and purchase of forward contracts [9]. In current market structures,

uncertainties of end-users are first internalized by bigger players, such as retailers and Distribution

System Operators (DSOs), who, by managing a large portfolio of users, can benefit from reduced

uncertainties of the aggregated energy profile. The costs of purchasing real-time adjustments to

compensate for these uncertainties are then reflected by higher retail prices for the end-users. In the

case of decentralized electricity markets, prosumers need to actively account for the uncertainty

of their non-dispatchable generation and inflexible demand. Whenever facing future uncertain

losses or payoffs, rational agents make informed decisions according to their attitudes towards risk.

Several approaches are used to tackle the coordination of energy procurement of market partici-

pants in a decentralized way: among all, cooperative game theory [16], variational inequalities [13],

matching algorithms [20], control theory [11] and distributed optimization [2]. To the best of our

knowledge, the existing literature does not investigate neither the impact of stochastic processes

on decentralized electricity markets, nor how individual agents internalize their risk in such con-

text. Only authors in [22] propose a matching algorithm among prosumers while accounting for

uncertainties of their assets, however no explicit model of risk is included.

It is expected that in decentralized electricity markets driven by renewable generation, the

marginal cost of all generation units and consequently the energy price, will always be zero. How-

ever, this is not the case, as agents decide their power set-point according to how they perceive

the risk of future payments. For instance, while a risk neutral agent considers the mean, i.e. the
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expected value of a future loss function, a risk averse agent will consider the worse cases among

all the possible scenario realizations as more likely to happen. Hence, she will procure energy in a

more cautious way, so as to limit future losses. These risk attitudes can largely differ as prosumers

affected by uncertainties are considerably different entities, e.g. households, industries and services.

Therefore, an additional challenge is to design market mechanisms that ensure a certain level of

fairness in how the risk is internalized and shared among different agents. In a fair market design

risk averse agents will face higher costs that compensate only for their risk preferences and not

the total welfare loss. Large literature exists on the impact of risk on agent decisions in the power

system. In particular, expansion or investment planning has been largely investigated, where the

installed capacity is defined also by the risk aversion towards future cash flows [28]. In the same

way, risk affects market operations since the aversion towards real-time adjustment costs modifies

the power dispatched in the period ahead, as in the case of the day-ahead market or future and

forward procurement, [15]. In the existing literature it is not always clear how payments of each

market agent are impacted not only by her risk preference but also by those of the other agents.

This case is particularly relevant for local decentralized electricity markets applications, where the

limited number and size of agents challenge fairness of payments. Additionally, heterogeneous de-

scription of uncertainties on agent assets make the market incomplete. As argued by Philpott et al.

in [26], if agents do not share the same uncertainty description, in the form of a single stochastic

process, then the social welfare optimization might not correspond to the competitive equilibrium

solution. In order to hedge their risk towards uncertainties and complete the market, electricity

market participants can choose among several financial products and derivatives as reviewed in [24]

and [5]. In view of decentralized electricity markets, a further challenge is to adjust and include

similar risk hedging mechanisms in the market clearing process.

Despite the fact that, as the literature suggests [30], the technological enablers for fully peer-to-

peer electricity markets are currently in place, a transformation of the current market framework

to a total decentralized one will be too disruptive. Therefore, market layouts in which agents

gather as a community and co-optimize their excess/lack of energy before interfacing with the

market and/or system operator can be seen as a first step towards the integration of peer-to-

peer electricity markets in the current system [19]. In this work we focus on community-based

markets, for which existing literature provides different methodological approaches but none of
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them considers either uncertainties or risk models [23, 14]. In order to address the challenges

discussed above, we propose a formulation of decentralized electricity markets that includes both

uncertainties description at agent level and that considers risk aversion in the decision making

process. This work addresses the market clearing mechanism as an optimization problem, which

can be solved via decomposition techniques, including a stochastic description of uncertainties

in the negotiation mechanism and adding heterogeneous risk attitudes of agents by means of a

Conditional Value at Risk (cVaR) measure. We then introduce a definition for fairness in risky

environments that captures the dependency of the allocation of risk costs on risk preferences.

That is, in addition to the increase of the energy cost a single agent may be exposed to as a

result of changing her risk preference, there are costs that even agents that do not change their

preferences have to face as a result of the actions of that agent. This relates to the notion of moral

hazard, a well-known concept in economics that captures the option a market agent may have to

exploit the risk of others and profit by doing so [21]. We extend our definition of fairness to the

concept of individual fairness, inherited from the machine learning community, [8], and propose a

fairness metric, to quantify the deviation from an ideal fair payment allocation. We then derive

analytical expressions of agent payments, to assess the impact of considering risk when market

agents, which we will equally refer to as market participants, negotiate their energy procurement.

We use this fundamental understanding of risk impact on market equilibria to argue that there

exist conditions of moral hazard and situations where agents are not incentivized to reveal their

true risk preferences. Finally, this work addresses the modelling of risk hedging mechanisms, in

the form of financial contracts, as an ideal benchmark for financial products to trade risk among

agents. We investigate how risk hedging mechanisms impact market dynamics and in particular

whether, or to what extent, fairness among agents can be restored.

The paper is laid out as follows. In Section 2 we describe the agent setup and market framework

and propose a decentralized electricity market clearing formulation, including agent risk attitudes.

Section 3 addresses the definition of fairness and the impact of risk in decentralized electricity

markets in the form of market properties and analytical derivations. Section 4 provides a model of

risk hedging mechanisms via financial contracts and analyzes their impact on fairness and agent

payments. In Section 5, we present an illustrative example and a larger case study to visualize

and verify our findings. Finally, Section 6 gathers a set of conclusions and hints at perspectives for
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future research.

2. Community-based Market Model with Risk towards Uncertainties

The impact of risk attitudes of market agents towards uncertain generation and consumption

on energy procurement, in power systems heavy on non-dispatchable renewable sources, has been

largely analyzed in the literature [3]. In this section, we first address the description of the market

framework and of agent uncertainties. We then investigate an appropriate risk measure and propose

a community-based market clearing formulation where agent risk preferences are included. We close

this section by giving a definition of risk cost allocation.

2.1. Framework of community-based electricity markets

Community-based electricity markets can be seen as a specific form of fully decentralized elec-

tricity markets as argued in [2], and are more suitable for being integrated in the current market

structure. As agents jointly optimize their assets within a community, a virtual agent is used as the

interface to the existing markets, for instance day-ahead and balancing markets or retail market.

For the sake of this study, we assume the presence of a backup retailer from whom the community

can purchase energy both in day-ahead (hereafter referred to as first stage) and in real-time (here-

after referred to as second stage). Therefore we fix the buying (b) and selling (s) prices for first

(γ) and second (λ) stages, such that λb > γb > γs > λs. However, uncertain prices could be easily

modelled by adding a set of price scenarios to the loss function described below.

2.2. Agent uncertainties and associated loss functions

Decentralized electricity market structures are meant to accommodate a large diversity of agents

both in terms of assets availability and of individual objectives and preferences. We model agents

as prosumers, namely agents that can behave as producers or consumers depending on the avail-

able assets and on the market equilibrium. We then distinguish among all the assets a ∈ Ai
available to each agent i ∈ I, a subset Ui ⊆ Ai of assets affected by uncertainties. We consider

a single-settlement market where each asset dispatch xi,a (positive for generation and negative

for consumption) is chosen according to its cost (or utility) function fi,a. In order to account for

uncertainties, the stochastic process for each asset u ∈ Ui is described by means of a set of scenar-

ios s ∈ Si of the realized energy production or consumption with its cardinality denoted by NSi .

5



Considering current balancing markets, imbalances are settled after operation, using the measured

power dispatch of each asset. In this framework, we can write a second-stage loss function as

Lsi,u = λb|xi,u − x̃si,u|+ + λs|xi,u − x̃si,u|−

= ω|xi,u − x̃si,u|+ ϑ(xi,u − x̃si,u)
(1)

where

ω =
λb − λs

2
, ϑ =

λb + λs
2

The loss function Lsi,u describes the cost (or revenue if negative) per scenario s associated to

asset u of agent i, caused by the difference from the dispatched energy xi,u and the correspondent

realization x̃si,u in scenario s. For simplicity of notation, in this work we consider a simplified model

of prosumers, i.e. equipped with one uncertain renewable generator (with zero marginal cost) and

a fixed load (henceforth we drop the asset subscript for all variables and parameters under the

assumption of |Ui| = |Ai| = 1). In this framework, first-stage decisions of each agent are made only

as function of her uncertain second-stage loss function.

2.3. Risk measures with heterogeneous risk preferences

Different risk attitudes imply different perceptions of the loss function in (1) when optimizing

the energy procurement. We describe the risk attitude of market participants by means of a risk

measure

Mi : RSi 7→ R

defined as a functional that maps the stochastic loss function to a deterministic one. Especially

in case of large heterogeneity of agents, a coherent risk measure, i.e., a measure satisfying the

properties of translational invariance, sub-additivity, homogeneity and monotonicity [1] is preferred,

since the sub-addivity property guarantees action diversification. Several coherent risk measures

exist, each with their advantages and caveats, as reviewed in [6]. For the sake of this work, we

employ the cVaR as a coherent risk measure for two main reasons highlighted by the authors of

[29]: it is easy to integrate in an optimization problem and it better handles decision making of

agents under “not-normally” distributed uncertainty descriptions than other metrics, e.g. Value at

Risk (VaR). Given ψi(l) the probability distribution function, of which Lsi in (1) are equiprobable

realizations, the cVaR, parametric on the risk attitude χi, is defined as the average of the 1 − χi
worse realizations. In other words, the cVaR is the average of all realizations larger than the VaR,
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where VaRi = {ηi | Pr[Lsi ≤ ηi] = χi}. As displayed in Figure 1 and following [31], one can write a

convex sample average approximation of the cVaR as the sum of the VaR (ηi) and the average of

the positive residuals (usi ). This writes

cVaRi =Mi(L
s
i ) = ηi +

∑
s∈Si

usi
NSi(1− χi)

(2)

with usi ≥ 0 and

Lsi ≤ ηi + usi , ∀s ∈ Si (3)

0 ηi cVaR

usi

Realization scenarios (Ls
i )

φl(L)
χi

1− χi

Figure 1: Conditional Value at Risk (cVaR) of the loss scenarios Lsi .

It should be noted that for χi = 0 the cVaR coincides with the expected value and for χi → 1

the market equilibrium is optimized in view of the worst scenario realization for each agent, as

in robust optimization. Participants of decentralized electricity markets are likely to have largely

different perceptions of risk towards uncertainty, as they include diverse types of agents. We refer

to this market participants as agents with heterogeneous risk attitudes, in contrast to homogeneous

preferences, where every agent perceive her risk in the same way. Note that in this work we refer

to risk preferences and attitudes without distinction.

Definition 1. Give a set of risk attitudes χ = {χi}i∈I , the set is said to be homogeneous if

χi = χj ∀i, j ∈ I

and heterogeneous otherwise.
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According to Definition 1, a risk neutral market equilibrium is a specific case of homogeneous

risk attitudes, where χi = 0 ∀i ∈ I.

2.4. Community-based market clearing

We extend the community-based market clearing formulation originally proposed in [18] by

considering uncertainty description of renewable assets and by introducing risk attitudes in the

form of cVaR for each market participant. The optimization problem becomes

min
Γ

∑
i∈I

ηi +
∑
s∈Si

usi
NSi(1− χi)

+ γbqb − γsqs (4a)

s.t. − xi − qi +Di = 0 ∀i [πi] (4b)∑
i∈I

qi = qb − qs [λc] (4c)

xi ≤ Xi ∀i [µi] (4d)

xi ≥ Xi ∀i [µi] (4e)

ω|(xi − x̃si )|+ ϑ(xi − x̃si ) ≤ usi + ηi ∀i, s [νsi ] (4f)

usi ≥ 0 ∀i, s [τ si ] (4g)

qb ≥ 0 [µb] (4h)

qs ≥ 0 [µs] (4i)

qi, ηi ∈ R

where Γ = [x, q, qb, qs,u,η] is the set of decision variables. Bold letters are used to group variables

over agents and scenarios and dual variables of each constraint are represented within square brack-

ets. The market is modelled as a minimization of procurement costs (4a). Under the assumption

that the community operates only renewable generators and fixed loads, the objective function

simplifies to only first-stage procurement costs, γbqb − γsqs respectively the cost of buying energy

from and the revenues of selling energy to the retailer, and second-stage adjustment costs, in the

form of cVaR as in (2). Each agent i is subjected to generation boundaries (4d) and (4e) and to an

energy balance (4b) of the dispatched generation xi, the fixed load Di and the energy traded with

the community qi. Additionally, (4f) is used for the definition of the cVaR as in (3) with the loss

function defined as in (1). Finally, (4c) ensures energy balance at community level between the
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community members and the exchanges with the retailer. Hereafter, we refer to this decentralized

electricity market with risky agents as a risk-augmented electricity market.

The market clearing (4) can be solved as a centralized optimization problem, requiring a central

agent to have full information on the uncertain description of each participant, or by means of

decomposition techniques. Several methods can be used to decompose the problem as (4c) is the

only shared constraint among agents or, alternatively, the set of traded energy q is the complicating

variable. Hence, both methods for exchange problems, with sharing constraints, and methods for

consensus problems, with complicating variables, can be employed. Among all, algorithms such

as the Alternating Direction Method of Multipliers (ADMM), both in its exchange and consensus

form, Dantzig-Wolfe, gradient descent, Benders decomposition and gossip algorithms can be readily

applied to clear the market, since the description of uncertainties and the risk measure are specific

of each agent and they do not add any complicating constraints nor variables. Since (4) can be

intended as an optimal power flow without considering network constraints, all decomposition

methods reviewed in [17] can be applied.

2.5. Payments and risk cost allocation

In decentralized electricity markets, small-size agents are actively and directly exposed to mar-

ket dynamics, thus it is fundamental to design mechanisms that ensure fair payments for each

market participant. Before addressing the concept of fairness, especially in risky environments, we

proceed by defining payments of each market agent. First-stage energy procurement costs can be

calculated as

CI
i = λc qi (5)

with λc the community energy price computed as the dual variable of (4c). One should note that

these are purely procurement costs and, as we only consider renewable generators in this work,

first-stage net costs of agents coincide with their procurement costs. Computing second-stage costs

requires making a distinction between expected costs

E
[
CII
i

]
=

∫
l ψi(l)dl (6)

and risk-adjusted costs

R
[
CII
i

]
=

1

1− χi

∫ +∞

ηi

l ψi(l)dl (7)
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with ψi(l) the probability distribution of second-stage adjustment costs as in (1).

When describing the uncertain process by means of scenarios, the cost definitions (6) and

(7) are to be discretized. Since the market clearing is optimized according to a cVaR measure

of second-stage costs, market participants procure their energy according to their risk-adjusted

perception. From the definition of cVaR in (2) and (3), one can derive that the set of risk adjusted

probabilities implies zero probability on the scenarios with Lsi < ηi and probability 1
NSi (1−χi)

for

scenarios with Lsi ≥ ηi. These risk adjusted probabilities, as consequence of complementarity of

the KKT conditions of (4), coincide with the dual variables νsi of (4f). Hence, we define the total

risk-adjusted costs (first plus second stage) of agent i as

Ĉi = λc qi +
∑
s∈Si

νsi [ω|xi − x̃si |+ θ(xi − x̃si )] (8)

However, in reality, all the scenarios describing the uncertain assets are equiprobable with

probability 1/NSi . Hence, each agent will effectively not face the risk-adjusted costs, that drive her

first-stage decision, but the expected costs instead. Therefore, we define the total expected costs

of agent i as

Ci = λc qi +
1

NSi

∑
s∈Si

[ω|xi − x̃si |+ θ(xi − x̃si )] (9)

Each cost allocation, i.e., a collection of payments of each market participant C = {Ci}i=1...N ,

is a function of the risk preferences χ, as these preferences impact the dispatched power of each

agent and, hence, the market equilibrium. We can therefore associate a risk cost to the difference

between two market equilibria under different risk preferences.

Definition 2. Let χ′,χ′′ ∈ [0, 1)N be two sets of risk preferences for the N market participants

and C(χ′) and C(χ′′) the respective cost allocations. We define the risk cost allocation as

R(χ′,χ′′) = C(χ′′)−C(χ′)

=
{
Ri ∈ R, ∀i ∈ I

∣∣∣ Ri(χ′,χ′′) = Ci(χ
′′)− Ci(χ′)

} (10)

Whenever agents increase their risk aversion, for instance from risk neutral to risk averse, system

costs always increase, both in expectation (across scenarios) and with risk-adjusted probabilities.

In decentralized markets, it is fundamental to investigate not only the system cost of including

risk preferences (R̃), but also how this cost is allocated among agents (Ri). Our objective is to

10



characterize how the system cost of risk is allocated to each agent

R =

{
Ri ∈ R, ∀i ∈ I

∣∣∣ ∑
i∈I

Ri = R̃

}
(11)

as a function of the risk preferences. In particular, we investigate whether risk cost allocations

under this market design are fair among market participants.

3. Fairness of Risk Cost Allocation

Investigating the impact of risk preferences on cost allocation in decentralized electricity markets

becomes fundamental in order to design mechanisms that guarantee fairness among prosumers.

However, it is a challenging task to define the concept of fairness in the context of risky market

environments and it only marginally relates to previous definitions of fairness in the literature,

e.g., in communication networks. Therefore, in this section, we introduce an intuitive description

of fairness based on risk cost allocation and provide formal definitions which we then use to assess

whether a risk-augmented electricity market respects fairness.

3.1. Basis of risk cost allocation

The existence of system and agent costs brings an additional dimension into out concept of

fairness. It may be considered unfair for the agent that changes its risk preference to face costs

higher than its expected gains, while also other agents should not be burdened with additional costs.

In this context, fairness is regarded as a property of the risk cost allocation given in Definition

2. For a risk cost allocation to be considered fair, each agent has to face the same cost that

corresponds to the system cost increase that specific agent is responsible for, when changing her

risk preference. If an agent faces higher costs the allocation is not fair towards herself, while

facing lower costs implies that someone else has to compensate for this missing money, hence the

allocation is not fair towards these individuals.

Definition 3. Let χ′ and χ′′ ∈ [0, 1)N be two sets of risk preferences for the N market participants.

For each agent i, let χ(i) be a third set of risk preferences, such that χ
(i)
i = χ′′i and χ

(i)
j = χ′j ∀j 6= i.

The risk cost allocation R(χ′,χ′′) is fair if

Ri(χ
′,χ′′) = Ri(χ

′,χ(i)) (12)

holds for each agent i ∈ I.
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Definition 3 addresses fairness in terms of how agents internalize their risk costs. Specifically,

we argue that a market design grants fairness of risk cost allocation, if participants are allocated

only the extra costs they individually cause to the system. In (12) we distinguish between the cost

of including the risk preference of agent i in the system (right-hand side) and the cost actually paid

(left-hand side) when each market participant reveals her risk preference. Under this definition,

when only one agent is risk averse, she should be the only one facing an extra cost, while the

payments of the other market participants do not change, as summarized in the following remark.

Remark 1. In case only agent i is risk averse, hence χ′′ = χ(i), then the risk cost allocation

R(χ′,χ′′) is fair if

Rk =


Rk(χ

′,χ′′) = R̃ if k = i

0 if k 6= i

(13)

which implies allocating the entire system risk costs R̃ to agent i.

Definition 3 implies that a cost allocation is fair if the risk cost of each agent does not increase

to compensate costs of other agents. In other words, in a fair market design, each agent will pay for

her risk independently of the risk preferences of other agents. To verify whether a risk-augmented

electricity market is fair according to Definition 3, we derive an analytical representation of the

costs of each agent as function of their risk parameters.

Lemma 1. Let χ be the set of risk preferences of market participants, δ and φ(x) respectively

the sets of quantiles and probability distribution functions corresponding to the set-point x of the

uncertain assets; then the derivative of the total expected costs of each market participant as function

of the risk preference of agent i ∈ I is

∂Ci
∂χi

=(λb − λs)
(
Ki qi −

∂δi
∂χi

δiχi
φ(xi)(1− χi)

)
(14a)

∂Cj
∂χi

=Ki(λb − λs)
(
qj −

δjχj
φ(xj)

)
∀j ∈ I \ i (14b)

with Ki =
(
∂δi
∂χi

(1− χi) + δi

)
1

(1−χi)2 . The derivative of the total risk-adjusted costs of each market

participant as function of the risk preference of agent i ∈ I is

∂Ĉi
∂χi

=(λb − λs)Ki qi +
cVaRi − ηi

1− χi
(15a)

∂Ĉj
∂χi

=(λb − λs)Ki qj ∀j ∈ I \ i (15b)
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Proof. [Sketch] We calculate the KKT conditions of (4) and manipulate them to achieve an ex-

pression of total costs of agents, both in expectation (9) and with risk-adjusted probabilities (8),

as a function of χi. We then take the derivative over χi to achieve expressions (14) and (15). For

the full proof, see Appendix 7.1.

Lemma 1 gives an analytical representation of the derivative of the costs an agent i and of any

other agent j as function of the risk attitude of agent i. This allows us to evaluate the fairness of

the market structure as in Definition 3.

Proposition 1. The risk cost allocation of a market participant in a risk-augmented electricity

market, is dependent on the risk attitudes of other agents. Hence, the market is not fair.

Proof. We consider the infinitesimal risk cost allocation, i.e. we look at the derivative of agent

costs over their risk attitude rather than the difference. From Lemma 1, we analyze 14b and 15b.

If Ki 6= 0, then the cost of an agent j changes as function of the risk attitude of another agent i,

violating the definition of fairness.

The condition Ki 6= 0 is always satisfied if the cumulative distribution function δi is sub-linear

on the risk attitude χi. In other words, an increasing risk aversion of agent i leads to a decrease

of the quantile δi of her uncertain assets of at most the same magnitude. Under the assumption

from the proof of Lemma 1 that δi < 1− χi, Ki > 0 if

∂δi
∂χi

(1− χi) + δi >

(
∂δi
∂χi

+ 1

)
(1− χi) ≥ 0 (16)

it follows
∂δi
∂χi
≥ −1 (17)

verifying sub-linearity.

Agents of decentralized electricity markets influence the clearing price as function of their risk

preferences. The community energy price increases as a result of decreased generation (or increased

consumption) whenever agent i increases her risk aversion and vice-versa.

Corollary 1. Whenever one market participant i increases her risk aversion, the market price

increases according to
∂λc
∂χi

= (λb − λs)Ki ≥ 0 (18)
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Proof. From the proof of Proposition 1, we can extrapolate

λc = λs +
2ωδi

1− χi
(19)

Then calculating the derivative over χi concludes the proof.

Corollary 1 underlines the interdependence of agents, and their risk attitudes, in decentralized

markets and their impact on the price formation. Especially in situations where the number of

market agents is not large enough to adopt perfect competitive assumptions, market participants

can act strategically to their advantages. When it comes to risk-augmented electricity markets, we

show that large generators could act upon risk attitudes different from their real ones to increase

their revenues.

Corollary 2. In a risk-augmented electricity market, the risk attitude χi of each market participant

determines a threshold Ti such that if the net generation of agent i exceeds Ti, then she can benefit

from misrepresenting her risk aversion.

Proof. Assuming that −1 ≤ ∂δi
∂χi
≤ 0 as in the proof of Proposition 1, it follows that Ki ≥ 0. Hence,

from (14a) we verify that there exist conditions for which one agent can face lower total expected

costs by becoming risk averse. In fact

∂Ci
∂χi
≤ 0 for qi ≤ −

δiχi
φ(xi)

(
δi

Ki(1− χi)2
− 1

)
= −Ti (20)

with Ti the threshold for which agent i has market power. If she generates more than Ti, she

can raise the first-stage price to compensate for a loss in the second stage and get better off in

expectation.

Corollary 2 not only opens new research questions on how to avoid strategic behaviour in

decentralized electricity markets, but also reveals the necessity of reducing differentiation across

groups of players, e.g. net producers and net consumers. Fairness as defined in Definition 3 can

not be achieved, especially when the number of agents is not large enough to make the impact

of a single market participant negligible. Therefore, we rethink the definition of fairness from the

perspective of heterogeneity and homogeneity of market participant risk attitudes.
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3.2. Fairness in risk-augmented electricity markets

Compared to the current electricity market structures, decentralized electricity markets have

peculiar characteristics. Market participants manage uncertain assets (both generation and con-

sumption) mostly with zero marginal costs and infinite marginal utility and have intrinsically

heterogeneous risk attitudes towards uncertainties. In a zero marginal cost market, the set of risk

preferences determines the price and quantity bid by agents, as a function of the future costs of

imbalance. It follows that, under heterogeneous risk attitudes, resources with the same (zero)

marginal costs will be dispatched differently. This contradicts the concept of individual fairness,

a well-known paradigm in the machine learning community for which a fair model treats similar

individuals in a similar way, [8]. Similarity is defined by means of two distance metrics, one in the

input and one in the outcome space. We adapt this definition in the context of a risk-augmented

electricity market, where the distance in the input space relates to the generation type, and more

precisely to its marginal cost. As for the distance in the output space we consider the difference

across quantiles (δ) of the uncertain assets.

From this perspective, an ideal market equilibrium would be achieved when all market partici-

pants have the same risk attitudes, i.e. with an homogeneous set of risk preferences. Definition 3

describes an ideal situation, in which agent payments are not influenced by other agent risk atti-

tudes, and cannot be achieved in a zero marginal cost market, where risk attitudes determines the

bids of market participants. Therefore, we hereby propose an alternative definition of risk-fairness

using as a focal point risk preferences, instead of payments.

Definition 4. A decentralized electricity market is risk-fair if all market participants act upon an

homogeneous set of risk attitudes.

The wording “act upon” in Definition 4 is crucial. On the one hand, it is trivial that, if all

market participants perceive risk in the same way, i.e. the set of risk preferences is homogeneous,

then the market is risk-fair. However, with the right incentives, agents with heterogeneous risk

attitudes could procure their energy as if they had homogeneous preferences. We discuss this in

the following section, while analysing risk hedging mechanisms. Additionally, risk-fairness implies

that the total system welfare attained is the best possible and coincides with the risk neutral case.

Proposition 2. If a risk-augmented decentralized electricity market is risk-fair, then the expected
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total system costs do not depend on the risk aversion of market participants and they yield the best

possible total social welfare.

Proof. From the proof of Lemma 1, it follows

δi
1− χi

=
δj

1− χj
∀i, j (21)

Therefore, homogeneous risk attitudes χi = χj ∀i, j imply that agents will dispatch their assets at

the same quantiles δi = δj ∀i, j.
Let us consider two market equilibria with two different sets of homogeneous risk attitudes

but the same total demand (
∑

iDi), i.e., the same total generation to be supplied, and the same

uncertainty scenarios. Since the dispatch quantiles are constrained to be equal across agents from

(21), the quantiles are the same in the two market equilibria. The total first-stage costs sum to

zero, while the expected second-stage costs do not change since the quantiles are the same.

Given that the total expected system costs are independent from the value of the risk attitudes

of market participants as long as they are homogeneous, the total social welfare coincides with the

one of a risk neutral market clearing, which is the best possible.

Granting risk-fairness is fundamental for decentralized electricity markets. It erases discrimina-

tion of resources usage among agents as per Definition 4, while it also yields the best possible social

welfare as proved in Proposition 2. Therefore, we investigate on products that recover risk-fairness

in case of heterogeneous risk preferences of market participants.

4. Risk Hedging in Decentralized Electricity Markets

We include financial contracts in risk-augmented electricity markets to mitigate the effect of

heterogeneous risk attitudes on fairness of risk cost allocation. We then provide a fairness indicator

to assess whether these risk hedging mechanisms help to enhance risk-fairness of cost allocation

and to reduce suboptimality of market equilibrium.

4.1. Risk hedging via financial contracts

Financial contracts are often employed in markets where the level of uncertainty on prices or

volumes is considerable. As they are intended to hedge the risk on first-stage decisions in view of

second-stage adjustments, these financial products are purchased by agents only if profitable for
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them. We model financial contracts in the form of Arrow-Debreu securities, i.e. financial contracts

purchased per scenario s in the first-stage market at a certain price λsw with value of 1 in the

second-stage market [10]. We model this by including in (4f) the value of the contract wsi in the

loss function of scenario s with the convention that wsi ≥ 0 if agent i buys a financial contract to

secure a revenue in case scenario s realizes. It follows

ω∆s
i + ϑ(xi − x̃si )− wsi ≤ usi + ηi, ∀i, s [νsi ] (22)

We then add a risk trade balance per scenario∑
i∈I

wsi = 0, ∀s [λsw] (23)

with dual variables λsw being the prices of the financial contracts. A regularization term could be

added to the objective function, in the form of a transaction cost, such as
∑

i,s γw|wsi |. Hereafter,

we refer to a risk-augmented electricity markets with financial contracts as in (22) and (23) as a

risk-adjusted electricity market.

Lemma 2. A risk-adjusted electricity market is complete for risk and risk-adjusted probabilities

are aligned across market participants. The risk-adjusted probabilities coincide with those of the

least risk averse agent.

Proof. By allowing each market participant to trade her risk for each scenario (assuming the same

number of scenarios NS across market participants), we complete the market for risk in accordance

to the definition provided by the authors of [4].

From the KKT conditions of (4) with (22) and (23), it follows

λsw = νsi =
1

NS(1− χi)
− τ si ∀i, s (24)

The risk-adjusted probabilities νsi are aligned across agents and are equal to the price of the financial

contracts.

For complementarity νsi and τ si are non-negative, it follows

λsw =


1

NS(1−χk) if Lsk > ηk

0 if Lsk ≤ ηk
(25)

with Lsk = ω∆s
k +ϑ(xk − x̃sk)−wsk and k the agent with the lowest risk aversion (χk = min

i
χi).
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Lemma 2 shows that, when allowed to trade financial contracts, market participants align their

risk adjusted probability on the uncertainty scenarios to the one of the least risk averse agent. In

other words, the more risk averse agents hedge their risk to comply with the least risk averse one.

Note that whenever one market participant is risk neutral, market participants hedge completely

their risk. We show that financial contracts in the form of Arrow-Debreu securities restore risk-

fairness by aligning risk adjusted probabilities across market participants.

Proposition 3. In a risk-adjusted electricity market, risk-fairness is restored asymptotically, as

market participants with heterogeneous risk attitudes attain a market equilibrium that converges to

the case of homogeneous risk preferences.

Proof. Let us assume a continuous description of each stochastic process and an infinite number

of market participants. Under these assumptions, Arrow-Debreu securities can be traded to fully

hedge agent risks and, as for Lemma 2, the risk-adjusted probabilities of each agent are aligned.

Each market participant dispatches her uncertain asset according to the risk aversion of the least

risk averse agents, resulting in equal dispatched quantiles. From (21), it follows that equal quantiles

δ correspond to equal risk attitudes χ across agents. Therefore, market participants procure their

energy as if under homogeneous risk preferences. This behaviour is asymptotic since, in practice,

stochastic processes are described by a discrete number of scenarios and the number of market

participants is limited.

From Proposition 3, it follows that financial contracts yield a non-discriminating dispatch of

resources and attain the best total social welfare by restoring risk-fairness. However, financial

contracts in the form of Arrow-Debreu securities, are an arguably unattainable ideal risk hedging

product, since they rely on several unrealistic assumptions. Each stochastic process is assumed to

be described by the same number of scenarios NS across agents with its realization included in

the employed scenarios (assumption of continuity in Proposition 3). Additionally, the correlation

across stochastic processes can weaken the effect of financial contracts, as market participants

might want to all buy or sell contracts at specific scenarios, reducing the liquidity (assumption of

infinite agents in Proposition 3). Finally, including financial contract trades adds NS complicating

constraints to the problem, making largely complex, if not intractable, the market clearing, via

decomposition techniques. Thus, we consider this product as an ideal benchmark for future design

of other products readily applicable to real-life systems.
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4.2. Fairness assessment in risky environments

In order to quantify the impact of risk hedging mechanisms on market dynamics, we propose a

fairness indicator as a possible metric of a fair cost allocation. A straightforward computation of a

fairness indicator would be a direct verification of Definition 3. We could therefore compute several

market equilibria under different sets of risk attitudes and calculate the risk cost allocation as in

Definition 2. Another variation could include a calculation of the perceived price of risk, i.e. the

risk cost allocation divided by the change in dispatched quantity, and its spread and correlation

to the set of risk attitudes. However, to compute both these indicators, one would need to clear

the market several times, which is an impractical and often not available procedure in real-life

applications.

Therefore, we propose a fairness indicator that only requires as input the outcome of a single

market equilibria. In this way, it could be used as a metric to check performances of ongoing

decentralized markets, or as a feedback signal to manage fairness of payment allocations. To do

this we leverage on the definition of risk-fairness. From Definition 4, risk-fairness is achieved when

all market participants act upon a set of homogeneous risk preferences. This is equivalent to an

homogeneous set of quantiles δ, as proven in Proposition 2. Therefore, the more the quantiles

differ among agents, the less fair the risk cost allocation will be. We adapt the Jain index, most

notably used to quantify fairness in communication networks [12], to evaluate the uncertain assets

in the context of risk-augmented electricity markets. The proposed fairness indicator is defined as

follows

J(δ) =
(1Tδ)2

N δTδ
(26)

This indicator has a maximum in 1 (indicating perfect risk-fairness), when each agent decides

to dispatch its uncertain assets at the same quantile. This happens in the ideal case where every

agent has the same risk attitude (not necessarily risk neutral) and no bounds on the asset capacities

are hit. In a more realistic case, e.g. with heterogeneous risk attitudes and binding bounds on

agent variables, this metric ensures higher fairness whenever agents can dispatch their uncertain

assets with a similar quantile, reducing the price increase within the community. As discussed

in Proposition 3, including financial contracts incentivizes the market participants, even those

with heterogenous risk attitudes, to dispatch their assets at a similar quantile, granting fairness

properties similar to a market clearing with homogeneous preferences. In this case, the proposed
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indicator assumes values closer to 1 the more the financial contracts are used to hedge the risk of

market participants.

5. Numerical Results

In this section we simulate a risk-augmented and risk-adjusted electricity market with thousands

participants in-line with the applications we expect such markets to have as these technologies

become more accessible. However, the sheer number of possible interactions among thousands

participants and the number of possible equilibria make the task of analyzing the dynamics in such

markets very complex. To address this challenge we start our analysis with an illustrative example

which, while it preserves the market structure, has only 3 agents as market participants. Through

this example, we show in detail market mechanisms and cost allocations of agents under different

sets of risk attitudes and the impact of financial contracts on market equilibria. We then employ

a larger case study to analyze market dynamics on a heterogeneous population and to verify our

analytical results on a large scale application.

5.1. Illustrative example

We first analyze a small scale decentralized electricity market to demonstrate how financial

contracts allow agents to hedge their risk, while restoring risk-fairness and the maximum social

welfare. The market consists of 3 agents each equipped with fixed load and uncertain PV gen-

eration, described by 1 000 Gaussian scenarios. Retail prices are fixed both in first and second

stage.

We identify and investigate market equilibria under different sets of risk attitudes for the market

participants, as summarized in Table 1 and Table 2. Following the convention used in our analytical

derivation, Table 1 shows agent costs (revenues in case of negative figures). We refer to system

total expected costs as the sum across agents of their first- and expected second-stage costs.

We first compare the risk neutral (RN) case, χi = 0 ∀i, with an homogeneous risk averse (RA)

case, χi = 0.3 ∀i. As proven in Proposition 2, the system total expected costs and the dispatched

quantiles are the same in both cases. What changes is the costs allocation among agents. Recalling

(20) with ∂δi/∂χi = 0, agents that assume the role of net generators (in this case agents 1 and

3), get better off and all risk cost is pushed to the agent being the net consumer (agent 2). The

same allocation pattern occurs, even more amplified, in the case of heterogeneous risk aversion
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Table 1: Summary of agent and system total expected costs [$] for different sets of risk attitudes.

Agent RN RA RHe RA3 RHe FC RA3 FC

1 -7.363 -8.288 -13.759 -11.440 -27.778 -7.240

2 69.549 82.913 113.072 98.260 98.325 74.666

3 -71.680 -84.119 -106.631 -92.768 -80.033 -76.918

Tot -9.495 -9.495 -7.318 -5.948 -9.485 -9.491

Table 2: Summary of agent dispatched quantiles and Jain index for different sets of risk attitudes.

Agent RN RA RHe RA3 RHe FC RA3 FC

1 0.247 0.247 0.373 0.353 0.261 0.255

2 0.247 0.247 0.311 0.353 0.239 0.241

3 0.247 0.247 0.125 0.101 0.246 0.245

Jain 1.000 1.000 0.868 0.837 0.999 0.999

(RHe), where the risk attitude of each market participant is set respectively to 0.4, 0.5 and 0.8.

Additionally, this simulation shows a loss of optimality in terms of system total expected costs as

risk-adjusted probabilities are misaligned. Consequently, risk-fairness, with a Jain index on the

dispatched quantiles of 0.868. We also investigate a variation of the risk attitudes in RA, where only

agent 3 deviates from her risk preference to χ3 = 0.8 (RA3). Since the net generation q3 = 1.959

[MW] exceeds the threshold T3 = 0.230 [MW], computed as in (20), agent 3 gets better off at the

expense of others even if she is the only one increasing her risk aversion. As discussed in Section

3, this cost allocation, besides not being fair, provides an incentive to agent 3 to misrepresent her

risk attitude and becoming even more risk averse, as stated in Corollary 2.

We then proceed to simulate financial contracts (FCs) and analyze their impact on the market

outcome. In particular, we evaluate these products in a market which consists of agents with

heterogeneous risk attitudes (RHe FC) and for a case study where only one agent (agent 3) deviates

from a homogeneous set of risk preferences (RA3 FC). Focusing on the case with heterogeneous set

of risk attitudes (RHe FC), one can notice from Table 1 that the cost allocation across agents is
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Table 3: Summary of agent and system cost variation [$] when including financial contracts under heterogeneous

risk attitudes (RHe FC - RHe).

First-stage cost variation Second-stage cost variation Total

Agent Energy Financial Contracts Energy Financial Contracts Variation

1 10.905 -46.654 -5.788 27.518 -14.019

2 -19.357 9.763 -7.255 2.102 -14.747

3 8.452 36.891 10.875 -29.620 26.598

Tot - - -2.167 - -2.167

different compared to the case without financial contracts (RHe), while the system total expected

costs are almost the same as the homogeneous case (RA and RN). In Proposition 3, we prove

that financial contracts restore risk-fairness only asymptotically: in fact, when only few agents

participate in the market, it is unlikely that each market participant can fully hedge her risk. With

only three agents there can exist few situations where each market participant would like to buy

financial contracts, but no one is willing to sell any. This is also reflected in Table 2, where the

dispatched quantiles are not exactly the same, but the spread across agents is largely decreased,

resulting in a Jain index of almost 1. Below, we verify that full recovery of the best social welfare

can be achieved in case of a larger case study.

Looking deeper into the cost allocation of market participants when financial contracts are

included, Table 3 shows the difference of costs (RHe FC - RHe) for first and second stage. One

should note how financial contracts, in the first stage, are sold by the least risk averse agent (agent

1) and bought by the others proportionally to their risk attitude (χ2 = 0.5 and χ3 = 0.8). These

products allow market participants to hedge their risk in second stage. First-stage trades are

all budget balanced, while the expected second-stage costs are not, as financial contracts impact

differently agents across different scenarios. This difference induces an overall improvement of the

system expected costs, recovering almost the same social welfare of a market equilibrium with

homogeneous risk attitudes.

The effect of financial contracts is highlighted in Figure 2, which displays the Cumulative Dis-

tribution Function (CDF) of second-stage losses of each market participant. Purchasing financial
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contracts, as proved in Lemma 2, alters the loss functions of agents such that their risk is hedged

and their risk-adjusted probabilities are aligned to the one of the least risk averse agent. We visu-

alize this, by plotting the CDF of the second-stage losses for equilibria with and without financial

contracts, respectively in black and red, together with the respective Value at Risk (VaR), plotted

as vertical lines. The risk attitude upon which each market participant acts, corresponds to the

probability mass not considered by market participants for their perceptions of second-stage costs.

Recalling the definition of cVaR in Section 2.3, this probability mass can be identified by the in-

tersection of each CDF and the VaR. Figure 2 shows that financial contracts align the perception

of risk across agents to the smallest risk attitude, χ1 = 0.4.

We now follow the case where only agent 3 changes her risk attitude, with all market participants

able to trade financial contracts (RA3 FC). Assuming that all agents have risk homogeneous

attitudes, as in RA, if agent 3 chooses to act upon a different risk preference, her total expected

costs are increased when including financial contracts, as displayed in Table 1. Since these products

allow agents to hedge their risk by purchasing contracts in first-stage, the more risk averse the

agents become, the more contracts they will have to purchase to hedge their risk. Further work is

needed to analytically prove this, however the intuition, verified by our simulations, is that financial

contracts remove agent incentives to exercise market power by misrepresenting her risk attitudes.

−100 0 100 200
0

0.2

0.4

0.6

0.8

1

(a) Agent 1

−100 0 100 200
0

0.2

0.4

0.6

0.8

1

(b) Agent 2

−100 0 100 200
0

0.2

0.4

0.6

0.8

1

(c) Agent 3

Figure 2: Cumulative distribution function of second-stage losses, with (red) and without (black) financial contracts,

and respective Value at Risk (vertical dashed lines).
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5.2. Case study

We test our market formulation on a large population, in order to illustrate how the market

mechanisms and properties scale up. In particular, we focus on group fairness, i.e. if there are

patterns in the market outcomes that show a discrimination of certain subsets of agents. We employ

a synthetic dataset of 10 000 agents, each with uncertain PV generation described by 50 scenarios

and fixed load. We uniformly sample the mean and standard deviation of PV generation, as well

as electricity consumption and risk attitudes. We benchmark the results to the same dataset but

with all risk attitudes set to zero, i.e. the risk neutral case, to calculate risk payments as difference

of costs between the heterogeneous risk averse and the risk neutral case.

Figure 3 displays a summary of the results. The black dots represent the risk payments of

agents as function of their net generation, while the density of the data points is displayed by

isobars (black lines). It is clear that risk-fairness is not respected as agents with similar resources

(in this case all agents) are allocated largely different risk payments. The risk cost distributions

for net producers and net consumers separately (Figure 3 right) clearly show that the market is

Figure 3: Risk cost as function of net generation (left black), with the respective distribution for net producers and

consumers (right), and equivalent risk cost when including financial contracts (left red).
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strongly biased to penalize more net consumers. The probability of net consumers to be penalized

is of around 88% compared to the 22% for net producers.

When including financial contracts, the difference of risk costs across agents are smoothed out,

as depicted in Figure 3 by the red dots. Additionally, the risk cost magnitudes are largely reduced,

from costs between [−127.37, 180.20] $ to costs in the range of [−0.93, 0.01] $. Risk-fairness is

perfectly restored, from a Jain index of 0.823 for the risk-augmented market to a Jain index of

1.0 for the risk-adjusted market. At the same time, market outcomes are not biased between net

consumers and net producers, as both have a probability of 57% to be penalized. The results also

verify that the same social welfare attained in the risk neutral case is recovered.

6. Conclusions and Future Work

The role of uncertainties in decentralized electricity markets is fundamental, as most of the

distributed energy resources of prosumers are uncertain, yet the impact their risk preferences may

have on the market outcome is not deeply researched. In this paper, we investigated the impact

of uncertainties and the corresponding risk attitudes in community-based markets. We modelled

risk costs by means of the cVaR and analyzed cost allocations in risky environments. In partic-

ular, we focused on how the costs of including risk in the market clearing are allocated to the

agents and proposed a definition of fairness of risk cost allocation. To do this, we derived the

analytical relation between payments and risk attitudes of the community members in the form of

comparative statics and adapted the well-known Jain index as a fairness metric for cost allocations

in decentralized electricity markets. We verified that including risk in community-based market

mechanism compromises fairness of cost allocation among participants and incentivizes large pro-

ducers to strategically misrepresent their risk preferences. Therefore, we investigated risk hedging

mechanisms, in the form of financial contracts, not only as a way to shield agents from second-stage

losses but also as a product to restore fairness within the community. Furthermore, we showed that

including financial contracts removes incentives from market participants to misrepresent their risk

aversion, but further work is needed to analytically prove this property.

By completing the market with Arrow-Debreu securities, we set an ideal benchmark for full

risk hedging, a largely non practical set-up when solving the problem via decomposition techniques

as it adds a number of complicating constraints equal to the number of the scenarios employed to
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describe the stochastic processes. Moreover, Arrow-Debreu securities, although ideal, may not be

attainable, as they imply a certain level of coordination across market participants. Hence, future

research should aim at designing hedging mechanisms that approximate the effect of the proposed

benchmark, while preserving the decomposition properties of the problem and reducing the need

of coordination among uncertainty descriptions.
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7. Appendix

7.1. Proof of Lemma 1

We look for an analytical expression of total costs Cj ∀j ∈ I as function of the risk parameter

of one agent i ∈ I. We begin by deriving the KKT conditions of (4) as follows

− πi + µi − µi +
∑
s∈Si

[ω sign(xi − xsi ) + ϑ] νsi = 0 ∀i [xi] (27a)

− πi + λc = 0 ∀i [qi] (27b)

γb − λc − µb = 0 [qb] (27c)

− γs + λc − µs = 0 [qs] (27d)

εi −
∑
s∈Si

νsi = 0 ∀i [ηi] (27e)

εi
NSi(1− χi)

− νsi − τsi = 0 ∀i, s [usi ] (27f)

− xi − qi = 0 ∀i (27g)∑
i∈I

qi = 0 (27h)

0 ≤ Xi − xi ⊥ µi ≥ 0 ∀i (27i)

0 ≤ xi −Xi ⊥ µi ≥ 0 ∀i (27j)

0 ≥ ηi + usi − ω|(xi − x̃si )| − ϑ(xi − x̃si ) ⊥ νsi ≥ 0 ∀i, s (27k)

0 ≤ usi ⊥ τsi ≥ 0 ∀i, s (27l)

As displayed in Figure 4, the dispatch set-point xi, and its corresponding cumulative distribu-

tion function δi = Φ(xi), define the scenarios where the loss function will be positive (x̃si ≥ xi, i.e.

agent i will sell the excess generation at price λs) and negative (x̃si ≤ xi, i.e. agent i will buy the

lack generation at price λb), hence the quantile of the negative loss function is 1−δi (and vice-versa

δi for the positive loss function), as represented by the black lines in Figure 5. By manipulating

the KKT conditions, in particular accounting for the complementarity conditions (27k) and (27l)

as displayed in Figure 5, we derive

∑
s∈Si

[ω sign(xi − xsi ) + ϑ] νsi =


1 ηi ≥ 0

2δi
1−χi − 1 ηi ≤ 0

(28)

From Figure 5, one can notice that the condition ηi ≥ 0 happens when δi ≥ 1 − χi (and vice-

versa). The continuity of (28) can be easily verified for δi = 1−χi. Under the assumption that the
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xi

λsλb

Realization scenarios (x̃si )

φ(x)

δi

1− δi

Figure 4: Probability distribution function of uncertain generation scenarios.

0 ηi

τ si = 0νsi = 0

Realization scenarios (Ls
i )

φl(L)

δi 1− δi χi 1− χi

ηi 0

τ si = 0νsi = 0

Realization scenarios (Ls
i )

φl(L)

Figure 5: Probability distribution function of loss scenarios, ηi > 0 (left) and ηi < 0 (right).

assets affected by uncertainties do not hit their maximum and minimum capacity (µi, µi = 0 ∀i ∈
I), we substitute (28) in (27a) to derive an expression of the price perceived by each agent πi as
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follows

πi =


λb if δi ≥ 1− χi

λs + 2ωδi
1−χi if δi < 1− χi

(29)

Whenever δi ≥ 1− χi , the probability for which agent i needs to buy energy in the second-stage

decision δi is larger than the probability mass of the worst case scenarios considered by the cVaR

(1−χi). Therefore the perceived price in this case is simply the buying price in second stage λb and

no major cost changes happen for small deviation of risk attitudes around this market equilibrium.

For this reason, we focus on the less trivial case, where δi < 1 − χi and the perceived price is

function of the power set-point of the uncertain asset and the agent risk attitudes. From (27b), we

derive that λc = πi = πj , ∀i, j. It follows

δi
1− χi

=
δj

1− χj
∀i, j ∈ I (30)

In this way, we can express the cost functions of all agents j with dependency only on the risk prefer-

ence of agent j. Since the power set-point xi = Φ−1(δi), and its quantile, is a non-straightforward

function of the risk attitude, we consider the symbolical function δi = δi(χi) to represent this

relation.

We first rewrite (6) as

E
[
CII
i

]
=

∫ 0

−∞
l−i ψi(l

−
i )dl−i +

∫ +∞

0
l+i ψi(l

+
i )dl+i

=

∫ xi

Xi

λs(xi − x)
φi(x)

λs
(−λsdx) +

∫ Xi

xi

λb(xi − x)
φi(x)

λb
(−λbdx)

= xi [λs(1− δi) + λbδi] + λs

∫ xi

Xi

xφi(x)dx+ λb

∫ Xi

xi

xφi(x)dx

(31)

Using (29) and (30) as well as the definition of λc and xi, we rewrite (5) and (31) as follows

Ci =

(
λs +

2ωδi
1− χi

)[
Di − Φ−1(δi)

]
+ Φ−1(δi) [λs(1− δi) + λbδi]

+ λs

∫ Φ−1(δi)

Xi

xφi(x)dx+ λb

∫ Xi

Φ−1(δi)
xφi(x)dx (32a)

Cj =

(
λs +

2ωδi
1− χi

)[
Dj − Φ−1

(
δi(1− χj)

1− χi

)]
+ Φ−1

(
δi(1− χj)

1− χi

)
[λs(1− δj) + λbδj ]

+ λs

∫ Φ−1

(
δi(1−χj)

1−χi

)
Xj

xφj(x)dx+ λb

∫ Xj

Φ−1

(
δi(1−χj)

1−χi

) xφj(x)dx ∀j ∈ I \ i (32b)
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We then calculate the derivatives of (32) over χi as

∂Ci
∂χi

=2ω

(
∂δi
∂χi

(1− χi) + δi

)
Di − xi

(1− χi)2
− ∂δi
∂χi

1

φ(xi)

(
λs +

2ωδi
1− χi

)
+
∂δi
∂χi

λs + 2ωδi
φ(xi)

(33a)

∂Cj
∂χi

=

(
∂δi
∂χi

(1− χi) + δi

)
1

(1− χi)2

[
2ω(Dj − xj)−

(
λs +

2ωδi
1− χi

)
1− χj
φ(xj)

+ (λs + 2ωδj)
1− χj
φ(xj)

]
(33b)

Under the assumption of a non-trivial situation, i.e. ηi ≤ 0, we rewrite (7) as

R
[
CII
i

]
=

1

1− χi

[∫ 0

ηi

l−i ψi(l
−
i )dl−i +

∫ +∞

0
l+i ψi(l

+
i )dl+i

]
=

1

1− χi

[∫ xi

xi−
ηi
λs

λs(xi − x)
φi(x)

λs
(−λsdx) +

∫ Xi

xi

λb(xi − x)
φi(x)

λb
(−λbdx)

]

=
1

1− χi

(
xi [λs(1− δi − χi) + λbδi] + λs

∫ xi

xi−
ηi
λs

xφi(x)dx+ λb

∫ Xi

xi

xφi(x)dx

) (34)

Using (29) and (30) as well as the definition of λc and xi, we rewrite (5) and (34) as follows

Ĉi =

(
λs +

2ωδi
1− χi

)[
Di − Φ−1(δi)

]
+

1

1− χi

[
Φ−1(δi) (λs(1− δi − χi) + λbδi)

+ λs

∫ Φ−1(δi)

Φ−1(1−χi)
xφi(x)dx+ λb

∫ Xi

Φ−1(δi)
xφi(x)dx

]
(35a)

Ĉj =

(
λs +

2ωδi
1− χi

)[
Dj − Φ−1

(
δi(1− χj)

1− χi

)]
+

1

1− χi

[
Φ−1

(
δi(1− χj)

1− χi

)(
λs

[
1− δi(1− χj)

1− χi
− χj

]
+ λb

δi(1− χj)
1− χi

)

+ λs

∫ Φ−1

(
δi(1−χj)

1−χi

)
Φ−1(1−χj)

xφj(x)dx+ λb

∫ Xj

Φ−1

(
δi(1−χj)

1−χi

) xφj(x)dx

]
∀j ∈ I \ i (35b)

We then calculate the derivatives of (35) over χi as

∂Ĉi
∂χi

=2ω

(
∂δi
∂χi

(1− χi) + δi

)
Di − xi

(1− χi)2
− ∂δi
∂χi

1

φ(xi)

(
λs +

2ωδi
1− χi

)
+

cVaRi − ηi
1− χi

+
∂δi
∂χi

λs(1− χi) + 2ωδi
φ(xi)(1− χi)

(36a)

∂Ĉj
∂χi

=

(
∂δi
∂χi

(1− χi) + δi

)
1

(1− χi)2

[
2ω(Dj − xj)−

(
λs +

2ωδi
1− χi

)
1− χj
φ(xj)

+
λs(1− χj) + 2ωδj

φ(xj)

]
(36b)

concluding the proof.
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